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Abstract

We propose a collective opinion formation model with a so-called
confirmation bias. The confirmation bias is a psychological effect with
which, in the context of opinion formation, an individual in favor of
an opinion is prone to misperceive new incoming information as sup-
porting the current belief of the individual. Our model modifies a
Bayesian decision-making model for single individuals [M. Rabin and
J. L. Schrag, Q. J. Econ. 114, 37 (1999)] for the case of a well-mixed
population of interacting individuals in the absence of the external in-
put. We numerically simulate the model to show that all the agents
eventually agree on one of the two opinions only when the confirmation
bias is weak. Otherwise, the stochastic population dynamics ends up
creating a disagreement configuration (also called polarization), partic-
ularly for large system sizes. A strong confirmation bias allows various
final disagreement configurations with different fractions of the indi-
viduals in favor of the opposite opinions.

1 Introduction

There are various models of collective opinion formation in which agents
modify their opinions according to interaction with other agents [1,2]. Opin-
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ion formation is a dynamic process: for example, interaction between agents
makes their opinions approach each other. An important problem in opin-
ion dynamics is to examine when an agreement (i.e., consensus) among
all the agents occurs. Complete agreement is rarely observed in the real
world [3, 4]. However, it is an established fact that opinion dynamics under
the voter model, a classical opinion model in statistical physics and proba-
bility theory, inevitably reaches agreement in finite populations [1,5–9]. The
majority rule model has a similar feature [1,10,11]. Partly motivated by this
discrepancy, various extensions of voter and majority rule models and dif-
ferent models of collective opinion formation have been proposed to account
for the disagreement in finite populations. Examples include the Deffuant
model [12], language competition models [13–20], voter-like models on adap-
tive networks [21–24], voter model under partisan bias (the assumption that
agents naturally prefer one opinion) [25,26], and variations of Axelrod’s cul-
tural dynamics (see [1] for references). Theoretical models have also been
proposed in social sciences to explain disagreement in the context of po-
larization. For example, prior beliefs or initially received signals can cause
disagreement between agents, even if they receive the same public signals
from then on [27–31].

Although there is a plethora of studies addressing the problem of agree-
ment and disagreement in opinion dynamics, we propose a model incor-
porating two factors that are relevant to human behavior: Bayesian be-
lief updating and confirmation bias. Bayesian belief updating is commonly
used in studies of the decision making of agents receiving uncertain infor-
mation [30,32,33]. The confirmation bias is a psychological bias inherent in
humans, in which an agent inclined towards an opinion tends to misperceive
incoming signals as supporting the agent’s belief [34, 35]. A non-Bayesian
model with the confirmation bias was previously proposed for explaining the
influences of media and interactions between agents [36].

We are not the first to study opinion formation under the Bayesian
updating and confirmation bias. In the framework of single agent opinion
formation, Rabin and Schrag showed that the confirmation bias triggers
overconfidence and can cause the individual to hold incorrect beliefs, even
if it receives a series of external signals suggesting the true state of the
world [37]. Orléan studied the Bayesian dynamics of agents subjected to
the confirmation bias, interacting through the mean field [38]. The model
yields agreement or disagreement depending on the parameter values.

In this study, motivated by the Rabin-Schrag model [37], we propose a
model of collective opinion formation with a confirmation bias. We model
direct peer-to-peer interactions between agents (not through the mean field)
and their effects on the Bayesian updating of each agent. To study the pure
effects of interactions among agents, we do not assume that agents receive
signals from the environment as in previous studies [31]. We numerically
simulate the model to reveal the conditions under which the populations of
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agents agree and disagree, depending on the values of parameters such as
the strength of the confirmation bias, fidelity of the signal, and the system
size.

2 Model

Our model modifies the Bayesian decision-making model proposed by Rabin
and Schrag [37] in two main ways. First, we consider a well-mixed population
of Bayesian agents that interact with each other; Rabin and Schrag focused
on the case of the single agent. Second, agents do not receive external signals
from the environment in our model. In the Rabin-Schrag model, such an
external signal, which represents the “correct” answer in the binary choice
situation (i.e., the true state of nature), is assumed. By making the two
changes, we concentrate on collective opinion formation by Bayesian agents,
whereby there are two possible alternative opinions of equal attractiveness.

We label the N agents 1, . . . , N and denote the opinion of agent i (i =
1, . . . , N) by xi ∈ {A,B}, where A and B are the alternative opinions. We
assume that agents are not perfectly confident in their opinions. To model
this factor, we adopt the Bayesian formalism used by Rabin and Schrag [37].
We denote by Pr(xi = A) the strength of the belief (hereafter, simply the
belief) with which agent i believes in opinion A. A parallel definition is
applied to Pr(xi = B). It should be noted that Pr(xi = A) ≥ 0, Pr(xi =
B) ≥ 0, and Pr(xi = A) + Pr(xi = B) = 1. If Pr(xi = A) = 1/2, agent i is
indifferent to either opinion.

We update the agent’s belief as follows. The time t starts from t = 0.
Upon every updating of an agent’s belief, we add 1/N to t such that the
belief of each agent is updated once per time unit on average. In an updating
event, we select an agent i to be updated with equal probability 1/N . Agent
i refers to agent j’s opinion for updating i’s belief Pr(xi = A), where j (̸= i)
is selected with equal probability 1/(N − 1) from the population. Agent j
imparts a signal s ∈ {a, b}, where a and b correspond to j’s opinions A and
B, respectively. We assume that the probabilities that agent j imparts s = a
and s = b are given by

Pr(s = a) = Pr(s = a|xj = A)Pr(xj = A)

+ Pr(s = a|xj = B)Pr(xj = B)

= θPr(xj = A) + (1− θ) Pr(xj = B)

= 1− θ + (2θ − 1)Pr(xj = A) (1)
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and

Pr(s = b) = Pr(s = b|xj = A)Pr(xj = A)

+ Pr(s = b|xj = B)Pr(xj = B)

= (1− θ) Pr(xj = A) + θPr(xj = B)

= θ − (2θ − 1)Pr(xj = A), (2)

respectively, where

θ = Pr(s = a|xj = A) = Pr(s = b|xj = B) (3)

represents the reliability of the signal, and 1/2 ≤ θ < 1. If j is confident in
its own opinion and the transformation from j’s belief [i.e., Pr(xj = A)] to
j’s output signal (i.e., a or b) is reliable, signals a and b are likely to indicate
opinions A and B, respectively. In the limit θ → 1, Pr(s = a) ≈ Pr(xj = A)
and Pr(s = b) ≈ Pr(xj = B). If θ = 1/2, Pr(s = a) = Pr(s = b) = 1/2
such that s does not convey any information about j’s belief. We implicitly
assume that all the agents share the same value of θ and that they know
this fact when performing the Bayesian update, as described below.

When agent j imparts signal s ∈ {a, b}, agent i is assumed to perceive
a subject signal σ ∈ {α, β}, where α and β correspond to A and B, respec-
tively. The flow of the signal conversion is depicted in Fig. 1. If agent i is
not subject to the confirmation bias, α and β are equal to a and b, respec-
tively. Otherwise, agent i may misinterpret the signal imparted by agent
j, depending on the prior exposure of agent i to other signals. Following
Rabin and Schrag [37], we define

Pr[σ = α|s = a,Pr(xi = A) ≥ 1/2]

= Pr[σ = β|s = b,Pr(xi = A) ≤ 1/2]

= 1 (4)

and

Pr[σ = α|s = b,Pr(xi = A) > 1/2]

= Pr[σ = β|s = a,Pr(xi = A) < 1/2]

= q, (5)

where q (0 ≤ q ≤ 1) parameterizes the strength of the confirmation bias.
Equation (5) states that an agent preferring opinion A misinterprets an
arriving b signal as A (i.e., σ = α) with probability q. If q = 0, the confir-
mation bias is absent, and s = a and s = b are always converted to σ = α
and σ = β, respectively. If q = 1, the agent perceives the signal that is
consistent with its current preference [i.e., α if Pr(xi = A) > 1/2 and β if
Pr(xi = A) < 1/2], irrespective of the signal imparted by agent j (i.e., a or
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b). The other conditional probabilities can be readily derived from Eqs. (4)
and (5). For example, Eq. (4) implies

Pr[σ = β|s = a,Pr(xi = A) > 1/2]

= 1− Pr[σ = α|s = a,Pr(xi = A) > 1/2]

= 0, (6)

and Eq. (5) implies

Pr[σ = α|s = a,Pr(xi = A) < 1/2]

= 1− Pr[σ = β|s = a,Pr(xi = A) < 1/2]

= 1− q. (7)

Then, by using the Bayes’ theorem, we update agent i’s belief Pr(xi =
A|σ) on the basis of the old belief Pr(xi = A) [= 1 − Pr(xi = B)] and the
perceived signal (i.e., α or β). The perceived signal may be different from
the received signal (i.e., a or b) because of their confirmation bias [Eqs. (4)
and (5)]. We assume that agents are not aware that they may be subject
to the confirmation bias. Agents use the subjective conditional probabilities
given by

Pr(σ = α|s = a) = Pr(σ = β|s = b) = 1 (8)

and

Pr(σ = α|s = b) = Pr(σ = β|s = a) = 0 (9)

to perform the Bayesian update. The posterior belief Pr(xi = A|σ) is given
by

Pr(xi = A|σ) = Pr(σ|xi = A)Pr(xi = A)

Pr(σ|xi = A)Pr(xi = A) + Pr(σ|xi = B)Pr(xi = B)

=
∑
s=a,b

Pr(σ|s) Pr(s|xi = A)Pr(xi = A)/∑
s=a,b

Pr(σ|s) Pr(s|xi = A)Pr(xi = A)

+
∑
s=a,b

Pr(σ|s) Pr(s|xi = B)Pr(xi = B)


=


θPr(xi = A)

θPr(xi = A) + (1− θ) Pr(xi = B)
(σ = α),

(1− θ) Pr(xi = A)

(1− θ) Pr(xi = A) + θPr(xi = B)
(σ = β).

(10)
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It should be noted that Pr(xi = B|σ) = 1 − Pr(xi = A|σ). Then, we
increment the time by 1/N such that each agent is updated once per unit
time on average. Iterative application of Eq. (10) leads to

Pr(xi = A) =
θnαi(1− θ)nβi

θnαi(1− θ)nβi + (1− θ)nαiθnβi

=

{
1 +

(
1− θ

θ

)nαi−nβi
}−1

(11)

and

Pr(xi = B) =
(1− θ)nαiθnβi

(1− θ)nαiθnβi + θnαi(1− θ)nβi

=

{
1 +

(
1− θ

θ

)nβi−nαi
}−1

, (12)

where nαi (nβi) is the accumulated number of signals σ = α (σ = β) that
agent i has perceived. The state of each agent i is uniquely determined by
nαi − nβi, which is consistent with basic Bayesian theory [37,39].

3 Results

3.1 Setup for numerical simulations

Unless otherwise stated, we set 1/2 < θ < 1 and assume a neutral initial
condition Pr(xi = A) = 1/2 (1 ≤ i ≤ N), or, equivalently, nαi = nβi

(1 ≤ i ≤ N). The agents exchange signals and update their beliefs, possibly
under a confirmation bias. After a transient, the agents believe in either
opinion with a strong confidence, i.e., Pr(xi = A) ≈ 0 or 1. We halt a run
when |nαi − nβi| ≥ ∆nc is satisfied for all i for the first time, where ∆nc is
the threshold. In other words, a run continues if at least one agent i has the
|nαi − nβi| value smaller than ∆nc.

3.2 Case without the confirmation bias

We first consider the case without a confirmation bias (i.e., q = 0). We
investigate the dynamics of the mean belief PA(t) ≡

∑N
i=1 Pr(xi = A)/N

at time t by drawing a return map, i.e., PA(t) as a function of PA(t − 1)
[10, 40, 41]. The return map for N = 100, θ = 0.99, and ∆nc = 500 based
on 1000 runs is shown in Fig. 2. Because PA(t) > PA(t − 1) when 0.5 <
PA(t−1) < 1 and PA(t) < PA(t−1) when 0 < PA(t−1) < 0.5, the dynamics
is in accordance with majority rule behavior. All 1000 runs finished with
an agreement of opinion A [i.e., Pr(xi = A) ≈ 1 for all i] or opinion B [i.e.,
Pr(xi = A) ≈ 0 for all i]. Each case occurred approximately half the time.
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3.3 Case with the confirmation bias

We turn on the confirmation bias to examine the possibility that it induces
disagreement among agents. At least for large q (i.e., q ≈ 1), disagreement
is expected to be reached because the first perceived signal would determine
the final belief of each agent and is equally likely to be α and β for many
agents.

In the following numerical simulations, we measured the degree of dis-
agreement, which we defined as follows. We determined that agreement was
reached in a run if the final signs of nαi−nβi were the same for i = 1, . . . , N .
Otherwise, we said that disagreement was reached. We denoted the fraction
of runs that finished with disagreement by Fd.

We set ∆nc = 500 and the number of runs to 1000. In Figs. 3(a) and
3(b), Fd is shown as a function of q and θ for N = 2 and 100, respectively.
First, Fd monotonically increases with q and decreases with θ for both N = 2
and N = 100. It should be noted that disagreement occurred in at least one
run in the regions right to the solid fractured lines in Fig. 3. Second, Fd for
N = 2 [Fig. 3(a)] is smaller than Fd for N = 100 [Fig. 3(b)] for all the q
and θ values. Therefore, disagreement seems to be a likely outcome of the
model for large N , particularly for large q and small θ. When N = 100,
perfect agreement, i.e., Fd = 0, is realized only for q close to zero. In other
words, even a small degree of confirmation bias elicits disagreement among
the agents.

3.4 Probability flow analysis for N = 2

To obtain analytical insights into the model, we performed an annealed
approximation for N = 2 by averaging out fluctuations of the dynamics for
different times and runs. The configuration of the population is specified by
(m1,m2) ≡ (nα1 − nβ1, nα2 − nβ2). The stochastic dynamics of the model
can be mapped to a random walk on the two-dimensional lattice; a walker
is initially located at (m1,m2) = (0, 0) and randomly hops to one of the
four neighboring lattice points in each time step. We defined fR(m1,m2),
fL(m1,m2), fU (m1,m2), and fD(m1,m2) as the probabilities that the walker
located at (m1,m2) moves to (m1 +1,m2), (m1 − 1,m2), (m1,m2 +1), and
(m1,m2 − 1), respectively. The four probabilities are given by

fR(m1,m2) =



(1− q) Pr(s = a|m2) + q

2
(m1 ≥ 1),

Pr(s = a|m2)

2
(m1 = 0),

(1− q) Pr(s = a|m2)

2
(m1 ≤ −1),

(13)

fL(m1,m2) =
1

2
− fR(m1,m2), (14)
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fU (m1,m2) =



(1− q) Pr(s = a|m1) + q

2
(m2 ≥ 1),

Pr(s = a|m1)

2
(m2 = 0),

(1− q) Pr(s = a|m1)

2
(m2 ≤ −1),

(15)

and

fD(m1,m2) =
1

2
− fU (m1,m2), (16)

where

Pr(s = a|mj) = 1− θ + (2θ − 1)Pr(xj = A|mj)

= 1− θ + (2θ − 1)

{
1 +

(
1− θ

θ

)mj
}−1

(17)

is the probability that agent j with nαj − nβj = mj imparts signal s = a.
fR(m1,m2) and fU (m1,m2) increase with m1 and m2, and fL(m1,m2) and
fD(m1,m2) decrease with m1 and m2.

In the following, we study the mean dynamics of the random walk driven
by the drift terms. Because the transition probability of the random walk
is symmetric with respect to the lines m1 = m2 and m1 = −m2, we focus
on the region given by −m2 ≤ m1 ≤ m2,m2 > 0. We define m1c and m2c,
which are not integers in general, as the values satisfying fU (m1c,m2) =
fD(m1c,m2)

∀m2 > 0 and fR(m1,m2c) = fL(m1,m2c)
∀m1 < 0, respectively.

They are given by

m2c = −m1c

=

ln

[
(2θ − 1)

{
1

2(1− q)
− (1− θ)

}−1

− 1

]−1

ln
θ

1− θ

. (18)

Note thatm1c andm2c exist if and only if (2θ−1) {1/2(1− q)− (1− θ)}−1−
1 > 0, i.e.,

q < 1− 1

2θ
. (19)

First, we consider the case q < 1−1/2θ. We partition the upper quadrant
of the lattice (given by −m2 ≤ m1 ≤ m2,m2 > 0) into five regions: region
1 (0 < m1 ≤ m2), region 2 (m1 = 0,m2 > 0), region 3 (−m2 ≤ m1 <
0, 0 < m2 < m2c), region 4 (m1c < m1 < 0, m2 > m2c), and region 5
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(−m2 ≤ m1 < m1c), as shown in Fig. 4(a). We obtain from the condition
1/2 < θ < 1

fR(m1,m2)− fL(m1,m2) ≥ fU (m1,m2)− fD(m1,m2) > 0 (20)

in region 1,

fR(m1,m2)− fL(m1,m2) > 0, fU (m1,m2)− fD(m1,m2) =
q

2
(21)

in region 2,

fU (m1,m2)− fD(m1,m2) ≥ fL(m1,m2)− fR(m1,m2) > 0 (22)

in region 3,

fR(m1,m2)− fL(m1,m2) > 0, fU (m1,m2)− fD(m1,m2) > 0 (23)

in region 4, and

fR(m1,m2)− fL(m1,m2) ≥ fD(m1,m2)− fU (m1,m2) > 0 (24)

in region 5. The probability flow of the walker after the annealed approxi-
mation, i.e., (fR(m1,m2)− fL(m1,m2), fU (m1,m2)− fD(m1,m2)) inferred
from Eqs. (20)-(24) is shown schematically in Fig. 4(a). If the walker is in
the second quadrant (i.e., regions 3, 4, and 5) where the two agents disagree
with each other, the random walker is likely to eventually escape and en-
ter the first quadrant (i.e., region 1) where the two agents agree with each
other. In fact, Fig. 5(a), which shows the actual probability flow, indicates
that the agreement necessarily occurs. Therefore, agreement is the expected
outcome when q < 1− 1/2θ.

Second, if q > 1− 1/2θ, regions 4 and 5 are absent because m1c and m2c

diverge. Regions 1 and 2, in which inequalities (20) and (21) are satisfied,
respectively, are the same as those in the case q < 1 − 1/2θ. Region 3, in
which inequality (22) is satisfied, is modified to −m2 ≤ m1 < 0. The proba-
bility flows are schematically shown in Fig. 4(b). fL(m1,m2) > fR(m1,m2)
and fU (m1,m2) > fD(m1,m2) are satisfied in region 3. Therefore, once the
walker is deep in the second quadrant, it is likely to move toward m1 → −∞
and m2 → ∞, which implies that two agents finally disagree. The actual
probability flow shown in Fig. 5(b) is consistent with this prediction.

The transition line q = 1 − 1/2θ is shown by the dashed line in Fig.
3(a). It accurately predicts the parameter region in which disagreement can
occur, i.e., the region right to the solid line.

The same transition line is also derived for the Rabin-Schrag model,
which is concerned with a single agent subjected to a confirmation bias
[37]. In their model, the agent forms a belief by repetitively receiving a
stochastic signal s ∈ {a, b} from nature, according to Pr(s = a|x = A) =
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(s = b|x = B) = θ. Rabin and Schrag calculated the probability that
the agent eventually misunderstands the state of the nature (i.e., A or B),
starting from neutral belief. This probability is equal to zero when q ≤ 1−
1/2θ and positive when q > 1− 1/2θ (see proposition 4 in [37]). Our results
obtained in this section are consistent with theirs because disagreement in
our model roughly corresponds to misunderstanding in the Rabin-Schrag
model.

3.5 Different disagreement configurations for large N

In general, there are N − 1 disagreement configurations, as distinguished by
the number of agents that finally believe in opinion A, which ranges from 1
to N−1. To distinguish different disagreement configurations, we examined
the fraction of agents that believed in the minority opinion at the end of a
run. We averaged this fraction over the runs ending with disagreement. We
called this quantity the average size of the minority.

Figures 6(a) and 6(b) show the average size of the minority for N = 10
and N = 100, respectively. The black regions indicate the parameter values
for which the average size of the minority is undefined because all 1000
runs end with agreement. When q is small, the average size of the minority
monotonically decreases with q and monotonically increases with θ for both
N = 10 and 100. Therefore, small q and large θ values allow only balanced
disagreement configurations, in which the numbers of the agents believing
in the opposite opinions are close to N/2.

However, the average size of the minority increases when q is large. This
is particularly the case for N = 100 [Fig. 6(b)]. This increase occurs
for the following reason. With a strong confirmation bias, agents end up
with an opinion consistent with a small number of signals perceived in the
early stages, and both signals are equally likely to be observed in the early
stages under neutral initial conditions. In the extreme case in which q = 1,
agents reinforce the opinion that is consistent with their first perceived sig-
nal. Therefore, unbalanced disagreement configurations are rarely realized
when q is large.

3.6 Effects of the system size and initial condition

Figures 3 and 6 suggest that the agreement is unlikely to be reached in a
large population. To examine the effect of the population size, we defined
qc as the value of q such that a threshold number of runs among 104 runs
end with agreement. For a given θ value, we determined qc by the bisection
method. The number of agreement runs may not monotonically change in q
because the number of runs is finite. Therefore, the bisection method does
not perfectly work in general. However, we corroborated that the following
results were negligibly affected by the lack of monotonicity.
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The dependence of qc on N is shown in Fig. 7(a) for three threshold
values. For example, the results for the threshold value 100 (shown by
circles) indicate that at least 100 runs among the 104 runs end up with
disagreement when q > qc. We set θ = 0.99 and ∆nc = 500. To explore
the possibility of disagreement in large populations, we set θ close to 1. It
should be noted that Fig. 3 indicates that the probability of disagreement
is small for a large θ value. In Fig. 7(a), qc quickly decreases for N ≤ 10
and gradually decreases for N ≥ 100. Disagreement often occurs for large
N unless q is small. Nevertheless, Fig. 7(a) suggests that the range of q for
which agreement always occurs survives for diverging N .

In generating Fig. 7(a), we used an initial condition in which all the
agents had a neutral belief [i.e., Pr(xi = A) = 0.5, 1 ≤ i ≤ N ]. To check
the effect of the initial condition, we investigated the dependence of qc on
N under two other initial conditions. In the bimodal initial condition, we
initially set nαi−nβi = 100 (1 ≤ i ≤ N/2) and nαi−nβi = −100 (N/2+1 ≤
i ≤ N). We assumed that N was even for this initial condition. In the
so-called most unbalanced initial condition, we set nα1 − nβ1 = 100 and
nαi − nβi = −100 (2 ≤ i ≤ N).

The numerical results for the two initial conditions are shown in Figs.
7(b) and 7(c). The parameter values θ = 0.99, ∆nc = 500 are the same
as those used in Fig. 7(a). The transition point qc decreases with N more
rapidly with the bimodal initial condition [Fig. 7(b)] than with the neutral
initial condition [Fig. 7(a)]. This result is intuitive: the bimodal initial
condition paves the way to disagreement. In contrast, qc under the most
unbalanced initial condition is almost constant near 0.5 irrespective of N .
Therefore, disagreement is highly unlikely unless the confirmation bias is
strong (i.e., q is greater than 0.5). The results shown in Fig. 7 suggest that
the eventual behavior of the model strongly depends on the initial condition
even after the results are averaged over runs.

4 Discussion

Our numerical results are summarized as follows. When the confirmation
bias is absent (i.e., q = 0), the opinion dynamics under the Bayesian update
rule leads to the complete agreement among agents. The behavior of the
model is similar to majority rule dynamics (Fig. 2). When the confirmation
bias is present, disagreement is a likely outcome, particularly for a strong
confirmation bias (i.e., large q). Disagreement is also more likely for a lower
fidelity of the signal (i.e., θ ≈ 1/2) and a larger system size. The transition
line separating the parameter region in which both agreement and disagree-
ment can occur and that in which only agreement occurs is approximately
given by q = 1 − 1/2θ when N = 2. This line is identical to the one de-
termined by Rabin and Schrag for their model for a single agent’s decision
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making [37]. Finally, the behavior of the model strongly depends on the
initial condition.

Our model and results are different from Orléan’s [38], although Orléan’s
model employs multiple agents that perform the Bayesian updates under a
confirmation bias. First, the belief of each agent is binary in Orléan’s model,
whereas our model introduces an infinite range of discrete beliefs, as in [37].
Second, interaction between agents is introduced differently in the two mod-
els. In Orléan’s model, each agent refers to the global fraction of agents
believing in one of the two opinions. In our model, agents refer to other
opinions by peer-to-peer interaction, i.e., by receiving a binary signal that
is correlated with the belief of the sender. Third, the stochastic dynamics of
Orléan’s model is ergotic when the collective opinion does not reach agree-
ment. The collective opinion obeys a stationary distribution, irrespective
of the initial condition. In contrast, in all our simulations, the stochastic
dynamics of our model was nonergotic, such that the final configuration
depended on the initial condition in a wide parameter region.

In social science studies of polarization, several authors analyzed Bayesian
models in which different agents receiving a series of common signals end up
in disagreement. The proposed mechanisms governing disagreement include
different initial beliefs or factors that affect perception of later incoming
signals [27–31], different update rules [28], and ambiguity aversion [28, 42].
These models and ours are different in three major ways. First, a ground
truth opinion corresponding to the state of nature is assumed in these mod-
els but not in ours. Second, public signals commonly received by different
agents are assumed in these models but not in ours. Third, the agents do
not have direct peer-to-peer interaction in these models, but they do in
ours. Models with interacting Bayesian agents, which show disagreement
(reviewed in Ref. [30]), are also different from our model in the first respect.
It should be noted that Zimper and Ludwig discussed confirmation bias with
their Bayesian model [28]. However, they derived a confirmation bias from
their model, rather than assuming one, such that their results pertaining to
confirmation bias were also distinct from ours.

Extending our model to the case of networks is straightforward. For ex-
ample, we can select a recipient of the signal with probability 1/N and then
select the sender with equal probability among the neighbors of the recipient
on the network. Another possible update rule is to select the sender first
and then the recipient among the sender’s neighbors. Yet another possibil-
ity is to select a link with equal probability and designate one of the two
agents as sender and the other as recipient. On heterogeneous networks, the
results may depend on the update rule because it is the case in the voter
model [7–9, 43]. Extension of the model to the case of confirmation bias
heterogeneity may also be interesting. Neurological evidence shows that
different individuals have different confirmation bias strengths [44]. The
strength of the confirmation bias and the position of the node in a social
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network may be correlated and affect the dynamics. It is also straightfor-
ward to extend the model to the case of multiple opinion cases. These and
other extensions, along with the study of analytically tractable models that
capture the essence of the present study, warrant future work.
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Figure 1: Schematic of signal conversion. Signals a and α correspond to A.
Signals b and β correspond to B. θ is the reliability of the signal, and q is
the strength of the confirmation bias.
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Figure 2: Return map of the mean belief. We set N = 100, q = 0, and
θ = 0.99. We recorded the values of (PA(t−1), PA(t)) for t = 1, 1+1/N, 1+
2/N, . . . for 1000 runs and divided the recorded pairs into 21 classes. The
kth class (k = 1, . . . , 21) was composed of the pairs satisfying (k − 1)/21 ≤
PA(t − 1) < k/21. We obtained the mean value

⟨
PA(t)

⟩
k
for the kth class

by averaging PA(t) over all the pairs contained in the kth class. Finally,
we plotted

⟨
PA(t)

⟩
k
against (k − 0.5)/21 for k = 1, . . . , 21. The diagonal

PA(t) = PA(t− 1) is also shown as a guide.
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Figure 3: Fraction of disagreement Fd. (a) N = 2. (b) N = 100. Solid
lines represent the boundary between Fd = 0 and Fd > 0. The dashed
line in (a) represents q = 1 − 1/2θ. The dashed line is not drawn in (b)
because this theoretical estimate is valid only for N = 2. In (a), the two
lines almost overlap each other. The initial belief of each agent was assumed
to be neutral [i.e., Pr(xi = A) = 0.5, 1 ≤ i ≤ N ].
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Figure 4: Schematic of the probability flow given by fR(m1,m2) −
fL(m1,m2) and fU (m1,m2)−fD(m1,m2). (a) q < 1−1/2θ. (b) q > 1−1/2θ.
The labels from 1 to 5 correspond to the five regions.
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Figure 5: Probability flow of the opinion dynamics when N = 2. Vector
(fR(m1,m2)− fL(m1,m2), fU (m1,m2)− fD(m1,m2)) is shown by an arrow
of proportional size at each position of the random walker (m1,m2). (a)
q = 0.15 and θ = 0.64, which satisfies q < 1 − 1/2θ. (b) q = 0.4 and
θ = 0.64, which satisfies q > 1 − 1/2θ. The size of the vectors is manually
normalized for clarity, independently for the two panels.
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Figure 6: Average size of the minority. (a) N = 10 and (b) N = 100. The
initial belief of each agent is assumed to be neutral [i.e., Pr(xi = A) = 0.5,
1 ≤ i ≤ N ]. The black region represents the case where all the 1000 runs
end with agreement such that the average size of the minority is undefined.
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Figure 7: Threshold for the agreement-disagreement transition (qc) as a
function of N under the (a) neutral, (b) bimodal, and (c) most unbalanced
initial conditions. We set θ = 0.99.
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