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Abstract

We discuss the convergence rate of the QR algorithm with Wilkin-
son’s shift for tridiagonal symmetric eigenvalue problems. It is well
known that the convergence rate is theoretically at least quadratic,
and practically cubic for most matrices. In an effort to separate the
quadratic/cubic cases, a standard classification method based on the
limiting matrices has been established. In this paper, we show by an
example that there still remains a convergence scenario not mentioned
in this classification, and give a new “complete” classification covering
all the possible scenarios.

1 Introduction

The standard method for computing eigenvalues of a symmetric matrix A
has two steps. First, A is transformed to a tridiagonal matrix T by an
appropriate orthogonal transformation. Then some iterative method is ap-
plied to T to compute its eigenvalues. There are several approaches in the
second step. Among them, the historical QR algorithm is still widely used
as a reliable tool, particularly with Wilkinson’s shift for accelerating the
convergence. In this paper we consider the convergence behavior of this
algorithm.

For this algorithm, there is a long history of convergence analysis. Global
convergence was first proved by Wilkinson in 1968 [7], and then another el-
egant proof was given by Hoffmann–Parlett [1]. Regarding the convergence
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rate, Wilkinson [7] theoretically proved that it is at least quadratic, after
which Hoffmann–Parlett [1] showed that in most matrices better cubic con-
vergence is achieved. Today, the convergence scenarios are classified in terms
of the limiting matrices (i.e. the final possible patterns of the matrices in
iteration). This view was first raised by Hoffmann–Parlett [1], and then
followed by other researchers [4, 5, 8]. Although this classification has been
practically successful in itself, by carefully observing the statement we soon
notice an interesting fact that formally it does not mention all the possible
limiting matrix patterns (see Section 3 for the detail). This may be partly
because the unmentioned pattern is relatively exceptional, and most initial
matrices result in either of the mentioned patterns. Mathematically strictly
speaking, however, it is desired to fill this gap and cover all the possible
patterns.

In this paper, we first show by an example that the unmentioned pat-
tern in fact happens. Then we theoretically show that all the examples be-
longing to this new pattern enjoy cubic convergence (thus, in other words,
we extended the class of cubically convergent matrices). This gives a new
“complete” classification, which covers all the possible convergence scenar-
ios. Curiously, it turns out that the new classification is simpler than the
original classification.

This paper is organized as follows. After a brief summary of the shifted
QR algorithm in Section 2, we summarize the standard classification owing
to Hoffmann–Parlett [1] in Section 3. Then in Section 4, we present an
example that achieves the unmentioned convergence pattern. Section 5 is
the main part where the new classification and its theoretical analysis is
given. Section 6 is devoted to the conclusions. For readers’ convenience,
a global convergence proof of the QR algorithm (in the case of symmetric
tridiagonal matrices) is given in Appendix.

2 QR algorithm with Wilkinson’s shift

In this section the QR algorithm with Wilkinson’s shift and its convergence
theorem are summarized.

Let us write a symmetric irreducible tridiagonal matrix as

T =


α1 β1

β1 α2
. . .

. . .
. . . βm−1

βm−1 αm

 . (1)

The eigenvalues of T are all distinct [4], which are denoted as λ1 > · · · > λm

here. The QR algorithm is described as follows.
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Algorithm 1 QR algorithm

Initialization: T (0) := T
1: for n := 0, 1, . . . do
2: Choose shift s(n)

3: T (n) − s(n)I = Q(n)R(n)

4: T (n+1) := R(n)Q(n) + s(n)I

5: end for

Similarly to (1), tridiagonal elements of T (n) are denoted by

T (n) =


α
(n)
1 β

(n)
1

β
(n)
1 α

(n)
2

. . .
. . .

. . . β
(n)
m−1

β
(n)
m−1 α

(n)
m

 . (2)

In line 2 of the above algorithm, one way to determine an efficient shift
s(n) is to consider the lower right 2-by-2 submatrix, and pick its eigenvalue

closer to α
(n)
m . This is the so called Wilkinson shift. In this case the global

convergence is theoretically guaranteed, and the convergence rate is at least
quadratic as the next theorem indicates.

Theorem 1 (Wilkinson [7]). Suppose the QR algorithm with Wilkinson’s
shift is applied to an irreducible tridiagonal matrix T . Then we have

lim
n→∞

α(n)
m = λl, lim

n→∞
|β(n)

m−1| = 0, |β(n+1)
m−1 | = O(|β(n)

m−1|
2), (3)

where λl is one of the eigenvalues of T .

3 Convergence classification by Hoffmann–Parlett [1,
4]

Despite the above theorem, quite often it is observed that Wilkinson’s shift
achieves cubic convergence. This phenomena is mathematically described in

the next theorem, which states that if the second lower right element β
(n)
m−2

converges to 0, then the lower right element β
(n)
m−1 enjoys cubic convergence

1.

Theorem 2 (Hoffmann–Parlett [1, 4]). Suppose the QR algorithm with
Wilkinson’s shift is applied to an irreducible tridiagonal matrix T . If the
lower right 3-by-3 submatrix converges to the limiting matrix

lim
n→∞

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

 =

 ∗ 0 0
0 λk 0
0 0 λl

 , (4)

1Here we exclude the case where Wilkinson’s shift happens to coincide with an eigen-
value of T at some finite step n. In this case, the QR iteration is immediately terminated,
and hence asymptotic convergence analysis is not needed.
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where k ̸= l, then |β(n+1)
m−1 | = O(|β(n)

m−2|2|β
(n)
m−1|3). If the lower right 3-by-3

submatrix converges to the limiting matrix

lim
n→∞

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

 =

 ∗ C 0
C λl 0
0 0 λl

 , (5)

where C ̸= 0, then |β(n+1)
m−1 | = O(|β(n)

m−1|2).

In most cases, the limiting matrix satisfies (4), and thus the actual con-
vergence speed is cubic [1, 4, 5, 8]. The possibility of the loss of cubic con-
vergence, i.e., the occurrence of (5), was discussed in several studies (see, for
example, [1, 4, 5, 8]), but it is still mathematically open whether or not there
in fact exists such a matrix that leads to the case (except the case m = 3,
for which a rigorous analysis is given in [2]; see Remark 2 below). Clarifying
this ambiguity seems considerably difficult, and in the present paper we do
not challenge this, taking the same attitude as the other researchers in the
literature.

Instead, we here focus on an interesting obvious fact that the patterns (4)
and (5) do not cover every possible limiting matrix, at least formally—it
excludes the case where the lower two diagonal elements converge to different

values, and at the same time β
(n)
m−2 does not vanish (i.e. β

(n)
m−2 → C ̸= 0).

What happens in that case? Is it excluded since it never happens?
Below we show an answer to these questions; it turns out that such case

actually happens (we show an example), and there the convergence is cubic.
In other words, there is another class of cubically convergent matrices, which
is not mentioned in the previous classification, and not empty.

4 A numerical experiment

Let us apply the QR algorithm with Wilkinson’s shift to a 101-by-101 matrix

T (0) =


0 100

100
. . .

. . .
. . . 0 100

100 0 1
1 0

 , (6)

whose eigenvalues are 0, ±ck (k = 1, . . . , 50). Also let T
(n)
2 be the lower

right 3-by-3 submatrix of T (n); for n = 0 we see

T
(0)
2 =

 0 100
100 0 1

1 0

 . (7)
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Then we find the following convergence behavior of T
(n)
2 for n = 3, 4, 5:

T
(3)
2 =

 1.80 2.55
2.55 −1.81 2.55× 10−14

2.55× 10−14 −1.21× 10−28

 ,

T
(4)
2 =

 1.80 2.53
2.53 −1.81 −1.96× 10−42

−1.96× 10−42 −7.18× 10−85

 ,

T
(5)
2 =

 1.81 2.53
2.53 −1.81 −8.88× 10−127

−8.88× 10−127 −1.47× 10−253

 .

Thus it tends to

lim
n→∞

α
(n)
m−2 β

(n)
m−2 0

β
(n)
m−2 α

(n)
m−1 β

(n)
m−1

0 β
(n)
m−1 α

(n)
m

 =

λl −D C 0
C λl +D 0
0 0 λl

 , (8)

where λl = 0, C ≈ 2.5, D ≈ −1.8. Obviously this example does not belong

to either of (4) and (5). The observed convergence rate of β
(n)
m−1 is cubic:

|β(n+1)
m−1 |/|β(n)

m−1|3 ≈ 0.11. Despite the long history of the convergence analysis
for Wilkinson’s shift, no similar example has been pointed out in the research
field of numerical linear algebra, as far as the authors know. In this sense,
one of the contribution of this paper is the founding of the matrix (8). In
the next section, we will prove that the matrix in fact theoretically enjoys
cubic convergence, and then propose a new classification reflecting the fact.

5 New classification for convergence rate

In this section we rectify the existing classification so that the case (8) can be
covered. The new classification, which is summarized in the next theorem,
focuses on the lower right 2-by-2 submatrix, instead of 3-by-3 in the previous
classification.

Theorem 3. Suppose the QR algorithm with Wilkinson’s shift is applied
to an irreducible tridiagonal matrix T . If the lower right 2-by-2 submatrix
converges to the limiting matrix

lim
n→∞

(
α
(n)
m−1 β

(n)
m−1

β
(n)
m−1 α

(n)
m

)
=

(
λl +D 0

0 λl

)
, (9)

where D ̸= 0, then |β(n+1)
m−1 | = O(|β(n)

m−2|2|β
(n)
m−1|3). If the lower right 2-by-2

submatrix converges to the limiting matrix

lim
n→∞

(
α
(n)
m−1 β

(n)
m−1

β
(n)
m−1 α

(n)
m

)
=

(
λl 0
0 λl

)
, (10)
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then |β(n+1)
m−1 | = O(|β(n)

m−1|2).

Proof. We here focus on the first claim, since the second one has been es-
sentially already settled in the literature. In order to reveal the convergence
rate, let us estimate the distance between Wilkinson’s shift and an eigen-
value of T (n) closer to the shift. To this end, suppose we apply one step of
the Jacobi method for the lower right 2-by-2 submatrix of T (n). Then we

see the angle θ(n) of Givens rotation to annihilate β
(n)
m−1 satisfies

tan(2θ(n)) =
2β

(n)
m−1

α
(n)
m−1 − α

(n)
m

(11)

from [4, Chapter 9], where θ(n) is chosen in the interval [−π/4, π/4], and

θ(n) = O(β
(n)
m−1) as n → ∞ in view of the limiting matrix (9). It means that

the transformed matrix can be described as

. . .
. . .

. . . ∗ ∗
∗ ∗ ∗ z(n)

∗ ∗ 0

z(n) 0 s(n)

 ,

where
z(n) = β

(n)
m−2 sin(θ

(n)). (12)

Note that s(∞) = λl. Let δ = mini ̸=l |λi − s(∞)|. For any ϵ > 0, we see

|λl − s(n)| ≤ |z(n)|2

δ − ϵ
(13)

for all sufficiently large n from the so-called gap theorem [4, Theorem 11.7.1].
Let λk be the closest eigenvalue to λl. Since the convergence rate of the
subdiagonal element for the QR algorithm is the ratio of the eigenvalues, we
see

|β(n+1)
m−1 | ∼ |λl − s(n)|

|λk − s(n)|
|β(n)

m−1|

as n → ∞. Therefore we obtain

|β(n+1)
m−1 | ≤ |β(n)

m−1||z
(n)|2/|δ − ϵ||δ|

= |β(n)
m−1||β

(n)
m−2 sin(θ

(n))|2/|δ − ϵ||δ|

= |β(n)
m−1|

3|β(n)
m−2|

2/|α(n)
m−1 − α(n)

m |2|δ − ϵ||δ|

as n → ∞, by using (13), (12), (11) in turn.
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As noted above, the previous classification did not explicitly considered
the case (8). In our experience, this case is relatively rare compared to the
previously known cubic case (4), but not extremely rare so that it can be
left outside our consideration (see also Remark 2 below). The above new
classification is “complete” in the sense that it also covers (8). It is also
preferable in that it is quite simple; it suffices to check the lower 2-by-2
matrix. If the two diagonal elements converge to different values, cubic
convergence is achieved. Otherwise the rate is at least quadratic, as already
proved by several authors.

Remark 1. Strictly speaking, in order for such classifications by limiting
matrices to work for every initial matrix, it should be also proved that
the (3-by-3 or 2-by-2) submatrix in question always tends to a constant
matrix (without exhibiting any oscillatory behaviors). Actually this holds
true. This fact might have been noticed by the experts in this research field
because its proof is almost the same as that by [3, 6] for the unshifted QR
algorithm. However, the present authors do not know any reference where
the proof for the shifted algorithm is explicitly stated. For the readers’
convenience, in the present paper a stronger result stating that all of the
tridiagonal elements in fact tend to constants is shown in Appendix.

Remark 2. The above result is closely related to the work by Leitte–
Saldanha–Tomei [2], which considered the case of 3-by-3 matrices, and
proved in the language of dynamical systems theory that there exists a
3-by-3 matrix that converges only quadratically by the QR iteration with
Wilkinson’s shift. More precisely, they considered the matrix

T̃ =

 0 1 0
1 0 0
0 0 0

 , (14)

and regarded the QR iterations with Wilkinson’s shift as maps generating
a discrete dynamical system in the space of symmetric tridiagonal matrices
with the same spectrum as T̃ (see the original paper for the detail). Then
they proved that there exists an open neighborhood of T̃ such that (i) the it-
eration maps a point (matrix) back to the set, (ii) the convergence is strictly
quadratic if it tends to T̃ and cubic otherwise, and (iii) the Hausdorff dimen-
sion of the set of such initial points that leads to the quadratic convergence
is 1.

Although the main topic of [2] is the existence of the quadratic cases, if
we view the result from the opposite direction, it is also claiming that there
are quite many initial matrices close to T̃ resulting in cubic convergence
(recall (iii), which states that the quadratic cases are “very thin” [2]). This

strongly suggests that cubic convergence can be observed even when β
(n)
m−2

does not tend to 0 (since it should stay around 1). In this way, the work [2]
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suggests a similar result as above in the case of 3-by-3 matrices, although
explicit initial matrix examples are not given. By shrinking the size of the
example (6) in the present paper, it is easy to obtain a 3-by-3 example

T (0) =

 0 100
100 0 1

1 0

 , (15)

which actually tends to the form (8) cubically.

6 Conclusions and future works

We pointed out a matrix example enjoying cubic convergence, which was not
covered in the previous standard classification. It tends to the unmentioned
limiting form (8). In order to neatly cover this case, it is more natural to
consider the lower 2-by-2 submatrix rather than 3-by-3. Taking into account
the fact that all the elements always converge (see Remark 1), we see that
the classification by Theorem 3 is “complete” in the sense that it covers all
the possible scenarios, starting from any initial matrix.

It is still open, however, whether or not there actually exists a strictly
quadratic case for 4-by-4 or larger matrices, i.e., if the limiting case (5)
actually occurs. Furthermore, even if it is confirmed, still there remains the

possibility that the estimate |β(n+1)
m−1 | = O(|β(n)

m−1|2) is an overestimate, and
the actual rate is cubic. These issues are left as future works. (Recall that
for 3-by-3 matrices they have been completely settled in [2]; see Remark 2).
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7 Appendix

Here we discuss the global convergence of the QR algorithm; more precisely,
we prove that in the case of symmetric tridiagonal matrices all the tridiag-
onal elements converge for any initial matrix.

Suppose a general shift s(n) satisfying the following conditions:

(i) The shift s(n) converges to a certain eigenvalue s(∞) = λl;

(ii) |s(n) − λl| = o(cn) for a positive constant c < 1.

Note that Wilkinson’s shift satisfies the two conditions: (i) has been proved
by [5]; then the convergence rate by the shifts s(n) → λl is at least quadratic

because |s(n)−λl| ≤ |s(n)−α
(n)
m |+ |α(n)

m −λl| ≤ 2|β(n)
m−1| by the Gershgorin’s

circle theorem and |β(n+1)
m−1 | = O(|β(n)

m−1|2) by Wilkinson’s proof, which im-
plies (ii).

In what follows, we show the global convergence for such general shifts.
The following convergence proof might have been noticed by the experts in
this research field because its proof is almost the same as that by [3, 6] for
the unshifted QR algorithm. However, to the best of the authors’ knowledge,
the proof for the shifted algorithm is not explicitly stated in any reference.
For the readers’ convenience, we prove it as follows.

Similarly to the discussion in [3] and [6, Chapter 8, §28], let Q̃(n), R̃(n)

be

Q̃(n) = Q(0) · · ·Q(n−1),

R̃(n) = R(n−1) · · ·R(0).

Then we see
(T − s(0)I) · · · (T − s(n−1)I) = Q̃(n)R̃(n). (16)
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By the orthogonal matrix Q̃(n), T (n) is described as

T (n) = (Q̃(n))TTQ̃(n). (17)

Let p(l) denote a permutation of the indices l (l = 1, . . . ,m). Then in view
of the condition (i) we can we place the shifted eigenvalues in a descending
order as

|λp(1) − s(∞)| ≥ · · · ≥ |λp(m−1) − s(∞)| > |λp(m) − s(∞)| = 0. (18)

The last inequality follows from (i) (note that now we are assuming that all
the eigenvalues are distinct).

Next, we focus on the eigendecomposition

T = XΛXT, (19)

where X is the orthogonal matrix consisting of the eigenvectors and Λ is the
diagonal matrix with the eigenvalues: diag(λp(1), . . . , λp(m)). Then we see

(T − s(0)I) · · · (T − s(n−1)I) = XΛ(n)XT, (20)

where
Λ(n) = (Λ− s(0)I) · · · (Λ− s(n−1)I). (21)

Here we apply the LU factorization XT = LU (note that XT constructed
by the normalized eigenvectors of an irreducible tridiagonal matrix is always
LU factorizable). It then follows that

(T − s(0)I) · · · (T − s(n−1)I) = XΛ(n)L(Λ(n))−1Λ(n)U. (22)

Combining it with (16) we have

Q̃(n)R̃(n) = XΛ(n)L(Λ(n))−1Λ(n)U. (23)

Let DΛ(n) be a unitary diagonal matrix

diag((λp(1) − s(n))/|λp(1) − s(n)|, . . . , (λp(m) − s(n))/|λp(m) − s(n)|). (24)

It is easy to see that

DΛ(n)Λ(n) = diag(|λp(1) − s(n)|, . . . , |λp(m) − s(n)|). (25)

In the right-hand side of (23), we have

Λ(n)L(Λ(n))−1 = D−1
Λ(n)(DΛ(n)Λ(n)L(DΛ(n)Λ(n))−1)DΛ(n) , (26)

and by applying the QR factorization we see

DΛ(n)Λ(n)L(DΛ(n)Λ(n))−1 = P (n)Γ(n), (27)
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where P (n) is an orthogonal matrix, Γ(n) is an upper triangular matrix whose
diagonal elements are positive. Let DU be a unitary diagonal matrix DU =
diag(u11/|u11|, . . . , umm/|umm|). Then we see

Q̃(n) = XD−1
Λ(n)P

(n)D−1
U (28)

R̃(n) = DUΓ
(n)DΛ(n)Λ(n)U (29)

from (23), (26), and (27). Therefore, we have

T (n) = DU (P
(n))TΛP (n)D−1

U (30)

from (17) and (19).
Since our aim is to prove the convergence of all the elements of T (n), let

us discuss the behavior of the orthogonal matrix P (n) as n → ∞. To this
end, we focus on (27). The lower left elements are

(DΛ(n)Λ(n)L(DΛ(n)Λ(n))−1)ij = lij

n−1∏
l=0

∣∣∣∣∣λp(j) − s(l)

λp(i) − s(l)

∣∣∣∣∣ (i > j) (31)

from (25). Obviously limn→∞(DΛ(n)Λ(n)L(DΛ(n)Λ(n))−1)ij = 0, when |λp(i)−
s(∞)| > |λp(j) − s(∞)|. Otherwise, from (18) and the condition (ii), we have∣∣∣∣∣λp(j) − s(l)

λp(i) − s(l)

∣∣∣∣∣ =
∣∣∣∣∣λp(j) − λp(m) + λp(m) − s(l)

λp(i) − λp(m) + λp(m) − s(l)

∣∣∣∣∣ = 1 + o(cl). (32)

Since a sequence of the size o(cl) with 0 < c < 1 absolutely converges,
(DΛ(n)Λ(n)L(DΛ(n)Λ(n))−1)ij represented by the infinite product (31) is con-
vergent:

lim
n→∞

DΛ(n)Λ(n)L(DΛ(n)Λ(n))−1 = L̃. (33)

The resulting matrix L̃ is not only unit lower triangular, but also block diag-
onal with the block sizes at most 2, because the equality in (18) can appear
only once thanks to the fact that the eigenvalues are all distinct. Hence, the
orthogonal matrix P (n) given by the QR factorization ofDΛ(n)Λ(n)L(DΛ(n)Λ(n))−1

is convergent:
lim
n→∞

P (n) = P̃ , (34)

where P̃ is a block diagonal matrix whose block size is at most 2. It then
follows that

lim
n→∞

T (n) = DU P̃
TΛP̃D−1

U (35)

from (30). Therefore, T (n) converges to a block diagonal matrix whose block
size is at most 2.
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