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Abstract

Hassin (1983) proposed a dual algorithm for the minimum cost flow
problem, which iteratively updates dual variables only in a steepest as-
cent manner. This algorithm is generalized to the minimum cost sub-
modular flow problem by Chung and Tcha (1991). It is known in dis-
crete convex analysis that the dual of the minimum cost flow problem
is formulated as the maximization of a polyhedral L-concave function.
It is recently pointed out that Hassin’s algorithm can be recognized as
a steepest ascent algorithm for polyhedral L-concave functions. The
objective of this paper is to show some nice properties of the steepest
ascent algorithm for polyhedral L-concave functions. We show that the
algorithm is endowed with the monotonicity property of Hassin’s algo-
rithm. Moreover, the algorithm finds the “nearest” optimal solution to
a given initial solution, and the trajectory of the solutions generated
by the algorithm is a “shortest” path from the initial solution to the
“nearest” optimal solution.

∗This research is partially supported by KAKENHI (21360045, 21740060, 24500002)
and the Aihara Project, the FIRST program from JSPS.
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1 Introduction

Among many algorithms for the minimum cost flow problem (see, e.g.,
[1, 11]), Hassin’s dual algorithm [5] is unique in that it maintains only dual
variables, while most of the other algorithms use primal (i.e., flow) variables.
Hassin’s algorithm iteratively chooses a subset of dual variables which cor-
responds to a graph cut and increments them so that the dual objective
function increases strictly. It is shown in [5] that the sequence of solutions
generated by the algorithm has a certain monotonicity property, from which
follows the finite termination of the algorithm. Hassin’s algorithm is later
generalized to the minimum cost submodular flow problem by Chung and
Tcha [2].

It is known in discrete convex analysis ([6], [7]) that the dual of the min-
imum cost (submodular) flow problem is formulated as the maximization
of a polyhedral L-concave function. The concept of polyhedral L-concave
functions in real variables was introduced by Murota and Shioura [9] as a
variant of L-concave functions originally defined for functions on integer lat-
tice points. It is pointed out in our recent paper [10] that Hassin’s algorithm
as well as Chung—Tcha’s algorithm can be recognized as a steepest ascent
algorithm for polyhedral L-concave functions, where the steepest ascent di-
rection is chosen from a finite set of 0-1 vectors. This observation indicates
that the steepest ascent algorithm for polyhedral L-concave functions is fun-
damental in combinatorial optimization.

In this paper, we investigate the behavior of the steepest ascent algo-
rithm for polyhedral L-concave function maximization and show its nice
properties. First, it is endowed with the same monotonicity property as
that of Hassin’s algorithm, which guarantees its finite termination. Second,
for any initial solution, the algorithm finds the “nearest” optimal solution
in the `∞-distance from the initial solution. Third, the trajectory of the
solutions generated by the algorithm is a “shortest” path from the initial
solution to the “nearest” optimal solution in the sense that the total sum
of the step lengths is equal to the `∞-distance from the initial solution to
the nearest optimal solution. Our second and third results imply, in particu-
lar, that Hassin’s and Chung—Tcha’s algorithms are “efficient” algorithms in
some sense. The steepest ascent algorithm for polyhedral L-concave func-
tions can naturally be adapted to polyhedral L\-concave functions. The
algorithm outputs the optimal solution that is “nearest” with respect to a
variant of the `∞-distance.

2 Preliminaries on L-concave Functions

We review the concept of polyhedral L-concave functions. Throughout this
paper, let V be a finite set. For a function g : RV → R∪ {−∞}, its effective
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domain is defined as

dom g = {p ∈ RV | g(p) > −∞}.

A function g : RV → R ∪ {−∞} is said to be a polyhedral concave function
if the set

{(p,α) ∈ RV × R | p ∈ dom g, α ≤ g(p)}

is a (nonempty) polyhedron. Equivalently, g : RV → R ∪ {−∞} is a poly-
hedral concave function if there exist a nonempty polyhedron S ⊆ RV ,
a1, . . . , am ∈ RV , and b1, . . . , bm ∈ R such that

dom g = S, g(p) = min
1≤i≤m

{aTi p+ bi} (p ∈ S).

For p ∈ dom g and q ∈ RV , we define

g0(p; q) = lim
λ↓0

g(p+ λq)− g(p)

λ
,

which is called the directional derivative of g at p in direction q. We also
define

c̄(p; q) = max{λ ∈ R+ | g(p+ λq)− g(p) = λ g0(p; q)}. (2.1)

Note that c̄(p; q) > 0 and g(p+λq)− g(p) = λ g0(p; q) holds for every λ with
0 ≤ λ ≤ c̄(p; q).

A polyhedral concave function g : RV → R∪ {−∞} is said to be polyhe-
dral L-concave [9] if it satisfies the following conditions:

(LF1) g(p) + g(q) ≤ g(p ∧ q) + g(p ∨ q) (∀p, q ∈ dom g),
(LF2) ∃r ∈ R s.t. g(p+ λ1) = g(p) + λr (∀p ∈ dom g, ∀λ ∈ R),

where p ∧ q, p ∨ q (∈ RV ) denote the vectors with

(p ∧ q)(v) = min{p(v), q(v)}, (p ∨ q)(v) = max{p(v), q(v)} (v ∈ V ),

and 1 (∈ RV ) is the vector with each component being equal to one. Note
that r = 0 is assumed in (LF2) whenever we consider maximization of a
polyhedral L-concave function since otherwise there exists no maximizer.

A typical example of polyhedral L-concave functions arises from the
maximum weight tension problem. For a directed graph G = (V,E), let
ϕuv : R→ R∪ {−∞} be an edge weight function for (u, v) ∈ E. We assume
that functions ϕuv ((u, v) ∈ E) are polyhedral (or piecewise-linear) concave
functions. The maximum weight tension problem is formulated as follows:

(MWT)
Maximize

X
(u,v)∈E

ϕuv(p(u)− p(v))

subject to p ∈ RV .
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We denote by gT : RV → R ∪ {−∞} the objective function of the problem
(MWT). Note that dom gT 6= ∅ if and only if (MWT) has a feasible solution,
i.e., there exists some p ∈ RV such that ϕuv(p(u) − p(v)) > −∞ for all
(u, v) ∈ E.

Proposition 2.1 ([9, Example 2.4]). Suppose that dom gT 6= ∅. Then,
function gT is polyhedral L-concave with r = 0 in (LF2).

Another example of polyhedral L-concave function comes from the so-
called Lovász extension of a submodular function. A set function ρ : 2V → R
is said to be submodular if it satisfies

ρ(X) + ρ(Y ) ≥ ρ(X ∩ Y ) + ρ(X ∪ Y ) (∀X,Y ⊆ V ).

Given a set function ρ : 2V → R with ρ(∅) = 0, define a function ρ̂ : RV → R
by

ρ̂(p) =

h−1X
i=1

(p̃i − p̃i+1)ρ(Li) + p̃hρ(Lh) (p ∈ RV ), (2.2)

where p̃1 > p̃2 > · · · > p̃h are distinct values of components of p and

Li = {v ∈ V | p(v) ≥ p̃i} (i = 1, 2, . . . , h).

The function ρ̂ is called the Lovász extension of ρ.

Proposition 2.2 ([9, Theorem 4.36]). For a submodular set function ρ :
2V → R with ρ(∅) = 0, the function −ρ̂ is a polyhedral L-concave function.
If ρ(V ) = 0, then −ρ̂ satisfies the property (LF2) with r = 0.

3 Hassin’s and Chung—Tcha’s Algorithms

As the motivation of the present paper, we review the dual algorithms for
the minimum cost flow problem by Hassin [5] and for the minimum cost
submodular flow problem by Chung and Tcha [2]. We also observe the
polyhedral L-concavity of the dual objective functions of the problems in [5]
and in [2]. In the following, we denote by χX ∈ {0, 1}V the characteristic
vector of X ⊆ V , i.e., χX(v) = 1 if v ∈ X and χX(v) = 0 if v ∈ V \X .

3.1 Hassin’s Algorithm

For a directed graph G = (V,E), nonnegative edge capacity c(e), and edge
cost γ(e) for e ∈ E, the minimum cost flow problem is formulated as follows:

Minimize
X

(u,v)∈E
γ(u, v)x(u, v)

subject to ∂x(u) = 0 (u ∈ V ),
0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E),
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where
∂x(u) =

X
v:(u,v)∈E

x(u, v)−
X

v:(v,u)∈E
x(v, u) (u ∈ V ).

The dual problem is given as

Maximize gH(p) ≡
X

(u,v)∈E
c(u, v)min{0, p(u)− p(v) + γ(u, v)}

subject to p(v) ∈ R (v ∈ V ).

The function gH is polyhedral L-concave since it is a special case of the
function gT in Proposition 2.1.

Hassin’s algorithm is described as follows. For p ∈ RV and X ⊆ V , we
define

I(p,X) =
X

(u,v)∈E<out(p,X)
c(u, v)−

X
(u,v)∈E≤in(p,X)

c(u, v), (3.1)

where

E<out(p,X) = {(u, v) ∈ E | p(u)− p(v) + γ(u, v) < 0, u ∈ X, v ∈ V \X},

E≤in(p,X) = {(u, v) ∈ E | p(u)− p(v) + γ(u, v) ≤ 0, u ∈ V \X, v ∈ X}.

We also define λ(p,X) by

λ(p,X) = min
©
|p(u)− p(v) + γ(u, v)|¯̄

(u, v) ∈ E<out(p,X) ∪ E
>
in(p,X)

ª
, (3.2)

where

E>in(p,X) = {(u, v) ∈ E | p(u)− p(v) + γ(u, v) > 0, u ∈ V \X, v ∈ X}.

Then, it holds that

gH(p+ αχX)− gH(p) = αI(p,X) (0 ≤ ∀α ≤ λ(p,X)).

Hassin’s Algorithm

Step 0: Set p := p◦, where p◦ is an initial vector chosen from RV .

Step 1: Find X ⊆ V that maximizes I(p,X); if there exist more than one
such X , then take a (unique) minimal one.

Step 2: If I(p,X) ≤ 0, then stop; p is a maximizer of gH.

Step 3: Set p := p+ λ(p,X)χX . Go to Step 1.

For each positive integer k, we denote by Xk and pk, respectively, the
set X and the vector p just after Step 1 in the k-th iteration. The next
property shows that the value I(pk,Xk) is monotone nonincreasing.
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Proposition 3.1 ([5]). For k = 1, 2, . . . , I(pk, Xk) ≥ I(pk+1,Xk+1) holds.
Moreover, if I(pk,Xk) = I(pk+1,Xk+1), then we have Xk ( Xk+1.

It is observed in [5] that the set of possible values of I(p,X) is finite, and
hence the algorithm terminates in a finite number of iterations by Proposi-
tion 3.1 (see [5] for details).

3.2 Chung—Tcha’s Algorithm

Suppose now that a submodular function ρ : 2V → R with ρ(∅) = ρ(V ) = 0
is given, in addition to a directed graph G = (V,E), nonnegative edge capac-
ity c(e) and edge cost γ(e) for e ∈ E. Then, the minimum cost submodular
flow problem is formulated as follows:

Minimize
X

(u,v)∈E
γ(u, v)x(u, v)

subject to
X
u∈Y

∂x(u) ≤ ρ(Y ) (Y ( V ),X
u∈V

∂x(u) = ρ(V ),

0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E).

The linear programming dual is given as

Maximize −
X

(u,v)∈E
c(u, v)s(u, v)−

X
Y⊆V

ρ(Y )t(Y )

subject to −s(u, v)−
X
Y :u∈Y

t(Y ) +
X
Y :v∈Y

t(Y ) ≤ γ(u, v) ((u, v) ∈ E),

s(u, v) ≥ 0 ((u, v) ∈ E),
t(Y ) ≥ 0 (Y ( V ), t(V ) ∈ R.

It is known that for every vector p ∈ RV , the real numbers sp(u, v) ((u, v) ∈
E) and tp(Y ) (Y ⊆ V ) defined by

sp(u, v) = −min{0, p(u)− p(v) + γ(u, v)} ((u, v) ∈ E),

tp(Y ) =

⎧⎨⎩
p̃i − p̃i+1 (if Y = Li, 1 ≤ i ≤ h− 1),
p̃h (if Y = Lh),
0 (otherwise)

(3.3)

provide a feasible solution of the dual problem, where

p̃1 > p̃2 > · · · > p̃h are the distinct values of components of p,

Li = {v ∈ V | p(v) ≥ p̃i} (i = 1, 2, . . . , h).

Moreover, some optimal solution of the dual problem can be represented in
the form of (3.3) for some p (see [2, 3]; see also Theorem 5.6 and its proof
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in [4]). Hence, the dual problem is rewritten as follows:

Maximize gCT(p) ≡
X

(u,v)∈E
c(u, v)min{0, p(u)− p(v) + γ(u, v)}− ρ̂(p)

subject to p(v) ∈ R (v ∈ V ),

where ρ̂ : RV → R is the Lovász extension of ρ given by (2.2). It is observed
that the objective function gCT is expressed as gCT = gH − ρ̂, which implies
that gCT is polyhedral L-concave since both of gH and −ρ̂ are polyhedral
L-concave functions and polyhedral L-concavity is closed under addition.

Chung—Tcha’s algorithm is described as follows. Recall the definitions
of I(p,X) and λ(p,X) in (3.1) and in (3.2), respectively. We also define

μ(p,X) = min{p̃i − p̃i+1 | 1 ≤ i ≤ h− 1, (Li+1 \ Li) ∩X 6= ∅,
(Li \ Li−1) \X 6= ∅},

where L0 is defined to be the empty set. Then, it holds that

gCT(p+ αχX)− gCT(p) = α(I(p,X)− ρ̂0(p;χX))

for every α ∈ R with 0 ≤ α ≤ min{λ(p,X),μ(p,X)}, where ρ̂0(p;χX) is the
directional derivative1 of ρ̂ at p in direction χX .

Chung—Tcha’s Algorithm

Step 0: Set p := p◦, where p◦ is an initial vector chosen from RV .

Step 1: Find X ⊆ V that maximizes I(p,X)− ρ̂0(p;χX).

Step 2: If I(p,X) ≤ ρ̂0(p;χX), then stop; p is a maximizer of gCT.

Step 3: Set p := p+min{λ(p,X),μ(p,X)}χX . Go to Step 1.

Chung and Tcha derive a pseudo-polynomial bound on the number of
iterations of the algorithm by assuming that the edge costs γ(e) are all
integer-valued [2].

4 Steepest Ascent Algorithms

4.1 Algorithm for Polyhedral L-concave Functions

We consider the following steepest ascent algorithm for the maximization
of a polyhedral L-concave function g : RV → R ∪ {−∞}, where it is as-
sumed that dom g is bounded and g satisfies the property (LF2) with r = 0.
Whereas a standard steepest ascent algorithm iteratively updates a current
solution p by using a direction q ∈ RV which maximizes the value of direc-
tional derivative g0(p; q), our algorithm uses a restricted class of directions
given by 0-1 vectors. Recall the definition of c̄(p; q) in (2.1).

1ρ̂0(p;χX) admits an explicit formula [2], which is omitted here.
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Steepest Ascent Algorithm for Polyhedral L-concave Function

Step 0: Set p := p◦, where p◦ is an initial vector chosen from dom g.

Step 1: Let X ⊆ V be a set maximizing the value g0(p;χX); if there exist
more than one such X, then take a (unique) minimal one.

Step 2: If g0(p;χX) ≤ 0, then output the current vector p = p∗ and stop
(p∗ is a maximizer of g).

Step 3: Set λ := c̄(p;χX) and p := p+ λχX . Go to Step 1.

We note that the minimal X that maximizes g0(p;χX) in Step 1 is
uniquely determined by the following property:

Proposition 4.1. Let p ∈ dom g. If X,Z ∈ argmax{g0(p;χY ) | Y ⊆ V },
then it holds that X ∩ Z,X ∪ Z ∈ argmax{g0(p;χY ) | Y ⊆ V }.

Proof. By the property (LF1) of g, we have

g0(p;χX) + g0(p;χZ) ≤ g0(p;χX∩Z) + g0(p;χX∪Z).

Since X,Z ∈ argmax{g0(p;χY ) | Y ⊆ V }, this implies X ∩ Z,X ∪ Z ∈
argmax{g0(p;χY ) | Y ⊆ V }.

The validity of the steepest ascent algorithm follows immediately from
the following proposition, stating that a maximizer of a polyhedral L-concave
function is characterized by a local property.

Proposition 4.2 ([9, Theorem 4.29]). Let g : RV → R ∪ {−∞} be a poly-
hedral L-concave function, and p ∈ dom g. Then, p is a maximizer of g if
and only if g0(p;χX) ≤ 0 for every X ⊆ V .

Hence, the output of the algorithm is a maximizer of function g.

Remark 4.3. It is easy to see that the steepest ascent algorithm above co-
incides with Hassin’s and Chung—Tcha’s algorithms when applied to polyhe-
dral L-concave functions gH and gCT, respectively. Our algorithm is differ-
ent from Chung—Tcha’s algorithm in the choice of X in Step 1. The unique
minimal maximizer X of g0(p;χX) is chosen in our algorithm to guaran-
tee the finite termination (see Theorem 4.5 and Corollary 4.6), whereas
Chung—Tcha’s algorithm takes arbitrary maximizer and imposes integrality
assumption on the input to show the the finite termination.

Remark 4.4. The steepest ascent algorithm presented in this section can
also be seen as a natural generalization of the steepest ascent algorithm for
L-concave functions defined on integer lattice points (see [7, 8]).
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We now present three theorems as the main results of the paper. They
show nice properties which are peculiar to the steepest ascent algorithm
above for polyhedral L-concave functions and are not shared by the ordinary
steepest ascent algorithm for general concave functions.

It is shown first that the monotonicity property of Hassin’s algorithm
(Proposition 3.1) extends to the steepest ascent algorithm. Let pk and Xk
be the vector p and the set X in Step 1 of the k-th iteration. We denote by
m the total number of iterations executed in the algorithm.

Theorem 4.5. Suppose that the steepest ascent algorithm is applied to
a polyhedral L-concave function g. For each k = 1, 2, . . . , m, we have
g0(pk;χXk) ≥ g0(pk+1;χXk+1). Moreover, if g

0(pk;χXk) = g0(pk+1;χXk+1),
then Xk ( Xk+1.

Proof. Proof is given in Section 5.1.

From this property follows the finite termination of the algorithm.

Corollary 4.6. The steepest ascent algorithm finds a maximizer of a poly-
hedral L-concave function g : RV → R ∪ {−∞} with bounded dom g in a
finite number of iterations.

Proof. By Theorem 4.5, it suffices to show that g0(pk;χXk) takes a value in
a finite set of real numbers. Let

D = {g0(p;χX) | p ∈ dom g, X ⊆ V, g0(p;χX) > −∞}.

Since g is a polyhedral concave function, it can be represented as

g(p) = min
1≤i≤t

{aTi p+ bi} (p ∈ dom g)

for some ai ∈ RV and bi ∈ R (i = 1, 2, . . . , t). Hence, if g0(p;χX) > −∞,
then we have g0(p;χX) = aTi χX for some i. This implies that D is a finite
set.

Next we show that for every initial solution p◦, the maximizer p∗ of g
found by the algorithm is “nearest” to p◦ in the following sense. Note that
there always exists a maximizer p of g satisfying p ≥ p◦ by the property
(LF2). Note also that by the property (LF1), a minimal maximizer p of g
under the condition p ≥ p◦ is uniquely determined.

Theorem 4.7. Suppose that the steepest ascent algorithm is applied to a
polyhedral L-concave function g with the initial solution p◦ ∈ dom g. Then,
the output p∗ of the algorithm is the unique minimal maximizer of g under
the condition p∗ ≥ p◦; in particular, p∗ satisfies

kp∗ − p◦k∞ = min{kp− p◦k∞ | p ∈ argmax g, p ≥ p◦}. (4.1)
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Proof. Proof is given in Section 5.2.

We finally show that the trajectory of the solutions generated by the
algorithm is a “shortest” path from the initial solution p◦ to the “nearest”
maximizer p∗ in the sense that the total sum of the step lengths is equal to
the `∞-distance kp∗ − p◦k∞ from the initial solution to the nearest optimal
solution. Let λk be the step size λ computed in Step 3 of the k-th iteration.

Theorem 4.8. Suppose that the steepest ascent algorithm is applied to a
polyhedral L-concave function g with the initial solution p◦ ∈ dom g. Then,
the output p∗ of the algorithm satisfies

kp∗ − p◦k∞ =
m−1X
k=1

λk.

Proof. Proof is given in Section 5.2.

Remark 4.9. In Step 1 of the steepest ascent algorithm presented above,
we assume that the set X is the unique minimal maximizer of g0(p;χX). In
fact, this minimality assumption is not needed to prove Theorem 4.8 and
the equation (4.1) in Theorem 4.7, whereas it is required in the proofs of
Theorem 4.5 and the minimality of p∗ in Theorem 4.7. See Section 5.2 for
details.

4.2 Algorithm for Polyhedral L\-concave Functions

We consider a variant of polyhedral L-concave functions, called polyhedral
L\-concave functions, and show that the steepest ascent algorithm for max-
imization of polyhedral L-concave functions is naturally adapted to polyhe-
dral L\-concave functions.

A polyhedral concave function g : RV → R ∪ {−∞} is said to be L\-
concave if the function g̃ : RṼ → R ∪ {−∞} defined by

g̃(η, p) = g(p− η1) ((η, p) ∈ R× RV = RṼ ) (4.2)

is a polyhedral L-concave function, where Ṽ = {v0} ∪ V . Polyhedral L
\-

concavity of g is characterized by the following “translation-supermodularity”
[9, Theorem 4.39]:

g(p) + g(q) ≤ g(p ∨ (q − λ1)) + g((p+ λ1) ∧ q)
(∀p, q ∈ dom g, ∀λ ≥ 0).

We now consider the maximization of a polyhedral L\-concave function
g : RV → R ∪ {−∞}. The steepest ascent algorithm in Section 4.1 applied
to the polyhedral L-concave function g̃ given by (4.2) yields the following
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algorithm for the polyhedral L\-concave function g through the following
correspondence (see also [7, Section 10.3.1]):

g̃ g

(η, p) ⇐⇒ q = p− η1
(η, p) + λ(0,χX) ⇐⇒ q + λχX
(η, p) + λ(1,χX) ⇐⇒ q − λχV \X

(4.3)

Steepest Ascent Algorithm for Polyhedral L\-concave Function

Step 0: Set p := p◦, where p◦ is an initial vector chosen from dom g.

Step 1: Let σ ∈ {+1,−1} and X ⊆ V be a pair of a sign and a set max-
imizing the value g0(p;σ χX); if there exist more than one such pair,
then choose σ and X according to the following rule:
(i) if there exists such (σ,X) with σ = +1, then set σ = +1 and take
a (unique) minimal X.
(ii) otherwise, set σ = −1 and take a (unique) maximal X .

Step 2: If g0(p;σ χX) ≤ 0, then output the current vector p = p
∗ and stop

(p∗ is a maximizer of g).

Step 3: Set λ := c̄(p;σ χX) and p := p+ λσ χX . Go to Step 1.

The properties of the steepest ascent algorithm for polyhedral L-concave
functions in Section 4.1 can be restated in terms of polyhedral L\-concave
functions as follows. Let pk, Xk, and σk be the vector p, the set X, and
σ ∈ {+1,−1} in Step 1 of the k-th iteration. Denote by m the total number
of iterations executed in the algorithm.

Theorem 4.10. Suppose that the steepest ascent algorithm is applied to a
polyhedral L\-concave function g. For each k = 1, 2, . . . , m, the following
properties hold:
(i) g0(pk; σkχXk) ≥ g

0(pk+1;σk+1χXk+1).
(ii) Suppose that g0(pk;σkχXk) = g

0(pk+1; σk+1χXk+1).
(ii-a) If σk = −1, then σk+1 = −1.
(ii-b) If σk = σk+1 = +1, then Xk ( Xk+1.
(ii-c) If σk = σk+1 = −1, then Xk ) Xk+1.

Proof. Let g̃ : RṼ → R ∪ {−∞} be the L-concave function associated with
g by (4.2), and apply the steepest ascent algorithm for the polyhedral L-
concave function to g̃ with the initial vector (0, p◦). Let p̃k and X̃k be the
vector p̃ and the set X̃ in Step 1 of the k-th iteration. By the correspondence
(4.3) between g and g̃, we have the following relations:

Xk =

½
X̃k (if σk = +1),

Ṽ \ X̃k (if σk = −1),
g0(pk; σkχXk) = g̃

0(p̃k;χX̃k).

Therefore, the statement follows immediately from Theorem 4.5.
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For a vector q ∈ RV , denote

kqk+∞ = max
i∈V

max(0, q(i)), kqk−∞ = max
i∈V

max(0,−q(i)).

Note that
kqk∞ = max(kqk+∞, kqk

−
∞)

holds, and kqk+∞ + kqk−∞ serves as a norm of q (satisfying the axioms of
norms). Accordingly, the value kp∗−pk+∞+kp∗−pk−∞ represents a “distance”
between two vectors p∗ and p.

Theorems 4.7 and 4.8 for L-concave functions are translated to L\-concave
functions as follows.

Theorem 4.11. Suppose that the steepest ascent algorithm is applied to a
polyhedral L\-concave function g with the initial solution p◦ ∈ dom g. Then,
the output p∗ of the algorithm satisfies

kp∗ − p◦k+∞ + kp
∗ − p◦k−∞

= min{kp− p◦k+∞ + kp− p
◦k−∞ | p ∈ argmax g}. (4.4)

Let λk be the step size λ computed in Step 3 of the k-th iteration of the
steepest ascent algorithm for L\-concave functions.

Theorem 4.12. Suppose that the steepest ascent algorithm is applied to a
polyhedral L\-concave function g with the initial solution p◦ ∈ dom g. Then,
the output p∗ of the algorithm satisfies

kp∗ − p◦k+∞ + kp
∗ − p◦k−∞ =

m−1X
k=1

λk.

Proof of Theorems 4.11 and 4.12.
We first prove Theorem 4.11. Let g̃ : RṼ → R∪ {−∞} be the L-concave

function associated with g by (4.2), and apply the steepest ascent algorithm
for polyhedral L-concave functions to g̃ with the initial vector (0, p◦). Let
(ζ, q) ∈ RṼ be the output of the algorithm. Then, we have (ζ, q) ≥ (0, p◦)
and p∗ = q−ζ1 by the correspondence (4.3). Theorem 4.7 for g̃ implies that

k(ζ, q)− (0, p◦)k∞
= min{k(η, p)− (0, p◦)k∞ | (η, p) ∈ argmax g̃, (η, p) ≥ (0, p◦)}. (4.5)

The desired equality (4.4) can be derived from this by rewriting the both
sides of (4.5) as follows:

k(ζ, q)− (0, p◦)k∞ = kp∗ − p◦k+∞ + kp
∗ − p◦k−∞, (4.6)

min{k(η, p)− (0, p◦)k∞ | (η, p) ∈ argmax g̃, (η, p) ≥ (0, p◦)}
= min{kp− p◦k+∞ + kp− p

◦k−∞ | p ∈ argmax g}. (4.7)

12



We prove (4.6) only since (4.7) can be shown quite similarly.
We have

min(ζ,min
i∈V

{q(i)− p◦(i)}) = 0 (4.8)

since otherwise for a sufficiently small positive ε, the vector (ζ − ε, q − ε1)
is a maximizer of g̃ satisfying

(ζ − ε, q − ε1) ≥ (0, p◦), k(ζ − ε, q − ε1)− (0, p◦)k∞ < k(ζ, q)− (0, p◦)k∞,

a contradiction to (4.5). We also have

k(ζ, q)− (0, p◦)k∞ = max(ζ,max
i∈V

{q(i)− p◦(i)}), (4.9)

since (ζ, q) ≥ (0, p◦).
For the terms on the right-hand side of (4.6) we have

kp∗ − p◦k+∞ = k(q − ζ1)− p◦k+∞
= max(0,max

i∈V
{q(i)− p◦(i)}− ζ)

= k(ζ, q)− (0, p◦)k∞ − ζ, (4.10)

kp∗ − p◦k−∞ = k(q − ζ1)− p◦k−∞
= max(0,max

i∈V
{p◦(i)− q(i)}+ ζ)

= −min(ζ,min
i∈V

{q(i)− p◦(i)}) + ζ = ζ, (4.11)

where the last equality of (4.10) is by (4.9) and the last equality of (4.11) is
by (4.8). From (4.10) and (4.11) follows (4.6).

We next prove Theorem 4.12. Note that the value
Pm−1
k=1 λk is the same

for both of the L\-concave function g and the L-concave function g̃. Hence,
Theorem 4.8 for the L-concave function g̃ implies that

k(ζ, q)− (0, p◦)k∞ =
m−1X
k=1

λk,

which, together with (4.6), gives the statement of Theorem 4.12.

The theorems for polyhedral L\-concave functions in Section 4.2 (The-
orems 4.10, 4.11 and 4.12) have thus been derived from the corresponding
theorems for polyhedral L-concave functions in Section 4.1 (Theorems 4.5,
4.7 and 4.8) through rather mechanical translations based on the corre-
spondence (4.3). It is emphasized, however, that the class of polyhedral
L\-concave functions contains that of polyhedral L-concave functions as a
special case, and accordingly, the theorems in Section 4.2 are more general
than the theorems in Section 4.1.
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5 Proofs

In this section we give proofs of Theorems 4.5, 4.7, and 4.8, where the
following property of polyhedral L-concave functions is used.

Lemma 5.1 ([9, Lemma 4.28]). Let g : RV → R ∪ {−∞} be a polyhedral
L-concave function. Then, we have

g(p) + g(q) ≤ g(p+ λχX) + g(q − λχX)

for every p, q ∈ dom g with {i ∈ V | p(i) < q(i)} 6= ∅ and λ ∈ R with
0 ≤ λ ≤ λ0 − λ00, where

λ0 = max
i∈V

{q(i)− p(i)}, X = {i ∈ V | q(i)− p(i) = λ0},

λ00 = max
i∈V \X

{q(i)− p(i)}.

5.1 Proof of Theorem 4.5

The following is the key property for the proof of Theorem 4.5. We say that
X ⊆ V is a steepest ascent direction of function g at p ∈ dom g if

g0(p;χX) = max{g0(p;χY ) | Y ⊆ V }.

By Proposition 4.2 and the property (LF2) with r = 0, every steepest ascent
direction X satisfies ∅ ( X ( V if p is not a maximizer of g.

Lemma 5.2. Let p ∈ dom g be a vector with p 6∈ argmax g, X ⊆ V be
a steepest ascent direction of g at p, and λ ∈ R be a real number with
0 < λ ≤ c̄(p;χX). Put q = p + λχX , and let Y ⊆ V be a steepest ascent
direction of g at q.
(i) It holds that g0(q;χY ) ≤ g0(p;χX).
(ii) If g0(p;χX) = g0(q;χY ), then X ∩ Y is also a steepest ascent direction
at p.
(iii) Suppose that λ < c̄(p;χX). Then, X is a steepest ascent direction at q.

Proof. By the choice of λ and concavity of g, we have

g(p+ λχX)− g(p) = λ g0(p;χX). (5.1)

Let ε ∈ R be a positive real number with ε < λ such that

g(q + εχY )− g(q) = εg0(q;χY ). (5.2)

Put q̂ = q + εχY . By (5.1) and (5.2), we have

g(q̂)− g(p) = λg0(p;χX) + εg0(q;χY ). (5.3)
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Note that q̂ can be represented as

q̂ = p+ εχX∪Y + (λ− ε)χX + εχX∩Y .

Claim: The following inequalities hold:

g(q̂)− g(q̂ − εχX∩Y ) ≤ εg0(p;χX), (5.4)

g(p+ εχX∪Y + (λ− ε)χX)− g(p+ εχX∪Y ) ≤ (λ− ε)g0(p;χX), (5.5)

g(p+ εχX∪Y )− g(p) ≤ εg0(p;χX). (5.6)

[Proof of Claim] The inequality (5.6) can be shown as follows:

g(p+ εχX∪Y )− g(p) ≤ εg0(p;χX∪Y ) ≤ εg0(p;χX),

where the first inequality is by the concavity of g and the second inequality
follows from the fact that X is a steepest ascent direction of g at p.

We then prove (5.4). It may be assumed that X ∩Y 6= ∅ since otherwise

g(q̂)− g(q̂ − εχX∩Y ) = g(q̂)− g(q̂) = 0 < εg0(p;χX)

holds, where the inequality follows from p 6∈ argmax g and Proposition 4.2.
Since argmax{q̂(i)− p(i) | i ∈ V } = X ∩ Y , Lemma 5.1 implies that

g(p) + g(q̂) ≤ g(p+ εχX∩Y ) + g(q̂ − εχX∩Y ),

from which follows that

g(q̂)− g(q̂ − εχX∩Y ) ≤ g(p+ εχX∩Y )− g(p) ≤ εg0(p;χX∩Y ) ≤ εg0(p;χX).
(5.7)

The inequality (5.5) can be shown in a similar way as (5.4) as follows.
Lemma 5.1 implies that

g(p) + g(p+ εχX∪Y + (λ− ε)χX)

≤ g(p+ (λ− ε)χX) + g((p+ εχX∪Y + (λ− ε)χX)− (λ− ε)χX)

= g(p+ (λ− ε)χX) + g(p+ εχX∪Y ),

from which follows that

g((p+ εχX∪Y + (λ− ε)χX)− g(p+ εχX∪Y )
≤ g(p+ (λ− ε)χX)− g(p) ≤ (λ− ε)g0(p;χX).

[End of Claim]

The inequalities (5.4), (5.5), and (5.6) imply

g(q̂)− g(p) ≤ (λ+ ε)g0(p;χX). (5.8)
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Then, the claim (i) follows from (5.3) and (5.8).
To prove the claim (ii), assume that g0(p;χX) = g0(q;χY ). It follows

from (5.3) that g(q̂) − g(p) = (λ + ε)g0(p;χX), which, together with the
inequalities (5.4), (5.5), and (5.6), implies that all the inequalities (5.4),
(5.5), and (5.6) hold with equality. In particular, we have

g(q̂)− g(q̂ − εχX∩Y ) = εg0(p;χX), (5.9)

from which follows that X ∩ Y 6= ∅ since g0(p;χX) > 0 by Proposition 4.2.
By (5.7) and (5.9), we have

εg0(p;χX) = g(q̂)− g(q̂ − εχX∩Y ) ≤ g(p+ εχX∩Y )− g(p) ≤ εg0(p;χX∩Y ).

This shows that X ∩ Y is also a steepest ascent direction of g at p.
We then prove the claim (iii). For λ < c̄(p;χX), we have g

0(q;χX) =
g0(p;χX), which, together with (i), implies

g0(q;χX) = g0(p;χX) ≥ g0(q;χY ),

i.e., X is a steepest ascent direction at q.

We now prove Theorem 4.5. The inequality g0(pk;χXk) ≥ g
0(pk+1;χXk+1)

follows immediately from Lemma 5.2 (i). To prove the latter part of Theorem
4.5, suppose that g0(pk;χXk) = g

0(pk+1;χXk+1) holds. By the choice of pk+1,
we haveXk 6= Xk+1. Lemma 5.2 (ii) implies that Xk∩Xk+1 is also a steepest
ascent direction of g at pk. Since Xk is the minimal steepest ascent direction
at pk, we have Xk ∩Xk+1 = Xk, i.e., Xk ( Xk+1 holds.

5.2 Proof of Theorems 4.7 and 4.8

To prove Theorems 4.7 and 4.8, we first present some properties of steepest
ascent directions of a polyhedral L-concave function.

Lemma 5.3. Let p ∈ dom g be a vector with p 6∈ argmax g, and X be
a (not necessarily minimal) steepest ascent direction of g at p. Also, let
p̂ ∈ argmax g be the unique minimal maximizer of g under the condition
p̂ ≥ p.
(i) argmaxi∈V {p̂(i)− p(i)} ⊆ X holds.
(ii) Let B = {i ∈ V | p̂(i) = p(i)}. Then, X \ B is also a steepest ascent
direction at p; in particular, X ∩ B = ∅ holds if X is the unique minimal
steepest ascent direction at p.

Proof. Denote
A = argmax

i∈V
{p̂(i)− p(i)}.

Since p̂ 6= p and g satisfies the property (LF2) with r = 0, we have maxi∈V {p̂(i)−
p(i)} > 0 and B 6= ∅. Let ε be a sufficiently small positive real number such
that

g(p+ εχX)− g(p) = εg0(p;χX). (5.10)
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Assume, to the contrary, that A \X 6= ∅ holds. Then, we have

argmax
i∈V

{p̂(i)− (p+ εχX)(i)} = A \X 6= ∅.

Hence, Lemma 5.1 implies that

g(p̂) + g(p+ εχX) ≤ g(p̂− εχA\X) + g(p+ εχX + εχA\X)
= g(p̂− εχA\X) + g(p+ εχX∪A). (5.11)

Since A \ X ⊆ {i ∈ V | p̂(i) > p(i)} and ε is sufficiently small, we have
p̂ ≥ p̂ − εχA\X ≥ p, implying that g(p̂) > g(p̂ − εχA\X) by the choice of p̂.
This inequality, together with (5.11), implies that g(p+εχX∪A) > g(p+εχX).
From this inequality and (5.10) follows that

εg0(p;χX∪A) ≥ g(p+ εχX∪A)− g(p) > g(p+ εχX)− g(p) = εg0(p;χX),

where the first inequality is by the concavity of g. This, however, is a
contradiction to the choice of X. Hence, we have A ⊆ X.

We then show that X \ B is also a steepest ascent direction at p. We
may assume that X ∩B 6= ∅. Then, we have

argmax
i∈V

{(p+ εχX)(i)− p̂(i)} = X ∩B 6= ∅.

It follows from Lemma 5.1 that

g(p+ εχX) + g(p̂) ≤ g(p+ εχX − εχX∩B) + g(p̂+ εχX∩B)
= g(p+ εχX\B) + g(p̂+ εχX∩B). (5.12)

Since p̂ is a maximizer of g, we have g(p̂) ≥ g(p̂ + εχX∩B), which, together
with (5.12), implies g(p+ εχX) ≤ g(p+ εχX\B). Hence, it follows that

εg0(p,χX) = g(p+ εχX)− g(p)

≤ g(p+ εχX\B)− g(p)
≤ εg0(p,χX\B),

i.e., X \B is also a steepest ascent direction at p.

Lemma 5.4. Let p, X, and p̂ be as in Lemma 5.3, and put

B = {i ∈ V | p̂(i) = p(i)}, α = min{p̂(i)− p(i) | i ∈ V, p̂(i)− p(i) > 0}.

For every λ with 0 ≤ λ ≤ min{α, c̄(p;χX)}, the vector q̂λ = p̂ + λχX∩B
satisfies the following properties:
(i) q̂λ is the unique minimal maximizer of g under the condition q̂λ ≥ p +
λχX .
(ii) kq̂λ − (p+ λχX)k∞ = kp̂− pk∞ − λ.
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Proof. [Proof of (i)] Since 0 ≤ λ ≤ α, the inequality p̂+λχX∩B ≥ p+λχX
holds.

We then prove that q̂λ is a maximizer of g for every λ with 0 ≤ λ ≤
min{α, c̄(p;χX)}. By the concavity of g and p̂ ∈ argmax g, it suffices to
prove q̂λ ∈ argmax g for λ = min{α, c̄(p;χX)}.

We may assume X ∩B 6= ∅ since otherwise the claim holds immediately.
Let λ∗ be the maximum real number with 0 ≤ λ∗ ≤ min{α, c̄(p;χX)} such
that p̂+ λ∗χX∩B ∈ argmax g. In the following, we assume, to the contrary,
that λ∗ < min{α, c̄(p;χX)} and derive a contradiction.

Since λ∗ < min{α, c̄(p;χX)}, there exists a sufficiently small positive ε
with λ∗ + ε < min{α, c̄(p;χX)} such that

q0 ≡ p+ (λ∗ + ε)χX ∈ dom g,

g(q0)− g(p+ λ∗χX) = εg0(p+ λ∗χX ;χX). (5.13)

Let q00 = p̂+ λ∗χX∩B ∈ argmax g. Then, it holds that

argmax
i∈V

{q0(i)− q00(i)} = X ∩B 6= ∅.

It follows from Lemma 5.1 that

g(q0) + g(q00) ≤ g(q0 − εχX∩B) + g(q00 + εχX∩B)
= g(p+ λ∗χX + εχX\B) + g(p̂+ (λ∗ + ε)χX∩B). (5.14)

Note that the set X is a steepest ascent direction at p + λ∗χX by Lemma
5.2 (iii) since λ∗ < c̄(p;χX). Hence, we have g

0(p + λ∗χX ;χX) ≥ g0(p +
λ∗χX ;χX\B), from which follows that

g(q0)− g(p+ λ∗χX) = εg0(p+ λ∗χX ;χX)
≥ εg0(p+ λ∗χX ;χX\B)
≥ g(p+ λ∗χX + εχX\B)− g(p+ λ∗χX),(5.15)

where the equality follows from (5.13) and the last inequality is by the
concavity of g. By (5.14) and (5.15), it holds that g(q00) ≤ g(p̂ + (λ∗ +
ε)χX∩B), i.e., p̂ + (λ∗ + ε)χX∩B is a maximizer of g, a contradiction to the
definition of λ∗. Hence, we have q̂λ ∈ argmax g for λ = min{α, c̄(p;χX)}.

We finally show the minimality of the maximizer q̂λ under the condition
q̂λ ≥ p + λχX . Let q

∗ be a maximizer of g satisfying q∗ ≥ p + λχX . Then,
the property (LF1) for g implies that the vector p̂ ∧ q∗ is a maximizer of
g and satisfies p̂ ∧ q∗ ≥ p. Hence, we have p̂ ∧ q∗ ≥ p̂ by the definition of
p̂. From this inequality follows that q∗ ≥ p̂. Since q∗ ≥ p + λχX holds by
assumption, it holds that

q∗ ≥ p̂ ∨ (p+ λχX) = q̂λ,
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from which follows that q̂λ is the unique minimal maximizer of g under the
condition q̂λ ≥ p+ λχX .

[Proof of (ii)] We show that

k(p̂+ μχX∩B)− (p+ μχX)k∞ = kp̂− pk∞ − μ (5.16)

for every μ with 0 ≤ μ < min{α, c̄(p;χX)}.
Put q̂μ = p̂ + μχX∩B and qμ = p + μχX . By the claim (i) of this

proposition, q̂μ is the unique minimal maximizer of g under the condition
q̂μ ≥ qμ. In addition, the set X is a steepest ascent direction at q by Lemma
5.2 (iii) since 0 ≤ μ < c̄(p;χX). Hence, Lemma 5.3 applied to qμ, X , and q̂μ
implies that

argmax
i∈V

{q̂μ(i)− qμ(i)} ⊆ X.

It follows that
kq̂μ − qμk∞ = max

i∈X
{q̂μ(i)− qμ(i)}. (5.17)

In the same way, by using Lemma 5.3 we can show that

kp̂− pk∞ = max
i∈X

{p̂(i)− p(i)}. (5.18)

We also have p̂(i)− p(i) = q̂μ(i)− qμ(i) = 0 for i ∈ B. Hence, it holds that

max
i∈X

{q̂μ(i)− qμ(i)} = max
i∈X\B

{q̂μ(i)− qμ(i)}

= max
i∈X\B

{p̂(i)− p(i)}− μ

= max
i∈X

{p̂(i)− p(i)}− μ. (5.19)

From (5.17), (5.18), and (5.19) follows (5.16).

Lemma 5.5. Let p, X, and p̂ be as in Lemma 5.3, and put λ∗ = c̄(p;χX).
Then, the vector q̂ = p̂ ∨ (p + λ∗χX) is the unique minimal maximizer of g
under the condition q̂ ≥ p+ λ∗χX and satisfies

kq̂ − (p+ λ∗χX)k∞ = kp̂− pk∞ − λ∗. (5.20)

Moreover, if X is the unique minimal steepest ascent direction at p, then
q̂ = p̂.

Proof. Note that mini∈V {p̂(i)− p(i)} = 0 holds by the property (LF2) and
the choice of p̂. Let δ0 < δ1 < · · · < δs−1 < λ∗ be the distinct numbers in

{p̂(i)− p(i) | i ∈ V, p̂(i)− p(i) < λ∗},
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and put δs = λ∗. Note that δ0 = 0 since mini∈V {p̂(i) − p(i)} = 0. For
h = 0, 1, . . . , s, we define

qh = p+ δhχX , Xh = {i ∈ X | p̂(i)− p(i) < δh},

q̂h = p̂ ∨ (p+ δhχX) = p̂+

hX
j=1

(δj − δj−1)χXj .

Then, it holds that

q0 = p, qs = p+ λ∗χX , qh+1 = qh + (δh+1 − δh)χX (h = 0, 1, . . . , s− 1),

q̂0 = p̂, q̂s = q̂, q̂h+1 = q̂h + (δh+1 − δh)χXh+1 (h = 0, 1, . . . , s− 1).

In addition, we have

Xh+1 = {i ∈ X | q̂h(i) = qh(i)}, (5.21)

min{q̂h(i)− qh(i) | i ∈ V, q̂h(i)− qh(i) > 0} = δh+1 − δh

for h = 0, 1, . . . , s−1. Hence, the repeated application of Lemma 5.4 implies
that for each h = 1, 2, . . . , s, the vector q̂h is the unique minimal maximizer
of g under the condition q̂h ≥ qh and satisfies

kq̂h − qhk∞ = kq̂h−1 − qh−1k∞ − (δh − δh−1). (5.22)

This, in particular, implies that the vector q̂ is the unique minimal maximizer
of g under the condition q̂ ≥ p + λ∗χX since qs = p + λ∗χX and q̂s = q̂.
From (5.22) follows that

kq̂ − (p+ λ∗χX)k∞ = kq̂s − qsk∞

= kq̂0 − q0k∞ −
sX
h=1

(δh − δh−1) = kp̂− pk∞ − λ∗,

i.e., (5.20) holds.
We then assume that X is the unique minimal steepest ascent direction

at p. For h = 0, 1, . . . , s − 1, the set X is also a steepest ascent direction
at qh by Lemma 5.2 (iii) since δh < λ∗ = c̄(p;χX) holds. Moreover, X is
the unique minimal steepest ascent direction at qh by Lemma 5.2 (ii) since
g0(qh;χX) = g0(p;χX). Therefore, Lemma 5.3 and the equation (5.21) imply
Xh = ∅ for h = 1, 2, . . . , s, from which follows that q̂ = p̂.

Theorems 4.7 and 4.8 can be proved as follows. Let p∗ be a maximizer of
g which is the output of the algorithm. For k = 1, 2, . . . ,m, we denote by p̂k
the unique minimal maximizer of g under the condition p̂k ≥ pk. Note that
pm is the output of the algorithm and therefore pm = p̂m = p

∗ holds. The
repeated application of Lemma 5.5 implies that for k = 1, 2, . . . ,m− 1, the
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vector q̌k = p̂k ∨ (pk + λkχXk) is the unique minimal maximizer of g under
the condition q̌k ≥ pk + λkχXk = pk+1 and satisfies

kq̌k − (pk + λkχX)k∞ = kp̂k − pkk∞ − λk.

This shows that q̌k = p̂k+1 and

kp̂k+1 − pk+1k∞ = kp̂k − pkk∞ − λk.

Hence, it follows that

m−1X
k=1

λk =

m−1X
k=1

·
kp̂k − pkk∞ − kp̂k+1 − pk+1k∞

¸
= kp̂1 − p1k∞ − kp̂m − pmk∞
= kp̂1 − p

◦k∞
= min{kp− p◦k∞ | p ∈ argmax g, p ≥ p◦}, (5.23)

where the third equality is by p1 = p
◦ and pm = p̂m. Since p∗ = pm ≥ p1 =

p◦, we have

kp∗ − p◦k∞ ≥ min{kp− p◦k∞ | p ∈ argmax g, p ≥ p◦}. (5.24)

We also have

kp∗ − p◦k∞ = kpm − p1k∞ =

°°°°m−1X
k=1

λkχXk

°°°°
∞
≤
m−1X
k=1

λk. (5.25)

From (5.23), (5.24), and (5.25) follows that the inequalities (5.24) and (5.25)
hold with equality, i.e., the equation (4.1) in Theorem 4.7 and Theorem 4.8
hold.

We then assume that Xk is the unique minimal steepest ascent direction
at pk for each k = 1, 2, . . . ,m−1. Then, the repeated application of Lemma
5.5 implies that p̂k = p̂1 for all k = 2, 3, . . . ,m. In particular, we have
p∗ = p̂m = p̂1. Hence, p

∗ is the unique minimal maximizer of g under the
condition p∗ ≥ p◦. This completes the proof of Theorem 4.7.
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