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Abstract

We investigate evolutionary dynamics of two-strategy matrix games
with zealots in finite populations. Zealots are assumed to take either
strategy regardless of the fitness. When the strategy selected by the
zealots is the same, the fixation of the strategy selected by the zealots
is a trivial outcome. We study fixation time in this scenario. We show
that the fixation time is divided into three main regimes, in one of
which the fixation time is short, and in the other two the fixation time
is exponentially long in terms of the population size. Different from
the case without zealots, there is a threshold selection intensity below
which the fixation is fast for an arbitrary payoff matrix. We illustrate
our results with examples of various social dilemma games.

1 Introduction

A standard assumption underlying evolutionary game dynamics, regardless
of whether a player is social agent or gene, is that players tend to imitate suc-
cessful others. In actual social evolutionary dynamics, however, there may
be zealous players that stick to one option according to their idiosyncratic
preferences regardless of the payoff that they or their peers earn. Collective
social dynamics in the presence of zealots started to be examined for non-
game situations such as the voter model representing competition between
two equally strong opinions (i.e., neutral invasions) [1–5]. Zealots seem to
be also relevant in evolutionary game dynamics. For example, voluntary
immunization behavior of individuals when epidemic spreading possibly oc-
curs in a population can be examined by a public-goods dilemma game [6].
In this situation, some individuals may behave as zealot such that they try
to immunize themselves regardless of the cost of immunization [7].

In our previous work, we examined evolutionary dynamics the prisoner’s
dilemma and snowdrift games in infinite populations with zealots [8]. Specif-
ically, we assumed zealous cooperators and asked the degree to which the
zealous cooperators facilitate cooperation in the entire population. We
showed that cooperation prevails if the temptation of unilateral defection
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is weak or the selection strength is weak. For the prisoner’s dilemma, we
analytically obtained the condition of cooperation.

In the present paper, we conduct a finite population analysis of evolu-
tionary dynamics of a general two-person game with zealots. Evolutionary
games in finite populations have been recognized as a powerful analytical
tool for understanding properties of evolutionary games such as conditions
of cooperation in social dilemma games. In addition, the outcome for fi-
nite populations is often different from that for infinite populations [9–11].
We take advantage of this method to understand evolutionary dynamics of
games with zealots for general matrix games.

It should be noted that the fixation probability, i.e., the probability
that a given strategy eventually dominates the population as a result of
stochastic evolutionary dynamics, is a primary quantity to be pursued in
evolutionary dynamics in finite populations. In contrast, fixation trivially
occurs in the presence of zealots if all the zealots are assumed to take the
same strategy; the zealots’ strategy always fixates. For example, if there
is a single zealous cooperator in the population, cooperation always fixates
even in the conventional prisoner’s dilemma game. However, in this adverse
case, fixation of cooperation is expected to take long time; the relevant
question here is the fixation time [12–17]. In this study, we examine the
mean fixation time of the strategy selected by the zealots. This quantity
serves as a probe to understand the extent to which zealots influence non-
zealous players in the population. The fixation time would be affected by
the payoff matrix, population size, number of zealous players, strength of
selection. Mathematically, we extend the approach taken in [12] to the case
with zealots.

2 Model

We assume a well-mixed population of N + M players under evolutionary
dynamics defined as follows. In each discrete time unit, each player selects
either of the two strategies A or B. Each player plays a symmetric two-
person game with all the other N+M−1 players in a unit time. The payoff
matrix of the single game for the row player is given by

(A B

A a b
B c d

)
. (1)

The fitness of a player on which the selection pressure operates is defined as
the payoff summed over the N +M − 1 opponents.

We assume that N players may flip the strategy according to the Moran
process [18]. We call these players the ordinary players. The other M
players are zealots that never change the strategy irrespectively of their
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fitness. Because our primary interest is in the possibility of cooperation in
social dilemma games induced by zealous cooperators, we assume that all
the zealots take strategy A; A is identified with cooperation in the case of
a social dilemma game. We also assume that a, b, c, d ≥ 0 for the Moran
process to be well-defined.

Because we have assumed a well-mixed population, the state of the evo-
lutionary process is specified by the number of ordinary players selecting A,
which we denote by i. In each time step, we select an ordinary player with
the equal probability 1/N . The strategy of the selected player is updated.
Then, we select a player, called the parent, whose strategy replaces that of
the previously selected player. The parent is selected with the probability
proportional to the fitness among the N +M players including the zealots
and the player whose strategy is to be replaced. The population size N is
constant over time. It should be noted that a player is updated once on
average in time N .

Because the zealots always select A, the Moran process ends up with the
unanimous population of A players (we impose a > 0 for this to be true).
In other words, fixation of A always occurs such that the issue of fixation
probability is irrelevant to our model.

3 Results

We calculate the mean fixation time and its approximation in the case of
a large population size by extending the framework developed in [12] (also
see [19–21]).

3.1 Mean fixation time: exact solution

Consider the state of the population in which i (0 ≤ i ≤ N) ordinary players
select strategy A. A total of i+M and N − i players, including the zealots,
select strategies A and B, respectively. The Moran process is equivalent to
a random walk on the i space in which i = 0 is a reflecting boundary, and
i = N is the unique absorbing boundary.

The fitness of an A and B player is given by

fi =
1

N +M − 1
[(i+M − 1)a+ (N − i)b] , (2)

and

gi =
1

N +M − 1
[(i+M)c+ (N − i− 1)d] , (3)

respectively. In a single time step, i increases by one, does not change, or
decreases by one. We denote by T+

i and T−
i the probabilities that i shifts

to i+ 1 and i− 1, respectively. These probabilities are given by

T+
i =

N − i

N

(i+M)fi
(i+M)fi + (N − i)gi

(4)
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and

T−
i =

i

N

(N − i)gi
(i+M)fi + (N − i)gi

. (5)

Denote by Pi(t) the probability that the random walker starting from
state i at time 0 is absorbed to state N at time t. The normalization is
given by

∑∞
t=0 Pi(t) = 1. It should be noted that PN (0) = 1 and PN (t) = 0

(t ≥ 1). We are interested in the mean fixation time when there are initially
i ordinary players with strategy A, which is given by

ti ≡
∞∑
t=0

tPi(t). (6)

It should be noted that tN = 0.
Pi(t) satisfies the recursion relation given by

Pi(t) = T−
i Pi−1(t− 1) + (1− T−

i − T+
i )Pi(t− 1) + T+

i Pi+1(t− 1). (7)

By multiplying both sides of Eq. (7) by t and taking the summation over t,
we obtain

ti = T−
i ti−1 + (1− T−

i − T+
i )ti + T+

i ti+1 + 1. (8)

In terms of σi ≡ ti − ti+1, Eq. (8) can be rewritten as

T−
i σi−1 − T+

i σi + 1 = 0. (9)

The solution of Eq. (9) is given by

σi = σ0qi + qi

i∑
k=1

1

T+
k qk

, (10)

where 0 ≤ i ≤ N − 1 and

qk =
k∏

j=1

T−
j

T+
j

. (11)

In Eq. (11), we interpret q0 = 1.
We set i = 0 in Eq. (8) and use T−

0 = 0 to obtain

t0 = (1− T+
0 )t0 + T+

0 t1 + 1. (12)

Therefore, we obtain

σ0 = t0 − t1 =
1

T+
0

. (13)

Using Eq. (13), we reduce Eq. (10) to

σi = qi

i∑
k=0

1

T+
k qk

. (14)
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The mean fixation time is given by

ti =
N−1∑
j=i

σj + tN

=

N−1∑
j=i

qj

j∑
k=0

1

T+
k qk

. (15)

3.2 Deterministic approximation of the random walk

In this section we classify the deterministic dynamics driven by the expected
bias of the random walk (i.e., T+

i − T−
i ) into three cases, as is done in the

analysis of populations without zealots [10, 12]. The obtained classification
determines the dependence of the mean fixation time on N , as we will show
in section 3.3.

We first identify the local extrema of the deterministic dynamics, i.e.,
i satisfying T+

i = T−
i . Equations (4) and (5) indicate that i = N always

yields T+
i = T−

i = 0, corresponding to the fact that i = N is the unique
absorbing state. Other local extrema satisfy

(i+M) [(i+M − 1)a+ (N − i)b]− i [(i+M)c+ (N − i− 1)d] = 0. (16)

We set y ≡ i/N (0 ≤ y < 1), m ≡ M/N , and ignore O(N−1) terms in
Eq. (16) to obtain

f(y) ≡ (a−b−c+d)y2+[2ma+ (1−m)b−mc− d] y+m2a+mb = 0. (17)

We define

ỹ =− 1

2(a− b− c+ d)
[2ma+ (1−m) b−mc− d] , (18)

D = [2ma+ (1−m)b−mc− d]2 − 4m(ma+ b)(a− b− c+ d), (19)

y∗1 =

{
ỹ −

√
D

2(a−b−c+d) (a− b− c+ d �= 0),

− m(ma+b)
2ma+(1−m)b−mc−d (a− b− c+ d = 0),

(20)

and

y∗2 =ỹ +

√
D

2(a− b− c+ d)
. (21)

We will use y∗2 only when a − b − c + d > 0. In the continuous state
limit, the deterministic dynamics driven by T+

i − T−
i is classified into the

following three cases, as summarized in Table 1. The derivation is shown in
Appendix A.
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Case (i): f(y) > 0 holds true for all y (0 ≤ y ≤ 1) such that the dynamics
starting from any initial condition tends to y = 1 (Fig. 1(a)). In an
infinite population, A dominates B. In a finite population, we expect
that the fixation time is short. This case occurs when c < (m + 1)a
and one of the following conditions is satisfied:

• a− b− c+ d ≤ 0.

• a− b− c+d > 0 and y∗1 ≤ 0 (i.e., 2ma+(−m+1)b−mc−d ≥ 0).

• a− b− c+ d > 0, 0 < y∗1 < 1 (i.e., 2ma+(−m+1)b−mc− d < 0
and −(2m+ 2)a+ (m+ 1)b+ (m+ 2)c− d < 0), and D ≤ 0.

• a− b− c+ d > 0 and y∗1 ≥ 1 (i.e., −(2m+2)a+ (m+1)b+ (m+
2)c − d ≥ 0).

Case (ii): f(y) = 0 has a unique solution y∗1 (0 < y∗1 < 1) such that the dynamics
starting from any initial condition converges to y∗1 (Fig. 1(b)). In an
infinite population, A and B coexist. In a finite population, we expect
that the fixation time is long. This case occurs when c > (m+ 1)a.

Case (iii): f(y) = 0 has two solutions 0 < y∗1 < y∗2 < 1. Dynamics starting
from 0 ≤ y < y∗2 converges to y∗1, and that starting from y∗2 < y < 1
converges to y = 1 (Fig. 1(c)). In an infinite population, a mixture
of A and B and the pure A configuration are bistable. In a finite
population, we expect that the fixation time is long if the dynamics
starts with 0 ≤ y < y∗2 and short if it starts with y∗2 < y < 1. This
case occurs when

c <(m+ 1)a, (22)

a− b− c+ d >0, (23)

0 <ỹ < 1, (24)

and
D > 0 (25)

are satisfied.

To intuitively interpret the condition c < (m+ 1)a, assume that almost
all the players select A, i.e., y ≈ 1. Then, the payoff that a player with
strategy A gains by being matched with the other ordinary players and
zealous players is equal to (m+1)a. The payoff that a player with strategy
B gains by being matched with the other ordinary players, but not zealous
players, is equal to c. Therefore, as far as the condition c < (m + 1)a is
mathematically concerned, zealous players behave as if they contribute to
the payoff of ordinary A players and not to that of ordinary B players.
The zealous player is then functionally equivalent to cooperation facilitator
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assumed in a previous model [22]. However, it should be noted that zealous
players in fact play with both ordinary A and B players alike.

In the corresponding model without zealots, there are four scenarios: A
dominates B (Fig. 1(d)), B dominates A (Fig. 1(e)), a mixture of A and B is
stable (Fig. 1(f)), and A and B are bistable (Fig. 1(g)) [12]. The cases shown
in Fig. 1(d), Fig. 1(f), and Fig. 1(g) are analogous to cases (i), (ii), and (iii),
respectlvely, for the game with zealots. The case shown in Fig. 1(e) never
occurs in the game with zealots because y tends to increase in the absence
of A owing to the fact that unanimity of B among the ordinary players is
a reflecting boundary of our model. In fact, this case corresponds to case
(ii) for the presence of zealots (Fig. 1(b)). If we set m → 0, we obtain case
(i) when a − c > 0 and b − d > 0, case (ii) when a − c < 0, and case (iii)
when a − c > 0 and b − d < 0. As is consistent with [12], the classification
depends only on the a−c and b−d values. However, the scenario in which B
dominates A (Fig. 1(e)) does not happen even with the vanishing density of
zealots (i.e., m → 0) because the unanimity of B remains to be a reflecting
boundary as long as there is at least one zealot.

3.3 Mean fixation time: large N limit

In this section, we analyze the order of the mean fixation time in terms of N
when N is large. Because the mean fixation time is by definition the largest
for i = 0, i.e., the initial condition in which all the ordinary players select
B, we focus on t0. To evaluate t0, we rewrite Eq. (15) for i = 0 as

t0 =

N−1∑
k=0

1

T+
k qk

N−1∑
j=k

qj. (26)

3.3.1 Case (i)

In case (i), T+
i ≥ T−

i holds true for 0 ≤ i ≤ N − 1, and T+
i > T−

i holds true
except for at most one i value for which T+

i = T−
i . Denote by ε ∈ (0, 1) the

largest value of T−
i /T+

i excluding the possible case T−
i /T+

i = 1. Then,

1

qk

N−1∑
j=k

qj =
N−1∑
j=k

j∏
�=k+1

T−
�

T+
�

≤
N−1∑
j=k

ε(j−k−1) ≤ 1

ε

1

1− ε
(27)

Therefore,

t0 ∼
N−1∑
k=0

1

T+
k

. (28)
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The substitution of y = i/N and m = M/N in Eq. (4) yields

1

T+
i

=
1

1− y
+

(y +m)c+ (1− y)d

(y +m) [(y +m)a+ (1− y)b]
. (29)

In particular, we obtain

1

T+
i

≈ 1

1− y
(y ≈ 1). (30)

Equation (30) implies that

t0 = O (N logN) . (31)

This result coincides with the previous result for the absence of zealots [12].

3.3.2 Case (ii)

In Case (ii), T+
i −T−

i > 0 for 0 ≤ i < Ny∗1 and T+
i −T−

i < 0 forNy∗1 < i < N .
Therefore, qi takes the minimum at i ≈ Ny∗1 . We denote the value of i that
satisfies i < Ny∗1 and qi ≈ qN−1 by i∗. Such an i∗ exists if q0 ≥ qN−1. If
q0 < qN−1, we regard that i∗ = 0. Using the relationship qi = [q̃(i/N)]N for
a function q̃(y) (0 ≤ y < 1) [12] (also see Appendix B), we obtain

t0 =
N−1∑
k=0

1

T+
k qk

N−1∑
j=k

qj

∼
N−1∑
k=0

1

T+
k qk

max{qk, qN−1}

∼
N−1∑
k=i∗

qN−1

qk

∼
√
N

[
q̃(1)

q̃(y∗)

]N
, (32)

where
q̃(y∗) = min

0≤y<1
q̃(y). (33)

To derive the last line in Eq. (32), we used the steepest descent method [12]
(also see Appendix C).

Equations (29) and (30) imply that 1/T+
k in Eq. (32) is safely ignored

near the singularity at y ≈ 1 because it would contribute at most O(N logN)
to the fixation time. Therefore, we obtain

t0 = O
(√

NeγN
)
, (34)
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where γ > 0 is a constant that depends on a, b, c, d and m. The depen-
dence of γ on m is shown in Fig. 2 for sample payoff matrices for the pris-
oner’s dilemma game (solid line) and snowdrift game (dotted line). For both
games, γ monotonically decreases with m, implying that the fixation time
decreases with m. In particular, γ is equal to zero, which corresponds to
t0 = O(N logN), when m is larger than a threshold value.

3.3.3 Case (iii)

In this case, qi takes a local minimum at i = Ny∗1 and a local maximum at
i = Ny∗2 . Therefore, behavior of the random walk in the range 0 ≤ i < Ny∗2
is qualitatively the same as that for case (ii), and that in the range Ny∗2 <
i < N is qualitatively the same as that for case (i). Because the former
part makes the dominant contribution to the fixation time, the scaling of
the mean fixation time is given by Eq. (34).

Case (iii) occurs when strategy A is disadvantageous when it is rare and
advantageous when it is frequent. The coordination game provides such an
example (section 5.4).

3.3.4 Summary and the borderline case

In summary, the mean fixation time in the limit of large N is given by
t0 = O(N logN) in case (i) and t0 = O(

√
NeγN ) (γ > 0) in cases (ii) and

(iii). For the parameter values on the boundary between the two scaling
regimes, the same arguments as those for the model without zealots [12]
lead to t0 = O(N3/2).

4 Dependence of the mean fixation time on the

selection strength

We examine the influence of the selection strength, denoted by w, on the
mean fixation time. To this end, we redefine the fitness to an A and B player
by 1− w + wfi and 1− w + wgi, respectively, where fi and gi are given by
Eqs. (2) and (3) (e.g., [9, 11]). Consequently, we replace the payoff matrix
given by Eq. (1) by

( A B

A 1− w + wa 1− w + wb
B 1− w + wc 1− w + wd

)
. (35)

Equation (1) is reproduced with w = 1.
For sufficiently weak selection, we obtain t0 = O(N logN), i.e., case (i),

regardless of the payoff matrix. To prove this statement, we note that, by
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using the payoff matrix shown in Eq. (35), condition c < (m + 1)a in the
case of w = 1 is generalized to

c < (m+ 1)a+m

(
1

w
− 1

)
. (36)

Therefore, if the original game in the case of w = 1 belongs case (ii), i.e.,
c > (m+ 1)a, the game belongs to case (i) or (iii) (Table 1) if Eq. (36), or
equivalently,

w < w1 ≡ m

c− (m+ 1)a+m
(37)

is satisfied. For a fixed payoff matrix, w1 monotonically increases with
m, consistent with the intuition that existence of zealots would lessen the
fixation time.

Next, the sign of a− b− c + d is not affected by the selection strength.
Therefore, we assume a−b−c+d > 0 and prove that a condition for case (iii),
i.e., Eq. (25), is violated with a sufficiently small w. Because the value of ỹ
given by Eq. (18) is also unaffected by w, we start with assuming 0 < ỹ < 1,
which is a necessary condition for case (iii) (Eq. (24); see Appendix A). The
condition D < 0 in the case of w = 1, where D is defined by Eq. (19), is
generalized to

wD − 4(1 −w)m(m + 1)(a − b− c+ d) < 0. (38)

Because condition imposed on D, which distinguishes cases (i) and (iii), is
relevant only for a − b − c + d > 0 (Table 1), Eq. (38) is satisfied for an
arbitrary payoff matrix if

w < w2 ≡ 4m(m+ 1)(a − b− c+ d)

D + 4m(m+ 1)(a− b− c+ d)
. (39)

Therefore, case (iii) is excluded with a sufficiently small w value.
The threshold value of w below which t0 = O(N logN), which we denote

by wc, is given by

wc =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min{w1, w2, 1} (w1 > 0, w2 > 0),

min{w1, 1} (w1 > 0, w2 < 0),

min{w2, 1} (w1 < 0, w2 > 0),

1 (w1 < 0, w2 < 0).

(40)

5 Examples

We compare the mean fixation time for some games with that for the neutral
game, i.e., a = b = c = d > 0. In the absence of zealots, the neural game
yields T+

i = T−
i (1 ≤ i ≤ N − 1). The random walk is unbiased, and the
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so-called mean conditional fixation time is equal to N(N − 1) [12]. The
mean conditional fixation time is defined as the mean fixation time starting
from state i = 1 under the condition that the absorbing state at i = N , not
i = 0, is reached.

The neutral game in the presence of zealots yields T+
0 > T−

0 = 0 and
T+
i /T−

i = (i+M)/i (1 ≤ i ≤ N − 1). Therefore, the random walk is biased
toward i = N for all i. More precisely, we obtain

t0 = N(N +M)
∑

0≤k≤i≤N−1

i!(k +M)!

k!(i+M)!

1

(N − i)(i +M)
. (41)

As in [12], we say that fixation is fast (slow) if t0 is smaller (larger) than the
value given by Eq. (41). It should be noted that t0 = O(N logN) for the
neutral game because it corresponds to w = 0 < wc.

5.1 Constant selection

As a first example, consider the case of frequency-independent selection such
that A and B are equipped with fitness r and 1 (under w = 1), respectively.
When a = b = r and c = d = 1, the threshold selection strength below
which t0 = O(N logN), i.e., case (i), holds true is given by

wc =

⎧⎨
⎩

m
(m+1)(1−r)

(
r ≤ 1

m+1

)
,

1
(
r ≥ 1

m+1

)
.

(42)

If w > wc, case (ii) occurs. Even if A is disadvantageous to B, A fixates fast
with the help of zealots regardless of the selection strength if 1/(m + 1) <
r < 1. This condition is more easily satisfied when m is larger.

5.2 Prisoner’s dilemma game

Consider the prisoner’s dilemma game with a standard payoff matrix given
by a = 1, b = 0, c = T , and d = 0, where T > 1. Strategies A and B
represent cooperation and defection, respectively. It should be noted that
a− b− c+ d < 0. With a general selection strength, the conditions derived
in section 3.2 imply that t0 = O(N logN), i.e., case (i), if T < 1+m/w, and
t0 = O(

√
NeγN ) with case (ii) if T > 1+m/w. This condition coincides with

that for the dominance of cooperators in the case of the infinite population
[8].

The mean fixation time with w = 1 and m = 0.2 is shown in Fig. 3(a).
In this and the following figures, the t0 values are those normalized by that
for the neutral game (Eq. (41)). The behavior of t0 is qualitatively different
according to whether T is larger or smaller than 1+m/w = 1.2. If T < 1.2,
the ratio of t0 for the prisoner’s dilemma game to t0 for the neutral game
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seems to approach a constant as N → ∞. This is consistent with case (i).
In contrast, if T > 1.2, t0 grows rapidly, which is consistent with case (ii).
We remark that the normalized t0 behaves non-monotonically in N ; it takes
a minimum at an intermediate value of N .

Next, to examine the effect of the selection strength, we set T = 1.2 and
m = 0.1. The mean fixation time as a function of N and w is shown in
Fig. 3(b). Equation (40) implies that t0 = O(N logN) when w < wc = 0.5.
Consistent with this result, t0 grows fast as a function of N when w is large
(i.e., w = 0.7 and 1). For small w (i.e., w = 0.4), t0 seems to scale with
N logN .

Figure 3(c) shows the dependence of t0 on N for different densities of
zealots (i.e., m). It should be noted that the baseline t0 value derived from
the neutral game depends on the value of m. Because we set T = 1.2 and
w = 1 in Fig. 3(c), the threshold value of m is equal to 0.2. In fact, the
normalized t0 quickly diverges when m = 0.1, whereas it seems to converge
to a constant value when m = 0.3.

Figure 3 indicates that t0 for the prisoner’s dilemma game is always
larger than that for the neutral game (i.e., the normalized t0 is larger than
unity). This is consistent with the intuition that cooperation is difficult to
attain in the prisoner’s dilemma game as compared to the neutral game.

Finally, consider the symmetrized donation game, which is another stan-
dard form of the prisoner’s dilemma game, given by a = b′ − c′, b = −c′,
c = b′, and d = 0, where b′ is the benefit, and c′(< b′) is the cost. For
the Moran process to be well-defined, we require 1 − w + wb ≥ 0, i.e.,
w < 1/(1 + c′). For this payoff matrix, we obtain

wc =

⎧⎨
⎩

m
m−b′+(1+m)c′

(
b′
c′ ≤ m+1

m

)
,

1
(
b′
c′ ≥ m+1

m

)
.

(43)

Fixation occurs fast for a large benefit-to-cost ratio, large m, or small selec-
tion strength.

5.3 Snowdrift game

In this section, we examine the snowdrift game [23–25] defined by a =
β − 0.5, b = β − 1, c = β, and d = 0, where β > 1. Strategies A an B are
identified as cooperation and defection, respectively. Each player is tempted
to defect if the other player cooperates, as in the prisoner’s dilemma game.
However, different from the prisoner’s dilemma game, a player is better off by
cooperating if the partner defects; mutual defection is the worst outcome. In
the infinite well-mixed population without zealots, the game has the unique
mixed Nash equilibrium in which the fraction of cooperation is equal to
(2β − 2)/(2β − 1).
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Numerical evidence for the replicator dynamics, corresponding to an
infinite population, suggests that cooperation is dominant if m is large or w
is small [8]. For the finite population, we obtain

wc =

{
2m

3m−2mβ+1

(
β ≤ m+1

2m

)
,

1
(
β ≥ m+1

2m

)
.

(44)

If w < wc, we obtain t0 = O(N logN), i.e., case (i). If w > wc, we obtain
t0 = O(

√
NeγN ) with case (ii). A large value of β or m makes the fixation

time smaller. This result makes sense because a large β generally favors
cooperation.

5.4 Coordination game

The coordination game given by a = d > 0 and b = c = 0 has two pure Nash
equilibria in the infinite well-mixed population without zealots. For a finite
population in the presence of zealots, Eq. (40) yields

wc =

⎧⎨
⎩

8m(m+1)
a(−4m2−4m+1)+8m(m+1)

(
0 ≤ m ≤

√
2−1
2

)
,

1
(√

2−1
2 ≤ m ≤ 1

)
.

(45)

If w < wc, we obtain t0 = O(N logN), i.e., case (i). It should be noted
that any strength of selection 0 ≤ w ≤ 1 yields t0 = O(N logN) if there
are sufficiently many zealots, similar to the game with constant selection,
prisoner’s dilemma game, and snowdrift game. If w > wc, we obtain t0 =
O(

√
NeγN ) with case (iii).
The mean first-passage time from state 0 (i.e., all ordinary players select

B) to state i, i.e.,
∑i−1

j=0 σj, is shown in Fig. 4. It should be noted that t0 is
equal to this first-passage time to exit i = N . We set N = 200, a = d = 1,
b = c = 0, m = 0.2, and w = 1. Equation (45) implies wc = 48/49 for these
parameter values. Because w = 1 > wc, we obtain case (iii).

The first-passage time increases slowly as i increases when i is small.
It rapidly increases with i for intermediate values of i, Once the random
walker passes the critical i value, it feels a positive bias such that the first-
passage time only gradually increases with i for large i. The values of i
that separate the three regimes are roughly consistent with the analytical
estimates y∗1 = 0.1 and y∗2 = 0.2 (Eqs. (20) and (21)). It should be noted that
the first-passage time shows representative behavior of case (iii) although w
is only slightly larger than wc.

6 Discussion

We extended the results for the fixation time under the Moran process [12]
to the case of a population with zealous players. Similar to the case without
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zealots [12], we identified three regimes in terms of the payoff matrix, number
of zealots, and selection strengths. In one regime, the fixation time is small
(i.e., O(N logN)). In the other two regimes, it is large (i.e., O(

√
NeγN )

with γ > 0). We illustrated our results with representative games including
the prisoner’s dilemma game, snowdrift game, and coordination game.

Zealots have several impacts on evolutionary dynamics in finite popula-
tions. First, fixation of one strategy A always occurs with zealots because
we assumed that all zealots permanently take A. Second, there is a case in
which fixation is fast if the fraction of A players is sufficiently large, whereas
fixation is slow if the fraction of A is small. This scenario occurs for the co-
ordination game. In the absence of zealots, the same game shows bistability
such that the fixation to the unanimity of A or that of B occurs fast [12].
Third, for a selection strength smaller than a threshold value, the fixation
is fast for any payoff matrix. In the absence of zealots, the dependence of
the mean fixation time on N for large N values is completely determined by
the signs of a− c and b− d [12]. Therefore, the scaling of the mean fixation
time on N is independent of the selection strength because manipulating
the selection strength does not change the sign of the effective a− c or b− d
value. If the payoff matrix is given in the slow fixation regime, the fixation
is exponentially slow even for a small selection strength. In contrast, in the
presence of zealots, slow fixation can be accelerated if we lessen the selection
strength.

Mobilia examined the prisoner’s dilemma game with cooperation facili-
tators [22]. A cooperation facilitator was assumed to cooperate with cooper-
ators and not to play with defectors. The cooperation facilitator and zealous
cooperator in the present study are common in that they never change the
strategy. However, they are different. First, zealous cooperators are embed-
ded in a well-mixed population such that they myopically cooperate with
defectors as well as cooperators. Second, the ordinary players may imitate
the zealous cooperator’s strategy (i.e., cooperation). In contrast, players do
not imitate the cooperation facilitator’s strategy (i.e., cooperation) in Mo-
bilia’s model. As a consequence, cooperation does not always fixate in his
model.

Examination of the case of imperfect zealots, in which zealots change
the strategy with a small probability [8], warrants future work.
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Appendix A: Classification of the deterministic dy-
namics induced by the biased random walk

When a− b− c+ d < 0

We obtain d2f(y)/dy2 < 0 for a− b− c+ d < 0. Because

f(0) =m2a+mb > 0, (46)

f(1) =(m+ 1)2a− (m+ 1)c, (47)

where we used the assumption a > 0 in Eq. (46), we distinguish the following
two cases. If c < (m+ 1)a, f(y) > 0 is satisfied for 0 ≤ y ≤ 1, yielding case
(i) in the main text. If c > (m + 1)a, a certain y∗1(0 < y∗1 < 1) exists such
that f(y) > 0 for 0 ≤ y < y∗1, and f(y) < 0 for y∗1 < y ≤ 1. Therefore, case
(ii) occurs.

When a− b− c+ d > 0

We obtain d2f(y)/dy2 > 0 for a− b− c+ d > 0. In this situation, Eq. (46)
holds true.

If f(1) < 0, i.e., c > (m+1)a, a certain y∗1 (0 < y∗1 < 1) exists such that
f(y) > 0 for 0 ≤ y < y∗1 , and f(y) < 0 for y∗1 < y ≤ 1. Therefore, case (ii)
occurs.

Suppose that f(1) > 0, i.e., c < (m + 1)a. To analyze this case, let us
write

f(y) = (a−b−c+d)(y−ỹ)2+m2a+mb− [2ma+ (1−m)b−mc− d]2

4(a− b− c+ d)
, (48)

where

ỹ = −2ma+ (1−m)b−mc− d

2(a− b− c+ d)
. (49)

(i) If ỹ ≤ 0, i.e., 2ma+(−m+1)b−mc−d ≥ 0, we obtain f(y) ≥ f(0) > 0
for y ≥ 0. Therefore, case (i) occurs.

(ii) If ỹ ≥ 1, i.e., −(2m+2)a+(m+1)b+(m+2)c−d ≥ 0, f(y) ≥ f(1) > 0,
yielding case (i).

(iii) If 0 < ỹ < 1, we have the following two subcases:

(a) IfD = [2ma+ (1−m)b−mc− d]2−4m(ma+b)(a−b−c+d) > 0,
f(y) = 0 has two solutions 0 < y∗1 < y∗2 < 1. In the deterministic
dynamics driven by the bias T+

i − T−
i , y∗1 and y∗2 are stable and

unstable, respectively. Therefore, case (iii) occurs.

(b) If D ≤ 0, we obtain f(y) ≥ 0 for all 0 ≤ y < 1, where the equality
holds true only whenD = 0 and y = ỹ. Therefore, case (i) occurs.
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When a− b− c+ d = 0

The quadratic term in f(y) disappears when a− b− c+ d = 0. The classifi-
cation of the dynamics in this case coincides with that for a− b− c+ d < 0.

Appendix B: Derivation of q̃(y)

To derive the relationship qi = [q̃(i/N)]N , we write

qi =exp

(
i∑

k=1

log
T−
k

T+
k

)

=exp

{
i∑

k=1

log
k [(k +M)c+ (N − k − 1)d]

(k +M) [(k +M − 1)a+ (N − k)b]

}

≈ exp

{
N

∫ y

0
log

y′ [(y′ +m)c+ (1− y′)d]
(y′ +m) [(y′ +m)a+ (1− y′)b]

dy′
}
, (50)

where y = i/N and y′ = k/N . Because the integral on the right-hand side
of Eq. (50) is independent of N , we obtain qi = [q̃(y)]N . It should be noted
that q̃(0) = 1 is consistent with q0 = 1.

Appendix C: Steepest descent method

As done in [12], we use the steepest descent method to evaluate
∑N−1

k=i∗(qN−1/qk)
in Eq. (32) as follows:

N−1∑
k=i∗

qN−1

qk
∼

N−1∑
k=i∗

[
q̃(1)

q̃(k/N)

]N

∼N

∫ 1

i∗
N

[
q̃(1)

q̃(y′)

]N
dy′

=N

[
q̃(1)

q̃(y∗)

]N ∫ 1

i∗
N

exp

⎡
⎣− log q̃(y′)

q̃(y∗)
1
N

⎤
⎦ dy′ (51)

where q̃(y∗) = min0≤y<1 q̃(y). We approximate the integral by a Gaussian
integral to obtain∫

exp

[
−F (y′)

λ

]
dy′ ≈

√
2πλ

F ′′(y∗)
exp

[
−F (y∗)

λ

]
(52)

with F (y′) = log [q̃(y′)/q̃(y∗)] and λ = 1/N such that

N−1∑
k=k∗

qN−1

qk
∼

√
N

[
q̃(1)

q̃(y∗)

]N
. (53)
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Table 1: Classification of the three cases of the mean fixation time when N
is large.

a− b− c+ d ≤ 0 a− b− c+ d > 0

c < (m+ 1)a case (i) case (i) or (iii)

c > (m+ 1)a case (ii) case (ii)
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Figure 1: Schematic classification of the deterministic dynamics driven by
T+
i − T−

i . (a)–(c) Populations with zealots. (d)–(g) Populations without
zealots. Filled and open circles represent stable and unstable equilibra,
respectively. Filled squares represent the absorbing boundary condition. It
should be noted that we identify y = i/N .
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Figure 2: The exponent γ for the mean fixation time (Eq. (34)) plotted
against the density of zealots m for the prisoner’s dilemma game with a = 1,
b = 0, c = 1.2, and d = 0 (solid line) and the snowdrift game with a = β−0.5,
b = β, c = β − 1, d = 0, with β = 1.5 (dotted line). We calculated γ on the
basis of Eqs. (32), (33), and (50).
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Figure 3: The normalized mean fixation time for the prisoner’s dilemma
game as a function of N . We set a = 1, b = 0, c = T , and d = 0. In (a),
we set m = 0.2, w = 1. In (b), we set T = 1.2 and m = 0.1. In (c), we set
T = 1.2 and w = 1.
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Figure 4: Mean first-passage time for the coordination game. We set N =
200, a = d = 1, b = c = 0, m = 0.2, and w = 1.
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