
MATHEMATICAL ENGINEERING

TECHNICAL REPORTS

The Generalized Terminal Backup Problem

Attila BERNÁTH and Yusuke KOBAYASHI

METR 2013�25 September 2013

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have o�ered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author's copyright.

These works may not be reposted without the explicit permission of the copyright holder.

The Generalized Terminal Backup Problem

Attila Bernáth∗ Yusuke Kobayashi†

Abstract

We consider the following network design problem, that we call the Generalized Ter-

minal Backup Problem. Given a graph (or a hypergraph) G0 = (V,E0), a set of (at least
2) terminals T ⊆ V and a requirement r(t) for every t ∈ T , �nd a multigraph G = (V,E)
such that λG0+G(t, T − t) ≥ r(t) for any t ∈ T . In the minimum cost version the objective
is to �nd G minimizing the total cost c(E) =

∑
uv∈E c(uv), given also costs c(uv) ≥ 0 for

every pair u, v ∈ V . In the degree-speci�ed version the question is to decide whether
such a G exists, satisfying that the number of edges is a prescribed value g(v) at each node
v ∈ V . The Terminal Backup Problem solved in [1] is the special case where G0 is the
empty graph and r(t) = 1 for every terminal t ∈ T . We solve the Generalized Terminal
Backup Problem in the following two cases.

In the �rst case we start with the minimum cost version for c ≡ 1, which helps solving
the degree-speci�ed version by a splitting-o� theorem. This splitting-o� theorem in turn
provides the solution for the minimum cost version in the case when c is node-induced,
that is c(uv) = w(u)+w(v) for some node weights w : V → R+. The algorithm for this case
is polynomial.

In the second solved case we turn to the general minimum cost version, and we are able
to solve it when G0 is the empty graph. This includes the Terminal Backup Problem

[1] (r ≡ 1) and the Maximum-Weight b-matching Problem (T = V). The solution
depends on an interesting new variant of a theorem of Lovász and Cherkassky, and on the
solution of the so-called Simplex Matching problem [1]. Our algorithm is polynomial in
|V | and max{r(t) : t ∈ T}.

1 Introduction

Edge-connectivity augmentation problems usually mean the following: �nd a graph satis-
fying certain edge-connectivity requirement, and any number of parallel edges is allowed between
any pair of the nodes. The objective function is usually to minimize the number of edges in
the graph found, while the edge-connectivity requirements can vary from problem to problem.
The classical result of edge-connectivity augmentation is the theorem of Watanabe and Naka-
mura [23], who determined the minimum number of edges of a graph G = (V,E) which gives
a k-edge-connected graph when added to the input graph G0 = (V,E0). This was generalized
by Bang-Jensen and Jackson [3] who solved the same problem in the case when G0 can even be
a hypergraph. Another generalization is the local edge-connectivity augmentation prob-

lem solved by Frank [7], which is the following. Given a graph G0 = (V,E0) and requirement
r(u, v) ∈ Z+ for every pair of nodes u, v ∈ V , �nd the minimum number of edges of a multigraph
G satisfying λG0+G(u, v) ≥ r(u, v) for every pair u, v ∈ V . Here, the edge-connectivity between
u and v is denoted by λ(u, v) (see Section 2.1 for de�nition). Note that the same problem be-
comes NP-complete, if G0 can be a hypergraph [14]. Ishii and Hagiwara [11] solved the so-called
node-to-area edge-connectivity augmentation problem which is the following. Given a

∗Institute of Informatics, University of Warsaw, Poland. Research supported by the ERC StG project PAAl

no. 259515. E-mail: athos@cs.elte.hu
†University of Tokyo, Tokyo 113-8656, Japan. Supported by JST, ERATO, Kawarabayashi Large Graph

Project and by Grant-in-Aid for Scienti�c Research. E-mail: kobayashi@mist.i.u-tokyo.ac.jp

1

graph G0 = (V,E0), a collection of subsets W of V (called areas) and a function r : W → Z+,
�nd a graph G = (V,E) with smallest possible number of edges such that λG0+G(x,W) ≥ r(W)
for any W ∈ W and x ∈ V . It is shown in [18] that this problem is NP-complete, however, the
authors of [11] have given a polynomial algorithm solving it if r(W) ≥ 2 for every W ∈ W (see
also [10]). More generalizations, abstract versions and related results were given by [4, 5, 13, 21],
good surveys can be found in [9, 22].

Weighted versions of edge-connectivity augmentation problems are often called survivable
network design problems. Here we want to �nd a minimum-cost subgraph of a given supply
graph so that the edge-connectivity requirements are satis�ed. Parallel copies of the edges might
or might not be allowed. These problems are usually NP-hard already in very simple cases, as
an example consider the minimum-cost 2-edge-connected subgraph problem. In the Steiner Tree
Problem we want to �nd a minimum cost set of edges that connects every pair of a set of terminals
(clearly, the optimum solution can be chosen to be a tree). In its generalization, the Generalized
Steiner Network Problem we have a requirement r(u, v) for every pair of nodes u, v ∈ V and the
question is to �nd a minimum cost graph G so that λG(u, v) ≥ r(u, v) for every pair u, v ∈ V .
Jain [12] has given a framework of 2-approximation algorithms that includes many di�erent
survivable network design problems (for example, the Generalized Steiner Network Problem). A
polynomially solvable survivable network design problem is the Terminal Backup Problem,
de�ned as follows. Given a set of terminals T ⊆ V and costs c(uv) ≥ 0 for every pair u, v ∈ V ,
�nd a minimum cost set of edges in which every terminal is connected to some other terminal.
Clearly, the optimum solution of this problem can always be chosen to be a forest. The Terminal
Backup Problem was introduced and solved in [1]. Note the similarity of this problem with the
Steiner Tree Problem: here we want that every terminal is connected to some other terminal,
while the Steiner Tree Problem requires that every terminal is connected to all other terminals.

In this paper we consider the following uncapacitated network design problem, which gener-
alizes the Terminal Backup Problem.

Problem 1 (Generalized Terminal Backup Problem, Problem GTBP). Given a graph (or a
hypergraph) G0 = (V,E0), a set of (at least 2) terminals T ⊆ V , and a requirement r(t) for
every t ∈ T , �nd a multigraph G = (V,E) such that λG0+G(t, T − t) ≥ r(t) for any t ∈ T .

Note that G0 can be a hypergraph, but G has to be a graph here, in which we can include
any number of parallel edges between any pair of nodes.

In the minimum cost version of Problem 1 (Problem MC-GTBP) we want to minimize
the total cost c(E) =

∑
uv∈E c(uv) of the solution found, given also costs c(uv) ≥ 0 for every

pair u, v ∈ V . In the degree-speci�ed version of Problem 1 (Problem DS-GTBP) we want
to decide whether such a graph G exists, satisfying that the number of edges is a prescribed
value g(v) at each node v ∈ V .

In this paper we solve the following special cases of Problem GTBP.

1. An edge-connectivity augmentation type problem: here we start with the minimum
cost version for c ≡ 1, which helps solving the degree-speci�ed version by a splitting-o�
theorem. This splitting-o� theorem in turn provides the solution for the minimum cost
version in the case when c is node-induced. Here, the cost function c is said to be node-
induced if there exists a weight function w : V → R+ such that c(uv) = w(u) + w(v) for
every pair u, v ∈ V .

2. A survivable network design problem: we turn to the general minimum cost version,
and we are able to solve it when G0 is the empty graph. The solution depends on Lemma
21, a variant of Theorem 2, which is of independent interest. The second ingredient of the
solution is the algorithm given by Anshelevich and Karagiozova [1] for the problem called
simplex matching problem.

2

Problem GTBP is a new network design problem. It includes the Terminal Backup Problem
[1] (by letting G0 to be an empty graph and r ≡ 1) and the Maximum-Weight b-matching
Problem (T = V), but it seems that this particular problem was not considered before, we
have not found this type of question in the literature. A special case of this problem (the
degree-speci�ed version) was raised by András Frank (private communication). The following,
somewhat related theorem of Lovász and Cherkassky can be considered as a motivation for our
problem.

Theorem 2 (Lovász [15] and Cherkassky [6]). Let G = (V,E) be an undirected graph and T ⊆ V
a set of terminals so that the degree of v is even for every v ∈ V − T . Then there is a set F of
edge-disjoint paths such that each path has its endnodes in T and for each element t ∈ T , the
paths in F ending at t form a maximum set of edge-disjoint (t, T − t)-paths.

We give an interesting variant of this theorem (see Lemma 21). Theorem 2 was generalized
in many directions, for example Mader [16] determined the maximum number of edge-disjoint
T -paths in a graph G in which the degree of v is not necessarily even for every v ∈ V −T (where
a path is called a T -path if both its endnodes are in T , see also [20, Corollary 73.2b]). We could
not see our Lemma 21 as an easy corollary of these results.

The paper is organized as follows. In Section 2 we give the necessary de�nitions and results.
In Section 3 we solve the edge-connectivity augmentation problem by �rst solving the minimum
cardinality case in subsection 3.1, and the proving the splitting-o� theorem and exploring its
consequences in subsection 3.2. In Section 4 we solve the survivable network design problem: in
subsection 4.1 we give the algorithm, and in subsection 4.2 we prove the main ingredient of our
solution, Lemma 21. We close the paper with some concluding remarks in Section 5.

2 Preliminaries

2.1 Hypergraphs and edge-connectivity

For general graph theoretic notations we will follow [8]. For subsets X,Y of a ground set V
let X − Y = {v ∈ X : v /∈ Y }; sometimes we will also use X + Y to mean X ∪ Y . A
hypergraph is a pair H = (V, E) where V is some �nite set of nodes and E is a multiset of
subsets of V . The members of E are called hyperedges, a hyperedge of size at most 2 is called
a graph edge (or simply edge), and a hyperedge of size 1 is called a loop. A graph is a
special hypergraph containing only edges. If H and G are hypergraphs on the same node set
V then H +G is the hypergraph on node set V in which the multiplicity of a hyperedge is the
sum of its multiplicities in H and in G. For a hypergraph H = (V, E) and a set X ⊆ V we
say that a hyperedge e ∈ E enters X if neither e ∩X nor e ∩ (V −X) is empty, and we de�ne
dH(X) = |{e ∈ E : e enters X}|. If a set contains only one element v then we will write v instead
of {v}; thus dH(v) means dH({v}), etc.

A path between nodes s and t of a hypergraph H is an alternating sequence of distinct
nodes and hyperedges (s = v0, e1, v1, e2, . . . , ek, vk = t), such that vi−1, vi ∈ ei for all i between
1 and k. For a path P = (v0, e1, v1, e2, . . . , ek, vk), its subsequence (vi, ei+1, vi+1, ei+2, . . . , ej , vj)
between vi and vj (0 ≤ i < j ≤ k) is called a subpath of P and denoted by P [vi, vj]. For
sets S, T ⊆ V of nodes in a hypergraph H = (V, E), the edge-connectivity λH(S, T) between
S and T in H is de�ned as the maximum number of pairwise hyperedge-disjoint paths, where
each path has one endnode in S, and the other in T (where we understand λH(S, T) = ∞ if
S ∩ T ̸= ∅). The following theorem of Menger shows that this value coincides with the size of a
minimum S-T cut.

Theorem 3 (Menger's Theorem for hypergraphs [17]). Let H = (V, E) be a hypergraph, and
S, T ⊆ V . Then

λH(S, T) = min{dH(X) : T ⊆ X ⊆ V − S}.

3

2.2 Skew-supermodular functions

We say that a graph G covers a set function p if dG(X) ≥ p(X) holds for every X ⊆ V . In our
proof of the �rst result, we regard the problem as a covering problem of a skew-supermodular set
function. In this subsection, we describe some notations and properties of skew-supermodular
functions.

A set function p : 2V → Z ∪ {−∞} is called skew-supermodular if at least one of the
following two inequalities holds for every X,Y ⊆ V :

p(X) + p(Y) ≤ p(X ∩ Y) + p(X ∪ Y), (∩∪)
p(X) + p(Y) ≤ p(X − Y) + p(Y −X). (−)

A set function is symmetric if p(X) = p(V −X) for every X ⊆ V . For a hypergraph H, we can
easily see that p = −dH is symmetric and satis�es both (∩∪) and (−) for any X,Y ⊆ V . Let the
symmetrized ps of a set function p be de�ned with the formula ps(X) = max(p(X), p(V −X))
for every X ⊆ V . We can see that a graph G covers p if and only if it covers ps. We can also
see the following claim.

Claim 4 ([5]). The symmetrized of a skew-supermodular function is (symmetric and) skew
supermodular.

For a function g : V → R or a vector g ∈ RV , we denote g(X) =
∑

v∈X g(v) for X ⊆ V . For
a set function p : 2V → Z ∪ {−∞} we introduce the polyhedron

C(p) = {x ∈ RV : x(Z) ≥ p(Z) ∀Z ⊆ V, x ≥ 0}.

This polyhedron will be used to characterize the feasibility of the degree-speci�ed version of
Problem GTBP (see Theorem 13). An important property of C(p) is the following.

Theorem 5 ([2]). If p : 2V → Z ∪ {−∞} is a skew supermodular function with p(∅) ≤ 0 then
C(p) is an integer polyhedron (namely an integer contrapolymatroid).

A subpartition of V is a family of disjoint subsets of V . We say that an x ∈ C(p) is
minimal if we cannot decrease x(v) at any v without violating some condition in the de�nition
of C(p). The properties of contrapolymatroids relevant for us are formulated in the following
corollary of Theorem 5. See details about contrapolymatroids in [20].

Corollary 6. If p is as in Theorem 5 then we have the following.

• max{
∑

X∈X p(X) : X is a subpartition of V } = min{1 · x : x ∈ C(p)}.

• Any minimal m ∈ C(p) achieves m(V) = min{1 · x : x ∈ C(p)}.

• Given any w : V → R+, an (integer) optimal solution of min{w · x : x ∈ C(p)} can
be found in polynomial time (with a simple greedy algorithm), assuming that we can test
membership in C(p).

2.3 The splitting-o� operation

Let p : 2V → Z ∪ {−∞} be a symmetric, skew-supermodular function that satis�es p(∅) ≤ 0
and let m : V → Z be a nonnegative function satisfying m(X) ≥ p(X) for any X ⊆ V (i.e.
an integer element of C(p)). We would like to decide whether there is a graph (or possibly
hypergraph) G covering p that satis�es dG(v) = m(v) for every v ∈ V . Let u, v ∈ V be two
nodes with m(u),m(v) > 0. The operation splitting-o� (at u and v) is the following: we
substitute m and p with m′ and p′ where m′(x) = m(x) if x ∈ V −{u, v} and m′(x) = m(x)− 1
if x ∈ {u, v} and p′ = p − d(V,{(uv)}) (where (V, {(uv)}) is a graph having only one edge: note
that p′ is symmetric and skew-supermodular). If m′(X) ≥ p′(X) holds for any X ⊆ V , then
we say that the splitting o� is admissible. A set X is dangerous if m(X) − p(X) ≤ 1. The
following claim is well known.

4

Claim 7 (see e.g. [5]). The splitting o� at u and v is admissible if and only if there is no
dangerous set containing both u and v.

We will use the following lemma.

Lemma 8 ([5, 19]). Let p : 2V → Z ∪ {−∞} be a symmetric skew-supermodular function and
m ∈ C(p) ∩ ZV . If max{p(X) : X ⊆ V } > 1, then there is an admissible splitting-o�.

3 Solution of the edge-connectivity augmentation problem

In this section we solve the following variants of Problem GTBP. We start with the minimum

cardinality version, in which the number of edges |E| of G is to be minimized (that is, the
minimum cost version with cost function c ≡ 1). Then we prove a splitting-o� theorem that
solves the degree-speci�ed version. Unlike other edge-connectivity augmentation problems,
here the minimum cardinality version of the problem is easier than the degree-speci�ed version,
and it helps proving the splitting-o� theorem. The splitting-o� theorem gives rise to the solution
of the minimum cost version for node-induced cost function (that is, we �nd a graph G
minimizing

∑
v∈V w(v)dG(v)), given some node-weights w(v) ≥ 0 for every v ∈ V).

Consider Problem GTBP above. To simplify the discussion, let T = {t1, t2, . . . , tk} and let
ri = r(ti) for every i. For any terminal ti let di = min{dG0(X) : X ∩ T = {ti}}. By Menger's
theorem di = λG0(ti, T − ti). Let furthermore Xi be an inclusionwise minimal subset with
Xi ∩ T = {ti} and dG0(Xi) = di.

Lemma 9. For di�erent indices i ̸= j we have Yi ∩Xj = ∅, where Yi is a set with Yi ∩ T = {ti}
and dG0(Yi) = di. Consequently, X1, X2, . . . , Xk is a subpartition of V .

Proof. Assume Yi ∩Xj ̸= ∅. Since

di + dj = dG0(Yi) + dG0(Xj) ≥ dG0(Yi −Xj) + dG0(Xj − Yi) ≥ di + dj ,

we have dG0(Xj − Yi) = dj , which contradicts the minimality of Xj .

Let us de�ne a set function R : 2V → Z ∪ {−∞} by

R(X) =

{
ri if X ∩ T = {ti},
−∞ otherwise.

It is clear that a graph G is feasible for Problem GTBP if and only if dG(X) ≥ R(X)− dG0(X)
holds for every subset X ⊆ V (i.e., G covers R− dG0).

Claim 10. The function R is skew-supermodular (and then so is the function R− dG0).

Proof. Let X,Y ⊆ V . We can assume that R(X) and R(Y) are both �nite, otherwise there is
nothing to prove. If X ∩T = Y ∩T then (∩∪) holds for R (with equality), otherwise (−) holds
for R (again, with equality). The skew-supermodularity of R implies the skew-supermodularity
of R− dG0 .

Let Rs(X) = max{R(X), R(V − X)} for any X ⊆ V (the symmetrized of R): it is a
symmetric and skew supermodular function by Claim 4. Let �nally p(X) = Rs(X) − dG0(X)
for any X ⊆ V , which is symmetric and skew-supermodular. Note that G covers R− dG0 if and
only if G covers p.

5

Membership oracle for C(p). In order to turn our proofs into polynomial algorithms, we
describe a membership oracle for C(p), where p = Rs − dG0 . This oracle is needed in Corollary
6, and in our Splitting-o� Theorem 13; note that this implies a membership oracle for C(p−dG)
for any graph G, since we can add G to G0. Given some x : V → Z+, we want to decide
whether x ∈ C(p) or not. This is done as follows. Add a new node s to G0 and an edge with
multiplicity x(v) between s and every v ∈ V . Denote the resulting hypergraph by H. We claim
that x ∈ C(p) if and only if λH(t, T − t) ≥ r(t) holds for every t ∈ T , which can be checked with
maximum �ow computations. We prove this claim. If x /∈ C(p) then x(Z) < Rs(Z)−dG0(Z) for
some Z ⊆ V . By the de�nition of the function R, there exists some t ∈ T so that Z ∩T = {t} or
Z ∩T = T −{t}: for this t we have λH(t, T − t) < r(t). On the other hand, if λH(t, T − t) < r(t)
for some t ∈ T then dH(Z) < r(t) for some set Z ⊆ V + s separating t and T − t. We can
assume that s /∈ Z and then for this set we have x(Z) < p(Z).

3.1 Solution of the minimum cardinality version

Let us introduce r′i = max{ri−di, 0} for every i = 1, 2, . . . , k. Assume without loss of generality
that r′1 ≥ r′2 ≥ · · · ≥ r′k. Note that r′i = max{R(Xi) − dG0(Xi), 0} for every i and r′1 =
max{R(X)− dG0(X) : X ⊆ V } = max{p(X) : X ⊆ V } (by assuming that r′1 > 0).

Theorem 11. The minimum number of edges of a graph G that satis�es the requirements of
Problem GTBP is equal to γ = max{r′1, ⌈

∑
i r

′
i

2 ⌉}.

Proof. It is clear from Lemma 9 that max{r′1, ⌈
∑

i r
′
i

2 ⌉} is a lower bound. On the other hand,
let us �nd an arbitrary loopless graph G on nodeset T such that dG(ti) ≥ r′i for every i and
|E(G)| = γ. Such a graph exists and satis�es our requirements, since λG(ti, T − ti) ≥ r′i for
every i.

Corollary 12. max{⌈12
∑

X∈X p(X)⌉ : X is a subpartition of V } = γ.

Proof. It is clear that ⌈12
∑

X∈X p(X)⌉ is a lower bound of γ. The other direction follows from
Lemma 9 and Theorem 11: if γ = r′1 then take X = {X1, V −X1}, otherwise take X = {Xi :
r′i > 0}.

3.2 The splitting-o� theorem and its consequences

Next we solve the degree-speci�ed version of Problem GTBP. If a speci�ed degree of some vertex
is too large compared to other degrees (i.e., g(v) > g(V − v) for some v ∈ V), then we need to
care about loops. For a node v ∈ V in a graph G = (V,E) let d+G(v) be dG(v) plus 2 times the
number of loops at v, which is a standard de�nition of the degree of v in a graph with loops.
Recall that p : 2V → Z ∪ {−∞} is de�ned by p(X) = Rs(X)− dG0(X) for X ⊆ V .

Theorem 13. Given values g(v) ∈ Z+ for every node v ∈ V , there exists a graph G with
d+G(v) = g(v) at every v ∈ V satisfying the requirements of Problem GTBP if and only if g(V)
is even and g(Z) ≥ p(Z) holds for every Z ⊆ V .

Proof. To prove necessity of the conditions, assume that such a graph G exists. Summing
d+G(v) = g(v) for every v ∈ Z gives that g(Z) ≥ dG(Z), therefore the condition g(Z) ≥ p(Z) is
necessary for any Z. Similarly, summing d+G(v) = g(v) for every v ∈ V gives g(V) = 2|E(G)|,
therefore g(V) has to be even.

To prove su�ciency, let us assume that m : V → Z+ is such that m(v) ≤ g(v) for every
v ∈ V , m(Z) ≥ p(Z) holds for any Z ⊆ V , but we cannot decrease any m(v) without violating
this condition (such an m can be found greedily, starting from m = g). By Corollary 12 and
Corollary 6, we know that m(V) is either 2γ or 2γ−1: in the latter case let us increase m(v) by
one for an arbitrary v with m(v) ≤ g(v)− 1. If we show that there exists a graph G satisfying

6

dG(v) = m(v) for every v, that satis�es the requirements of Problem GTBP, then the theorem
is proved (because we can add more edges, possibly loops, to achieve that d+G(v) = g(v) at every
v ∈ V : note however that we can avoid loops unless g(v) > g(V − v) for some node v ∈ V).
In order to prove this we only need to show that an admissible splitting-o� exists: that
is, we can �nd nodes x, y such that m(x) > 0,m(y) > 0 and any set X containing x, y has
m(X) ≥ p(X) + 2 (and then the proof is ready by induction).

If r′1 = max{p(Z) : Z ⊆ V } > 1 then there exists an admissible splitting-o� by Lemma 8. So
we can assume that r′1 = 1. We can also assume that m(V) ≥ 4, implying r′2 = r′3 = 1, otherwise
there trivially exists an admissible splitting-o�. Choose an arbitrary x ∈ X1 and y ∈ X2 with
m(x) > 0,m(y) > 0 (such nodes exist, since m(Xi) ≥ p(Xi) for i = 1, 2), and assume that
the splitting-o� at x and y is not admissible. This means that there exists a set X containing
x, y with m(X) ≤ p(X) + 1. Since m(X) ≥ 2, this means that p(X) = 1 and m(X) = 2,
implying that X3 −X ̸= ∅. Since the role of t1 and t2 is symmetric here, we can assume that
either X ∩ T = {t1} or T −X = {t1}. In both cases dG0(X) = d1 must hold. In the �rst case
X ∩X2 ̸= ∅, contradicting Lemma 9. In the second case dG0(V −X) = d1 and (V −X)∩X3 ̸= ∅
contradicts Lemma 9.

Using Corollary 6 and our splitting-o� Theorem 13 above we obtain the solution of the
node-weighted version of Problem GTBP.

Theorem 14. Given Problem GTBP and node weights w(v) for every node v ∈ V , we can �nd
a solution G minimizing

∑
v∈V w(v)dG(v) in polynomial time.

Proof. By Corollary 6, we can �nd a vector g : V → Z+ minimizing
∑

v∈V w(v)g(v). If g(V) is
odd then increase g(v) by one for the node v that has smallest weight. The theorem is proved
by our splitting-o� Theorem 13.

4 Solution of the survivable network design problem

In this section we solve minimum cost version of Problem GTBP in the special case when G0 is
the empty graph. Let us formulate this problem separately.

Problem 15. What is the minimum cost of a multigraph G = (V,E) such that λG(t, T−t) ≥ r(t)
for any t ∈ T , given a terminal set T ⊆ V (|T | ≥ 2), a requirement r(t) ∈ Z+ for every t ∈ T ,
and a cost c(uv) ≥ 0 for every pair u, v ∈ V .

We observe that Problem 15 is polynomially solvable if T = V , because now the question
is to �nd a smallest cost graph G = (V,E) so that the degree dG(v) of each node v is at least
r(v). This is a minimum-cost b-edge cover problem [20, Section 21.7] (which is equivalent to the
maximum-weight b-matching problem with a simple reduction).

We also note that the special case r ≡ 1 of Problem 15 is known as the Terminal Backup

Problem, and is shown to be polynomially solvable in [1]. It seems that the methods of [1] also
apply to the case when G0 is not an empty graph (and r(t) = 1 for every t ∈ T), but the details
need to be clari�ed.

The algorithm for the Terminal Backup Problem in [1] is based on a polynomial-time algo-
rithm for the simplex matching problem. In an instance of the simplex matching problem,
we are given a hypergraph H = (V, E) that has hyperedges of sizes 2 and 3 with edge costs
γ(e), and the objective is to �nd a perfect matching of H with minimum total cost. Since this
problem is NP-hard in general, we consider instances with the simplex condition, which states
that for any hyperedge {u1, u2, u3} ∈ E of size 3, {u1, u2}, {u2, u3}, {u3, u1} ∈ E and

γ({u1, u2}) + γ({u2, u3}) + γ({u3, u1}) ≤ 2γ({u1, u2, u3}).

The main theorem in [1] is as follows.

7

Theorem 16 (Anshelevich and Karagiozova [1]). There is a polynomial-time algorithm for the
simplex matching problem with the simplex condition.

4.1 Algorithm

We will give an algorithm for the general case of Problem 15. In order to solve this problem, we
investigate the structure of the optimal solution. For a given instance of Problem 15, de�ne a
family E =

(
T
2

)
∪
(
T
3

)
⊆ 2T , where

(
T
2

)
= {{t1, t2} | t1, t2 ∈ T, t1 ̸= t2}, and

(
T
3

)
= {{t1, t2, t3} |

t1, t2, t3 ∈ T, t1 ̸= t2 ̸= t3 ̸= t1}, and let γ : E → R+ be the cost function such that γ({t1, t2}) is
the minimum cost of a t1-t2 path (with respect to the cost function c) and γ({t1, t2, t3}) is the
minimum cost of a Steiner tree spanning t1, t2 and t3 (with respect to the cost function c).

Consider the following problem.

Problem 17. Suppose E and γ are de�ned as above. Find a minimum cost multihypergraph
H = (T,F) such that F is a multiset of E and dH(t) ≥ r(t) for any t ∈ T .

We can show the following lemma, whose proof is given in Section 4.2.

Lemma 18. The optimal value of Problem 17 is equal to the the optimal value of Problem 15.
Furthermore, the optimal solutions correspond to each other, i.e., an optimal solution of

Problem 15 can be decomposed into paths and Steiner trees with three leafs.

Note that the corresponding result is given in [24] for the special case r ≡ 1. Based on
this lemma showing the correspondence between Problem 15 and Problem 17, we propose the
following algorithm for Problem 15.

Algorithm for Problem 15

Step 1 Construct the family E =
(
T
2

)
∪
(
T
3

)
and compute the cost γ(e) for each e ∈ E de�ned

as above.

Step 2 Let R := maxt∈T {r(t)}. Construct a simplex matching instance consisting of hyper-
graph (T+, E+ ∪ E0) and costs as follows.

Step 2-1. The ground set is T+ = {t(1), t(2), . . . , t(R+2) : t ∈ T}, that is we introduce
R+ 2 copies of each node of T .

Step 2-2 The hyperedges in E+ and their costs are the following. For each {t1, t2} ∈ E ,
add edges {t(i)1 , t

(j)
2 } with cost γ({t1, t2}) for all i, j ∈ {1, 2, . . . , R+2}. Similarly, for

each {t1, t2, t3} ∈ E , add edges {t(i)1 , t
(j)
2 , t

(k)
3 } with cost γ({t1, t2, t3}) for all i, j, k ∈

{1, 2, . . . , R+ 2}.
Step 2-3 The hyperedges in E0 and their costs are the following. For each t ∈ T , add

edges {t(i), t(j)} with cost 0 for r(t)+1 ≤ i < j ≤ R+2, and add edges {t(i), t(j), t(k)}
with cost 0 for r(t) + 1 ≤ i < j < k ≤ R+ 2.

Step 3 Solve the obtained simplex matching instance using Theorem 16. Then, from the opti-
mal solution of the simplex matching problem, we can construct a solution of Problem 17
by ignoring the hyperedges in E0 and contracting t(1), t(2), . . . , t(R+2) to a single vertex for
each t ∈ T .

Step 4 Output a solution G = (V,E) of Problem 15 that consists of paths and Steiner trees
corresponding to the solution of Problem 17 .

Before proving the correctness of this algorithm, we give a small claim on the optimal solu-
tions of Problem 17.

8

Claim 19. Problem 17 always has an optimal solution H = (T,F ′) such that dH(t) ∈ {r(t), r(t)+
1, . . . , R} for any t ∈ T , where R := maxt∈T {r(t)}.

Proof. Assume that H is an optimum solution and dH(t) > R for some t ∈ T . We replace
H with another optimum solution H ′ having dH′(t) < dH(t), and then the proof is ready by
induction.

Assume �rst that a hyperedge {t, t′, t′′} is in F ′: replace it with the edge {t′, t′′} (i.e. decrease
the multiplicity of {t, t′, t′′} and increase that of {t′, t′′} to get H ′). It is easy to see that H ′ is
feasible, and since γ({t, t′, t′′}) ≥ γ({t′, t′′}), H ′ is also optimal.

If there exist 2 edges {t, t′}, {t, t′′} ∈ F ′ for which t′ ̸= t′′ then replace them with {t, t′, t′′} to
get H ′. It is again clear that the new solution is feasible, and γ({t, t′})+γ({t, t′′}) ≥ γ({t, t′, t′′})
shows that it is also optimal.

If none of the above can be applied then t is incident with more then R copies of an edge
{t, t′} for some t′ ∈ T − t. In this case simply delete a copy of this edge: since dH(t′) ≥ R + 1,
the obtained hypergraph H ′ is still feasible, and thus it is also optimal.

Our main result is stated as follows.

Theorem 20. Our algorithm solves Problem 15 in polynomial time in |V | and R = maxt∈T {r(t)}.

Proof. First, an easy but important observation is that a minimum cost Steiner tree spanning
t1, t2 and t3 consists of (at most) three paths each connecting a hub vertex v ∈ V and each ti.
This shows that the simplex condition holds when we apply Theorem 16 in Step 3. Furthermore,
based on this observation, in Step 1, γ({t1, t2, t3}) can be computed in polynomial time by
guessing the hub vertex v and using a shortest path algorithm.

Next, we show the optimality of the output. Without the set of hyperedges E0 added in
Step 2-3 in our algorithm, Step 3 would �nd a minimum cost multihypergraph H = (T,F) such
that F is a multiset of E and dH(t) = R + 2 for any t ∈ T . By using edges in E0, we can cover
k vertices in t(r(t)+1), t(r(t)+2), . . . , t(R+2), where k can be 0, 2, 3, 4, . . . , R + 2 − r(t) (note that
we cannot cover exactly one vertex with a zero cost hyperedge). Therefore, in Step 3 of our
algorithm, we obtain a minimum cost multihypergraph H = (T,F) such that F is a multiset of
E and dH(t) ∈ {r(t), r(t) + 1, . . . , R} for any t ∈ T , which is an optimal solution of Problem 17
by the above argument and Claim 19. Therefore, by Lemma 18, we obtain an optimal solution
of Problem 15 in Step 4.

Finally, we note that since we introduced R + 2 vertices for each vertex u ∈ T in Step 2-1,
the running time of our algorithm is polynomial in |V | and R = maxt∈T {r(t)}.

We remark that using R + 2 copies of each node t ∈ T in Step 2-1 of our algorithm was
only needed because we wanted to use the Simplex Matching Algorithm of Anshelevich and
Karagiozova [1] as a black box. We believe that the Simplex Matching Algorithm of [1] can
be modi�ed to solve directly Problem 17, which would imply an algorithm for our Problem 15
whose running time is not pseudo-polynomial but polynomial.

4.2 Proof of Lemma 18

In this section, we give a proof of Lemma 18. To show this lemma, it su�ces to prove the
following lemma, which can be seen as a variant of Theorem 2.

Lemma 21. Suppose we have a multigraph G = (V,E) with a set of (at least two) terminals
T ⊆ V . Then there is a set F of mutually edge-disjoint trees in G, so that each tree has at most
3 leafs, all these leafs are in T and for each element t ∈ T , λG(t, T − t) trees in F are incident
to t.

9

Proof. De�ne r(t) := λG(t, T − t) for each t ∈ T . We use induction on
∑

t∈T r(t).
We take one terminal t0 ∈ T . By Menger's theorem, we have r(t0) edge-disjoint paths

P1, . . . , Pr(t0) from t0 to T − t0. Let P1 = (v0 = t0, e1, v1, e2, v2, . . . , vl−1, el, vl ∈ T − t0). For
i = 1, 2, . . . , l, we de�ne Gi := G− {e1, . . . ei}. Let i ∈ {1, 2, . . . , l} be the integer satisfying the
following condition:

• λGi−1(t, T − t) = r(t) for each t ∈ T − t0 and

• λGi(t, T − t) = r(t)− 1 for some t ∈ T − t0,

where G0 := G. Since λGl
(vl, T − vl) ≤ r(vl)− 1, such an integer i must exist.

In the graph Gi, for each t ∈ T , let Xt ⊆ V be the minimum vertex set such that t ∈ Xt ⊆
V − (T − t) and dGi(Xt) = λGi(t, T − t). By the minimality of Xt (and standard uncrossing
techniques, see Lemma 9), we can see that Xt's are mutually disjoint. Let X0 := V \

∪
t∈T Xt.

By the choice of i, we may assume that λGi(t
′, T − t′) = r(t′)− 1 for some t′ ∈ T − t0. Since ei

connects Xt′ and V −Xt′ , we consider the following two cases.

Case 1: ei connects Xt′ and Xt0 ∪X0.

By Menger's theorem, in Gi−1, we can take edge-disjoint paths Q1, . . . , Qr(t′) from t′ to T−t′.
Since each path contains exactly one edge connecting Xt′ and V −Xt′ in Gi−1, without loss of
generality, we may assume that Q1 contains ei. By concatenating the subpath of Q1 between t′

and ei and the subpath (v0, e1, v1, e2, . . . , vi−1) of P1, we obtain a path P from t0 and t′, that is,
P := P1[t0, vi−1] + Q1[t

′, vi−1]. (Note that if vi−1 ∈ Xt′ and vi ̸∈ Xt′ , then P does not contain
ei.)

Let E(P) be the set of edges in P , and let G′ be a new graph obtained from G−E(P)−{ei}
by shrinking Xt′ to a single vertex (and the shrunk vertex is regarded as the terminal t′). Then,

• it is clear that λG′(t, T − t) = r(t) for each t ∈ T − t0 − t′,

• λG′(t0, T − t0) = r(t0)− 1 by the existence of P2, . . . , Pr(t0), and

• λG′(t′, T − t′) = r(t′)− 1 by the existence of Q2, . . . , Qr(t′).

Note that Q2, . . . , Qr(t′) do not share an edge with P1[t0, vi−1], since they are paths in Gi−1. By
induction hypothesis, G′ contains a set F ′ of trees of the required form, and F ′ can be extended
in G−E(P) by using subpaths of Q2, . . . , Qr(t′). Therefore, these objects together with P form
a desired set of trees in G.

Case 2: ei connects Xt′ and Xt′′ for some t′′ ∈ T − t0 − t′.
By Menger's theorem, in Gi−1, we can take edge-disjoint paths Q1, . . . , Qr(t′) from t′ to

T − t′. Since each path contains exactly one edge connecting Xt′ and V −Xt′ in Gi−1 without
loss of generality, we may assume that Q1 contains ei. Similarly, we take edge-disjoint paths
R1, . . . , Rr(t′′) from t′′ to T − t′′ in Gi−1 and we may assume that R1 contains ei.

By concatenating the subpath of Q1 between t′ and ei, the subpath of R1 between t′′ and ei,
and the subpath (v0, e1, v1, e2, . . . , vi−1) of P1, we obtain a tree P connecting t0, t

′, and t′′, that
is, P := P1[t0, vi−1] +Q1[t

′, vi−1] + R1[t
′′, vi−1]. (Note that even if vi−1 ∈ Xt′ and vi ̸∈ Xt′ , the

subpath R1[t
′′, vi−1] must contain ei.)

Let E(P) be the set of edges in P , and let G′ be a new graph obtained from G − E(P) by
shrinking Xt′ and Xt′′ to single vertices (and the shrunk vertices are regarded as the terminals
t′ and t′′). Then,

• it is clear that λG′(t, T − t) = r(t) for each t ∈ T − t0 − t′ − t′′,

• λG′(t0, T − t0) = r(t0)− 1 by the existence of P2, . . . , Pr(t0),

• λG′(t′, T − t′) = r(t′)− 1 by the existence of Q2, . . . , Qr(t′), and

10

• λG′(t′′, T − t′′) = r(t′′)− 1 by the existence of R2, . . . , Rr(t′′).

Note that Q2, . . . , Qr(t′), R2, . . . , Rr(t′′) do not share an edge with P1[t0, vi−1], since they are
paths in Gi−1. By induction hypothesis, G′ contains a set F ′ of trees, and F ′ can be extended
in G − E(P) by using subpaths of Q2, . . . , Qr(t′) and R2, . . . , Rr(t′′). Therefore, these objects
together with P form a desired set of trees in G.

5 Concluding remarks

Note that in Problem GTBP we allow an arbitrary number of parallel copies of any edge in G,
therefore our problem is an uncapacitated network design problem. A natural capacitated
extension of our problem would be the following (we only formulate the minimum cost version
here).

Problem 22. In the minimum cost version of Problem 1, �nd a graph G = (V,E) also satisfying
that the number of parallel copies of an edge e ∈ E is at most some capacity cap(e) ∈ Z+, that
is given in advance.

This problem can also be seen as a minimum cost subgraph problem by introducing a
supply graph with edge-multiplicities cap(uv) for every u, v ∈ V . Note that Problem 1 is the
special case of this problem by setting cap(uv) = max{r(t) : t ∈ T} for every pair u, v ∈ V .
We could not extend our results to Problem 22. The problem is open even if G0 is the empty
graph. Note that Jain's framework implies a 2-approximation algorithm for this problem in the
case when the capacities do not exceed some �xed constant (that is not part of the input).

Acknowledgement

The authors thank Gyula Pap for helpful comments.

References

[1] Elliot Anshelevich and Adriana Karagiozova, Terminal backup, 3d matching, and cover-
ing cubic graphs, Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of
Computing, ACM, 2007, pp. 391�400.

[2] Jørgen Bang-Jensen, András Frank, and Bill Jackson, Preserving and increasing local edge-
connectivity in mixed graphs, SIAM J. Discrete Math. 8 (1995), no. 2, 155�178.

[3] Jørgen Bang-Jensen and Bill Jackson, Augmenting hypergraphs by edges of size two, Math.
Program. 84 (1999), no. 3, 467�481.

[4] András A. Benczúr and András Frank, Covering symmetric supermodular functions by
graphs, Math. Program. 84 (1999), no. 3, 483�503.

[5] Attila Bernáth and Tamás Király, A unifying approach to splitting-o�, Combinatorica 32
(2012), 373�401.

[6] Boris V. Cherkassky, A solution of a problem on multicommodity �ows in a network,
Ekonomika i Matematicheskie Metody 13 (1977), no. 1, 143�151.

[7] András Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete
Math. 5 (1992), no. 1, 25�53.

[8] , Connections in combinatorial optimization, Oxford University Press, 2011.

11

[9] András Frank and Tamás Király, A survey on covering supermodular functions, Research
Trends in Combinatorial Optimization (W.J. Cook, L. Lovász, and J. Vygen, eds.), Springer,
2009, pp. 87�126.

[10] Roland Grappe and Zoltán Szigeti, Note: Covering symmetric semi-monotone functions,
Discrete Appl. Math. 156 (2008), no. 1, 138�144.

[11] Toshimasa Ishii and Masayuki Hagiwara, Minimum augmentation of local edge-connectivity
between vertices and vertex subsets in undirected graphs, Discrete Appl. Math. 154 (2006),
no. 16, 2307�2329.

[12] Kamal Jain, A factor 2 approximation algorithm for the generalized steiner network problem,
Combinatorica 21 (2001), no. 1, 39�60.

[13] Tamás Király, Covering symmetric supermodular functions by uniform hypergraphs, J. Com-
bin. Theory Ser. B 91 (2004), no. 2, 185�200.

[14] Zoltán Király, Ben Cosh, and Bill Jackson, Local edge-connectivity augmentation in hyper-
graphs is NP-complete, Discrete Applied Mathematics 158 (2010), no. 6, 723�727.

[15] László Lovász, On some connectivity properties of Eulerian graphs, Acta Mathematica Hun-
garica 28 (1976), no. 1, 129�138.

[16] W. Mader, Über die Maximalzahl kantendisjunkter A-Wege, Arch. Math. 30 (1978), no. 3,
325�336.

[17] Karl Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae 10 (1927), 96�
115.

[18] Hiroyoshi Miwa and Hiro Ito, NA-edge-connectivity augmentation problems by adding edges,
J. Oper. Res. Soc. Japan 47 (2004), no. 4, 224�243.

[19] Zeev Nutov, Approximating connectivity augmentation problems, Proceedings of the Six-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and
Applied Mathematics, 2005, pp. 176�185.

[20] Alexander Schrijver, Combinatorial optimization. Polyhedra and e�ciency., Algorithms and
Combinatorics, vol. 24, Springer-Verlag, Berlin, 2003.

[21] Zoltán Szigeti, Hypergraph connectivity augmentation, Math. Program. 84 (1999), no. 3,
519�527.

[22] , Edge-connectivity augmentations of graphs and hypergraphs, Research Trends in
Combinatorial Optimization (W.J. Cook, L. Lovász, and J. Vygen, eds.), Springer, 2009,
pp. 483�521.

[23] Toshimasa Watanabe and Akira Nakamura, Edge-connectivity augmentation problems, J.
Comput. System Sci. 35 (1987), no. 1, 96�144.

[24] Dahai Xu, Elliot Anshelevich, and Mung Chiang, On survivable access network design:
Complexity and algorithms, Proceedings of the Twenty-seventh Conference on Computer
Communications, IEEE, 2008, pp. 186�190.

12

