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Abstract

The Lanczos method is well known to compute the extremal eigenvalues of symmet-
ric matrices. For efficiency and robustness a restart strategy is employed in practice,
but this makes the convergence analysis less straightforward. We prove global conver-
gence of the restarted Lanczos method in exact arithmetic by using certain convergence
properties of the Rayleigh-Ritz procedure due to Crouzeix, Philippe and Sadkane. For
the restarted Lanczos, Sorensen’s previous analysis establishes global convergence to
the largest eigenvalues under the technical assumption that the absolute values of the
off-diagonal elements of the Lanczos tridiagonal matrix are larger than a positive con-
stant throughout the iterations. In this paper, we prove global convergence without any
such assumption. The only assumption is that the initial vector is not orthogonal to
the exact eigenvectors. Our analysis covers a dynamic restarting procedure where the
restarting points are dynamically determined. The convergence theorem is extended to
restarted Lanczos for computing both the largest and smallest eigenvalues. Moreover, we
derive certain global convergence theorems of the block Lanczos method and the Jacobi-
Davidson method: for both algorithms, the Ritz values converge to exact eigenvalues,
although not necessarily to the extremal ones.

1 Introduction

Suppose one wants to compute one or more extremal eigenvalues and their corresponding
eigenvectors of a symmetric matrix A. There exist a number of efficient iterative methods
for the task. Among them, the Lanczos method [17] is a classical and powerful technique [3,
9, 11, 13, 22]. The Lanczos method performs the so-called Rayleigh-Ritz procedure on
a Krylov subspace. In order to reduce the computational and memory costs, a restart
strategy [25, 28, 29] should be employed from the practical point of view. In fact, the
restarted Lanczos method is currently implemented in MATLAB’s built-in function eigs.
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In this paper, we prove global convergence of the restarted Lanczos method. Key tools
for our proof are certain convergence properties of the Rayleigh-Ritz procedure due to
Crouzeix, Philippe and Sadkane [5, §2]. As well as Lanczos, there are a number of effi-
cient algorithms using the Rayleigh-Ritz procedure, including Davidson’s method [5, 8, 18],
the Jacobi-Davidson method [24] proposed by Sleijpen and van der Vorst, and LOBPCG [15]
proposed by Knyazev. The block Lanczos method [6, 7, 10], which is mathematically equiv-
alent to the band Lanczos [23], is also effective for computing multiple eigenvalues. Among
them, we prove certain global convergence properties of the restarted block Lanczos method
and Jacobi-Davidson method.

Existing studies of the global convergence of the restarted Lanczos method can be sum-
marized as follows. In 1951, Karush derived global convergence for the restarted strategy
to compute one largest eigenvalue [14], and Knyazev and Skorokhodov gave its convergence
proof based on certain properties of the steepest descent method [16]. To the best of the
author’s knowledge, the most general result about the global convergence is Sorensen’s the-
orem of the implicitly restarted Lanczos method for computing the largest more than one
eigenvalues [25]. However, in Sorensen’s theorem there is a technical assumption that the
absolute values of the off-diagonal elements of the Lanczos tridiagonal matrix are larger than
a positive constant throughout the iterations.

In this paper, we prove global convergence without any such assumption. The only
assumption is that the initial vector is not orthogonal to the exact eigenvectors. In addition,
the convergence theorem is extended to restarted Lanczos for computing both the largest
and smallest eigenvalues. As for the restarted block Lanczos method [2, 7], some convergence
property of a restarted strategy to compute the largest eigenvalues has been already proven
by Crouzeix, Philippe and Sadkane [5, Corollary 2.2]. More specifically, the Ritz values
converge to exact eigenvalues, although not necessarily to the largest ones. We extend this
result to the restart strategy in [6] for computing both the largest and smallest eigenvalues.

Regarding the Jacobi-Davidson method, the local asymptotic convergence rate has been
well studied [19, 20, 21, 24]. However, despite many efforts over a decade, the theory for global
convergence remains an open problem. On the other hand, in the Davidson method with
suitable starting vectors, the largest Ritz values always converge to eigenvalues, although
not necessarily to the largest ones. This is proven by Crouzeix, Philippe and Sadkane [5].
In [5], they have proven global convergence of the restarted Rayleigh-Ritz procedure under
some general assumptions [5, Theorem 2.1]. As a corollary, they establish the convergence of
the Davidson method. Actually, by carefully reading [5, Theorem 2.1], we can prove a global
convergence property of the Jacobi-Davidson with one restarting vector. This is a proof by
contradiction. In this paper, we slightly modify the convergence theorem [5, Theorem 2.1] in
order to provide a direct convergence proof for multiple restarting vectors. See Section 4 for
the details. Specifically, we prove that the largest Ritz value of the restarted Jacobi-Davidson
converges to an exact eigenvalue, although not necessarily to the largest one.

It is worth noting that, there are a number of improved versions of the Lanczos and
Jacobi-Davidson combined with other effective restarted strategies [1, 3, 4, 26, 27, 28, 29].
However, in this paper, we investigate global convergence properties of the typical and basic
versions. We also note that our results cover a dynamic restarting procedure [5], where the
restarting points are dynamically determined. Moreover, our results can be extended to the
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generalized symmetric eigenvalue problems Ax = λBx, where A is a symmetric matrix and
B is a symmetric positive definite matrix, because the Lanczos and the Jacobi-Davidson for
Ax = λBx with the B-orthogonal basis are mathematically equivalent to those for L−1AL−T

with the standard orthogonal basis, where L is the Cholesky factor of B [3, 22].
This paper is organized as follows. Section 2 is devoted to a description of the Lanczos

method. In Section 3, Sorensen’s convergence analysis for the restarted Lanczos is briefly
summarized. We present certain global convergence properties of the restarted Rayleigh-
Ritz procedure in Section 4. We use them to prove global convergence of the restarted
Lanczos in Section 5. This result includes Sorensen’s convergence theorem. In addition,
global convergence properties of the restarted block Lanczos and Jacobi-Davidson methods
are shown in Section 6 and Section 7, respectively.

Notation and assumptions. Throughout this paper, A is an N × N symmetric matrix
whose eigenvalues are λ1 ≥ · · · ≥ λN with corresponding normalized eigenvectors x1, . . . , xN .
However, multiple eigenvalues need some care. See Reark 1 for details. [x1, . . . , xk] denotes
the matrix whose ith column is xi. I is the identity matrix, and O is the zero matrix. Let
k(= k1 + k2) be the number of desired eigenvalues, where k1 denotes the largest ones and k2
denotes the smallest ones.

2 Lanczos method

This section is devoted to a description of the Lanczos method. The Lanczos method starts
with a properly chosen starting vector v and builds up an orthonormal basis Vm of the Krylov
subspace,

Km(A, v) = span{v,Av,A2v, . . . , Am−1v} = span{Vm}. (1)

Vm is given by the Gram-Schmidt orthogonalization for v,Av,A2v, . . . , Am−1v. The Lanczos
method is summarized as follows.

1. Compute the orthonormal basis {vi}i=1,...,m of Km(A, v). Let Vm = [v1, v2, . . . , vm].

2. Compute Tm = V T
mAVm.

3. Compute the eigenvalues of Tm and select the k desired ones θi, i = 1, 2, . . . , k, where
k ≤ m (for instance the largest ones).

4. Compute the eigenvectors yi, i = 1, . . . , k, of Tm associated with θi, i = 1, . . . , k, and
the corresponding approximate eigenvectors of A, ui = V yi, i = 1, . . . , k.

If the residuals ∥Aui−θiui∥ for i = 1, . . . , k are sufficiently small, approximate eigenpairs
θi and ui for i = 1, . . . , k are obtained. In the Lanczos method, θi, i = 1, 2, . . . , k are referred
to as the Ritz values and the vectors ui, i = 1, . . . , k are the associated Ritz vectors, as the
Lanczos method is the Rayleigh-Ritz procedure on the Krylov subspace [3, 22]. See Section 4
for the Rayleigh-Ritz procedure. Importantly, Tm is a tridiagonal matrix due to a special
feature of the Krylov subspace. The Lanczos method is an effective method but, from the
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practical point of view, the restart strategy is needed in order to reduce the computational
costs [3, 25]. In other words, if the residuals ∥Aui − θiui∥ for i = 1, . . . , k are not sufficiently
small, the Ritz pairs should be computed again by another Krylov subspace that is generated
by some refined starting vector.

There exist a number of restarting strategies. Among them, we focus on the following
restarted Lanczos method for computing the k largest eigenvalues [25]. Let mℓ ≥ k + 1 be
the maximum iteration numbers of the inner loop for ℓ = 0, 1, . . ..

Algorithm 1 The restarted Lanczos method

Initialization pick a unit vector v
(0)
1

1: compute the orthonormal basis V
(0)
m0 = [v

(0)
1 , . . . , v

(0)
m0 ] of Km0(A, v

(0)
1 ) by the Lanczos

process
2: for ℓ := 0, 1, . . . , do

3: compute T
(ℓ)
mℓ = V

(ℓ)
mℓ

T
AV

(ℓ)
mℓ

4: compute eigenvalues of T
(ℓ)
mℓ : θ

(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
k ≥ µ

(ℓ)
1 · · · ≥ µ

(ℓ)
mℓ−k

5: compute the QR decomposition: Q̂(ℓ)R̂(ℓ) = (T
(ℓ)
mℓ − µ

(ℓ)
1 I) · · · (T (ℓ)

mℓ − µ
(ℓ)
mℓ−kI)

6: compute V
(ℓ+1)
k = [v

(ℓ)
1 , . . . , v

(ℓ)
mℓ ]Q̂

(ℓ)
k , where Q̂

(ℓ)
k denotes the matrix of the first k

columns of Q̂(ℓ) (Then V
(ℓ+1)
k = [u

(ℓ)
1 , . . . , u

(ℓ)
k ]Q(ℓ), where u

(ℓ)
1 , . . . , u

(ℓ)
k are the Ritz

vectors corresponding to θ
(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
k and Q(ℓ) is some orthogonal matrix)

7: compute v
(ℓ+1)
k+1 , . . . , v

(ℓ+1)
mℓ+1 by the Lanczos process to obtain a new orthonormal basis

V
(ℓ+1)
mℓ+1 = [v

(ℓ+1)
1 , . . . , v

(ℓ+1)
mℓ+1 ]

8: end for

Remark 1. Multiple eigenvalues need some care: the Lanczos method is unable to compute
the multiplicity correctly [3]. Hence, let λ1 > · · · > λn denote all the distinct eigenvalues of
A ∈ RN×N in this section. Let xi (i = 1, . . . , n) denote normalized vectors in the eigenspaces
corresponding λi for i = 1, . . . , n. Also in Sections 3 and 5, we use the same notation.

It is empirically known that

T
(ℓ)
k ≈ diag(λ1, . . . , λk), (2)

V
(ℓ)
k ≈ Xk = [x1, . . . , xk] (3)

for sufficiently large ℓ. Therefore, the k largest eigenvalues λ1, . . . , λk and the corresponding
eigenvectors x1, . . . , xk are obtained by Algorithm 1.

Algorithm 1 is mathematically equivalent to Sorensen’s implicitly restarted Lanczos
method [25] with the so-called exact shifts. Furthermore, it is also mathematically equiv-
alent to the thick restarted Lanczos method [28] that is a more recently proposed efficient
algorithm. The aim of this paper is a theoretical convergence analysis, and hence we discuss
the convergence behavior of Algorithm 1 in the following sections.
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3 Convergence analysis of the restarted Lanczos method by
Sorensen

In this section, we summarize the convergence analysis of the restarted Lanczos method by
Sorensen [25]. Firstly, the following simple property can be stated.

Lemma 1 ([25]). Suppose ml is a fixed m for all ℓ. Then, each {θ(ℓ)i : ℓ = 1, 2, . . .} is an
increasing convergent sequence for each i = 1, 2, . . . , k.

Lemma 1 is easily extended to the restarted Rayleigh-Ritz procedure. See Lemma 2 in
Section 4 for its proof. Based on Lemma 1, Sorensen proved the next theorem that states
global convergence under a certain assumption.

Theorem 1 ([25]). Let ml be a fixed m for all ℓ. Suppose that the initial starting vector

v
(0)
1 satisfies xTj v

(0)
1 ̸= 0 for j = 1, 2, . . . , k, where xj is the eigenvector of A corresponding

to the eigenvalue λj with the eigenvalues of A listed in descending order. Let β
(ℓ)
i be the ith

subdiagonal element of T
(ℓ)
k and assume that ∃ϵ > 0 s.t. |β(ℓ)

i | > ϵ for all i, ℓ. Then the

sequences θ
(ℓ)
j → θj = λj as ℓ → ∞.

The assumption that subdiagonal elements of T
(ℓ)
k are not smaller than ϵ is not restrictive

from the practical point of view because the so-called deflation is applied when a subdiagonal
element becomes smaller than machine epsilon ϵ in practice.

However, as mentioned before, the more specific convergence properties (2) and (3) are
empirically known. The aim of this paper is to prove the convergence properties (2) and (3)

without the assumptions on the subdiagonal elements of T
(ℓ)
k . Indeed, β

(ℓ)
i → 0.

4 Convergence property of the restarted Rayleigh-Ritz pro-
cedure

In this section we investigate the convergence behavior of the restarted Rayleigh-Ritz pro-
cedure. The Rayleigh-Ritz procedure is described as follows.

1. Compute an orthonormal basis {vi}i=1,...,m. Let V = [v1, v2, . . . , vm].

2. Compute B = V TAV .

3. Compute the eigenvalues of B and select the k desired ones θi, i = 1, 2, . . . , k, where
k ≤ m (for instance the largest ones).

4. Compute the eigenvectors yi, i = 1, . . . , k, of B associated with θi, i = 1, . . . , k, and the
corresponding approximate eigenvectors of A, ui = V yi, i = 1, . . . , k.

It is easily seen that the Lanczos method is the Rayleigh-Ritz procedure on the Krylov
subspace. As in the Lanczos method, the restart strategy is incorporated into the Rayleigh-
Ritz procedure. Although Algorithm 1 computes the k largest eigenvalues, the aim of this
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paper is not only to prove the convergence of Algorithm 1 but also to discuss the convergence
behavior of the other algorithms for computing other eigenvalues. Hence, we focus on the
following restart strategy to compute both the k1 largest eigenvalues and the k2 smallest
eigenvalues.

[The restarted Rayleigh-Ritz procedure]

1: compute an orthonormal basis V
(0)
m0 = [v

(0)
1 , . . . , v

(0)
m0 ]

2: for ℓ := 0, 1, . . . , do

3: compute B(ℓ) = V
(ℓ)
mℓ

T
AV

(ℓ)
mℓ

4: compute eigenvalues of B(ℓ): θ
(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
k1

≥ µ
(ℓ)
1 · · · ≥ µ

(ℓ)
mℓ−k ≥ ϑ

(ℓ)
1 ≥ · · · ≥

ϑ
(ℓ)
k2

(k = k1 + k2)

5: compute the Ritz vectors u
(ℓ)
1 , . . . , u

(ℓ)
k associated with θ

(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
k ≥ ϑ

(ℓ)
1 ≥ · · · ≥

ϑ
(ℓ)
k2

6: compute [v
(ℓ+1)
1 , . . . , v

(ℓ+1)
k ] = [u

(ℓ)
1 , . . . , u

(ℓ)
k ]Q(ℓ), where Q(ℓ) is some orthogonal matrix

7: compute v
(ℓ+1)
k+1 , . . . , v

(ℓ+1)
mℓ+1 to obtain a new orthonormal basis V

(ℓ+1)
mℓ+1 = [v

(ℓ+1)
1 , . . . , v

(ℓ+1)
mℓ+1 ]

8: end for

For the convergence analysis, write the matrix B(ℓ) as

B(ℓ) =

(
B

(ℓ)
11 B

(ℓ)
12

B
(ℓ)
12

T
B

(ℓ)
22

)
,

where B
(ℓ)
11 is k×k, B

(ℓ)
12 is k× (mℓ−k), and B

(ℓ)
22 is (mℓ−k)× (mℓ−k). Note that Lemma 1

is easily extended to the Rayleigh-Ritz procedure as follows.

Lemma 2. In the restarted Rayleigh-Ritz procedure, θ
(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
k1

≥ ϑ
(ℓ)
1 ≥ · · · ≥ ϑ

(ℓ)
k2

are the eigenvalues of B
(ℓ+1)
11 . Each {θ(ℓ)i : ℓ = 1, 2, . . .} is a nondecreasing convergent

sequence for each i = 1, 2, . . . , k1, and each {ϑ(ℓ)
i : ℓ = 1, 2, . . .} is a nonincreasing convergent

sequence for each i = 1, 2, . . . , k2. In other words, θ
(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
k1

≥ ϑ
(ℓ)
1 ≥ · · · ≥ ϑ

(ℓ)
k2

are

corresponding to the eigenvalues of B
(ℓ)
11 as ℓ → ∞.

Proof. From line 6 of the restarted Rayleigh-Ritz procedure, it is easy to see that the eigen-

values of B
(ℓ+1)
11 = V

(ℓ+1)
k

T
AV

(ℓ+1)
k are θ

(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
k ≥ ϑ

(ℓ)
1 ≥ · · · ≥ ϑ

(ℓ)
k2
. Noting the

well-known Courant-Fischer theorem [22] that characterizes the eigenvalues of a symmetric

matrix, we see that the eigenvalues of B(ℓ+1) satisfy θ
(ℓ+1)
i ≥ θ

(ℓ)
i for i = 1, 2, . . . , k1 and

ϑ
(ℓ+1)
i ≤ ϑ

(ℓ)
i for i = 1, 2, . . . , k2. Since the Ritz values are confined to an interval, namely,

[λn, λ1], {θ(ℓ)i : ℓ = 1, 2, . . .} is a nondecreasing convergent sequence and {ϑ(ℓ)
i : ℓ = 1, 2, . . .}

is a nonincreasing convergent sequence.

Another crucial convergence property is limℓ→∞B
(ℓ)
12 = O as the next lemma.
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Lemma 3. In the restarted Rayleigh-Ritz procedure, write B(ℓ) as

B(ℓ) =

(
B

(ℓ)
11 B

(ℓ)
12

B
(ℓ)
12

T
B

(ℓ)
22

)
,

where B
(ℓ)
11 is a k × k symmetric matrix, B

(ℓ)
12 is a k × (mℓ − k) matrix, and B

(ℓ)
22 is an

(mℓ − k)× (mℓ − k) symmetric matrix. Then

lim
ℓ→∞

B
(ℓ)
12 = O

holds.

Proof. Let B̂
(ℓ)
11 denote the leading principal (k + 1)× (k + 1) submatrix of B(ℓ) and µ̂

(n)
1 ≥

· · · ≥ µ̂
(n)
k+1 denote the eigenvalues of B̂

(ℓ)
11 . As the proof of Lemma 2, the well-known Courant-

Fischer theorem [22] ensures that

θ
(ℓ−1)
i ≤ µ̂

(ℓ)
i ≤ θ

(ℓ)
i (i = 1, . . . , k1) (4)

ϑ
(ℓ−1)
i ≥ µ̂

(ℓ)
k1+1+i ≥ θ

(ℓ)
i (i = 1, . . . , k2), (5)

where θ
(ℓ−1)
1 ≥ · · · ≥ θ

(ℓ−1)
k1

≥ ϑ
(ℓ−1)
1 ≥ · · · ≥ ϑ

(ℓ−1)
k2

are the eigenvalues of B
(ℓ)
11 . Here we

define c(ℓ) as the first column of B
(ℓ)
12 and d(ℓ) as the upper left element of B

(ℓ)
22 . In other

words, B̂
(ℓ)
11 is divided into

B̂
(ℓ)
11 =

 B
(ℓ)
11 c(ℓ)

c(ℓ)
T

d(ℓ)

 .

Firstly, we prove limℓ→∞ ∥c(ℓ)∥ = 0 as follows. The square of the Frobenius norm of B̂
(ℓ)
11 is

k+1∑
i=1

µ̂
(ℓ)
i

2 =

k1∑
i=1

θ
(ℓ−1)
i

2
+

k2∑
i=1

ϑ
(ℓ−1)
i

2
+ d(ℓ)

2
+ 2∥c(ℓ)∥2.

It then follows that

2∥c(ℓ)∥2 =

k1∑
i=1

(µ̂
(ℓ)
i − θ

(ℓ−1)
i )(µ̂

(ℓ)
i + θ

(ℓ−1)
i )

+

k2∑
i=1

(µ̂
(ℓ)
k1+1+i − ϑ

(ℓ−1)
i )(µ̂

(ℓ)
i + ϑ

(ℓ−1)
i )

+(µ̂
(ℓ)
k1+1 − d(ℓ))(µ̂

(ℓ)
k1+1 + d(ℓ)). (6)

Noting that the trace of B̂
(ℓ)
11 is

k1∑
i=1

µ̂
(ℓ)
i + µ̂

(ℓ)
k1+1 +

k+1∑
i=k1+2

µ̂
(ℓ)
i =

k1∑
i=1

θ
(ℓ−1)
i +

k2∑
i=1

ϑ
(ℓ−1)
i + d(ℓ),
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we see

µ̂
(ℓ)
k1+1 − d(ℓ) = −

k1∑
i=1

(µ̂
(ℓ)
i − θ

(ℓ−1)
i )−

k2∑
i=1

(µ̂
(ℓ)
k1+1+i − ϑ

(ℓ−1)
i )

in the right-hand side of (6). Hence, we have

2∥c(ℓ)∥2 =

k1∑
i=1

(µ̂
(ℓ)
i − θ

(ℓ−1)
i )(µ̂

(ℓ)
i + θ

(ℓ−1)
i − µ̂

(ℓ)
k1+1 − d(ℓ))

+

k2∑
i=1

(µ̂
(ℓ)
k1+1+i − ϑ

(ℓ−1)
i )(µ̂

(ℓ)
k1+1+i + ϑ

(ℓ−1)
i − µ̂

(ℓ)
k1+1 − d(ℓ))

≤ 4||A∥(
k1∑
i=1

|µ̂(ℓ)
i − θ

(ℓ−1)
i |+

k2∑
i=1

|µ̂(ℓ)
k1+1+i − ϑ

(ℓ−1)
i |),

≤ 4||A∥(
k1∑
i=1

|θ(ℓ)i − θ
(ℓ−1)
i |+

k2∑
i=1

|ϑ(ℓ)
i − ϑ

(ℓ−1)
i |),

where the first inequality is due to |vTAv| ≤ ∥A∥ for any unit vector v, the second inequality
is due to (4) and (5). Therefore, by Lemma 2, we obtain limℓ→∞ ∥c(ℓ)∥ = 0, where c(ℓ) is the

first column of B
(ℓ)
12 . By permuting the column of B

(ℓ)
12 , we can see limℓ→∞B

(ℓ)
12 = O.

Finally, we review a closely related convergence analysis by Crouzeix, Philippe and Sad-
kane [5]. In fact, for the restart strategy for computing the k largest eigenvalues, namely
k = k1, we can see Lemmas 2 and 3 by [5, §2]. In this section, we have proven Lemmas 2
and 3 for the general k1, k2 along with [5, §2]. In addition, we should note [5, Theorem
2.1], which shows that under some assumptions the k largest Ritz values always converge to
eigenvalues of A as follows.

Theorem 2 ([5]). In the restarted Rayleigh-Ritz procedure for the k largest eigenvalues, each

{θ(ℓ)i : ℓ = 1, 2, . . .} is a nondecreasing convergent sequence for each i = 1, 2, . . . , k. Moreover,

let a set of matrices {C(ℓ)
i,j } satisfy the following assumption: there exist K1, K2 > 0 such that

K1∥v∥ ≤ vTC
(ℓ)
i,j v ≤ K2∥v∥ for any vector v ∈ span{V (ℓ)

jk }⊥, where V
(ℓ)
jk = [v

(ℓ)
1 , v

(ℓ)
2 , . . . , v

(ℓ)
jk ]

with j ≥ 1. Suppose that the vector (I−V
(ℓ)
jk V

(ℓ)
jk

T
)C

(ℓ)
i,j (A−θ̂

(ℓ)
i,j I)û

(ℓ)
i,j belongs to span{V (ℓ)

(j+1)k},

where θ̂
(ℓ)
1,j ≥ · · · ≥ θ̂

(ℓ)
k,j are the k largest Ritz values of V

(ℓ)
jk

T
AV

(ℓ)
jk , and û

(ℓ)
1,j , . . . , û

(ℓ)
k,j are the

corresponding Ritz vectors. Then, as ℓ → ∞, θ̂
(ℓ)
i,j (i = 1, . . . , k) converge to eigenvalues of

A and û
(ℓ)
i,j (i = 1, . . . , k) converge to the corresponding eigenvectors.

It is easy to see that the block Lanczos method with k starting vectors v
(0)
1 , . . . , v

(0)
k

corresponds to the situation where C
(ℓ)
i,j is the identity matrix, and hence the k largest Ritz

values converge to some eigenvalues of A [5, Corollary 2.2]. In contrast, we would like to
prove that the Ritz values converge to the k largest eigenvalues for the restarted Lanczos

method with one starting vector v
(0)
1 in the next section. This proof is not readily accessible

8



from Theorem 2. Moreover, in order to extend the proof to the restart strategy to compute
both the largest and smallest eigenvalues, we use Lemmas 2 and 3 in the following sections.

Regarding the Jacobi-Davidson method with one restarting vector v
(ℓ)
1 (ℓ = 0, 1, . . .),

the situation corresponds to C
(ℓ)
i,j = (A − θ̂

(ℓ)
i,j I)

−2, i = 1 (see Section 7, [12, §2] and [24]).
Therefore, we can prove a global convergence property based on Theorem 2. This is a proof

by contradiction. Noting that the Ritz value θ
(ℓ)
1,j is convergent, we assume θ

(∞)
1,j is not an

eigenvalue of A. Let dmax be max1≤i≤N |θ(∞)
1,j − λi| and dmin be min1≤i≤N |θ(∞)

1,j − λi|. Then
we have dmax

−2 ≤ vT(A− θ̂
(∞)
1,j I)−2v ≤ dmin

−2 for any unit vector v. In other words, for all

sufficiently large ℓ, C
(ℓ)
1,j = (A− θ̂

(ℓ)
1,jI)

−2 satisfy the conditions in Theorem 2. Hence, the Ritz

value θ
(ℓ)
1,j should converge to an exact eigenvalue of A. Thus Theorem 2 ensures this global

convergence property of the restarted Jacobi-Davidson. In contrast, we provide a direct

convergence proof for multiple restarting vectors v
(ℓ)
1 , . . . , v

(ℓ)
m̂ (ℓ = 0, 1, . . .) in Section 7. To

this end, we use Lemmas 2 and 3 in the following sections.

5 Global convergence of the restarted Lanczos method

In this section, we prove global convergence of the restarted Lanczos method. More specifi-
cally, (2), (3) are guaranteed for all sufficiently large ℓ in the following theorem.

Theorem 3. In Algorithm 1, suppose the initial starting vector satisfies xTj v
(0)
1 ̸= 0 (j =

1, . . . , k). Then we have

lim
ℓ→∞

T
(ℓ)
k = diag(λ1, . . . , λk), (7)

lim
ℓ→∞

V
(ℓ)
k = Xk. (8)

Proof. In view of Lemma 3, the (k+1, k) element of T
(ℓ)
mℓ converges to 0. Therefore, ∥Au

(ℓ)
j −

θ
(ℓ)
j u

(ℓ)
j ∥ → 0 (j = 1, . . . , k) as ℓ → ∞ [9, Theorem 7.2], where θ

(ℓ)
j (j = 1, . . . , k) are the

Ritz values and u
(ℓ)
j (j = 1, . . . , k) are the corresponding Ritz vectors. From Lemma 2,

the Ritz values θ
(ℓ)
j (j = 1, . . . , k) converge to some eigenvalues, and hence the Ritz vectors

u
(ℓ)
j (j = 1, . . . , k) also converge to the corresponding eigenvectors.

Next, we prove θ
(∞)
j = λj , u

(∞)
j = xj (j = 1, . . . , k). Importantly, the starting vector

v
(ℓ)
1 for all ℓ = 0, 1, . . . satisfy

w
(ℓ+1)
1 = (A− µ

(ℓ)
1 I) · · · (A− µ

(ℓ)
mℓ−kI)v

(ℓ)
1 , (9)

v
(ℓ+1)
1 = w

(ℓ+1)
1 /∥w(ℓ+1)

1 ∥, (10)

where µ
(ℓ)
1 , . . . , µ

(ℓ)
mℓ−k are unwanted eigenvalues of T

(ℓ)
mℓ in line 4 of Algorithm 1. In other

words, the starting vector v
(ℓ+1)
1 is given by multiplying a filter polynomial to v

(ℓ)
1 . See [25]

9



for details. The starting vector v
(0)
1 is expressed by the eigenvectors as

v
(0)
1 = c1x1 + c2x2 + · · ·+ cnxn, (11)

and hence

ŵ
(ℓ)
1 =

n∑
j=1

cj

ℓ−1∏
ℓ̂=0

mℓ−k∏
i=1

(λj − µ
(ℓ̂)
i )xj (12)

v
(ℓ)
1 = ŵ

(ℓ)
1 /∥ŵ(ℓ)

1 ∥ (13)

by the equations (9), (10). Here we define

c
(ℓ)
j = cj

ℓ−1∏
ℓ̂=0

mℓ−k∏
i=1

(λj − µ
(ℓ̂)
i ) (j = 1, . . . , n). (14)

We have already proven that θ
(∞)
j (j = 1, . . . , k) are eigenvalues of A and u

(∞)
j (j = 1, . . . , k)

are the corresponding eigenvectors. Suppose that θ
(∞)
k = λ

k̂
, u

(∞)
k = x

k̂
(k̂ ≥ k). We show

k̂ = k as follows. Since v
(∞)
1 ∈ span{u(∞)

1 , . . . , u
(∞)
k } and u

(∞)
i ̸= xj (i = 1, . . . , k, j =

k̂ + 1, . . . , n), we see

lim
ℓ→∞

c
(ℓ)
j /c

(ℓ)

k̂
= 0 (j = k̂ + 1, . . . , n). (15)

Furthermore, with the aid of line 4 of Algorithm 1,

λ
k̂
> θ

(ℓ)
k > µ

(ℓ)
j (j = 1, . . . ,mℓ − k) (16)

for all ℓ. Therefore, the expansion coefficients c
(ℓ)
1 , . . . , c

(ℓ)

k̂
satisfy

lim
ℓ→∞

c
(ℓ)
j+1/c

(ℓ)
j = 0 (j = 1, . . . , k̂ − 1) (17)

from (14), (16). Thus we see

lim
ℓ→∞

c
(ℓ)
i /c

(ℓ)
j = 0 (i = k + 1, . . . , n, j = 1, . . . , k). (18)

It then follows that the Ritz vectors u
(ℓ)
j (j = 1, . . . , k) converge to the eigenvectors xj (j =

1, . . . , k) corresponding to c
(ℓ)
j (j = 1, . . . , k), namely k̂ = k. Therefore, we obtain

lim
ℓ→∞

θ
(ℓ)
j = λj , lim

ℓ→∞
u
(ℓ)
j = xj (j = 1, . . . , k). (19)

The final task is to show (7) and (8). From (17) with k̂ = k, we have

lim
ℓ→∞

c
(ℓ)
j+1/c

(ℓ)
j = 0 (j = 1, . . . , k − 1). (20)

This implies v
(∞)
j = xj (j = 1, . . . , k). Therefore, we obtain (7), (8).

10



Note that the proof above is similar to Sorensen’s proof of Theorem 1. See [25] for

details. However, in Theorem 3, the assumption about the off-diagonal elements of T
(ℓ)
k is

not needed. In other words, Theorem 3 is regarded as an extension of Theorem 1.
Recall Section 4, which is devoted to showing the convergence properties of the Rayleigh-

Ritz procedure. Lemmas 2 and 3 are applied to the shift strategy to compute both the k1
largest eigenvalues and the k2 smallest eigenvalues. Hence, let us consider the convergence
behavior of the following restarted Lanczos method.

Algorithm 2 The restarted Lanczos method for the k1 largest eigenvalues and the k2 small-
est eigenvalues

Initialization pick a unit vector v
(0)
1

1: compute the orthonormal basis V
(0)
m0 = [v

(0)
1 , . . . , v

(0)
m0 ] of Km0(A, v

(0)
1 ) by the Lanczos

process
2: for ℓ := 0, 1, . . . , do

3: compute T
(ℓ)
mℓ = V

(ℓ)
mℓ

T
AV

(ℓ)
mℓ

4: compute eigenvalues of T
(ℓ)
mℓ : θ

(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
k1

≥ µ
(ℓ)
1 · · · ≥ µ

(ℓ)
mℓ−k ≥ ϑ

(ℓ)
1 ≥ · · · ≥

ϑ
(ℓ)
k2

(k = k1 + k2)

5: compute the QR decomposition: Q̂(ℓ)R̂(ℓ) = (T
(ℓ)
mℓ − µ

(ℓ)
1 I) · · · (T (ℓ)

mℓ − µ
(ℓ)
mℓ−kI)

6: compute V
(ℓ+1)
k = [v

(ℓ)
1 , . . . , v

(ℓ)
mℓ ]Q̂

(ℓ)
k , where Q̂

(ℓ)
k denotes the matrix of the first k

columns of Q̂(ℓ) (Then V
(ℓ+1)
k = [u

(ℓ)
1 , . . . , u

(ℓ)
k ]Q(ℓ), where u

(ℓ)
1 , . . . , u

(ℓ)
k are the Ritz

vectors corresponding to θ
(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
k1

≥ ϑ
(ℓ)
1 ≥ · · · ≥ ϑ

(ℓ)
k2

and Q(ℓ) is some
orthogonal matrix)

7: compute v
(ℓ+1)
k+1 , . . . , v

(ℓ+1)
mℓ+1 by the Lanczos process to obtain a new orthonormal basis

V
(ℓ+1)
mℓ+1 = [v

(ℓ+1)
1 , . . . , v

(ℓ+1)
mℓ+1 ]

8: end for

Similarly to Theorem 3, we prove global convergence of Algorithm 2, which states the
convergence of the Ritz values and the corresponding Ritz vectors. The next theorem is
regarded as another extension of Theorem 1.

Theorem 4. In Algorithm 2, suppose the initial starting vector satisfies xTj v
(0)
1 ̸= 0 (j =

1, . . . , k1) and xTn−j+1v
(0)
1 ̸= 0 (j = 1, . . . , k2). Then we have limℓ→∞ θ

(ℓ)
j = λj, limℓ→∞ ϑ

(ℓ)
j =

λn−j+1, the Ritz vectors u
(ℓ)
1 , . . . , u

(ℓ)
k converge to the corresponding eigenvectors.

Proof. Similarly to the proof of Theorem 3, it is easy to see that the Ritz values θ
(ℓ)
j (j =

1, . . . , k1) and ϑ
(ℓ)
j (j = 1, . . . , k2) converge to eigenvalues of A from Lemmas 2 and 3. We

prove θ
(∞)
j = λj (j = 1, . . . , k1) and ϑ

(∞)
j = λn−j+1 (j = 1, . . . , k2) as follows.

The following discussion is almost the same as the proof of Theorem 3. Firstly, we have

w
(ℓ+1)
1 = (A− µ

(ℓ)
1 I) · · · (A− µ

(ℓ)
mℓ−kI)v

(ℓ)
1 , (21)

v
(ℓ+1)
1 = w

(ℓ+1)
1 /∥w(ℓ+1)

1 ∥, (22)
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from [25]. The initial starting vector v
(0)
1 is expressed by the eigenvectors as

v
(0)
1 = c1x1 + c2x2 + · · ·+ cnxn, (23)

and hence

ŵ
(ℓ)
1 =

n∑
j=1

cj

ℓ−1∏
ℓ̂=0

mℓ−k∏
i=1

(λj − µ
(ℓ̂)
i )xj (24)

v
(ℓ)
1 = ŵ

(ℓ)
1 /∥ŵ(ℓ)

1 ∥ (25)

by the equations (21), (22). Here we define

c
(ℓ)
j = cj

ℓ−1∏
ℓ̂=0

mℓ−k∏
i=1

(λj − µ
(ℓ̂)
i ) (j = 1, . . . , n). (26)

Suppose that θ
(∞)
k1

= λ
k̂1
, u

(∞)
k1

= x
k̂1

(k̂1 ≥ k1) and ϑ
(∞)
1 = λ

n−k̂2+1
, u

(∞)

k̂1+1
=

x
n−k̂2+1

(k̂2 ≥ k2). Since v
(∞)
1 ∈ span{u(∞)

1 , . . . , u
(∞)
k } and u

(∞)
i ̸= xj (i = 1, . . . , k, j =

k̂1 + 1, . . . , n− k̂2), we see

lim
ℓ→∞

c
(ℓ)
j /c

(ℓ)

k̂1
= 0, lim

ℓ→∞
c
(ℓ)
j /c

(ℓ)

n−k̂2+1
= 0 (j = k̂1 + 1, . . . , n− k̂2). (27)

Furthermore, with the aid of line 4 of Algorithm 2,

λ
k̂1

> θ
(ℓ)
k1

> µ
(ℓ)
j > ϑ

(ℓ)
1 > λ

n−k̂2+1
(j = 1, . . . ,mℓ − k) (28)

for all ℓ. Therefore, the expansion coefficients satisfy

lim
ℓ→∞

c
(ℓ)
j+1/c

(ℓ)
j = 0 (j = 1, . . . , k̂1 − 1) (29)

lim
ℓ→∞

c
(ℓ)
j /c

(ℓ)
j+1 = 0 (j = n− k̂2 + 1, . . . , n) (30)

from (26), (28). Thus we see

lim
ℓ→∞

c
(ℓ)
i /c

(ℓ)
j = 0 (i = k1 + 1, . . . , n− k2, j = 1, . . . , k1, n− k2 + 1, . . . , n).

It then follows that the Ritz vectors u
(ℓ)
j (j = 1, . . . , k) converge to the eigenvectors xj (j =

1, . . . , k1, n − k2 + 1, . . . , n) corresponding to c
(ℓ)
j (j = 1, . . . , k1, n − k2 + 1, . . . , n), namely

k̂1 = k1, k̂2 = k2. Therefore, the theorem is established.
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6 Global convergence of the restarted block Lanczos method

From the practical point of view, there are situations where the use of a block of k starting
vectors, instead of a single starting vector, is preferable. One such case is that of matrices
with multiple or closely clustered eigenvalues. To obtain basis vectors for the eigenspace
corresponding to such a cluster of k eigenvalues, block Krylov subspaces induced by A and
a block of k starting vectors need to be used.

For an N × k matrix V = [v1, . . . , vk] with orthonormal columns, the block Krylov
subspace is defined as

Km(A, V ) = span{v1, . . . , vk, Av1, . . . , Avk, . . . , A
m−1v1, . . . , A

m−1vk}. (31)

The block Lanczos method is the Rayleigh-Ritz procedure based on the block Krylov sub-
space, which is mathematically equivalent to the band Lanczos method. Similarly to the
Krylov subspace, the orthonormal basis {vi}i=1,...,km of Km(A, V ) is computed. Let Vkm =
[v1, . . . , vkm]. Then Tkm = Vkm

TAVkm is a km× km symmetric block tridiagonal matrix of
the form

Tkm =


T1,1 T1,2

T1,2
T T2,2

. . .
. . .

. . . Tm−1,m

Tm−1,m
T Tm,m

 , (32)

with k × k symmetric diagonal blocks T1,1, . . . , Tm,m.
There exist a number of the restart strategy depending on the desired eigenvalues. The

most typical restart block Lanczos method for the k1 largest eigenvalues and the k2 smallest
eigenvalues is described as follows [6].

Algorithm 3 The restarted block Lanczos method for the k1 largest eigenvalues and the k2
smallest eigenvalues [6]

Initialization pick an N × k matrix V
(0)
1 with orthonormal columns

1: compute the orthonormal basis V
(0)
km0

of Km0(A, V
(0)
1 )

2: for ℓ := 0, 1, . . . , do

3: compute T
(ℓ)
kmℓ

= V
(ℓ)
kmℓ

T
AV

(ℓ)
kmℓ

4: compute the k1 largest eigenvalues and the k2 smallest eigenvalues of T
(ℓ)
km: θ

(ℓ)
1 ≥ · · · ≥

θ
(ℓ)
k (k = k1 + k2)

5: compute the Ritz vectors u
(ℓ)
1 , . . . , u

(ℓ)
k associated with θ

(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
k

6: V
(ℓ+1)
1 := [u

(ℓ)
1 , . . . , u

(ℓ)
k ]

7: compute the orthonormal basis V
(ℓ+1)
kmℓ+1

of Kmℓ+1(A, V
(ℓ+1)
1 )

8: end for

Here we show a global convergence theorem of Algorithm 3.
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Theorem 5. In Algorithm 3, the Ritz values θ
(ℓ)
1 , . . . , θ

(ℓ)
k converge to eigenvalues of A and

the Ritz vectors u
(ℓ)
1 , . . . , u

(ℓ)
k converge to the corresponding eigenvectors.

Proof. From (32), T
(ℓ)
kmℓ

is a kmℓ × kmℓ symmetric block tridiagonal matrix of the form

T
(ℓ)
kmℓ

=


T
(ℓ)
1,1 T

(ℓ)
1,2

T
(ℓ)
1,2

T
T
(ℓ)
2,2

. . .

. . .
. . . T

(ℓ)
mℓ−1,mℓ

T
(ℓ)
mℓ−1,mℓ

T
T
(ℓ)
mℓ,mℓ

 ,

with k×k symmetric diagonal blocks T
(ℓ)
1,1 , . . . , T

(ℓ)
mℓ,mℓ . From Lemma 3, we have limℓ→∞ T

(ℓ)
1,2 =

O. By noting that the Ritz values θ
(ℓ)
1 , . . . , θ

(ℓ)
k are the eigenvalues of T

(ℓ+1)
1,1 from Lemma 2,

we obtain the theorem.

Although Theorem 5 states a global convergence, it is not shown that θ
(ℓ)
1 , . . . , θ

(ℓ)
k con-

verge to the k1 largest eigenvalues and the k2 smallest eigenvalues of A. This property is
differ from Theorem 4.

7 Global convergence of the restarted Jacobi-Davidson method

In this section, we show global convergence of the restarted Jacobi-Davidson method pro-
posed by Sleijpen and van der Vorst [3, 24].

Firstly, we briefly summarize the Jacobi-Davidson method. See [24] for details. The
Jacobi-Davidson method is also based on the Rayleigh-Ritz procedure. For the orthonormal
basis Vj = [v1, . . . , vj ], the new basis vj+1 is obtained as follows.

The strategy for computing the largest eigenvalue is shown here. Let θ̂1,j denote the
largest Ritz value, namely, the largest eigenvalue of V T

j AVj , and uj denote the corresponding

Ritz vector. Moreover, let rj = Auj − θ̂1,juj . Then we find tj+1 that satisfies the equations

(I − uju
T
j )(A− θ̂1,jI)(I − uju

T
j )tj+1 = −rj , uTj tj+1 = 0. (33)

The new basis vector vj+1 is obtained by orthogonalizing tj+1 to Vj . In other words, vj+1 is
given by

wj+1 = tj+1 − Vj(V
T
j tj+1)

vj+1 = wj+1/∥wj+1∥.

In this section, we focus on the fact that the process above is regarded as one iteration
of the Rayleigh quotient iterations method as is shown below (see also [12, §2] and [24]).
If (33) is solved exactly, we have

(A− θ̂1,jI)tj+1 = −rj + cuj (34)
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for a constant c such that uTj tj+1 = 0. It follows that

tj+1 = −uj + c(A− θ̂1,jI)
−1uj (35)

in view of rj = Auj − θ̂1,juj . From the orthogonality uTj tj+1 = 0, we see c = (uTj (A −
θ̂1,jI)

−1uj)
−1. Since the Ritz vector uj satisfies uj ∈ span{v1, . . . , vj}, vj+1 is given by

orthogonalizing (A − θ̂1,jI)
−1uj to Vj . Note that (A − θ̂1,jI)

−1uj is given by the Rayleigh
quotient iteration for uj . Thus we see that vj+1 satisfies

ŵj+1 = (A− θ̂1,jI)
−1uj − Vj(V

T
j (A− θ̂1,jI)

−1uj) (36)

vj+1 = ŵj+1/∥ŵj+1∥. (37)

As the discussion before, the restart strategy is incorporated to the Jacobi-Davidson
method. The algorithm reads as follows.

Algorithm 4 The restarted Jacobi-Davidson method for the largest eigenvalue [24]

Initialization pick an N × m̂ matrix V
(0)
m̂ := [v

(0)
1 , . . . , v

(0)
m̂ ] with orthonormal columns

1: for ℓ := 0, 1, . . . , do
2: for j := m̂, . . . ,mℓ − 1 do

3: compute the largest eigenvalue θ̂
(ℓ)
1,j of V

(0)
j

T
AV

(0)
j

4: compute the corresponding Ritz vector u
(ℓ)
j

5: compute the residual vector r
(ℓ)
j := Au

(ℓ)
j − θ̂

(ℓ)
1,ju

(ℓ)
j

6: compute a new vector t
(ℓ)
j+1 such that (I − u

(ℓ)
j u

(ℓ)
j

T
)(A− θ̂

(ℓ)
1,jI)(I − u

(ℓ)
j u

(ℓ)
j

T
)t

(ℓ)
j+1 =

−r
(ℓ)
j , u

(ℓ)
j

T
t
(ℓ)
j+1 = 0

7: compute w
(ℓ)
j+1 := t

(ℓ)
j+1 − V

(ℓ)
j (V

(ℓ)
j

T
t
(ℓ)
j+1)

8: compute v
(ℓ)
j+1 := w

(ℓ)
j+1/∥w

(ℓ)
j+1∥

9: V
(ℓ)
j+1 := [v

(ℓ)
1 , . . . , v

(ℓ)
j+1]

10: end for

11: compute B
(ℓ)
mℓ := V

(ℓ)
mℓ

T
AV

(ℓ)
mℓ

12: compute the Ritz vectors u
(ℓ)
1 , . . . , u

(ℓ)
m̂ corresponding to the m̂ largest eigenvalues of

B
(ℓ)
mℓ

13: V
(ℓ+1)
m̂ := [u

(ℓ)
1 , . . . , u

(ℓ)
m̂ ]

14: end for

It is empirically known that, in Algorithm 4, the largest Ritz value θ
(ℓ)
1 for V

(ℓ)
mℓ

T
AV

(ℓ)
mℓ

usually converges to the largest eigenvalue. In this section, we prove that the Ritz value
converges to eigenvalue, although not necessarily to the largest one.

Theorem 6. In Algorithm 4, if breakdown does not occur, the largest Ritz value θ
(ℓ)
1 con-

verges to an eigenvalue of A. When the Ritz value θ
(ℓ)
1 converges to the largest eigenvalue

λ1, the Ritz vector u
(ℓ)
1 converges to the corresponding eigenvector x1.
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Proof. Similarly to Lemma 3, write B
(ℓ)
mℓ as

B(ℓ)
mℓ

=

(
B

(ℓ)
mℓ,11

B
(ℓ)
mℓ,12

B
(ℓ)
mℓ,12

T
B

(ℓ)
mℓ,22

)
,

where B
(ℓ)
mℓ,11

is m̂× m̂, B
(ℓ)
mℓ,12

is m̂× (mℓ − m̂), and B
(ℓ)
mℓ,22

is (mℓ − m̂)× (mℓ − m̂). Then

B
(ℓ)
mℓ,11

= diag(θ
(ℓ)
1 , . . . , θ

(ℓ)
m̂ ) in view of line 13 of Algorithm 4. Since limℓ→∞B

(ℓ)
mℓ,12

= O

from Lemma 3, limℓ→∞ v
(ℓ)
1

T
Av

(ℓ)
m̂+1 = 0 holds, where v

(ℓ)
1

T
Av

(ℓ)
m̂+1 is the (1, m̂ + 1) element

of B
(ℓ)
mℓ,12

. Similarly to (36) and (37), let

ŵ
(ℓ)
m̂+1 = (A− θ̂

(ℓ)
1,m̂I)−1v

(ℓ)
1 − V

(ℓ)
m̂ (V

(ℓ)
m̂

T
(A− θ̂

(ℓ)
1,m̂I)−1v

(ℓ)
1 ). (38)

Then we have

v
(ℓ)
m̂+1 = ŵ

(ℓ)
m̂+1/∥ŵ

(ℓ)
m̂+1∥ (39)

by (36), (37). Thus we see

lim
ℓ→∞

v
(ℓ)
1

T
Aŵ

(ℓ)
m̂+1/∥ŵ

(ℓ)
m̂+1∥ = 0. (40)

Firstly, we prove v
(ℓ)
1

T
Aŵ

(ℓ)
m̂+1 = 1 as follows. For the equation (38), we see

v
(ℓ)
1

T
AV

(ℓ)
m̂ (V

(ℓ)
m̂

T
(A− θ̂

(ℓ)
1,m̂I)−1v

(ℓ+1)
1 ) = θ̂

(ℓ)
1,m̂v

(ℓ)
1

T
(A− θ̂

(ℓ)
1,m̂I)−1v

(ℓ)
1

in view of V
(ℓ)
m̂ = [u

(ℓ−1)
1 , . . . , u

(ℓ−1)
m̂ ], where u

(ℓ−1)
1 , . . . , u

(ℓ−1)
m̂ are the Ritz vectors, which

satisfy u
(ℓ−1)
i

T
Au

(ℓ−1)
j = 0 for i ̸= j. It follows that

v
(ℓ)
1

T
Aŵ

(ℓ)
m̂+1 = v

(ℓ)
1

T
A(A− θ̂

(ℓ)
1,m̂I)−1v

(ℓ)
1 − θ̂

(ℓ)
1,m̂v

(ℓ)
1

T
(A− θ̂

(ℓ)
1,m̂I)−1v

(ℓ)
1

= v
(ℓ)
1

T
(A− θ̂

(ℓ)
1,m̂I)(A− θ̂

(ℓ)
1,m̂I)−1v

(ℓ)
1

= 1. (41)

Thus we have

lim
ℓ→∞

v
(ℓ)
1

T
Av

(ℓ)
m̂+1 = lim

ℓ→∞
v
(ℓ)
1

T
Aŵ

(ℓ)
m̂+1/∥ŵ

(ℓ)
m̂+1∥ = lim

ℓ→∞
1/∥ŵ(ℓ)

m̂+1∥ = 0. (42)

Noting

∥ŵ(ℓ)
m̂+1∥ ≤ ∥(A− θ̂

(ℓ)
1,m̂I)−1v

(ℓ)
1 ∥

from (38), we have

lim
ℓ→∞

1/∥(A− θ̂
(ℓ)
1,m̂I)−1v

(ℓ)
1 ∥ = 0,

which means that A−θ̂
(∞)
1,m̂ I is a singular matrix. In other words, θ

(∞)
1 = θ̂

(∞)
1,m̂ is an eigenvalue

of A. When θ
(ℓ)
1 converges to the largest eigenvalue, the Ritz vector u

(ℓ)
1 converges to the

corresponding eigenvector, which is the property of the Rayleigh-Ritz procedure.
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Finally, we would like to mention that a similar result is established for the Jacobi-
Davidson method with Harmonic Ritz values in [24] for computing the eigenvalue with the
smallest absolute value. This algorithm is mathematically equivalent to Algorithm 4 for A−1.

If A is nonsingular, then the largest eigenvalue of B
(ℓ)
mℓ converges to an eigenvalue of A−1 by

Theorem 6. When the convergent value is the largest eigenvalue of A−1, the corresponding
Harmonic Ritz vector converges to the corresponding eigenvector, which is the property of
the Rayleigh-Ritz procedure.
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