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Abstract

We study the dynamics of randomly connected networks composed
of binary Boolean elements and those composed of binary majority vote
elements. We elucidate their differences in both sparsely and densely
connected cases. The quickness of large network dynamics is usually
quantified by the length of transient paths, an analytically intractable
measure. For discrete-time dynamics of networks of binary elements,
we address this dilemma with an alternative unified framework by us-
ing a concept termed state concentration, defined as the exponent of
the average number of t-step ancestors in state transition graphs. The
state transition graph is defined by nodes corresponding to network
states and directed links corresponding to transitions. Using this ex-
ponent, we interrogate the dynamics of random Boolean and majority
vote networks. We find that extremely sparse Boolean networks and
majority vote networks with arbitrary density achieve quickness, owing
in part to long-tailed in-degree distributions. As a corollary, only rel-
atively dense majority vote networks can achieve both quickness and
robustness.

1 Introduction

Networks of binary elements are useful tools for investigating a plethora
of dynamical behavior and information processing in biological and social
systems. For example, various models of associative memory are used to
study neural information processing [1, 2, 3]. Random Boolean networks,
also known as Kauffman nets, show rich dynamics and are used to model
gene regulation [4, 5, 6, 7]. Random majority vote networks are often used
to understand mechanisms for ordering in neural information processing
[3, 8, 9, 10], gene regulation [7], and collective opinion formation in social
systems [11]. We study the dynamics of such networks by using a simple
generative model of randomly connected Boolean and majority vote elements
in the cases of sparse and dense connectivity.

Properties desirable for the dynamics of networks of such binary units
include robustness and quickness. A system is defined to be robust when
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the flipping of a small number of units’ states does not eventually alter
the behavior of the entire network. For random Boolean networks, the
robustness has been quantified in the context of damage spreading in cellular
automata [12, 13, 14, 15].

Dynamics is usually called quick if an orbit starting from an arbitrary
state reaches the corresponding attractor within a small number of steps
on average, i.e., with a short transient length of the dynamics. However,
even the average transient length, which apparently seems to be the most
basic quantity to characterize the statistics of the transient length, may be
difficult to evaluate because the transient length of the random Boolean net-
works seems analytically intractable and it obeys long-tailed distributions
[16]. Therefore, in this paper, we theoretically study the quickness of dy-
namics by use of a concept of state concentration instead of examining the
transient length. To this end, we extend the previous statistical dynamical
framework [8, 9, 10]. In particular, the exponent of concentration, which
we introduce later, is an analytically tractable quantity for measuring the
quickness of dynamics in random Boolean and majority vote networks. Us-
ing this exponent, we investigate the compatibility of the robustness and
quickness in these two types of networks in two cases of connectivity, i.e.,
sparse and dense connectivity.

For this purpose, we distinguish densely connected Boolean networks
(DBNs), sparsely connected Boolean networks (SBNs), densely connected
majority vote networks (DMNs), and sparsely connected majority vote net-
works (SMNs). We elucidate the differences between the four dynamics.
In particular, we show that strong state concentration, accompanied by a
power law type of in-degree distribution with an exponential cutoff, occurs
in the majority vote networks (DMNs and SMNs) but not for the Boolean
networks except for extremely sparse cases. Then, we argue that DMNs are
the only type among the four types of network that realizes both robustness
and quickness.

2 Model

Let us consider a network of n binary units. We define the discrete-time
dynamics of the network by

xi(t+ 1) = fi (x1(t), . . . , xn(t)) (1 ≤ i ≤ n), (1)

where xi(t) ∈ {1,−1} is the binary state of the ith unit at time t. For
a random Boolean network, each fi is randomly and independently chosen
from the 22

n
Boolean functions on the n units. For a majority vote network,

fi(x1, . . . , xn) = sgn

⎛
⎝ n∑

j=1

wijxj

⎞
⎠ (1 ≤ i ≤ n), (2)
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where sgn indicates the sign function. We consider an ensemble of ran-
domly generated majority vote networks where wij are independently and
identically distributed Gaussian random variables. In general, a constant
or random threshold could be included in the above dynamical expression,
which we omit here for simplicity. If the value of fi (x1, . . . , xn) depends
only on randomly chosen K units for each i, the model is called the K-
sparse network [5, 6]. DBNs and DMNs correspond to K ∝ n, and SBNs
and SMNs correspond to K � n. We study typical dynamical behavior of
the random DBNs, SBNs, DMNs, and SMNs.

The number of possible functions generated by a single unit in the four
types of network is compared as follows. The number of all Boolean functions
is equal to 22

n
, growing doubly exponentially with n. This is equal to

the variety of the random mapping on n units. The number of functions
generated by a single unit in DBNs is large for large K and equal to 22

n

when K = n. In contrast, SBNs, DMNs, and SMNs are limited in terms
of the number of possible functions. The number of all majority vote units
is asymptotically equal to 2n

2/2; the growth rate is only exponential. For
the sparse Boolean and majority vote networks, the number of functions
generated by a single unit is equal to 2K log2 n, growing only algebraically
with n. The differences in the variety of functions in the four cases may
result in different dynamical behaviors of the networks, as we will analyze
in the following.

3 Distance law in state transitions

The network state at time t is given in vector form as

x(t) = (x1(t), . . . , xn(t)) . (3)

Let X = {x} be the set of the N ≡ 2n states. Given a network, the state
transition is a mapping from X to itself. We write it briefly as x(t + 1) =
fx(t).

The dynamics of the distance between two state trajectories has been
studied to characterize dynamics in these networks. We define the normal-
ized Hamming distance between two states x and y in X by

D(x,y) =
1

2n

n∑
i=1

|xi − yi| . (4)

It should be noted that the distance is restricted to the range 0 ≤ D(x,y) ≤
1. We let d = D(x,y) and d′ = D (fx, fy). The mapping from d to d′ is a
random variable and depends on x and y because wij is a random variable
and many pairs of x and y realize d = D(x,y). However, we can prove that
d′ = ϕ(d) for a function ϕ(d) for any x and y almost always as n→ ∞. We

3



call ϕ(d) the distance law. For DBNs, ϕ(d) = 0 (d = 0) and ϕ(d) = 1/2
(d 	= 0). For SBNs [17],

ϕ(d) = (1/2)
[
1− (1− d)K

]
. (5)

For DMNs [8, 9, 10],
ϕ(d) = (2/π) sin−1

√
d. (6)

For SMNs [18],

ϕ(d) =
K∑
j=0

gK,j

(
K

j

)
dj(1− d)K−j, (7)

where
(
K
j

)
is the binomial coefficient and

gK,j = (2/π) sin−1
√
j/K. (8)

The dynamics of the distance under the annealed approximation is given
by dt+1 = ϕ (dt) [8, 17, 18, 19]. For all four types of network, ϕ(0) = 0.
For DBNs, ϕ(d) is discontinuous at d = 0, and the dynamics is essentially
the same as that of a random mapping on the N states. Therefore, vari-
ous properties of the dynamics such as the number of attractors, transient
length, and cycle period are well characterized [8, 5, 6]. For SBNs, DMNs,
and SMNs, ϕ(d) is continuous at d = 0. It is known that d = 0 is a stable
fixed point of mapping ϕ [i.e., 0 < ϕ′(0) < 1] only for SBNs and SMNs
with K = 1 or 2. Otherwise, dt converges to a positive value d satisfying
d = ϕ

(
d
)
. The convergence of the distance is usually fast and happens after

∼ 10 steps except for DBNs where one step is enough for the distance to
converge.

4 Exponent of state concentration

The average transient length before the orbit enters the attractor is analyti-
cally intractable. In addition, it may not be a good measure of the quickness
of the dynamics due to the long-tailed nature of its distribution [16]. There-
fore, we introduce an alternative order parameter called the exponent of the
state concentration. We use the so-called state transition graph [5, 6, 20]
defined as follows. A map f , either Boolean or majority vote, induces a
graph on N nodes. Each state x ∈ X defines a node and has exactly one
outgoing link directed to node fx.

Suppose that each of the N = 2n nodes (i.e., states) has a token at t = 0.
For each t(≥ 0), an application of f moves all the tokens at each node x to
node fx. Repeated applications of the mapping f elicit concentrations of
tokens at specific nodes. We denote by f−tx the set of nodes whose tokens
move to x after t steps and by

∣∣f−tx
∣∣ the number of tokens at node x after
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t steps. Tokens are initially equally distributed, i.e.,
∣∣f0x∣∣ = 1 for each x,

and the total number of tokens is conserved throughout the dynamics, i.e.,∑
x∈X

∣∣f−tx
∣∣ = N (9)

for t ≥ 0.
The in-degree of node x in the state transition graph is equal to

∣∣f−1x
∣∣.

The nodes with f−1x = ∅, where ∅ is the empty set, do not have parent
nodes. The set of such nodes is called the Garden of Eden [5] and denoted
by E1. The nodes x ∈ E1 appear only as initial states. Only the nodes x ∈
X − E1 retain tokens at t = 1. In general, we define Et ≡

{
x | f−tx = ∅},

i.e., the set of nodes that do not have tokens at time step t. There exists
integer T such that

φ ⊂ E1 ⊂ E2 ⊂ · · · ⊂ ET = ET+1 = · · · ≡ E∗, (10)

where T is the longest transient period and E∗ is the set of the transient
states. The set of the attractors is given by A = X − E∗ (Fig. 1).

E

A=X–E

E      

1

*

*

E 3

E 2

Figure 1: Schematic of the dynamics of state concentration. E1 indicates
the Garden of Eden, E2 indicates the nodes that do not have grandparents,
and A indicates the set of attractors.

To quantify the state concentration, we consider the number of tokens
that a token at x(0) and t = 0 meets after we apply f . We write the rela-
tionship fx(0) = x(1) succinctly as x(0) → x(1). Let S1 be the conditional
expectation E

[∣∣f−1x(1)
∣∣ | x(0) → x(1)

]
of the in-degree of node x(1) [i.e.,

the number of parents of x(1)] given that x(0) → x(1) and that x(0) is
selected with equal probability (i.e., 1/N). In general, we denote by St the
expected number of t-fold ancestor nodes of a node x(t) conditioned by a
state transition path ending at x(t) through which a token has traveled,
or equivalently, conditioned by the uniformly distributed initial token x(0),
i.e.,

St ≡ E
[∣∣f−tx(t)

∣∣ | x(0) → · · · → x(t− 1) → x(t)
]
. (11)
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Obviously S0 = 1 and the sequence {St} is monotonically nondecreasing in
t. If

St = ectn, ct > 0, (12)

holds true for large n, the tokens are exponentially concentrated on nodes
having at least a t-fold ancestor node. We refer to

ct = lim
n→∞

lnSt

n
(13)

as the t-step exponent of the concentration. The exponent ct quantifies the
degree of state concentration and is a measure of quickness. It should be
noted that we do not need to explicitly evaluate the statistics of the transient
to calculate ct.

The stochastic symmetry of units makes the calculation of St tractable.
To explain the symmetry, we consider the majority vote network; similar
arguments hold true for the Boolean network. Because the weights wij

are independently and identically distributed, the probability distribution
of the mapping f is invariant under permutation of x1, . . ., xn, which are
passed as the arguments to fi (1 ≤ i ≤ n). In addition, the probability is
invariant under flip of the sign of each xi. Therefore, the following gauge
invariance holds. First, the probability distribution of x(t) is invariant under
permutation of the unit indices. Second, the probability distribution is
invariant under a sign flip of any xi(t). Because any state is mapped in
a single step to a given x by permutation and sign flip, all the states are
stochastically equivalent. Therefore, Prob

{∣∣f−1x
∣∣ = k

}
, for example, is the

same for all x, and Prob {x(0) → x(1)} = 1/N for any x(0) and x(1).
We define a conditional probability distribution

rk = Prob
{∣∣f−1x(1)

∣∣ = k | x(0) → x(1)
}
, (14)

which is the in-degree distribution of node x(1) conditioned by x(0) → x(1).
The symmetry guarantees that rk is independent of x(0) and x(1). Let us
compute

S1 =

N∑
k=1

krk. (15)

We denote by y(0) a node such that D (x(0),y(0)) = d for a given x(0).
The number of nodes with distance d away from x(0) is given by( n

nd

)
≈ enH(d), (16)

where
H(d) ≡ −d ln d− (1− d) ln(1− d) (17)

is the entropy. Because ϕ(d) is the probability that the ith components of
fx(0) and fy(0) differ for any i, the probability that D (fx(0), fy(0)) = d′
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(see Fig. 2 for a schematic illustration of this situation) is given by the
binomial distribution as follows:

ψ
(
d′ | d) ≡ ( n

nd′
)
ϕ(d)nd

′
[1− ϕ(d)]n(1−d′) . (18)

In particular,

ψ(0 | d) = [1− ϕ(d)]n = Prob {fy(0) = x(1) | x(0) → x(1)} . (19)

By using the saddle-point approximation, we obtain

S1 =

n∑
nd=0

( n

nd

)
ψ(0 | d)

≈
∫

expn {H(z) + ln [1− ϕ(z)]} dz ∝ enc1 , (20)

where
c1 = H (d∗) + ln [1− ϕ (d∗)] (21)

and
d∗ = argmax

d
{H(d) + ln [1− ϕ(d)]} . (22)

x(0) y(0)

x(1) y(1)

d

d′
f f

Figure 2: Schematic of one-step dynamics of the distance.

To evaluate ct in general, we consider a t-step state transition path
Xt = {x(0) → x(1) → · · · → x(t) = x∗} ending at x∗ and calculate the
conditional probability that another path Yt = {y(0) → · · · → y(t)} ends at
the same x∗. St is the expectation of the number of such t-step paths. Let
us denote the distance D(x(t′),y(t′)) by dt′ , where 0 ≤ t′ ≤ t and dt = 0.
Then, under the Markov assumption, the probability of path Yt conditioned
by path Xt is represented in terms of the distances of the two sequences,
i.e., dt′ , 0 ≤ t′ ≤ t, by

Prob{Yt | Xt} =

t′=t∏
t′=1

ψ(dt′ | dt′−1). (23)
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The Markov assumption is valid for large n and a finite t. Because there are(
n

nd0

)
states y(0) possessing distance d0 from x(0), the expected number

of paths is given by the integration of
(

n
nd0

)
Prob {Yt | Xt} over all the

possible distance sequences {d0, . . . , dt−1, dt = 0}. By using the saddle-point
approximation, we have

St = exp

[
nH(d∗0) +

t∑
t′=1

lnψ(d∗t′ | d∗t′−1)

]
(24)

for large n, where d∗t′ are the maximizers of the integrand in the path inte-
gration. Equation (24) implies

ct =

t∑
t′=1

{
H(d∗t′−1) + d∗t′ lnϕ(d

∗
t′−1)

+(1− d∗t′) ln
[
1− ϕ(d∗t′−1)

]}
. (25)

For example, for t = 2, we obtain

c2 =H(d∗0) +H(d∗1) + ln [1− ϕ (d∗1)] + d∗1 lnϕ (d∗0)
+ (1− d∗1) ln [1− ϕ (d∗0)] , (26)

where

{d∗0, d∗1} =argmax
d0,d1

{H(d0) +H(d1) + ln [1− ϕ (d1)]

+ d1 lnϕ (d0) + (1− d1) ln [1− ϕ (d0)]} . (27)

On the basis of the expression of ϕ for SBNs and SMNs shown before,
the dependence of c1, c2, c3, and c4 on K is plotted in Fig. 3. For SBNs,
ct (1 ≤ t ≤ 4) converges to 0 quickly as K increases. For DBNs, which is
the case for K = n, we trivially obtain ct = 0 at least for small t because
f is equivalent to the random mapping. Figure 3 indicates that the state
concentration occurs only for very small K in the random Boolean network.
In contrast, the state concentration occurs even for large K in majority vote
networks. In particular, for DMNs with K → n, we obtain c1 ≈ 0.157 [10].
Figure 3 also indicates that the state concentration quickly proceeds as t
increases, except in DBNs.

We verified Eq. (13) by comparing St obtained from direct numerical
simulations (i.e., Eq. (11)) and ct generally given by Eq. (25). The results
shown in Fig. 4 indicate that the theory (lines) seems to agree with numerical
results at least for large n; although the largest n value shown in the figure
is only n = 25. Therefore, the Markov assumption (Eq. (23)) implicitly
assumed for t = 2, 3, and 4 in drawing Fig. 3 roughly holds true at least up
to t ≈ 4 for large n.
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Figure 3: c1, c2, c3, and c4 for SMNs and SBNs.

Table 1: Theoretical estimates of ct = lnSt/n.

t SBNs DMNs SMNs

1 0.223 0.157 0.256
2 0.323 0.205 0.363
3 0.380 0.225 0.421
4 0.416 0.232 0.460

Theoretically, most sequences Yt that meet Xt after t steps of state tran-
sition own the sequence of distance given by d∗

t =
{
d∗0, d∗1, · · · , d∗t−1, d

∗
t = 0

}
.

In particular, a majority of the initial states Y0 is initially separated from
X0 by d∗0(t). Figure 4 suggests that this is the case at least up to t ≈ 4 for
large n. The sequence of distances d∗

t is shown for 1 ≤ t ≤ 4 in Fig. 5.

5 In-degree distribution of the state transition graph

We calculate the incoming degree distribution

pk = Prob
{∣∣f−1x

∣∣ = k
}
, (28)

where k is the in-degree of a state and
∑N

k=0 pk = 1. Because each node in
the state transition graph has exactly one outgoing link, we have

〈k〉 =
N∑
k=0

kpk = 1, (29)
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Figure 4: St exponentially increases with n except in DBNs. (a) DBNs, (b)
SBNs with K = 3, (c) DMNs, and (d) SMNs with K = 3. The lines in (b),
(c), and (d) indicate the theoretical estimates (see Table 1). Each point in
the figure represents the average of St over 10

3 realizations of the network.

where 〈·〉 indicates the expectation. Because rk = kpk [8] (also see [21] for
an example), we obtain

〈
k2
〉
=

N∑
k=0

k2pk =
N∑
k=0

krk = S1 = enc1 . (30)

Therefore, c1 > 0 indicates that
〈
k2
〉
diverges in the limit of N = 2n → ∞,

reminiscent of the scale-free property of the state transition graph [21, 22,
23].

For DBNs, the state transition graph is the directed random graph in
which pk obeys the Poisson distribution (i.e., pk = 1/ek!) with mean and
variance 1 [5, 6]. Therefore,

〈
k2
〉

= 2, proving that c1 = 0 for DBNs
(i.e., there is no exponential state concentration). This is consistent with
Fig. 4(a) (circles). Figure 3 suggests that c1 ≈ 0 whenK is larger than ∼= 10.
Therefore, the in-degree distribution of the state transition graph is also
narrow for SBNs with K ≥ 10. We verified that the numerically obtained
in-degree distribution for the random Boolean network with n = 30 and
K = 20 approximately obeys the Poisson distribution [Fig. 6(a)].

In contrast, the positive value of c1 found for SBNs with smallK, DMNs,
and SMNs (Fig. 3) indicates that

〈
k2
〉
(= S1) diverges exponentially in n.
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}
for 1 ≤ t ≤ 4.

This is actually the case, as shown in Figs. 4(b)–4(d). For scale-free networks
with pk ≈ k−γ , the extremal criterion would lead to γ ≈ (c1 + 3 ln 2)/(c1 +
ln 2) [22, 23]. However, the in-degree distribution numerically obtained for
majority vote networks, shown in Figs. 6(c) and 6(d), deviates from a
power law. The in-degree distribution numerically obtained for the SBNs
(Fig. 6(b)) is also different from a power law [20]. To guide the eyes, fitting
curves on the basis of a power law with an exponential cutoff are shown by
the lines in Figs. 6(b)–6(d). In fact, the power law is not the only distribution
that yields the divergence of

〈
k2
〉
. In the present case, the position of the

exponential cutoff may mildly diverge as n becomes large.

6 Discussion and conclusions

In summary, we provided a unified framework for analyzing the state con-
centration. We found that exponential state concentration occurs in SBNs
with small K and the majority vote networks with arbitrary K (i.e., the
DMNs and SMNs), but not in DBNs. We also revealed the long-tailed dis-
tributions of the in-degree of the state transition graph in SBNs, DMNs,
and SMNs, but not in DBNs.

We briefly discuss the relationship between the quickness, measured by
the exponent of the state concentration in this study, and the robustness of
the dynamics. The robustness of the dynamics is often measured in terms
of damage spreading. It is a long-term property concerning the stability of
d = 0 for mapping ϕ. As we mentioned, d = 0 is an unstable fixed point of
ϕ unless K = 1 or 2. Although SMNs with K = 1 or 2 satisfies quickness
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Figure 6: Complementary in-degree distribution of pk (i.e., Pk ≡ ∑N
k′=k pk′)

of the state transition graph. (a) DBNs (n = 30 andK = 30). The numerical
results are shown by squares, and the Poisson distribution with mean 1 is
indicated by the line. (b) SBNs (n = 30 and K = 3). (c) DMNs (n =
30 and K = 30). (d) SMNs (n = 30 and K = 3). The fitting curves,
Pk ∝ k−1.48 exp {−0.000298k}, Pk ∝ k−1.72 exp {−0.000985k}, and Pk ∝
k−0.936 exp {−0.000786k}, for (b), (c), and (d), respectively, obtained from
the least square error method, are shown by the lines as guides to the eyes.

and robustness, we do not discuss these cases because the dynamics in these
cases is just frozen [19, 18]. Here we consider a simpler measure of robustness
based on a one-step property, i.e., how a difference by a single bit evolves
after a single application of f . This is essentially the same as the Boolean
derivative, a measure of the robustness used for analyzing random Boolean
networks [12, 13, 14, 15]. In SMNs, the probability that a single bit flip in
input results in a bit flip after the application of f is given by

gK,1 = (2/π) sin−1
√

1/K. (31)

Because gK,1 is equal to 0.5 for K = 2 and decreases according to ≈
2/(π

√
K) as K increases, the random majority vote network is robust ex-

cept for very small K. However, in the random Boolean network, the same
flip probability is equal to 1/2 − 1/22

K
, which quickly approaches 1/2 as

K increases. In particular, the flip probability for the Boolean network at
K = 2 is equal to 7/16 = 0.4375, which is close to the values for the major-
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ity vote network with K = 2 (i.e., 0.5) and K = 3 (i.e., 0.392). Although
the Boolean network with K = 1 has sufficient robustness, the dynamics
in this case is frozen [24]. Therefore, we consider that the robustness of
the one-step dynamics holds true in DMNs, but not in DBNs, SBNs, and
SMNs. By combining this observation with our main results, we consider
that quickness and robustness are suitably balanced in DMNs, but not in
DBNs, SBNs, and SMNs.
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