
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Framework of Discrete DC Programming
by Discrete Convex Analysis

Takanori MAEHARA and Kazuo MUROTA

METR 2013–28 October 2013

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

A Framework of Discrete DC Programming

by Discrete Convex Analysis

Takanori MAEHARA

National Institute of Informatics
JST, ERATO, Kawarabayashi Project

maehara@nii.ac.jp

Kazuo MUROTA

Department of Mathematical Informatics, University of Tokyo
murota@mist.i.u-tokyo.ac.jp

October 2013

Abstract

A theoretical framework of difference of discrete convex functions
(discrete DC functions) and optimization problems for discrete DC
functions is established. Standard results in continuous DC theory
are exported to the discrete DC theory with the use of discrete con-
vex analysis. A discrete DC algorithm, which is a discrete analogue
of the continuous DC algorithm (Concave-Convex Procedure in ma-
chine learning) is proposed. The algorithm contains the submodular-
supermodular procedure as a special case. Exploiting the polyhedral
structure discrete convex functions, the algorithms tailored to specific
types of discrete DC functions are proposed.

1

1 Introduction

The theory of DC functions (difference of two convex functions) and DC
programming, which treats minimization problems of DC functions (DC
programs) is the one of the most successful areas of non-convex optimiza-
tion [18, 50]. Most of the non-convex optimization problems that arise in
practice are indeed DC programming problems [15]. The DC theory is based
on a basic non-convex duality theorem, called Toland-Singer duality [44,47]:

inf
x∈Rn
{g(x)− h(x)} = inf

p∈Rn
{h∗(p)− g∗(p)}.

A DC program is hard to solve in general, but when the objective function
has a nice DC representation, there are some practical algorithms based on
the Toland-Singer duality, such as the DC algorithm [45,46,52] and branch-
and-bound/cutting-plane type algorithms [49,50]. DC functions are studied
in many areas, such as optimization, game theory, variational analysis, spec-
tral theory, and operator theory; see [1] for more details.

The objective of this paper is to establish a discrete analogue of the
theory of DC programming. In the conventional (continuous) DC program-
ming, the following properties of convex functions play key roles: (1) bi-
conjugacy: f∗∗ = f , which is used to prove the Toland-Singer duality, and
(2) subdifferentiability: ∂f(x) ̸= ∅ for each x ∈ dom f , which is used in the
DC algorithm. To export these ingredients to discrete functions, we utilize
discrete convex analysis developed by Murota and others [8, 33,35,36].

In discrete convex analysis, two convexity notions, M♮-convexity and L♮-
convexity, are distinguished: M♮-convexity is a generalization of matroid
property and L♮-convexity is a generalization of submodularity on subsets.
Conjugacy between M♮-convex functions and L♮-convex functions under dis-
crete Legendre-Fenchel transformation is a distinctive feature of discrete con-
vex analysis. Fundamental results in continuous convex analysis, in partic-
ular (1) biconjugacy and (2) subdifferentiability, are established in discrete
convex analysis in a suitable way. Furthermore, efficient (i.e., polynomial
time) algorithms are also available for minimizing discrete convex functions.

We define a discrete DC function as a difference of two discrete convex
functions. Since there are two classes of discrete convex functions (M♮-
convex functions and L♮-convex functions), there are four types of discrete
DC functions (an M♮-convex function minus an M♮-convex function, an M♮-
convex function minus an L♮-convex function, and so on). These types of
functions contain many functions appearing in practice: a difference of sub-
modular functions [38] is an L♮−L♮ DC function, a supermodular function
that is restricted to a matroid [3] is an M♮−L♮ DC function, and so on. Sim-
ilarly to the continuous case, many discrete functions that arise in practice
can be represented as a difference of two L♮-convex functions but there exists
a function that is not a discrete DC function of other types.

2

We propose discrete DC programming problems as optimization prob-
lems of discrete DC functions:

minimize g(x)− h(x).

Since there are two conjugate classes (M♮ and L♮) of discrete convex func-
tions, there are four types of discrete DC programs. We prove the discrete
version of the Toland-Singer duality for discrete DC programs. The discrete
Toland-Singer duality establishes the relation of four types of discrete DC
programs, which is a main feature of discrete DC programming.

We also propose algorithms for discrete DC programming. These algo-
rithms are obtained by combining the general discrete DC algorithm, which
is a straightforward adaption of the continuous case, and the polyhedral
structure of discrete convex functions. The algorithms decrease the func-
tion value strictly in each iteration and hence terminate in a finite number
of iterations. Furthermore, when the algorithms terminate, the obtained
solutions satisfy the local optimality condition. In some special case, the
algorithm has a theoretical guarantee for the approximation ratio of the
obtained solution.

Related work

There are only a few existing studies of discrete DC theory. Narasimhan and
Bilmes [38] considered minimization problems of a difference of two submod-
ular set functions (DS programs) and propose an algorithm, which is named
submodular-supermodular procedure. As described later, the DS program-
ming is a special case of our discrete DC programming (since submodular
set functions coincide exactly with L♮-convex functions on {0, 1}n), and their
algorithm is a special case of our general discrete DC algorithm (Section 5).
Recently Iyer-Bilmes [20] proposed two algorithms, named supermodular-
submodular procedure and modular-modular procedure for DS programs,
and compared the performance of these three algorithms in numerical ex-
periments.

Kawahara and Washio [22] recently proposed a prismatic algorithm for
DS programming, which applies a branch-and-bound algorithm for continu-
ous DC programs to the Lovász extension of submodular set functions. It is
certainly an interesting problem to construct an enumerative algorithm for
general discrete DC programs, but we do not persue this direction in this
paper.

Kawahara, Nagano, and Okamoto [21] considered a fractional submodu-
lar programming problem, minimization of a ratio of two submodular func-
tions. They applied the discrete Newton method to this problem and proved
that the problem can be solved exactly by solving a polynomial number of
DS programs.

3

Our contribution

Our contributions are summarized as follows:

• Theoretical framework. We define discrete DC functions and dis-
crete DC programs, and develop a theory of discrete DC functions in
parallel to the continuous DC theory.

• DC representability. We show that every function that has bounded
Hessian is an L♮−L♮ DC function; but there exist discrete functions
that are neither M♮−M♮ , M♮−L♮ , nor L♮−L♮ DC functions.

• Local optimality. We discuss local optimality conditions of discrete
DC functions. In particular, for some subclasses of L♮−L♮ DC pro-
grams and M♮−L♮ DC programs, the local optimal solution has an
approximation guarantee.

• Algorithm. We establish the general framework of discrete DC al-
gorithm that is a direct translation of the continuous DC algorithm.
We further propose algorithms tailored to M♮−M♮, M♮−L♮ and L♮−L♮

programs that exploit the polyhedral structure of discrete convex func-
tions of respective types.

Organization of the paper

In Section 2, we review the basics of discrete convex analysis. In Section 3,
discrete DC functions are introduced and some representability results are
proved. In Section 4, discrete DC programming is introduced. A discrete
version of the Toland-Singer duality and local optimality conditions are
shown. In Section 5, a generic form of discrete DC algorithm and its ramifi-
cations for some types of DC programs exploiting the polyhedral structure
of discrete convex functions are proposed.

4

2 Preliminary: Discrete convex analysis

2.1 Definitions

We introduce some basic notions from discrete convex analysis [35]. Let
Z be the set of integers and let [n] := {1, . . . , n} for positive n ∈ Z. The
positive support of x ∈ Zn is defined as

supp+(x) := {i ∈ [n] : x(i) > 0}.

The characteristic vector χS of S ⊆ [n] is defined as

χS(i) =

{
1, i ∈ S,

0, i ̸∈ S.

We identify a set S and its characteristic vector. For simplicity, we write
χi for χ{i} for i ∈ [n]. Let 1 = (1, . . . , 1) = χ[n] ∈ {0, 1}n. For a function
f : Zn → Z ∪ {+∞}, its effective domain is defined by

dom f := {x ∈ Zn : f(x) < +∞}. (2.1)

Two classes of discrete convex functions, M♮-convex functions and L♮-
convex functions1, are defined as follows. A function f : Zn → Z∪ {+∞} is
called M♮-convex if it satisfies the exchange axiom:

For all x, y ∈ Zn and i ∈ supp+(x− y),

f(x) + f(y) ≥ min
[
f(x− χi) + f(x+ χi),

min
j∈supp+(y−x)

{f(x− χi + χj) + f(y + χi − χj)}
]
.

A function f : Zn → Z∪ {+∞} is called L♮-convex if it satisfies the discrete
midpoint convexity:

For all x, y ∈ Zn,

f(x) + f(y) ≥ f(
⌈x+ y

2

⌉
) + f(

⌊x+ y

2

⌋
),

where ⌈a⌉ denotes the smallest integer not less than a, and ⌊a⌋ denotes
the largest integer not greater than a. In this paper, we refer to M♮- or
L♮-convex functions as discrete convex functions. It is emphasized that we
consider integer-valued functions. Some authors (e.g., [6, 27, 39]) studied
other discrete convex functions but we do not cover them.

1M♮-convex and L♮-convex functions are introduced by Fujishige and Murota [9] and
Murota and Shioura [37], respectively, as variants of M-convex and L-convex functions;
see [35]. M♮-concave functions on {0, 1}n coincide with valuated matroids of Dress and
Wenzel [4]. We note that “M” stands for matroid, and “L” stands for lattice, and the
symbol ♮ is to read “natural.”

5

Example 2.1. LetM be a matroid on V and r be the rank function ofM.
Then the function

f(x) =

{
−r(X), x = χX

+∞, otherwise

is an M♮-convex function with dom f = {0, 1}V . In this connection, we also
mention that an M♮-convex function on {0, 1}n is essentially the negative of
a matroid valuation on independent sets2.

Example 2.2. Let ρ : 2V → Z be a submodular set function [8], i.e.,

ρ(X) + ρ(Y) ≥ ρ(X ∪ Y) + ρ(X ∩ Y), X, Y ⊆ V.

Then the function

f(x) =

{
ρ(X), x = χX

+∞, otherwise

is an L♮-convex function with dom f = {0, 1}V . Note that every L♮-convex
function f is submodular on Zn, i.e.,

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y).

(The converse is not true. Consider a univariate “non-convex” function
f : Z→ Z, e.g., f(x) = (−1)|x|. Then it is submodular but not L♮-convex.)

2.2 Optimality and subgradients

For a continuous convex function, a local minimum is also a global minimum.
This property is shared by a discrete convex function.

Theorem 2.3 (Optimality condition of M♮-convex functions (Theorem 6.26 [35])).
Let f : Zn → Z ∪ {+∞} be an M♮-convex function. If x ∈ dom f satisfies

f(x) ≤ min
i,j∈[n]

{f(x− χi), f(x+ χj), f(x− χi + χj)}, (2.2)

then x is a global minimum of f .

Theorem 2.4 (Optimality condition for L♮-convex functions (Theorem 7.14 [35])).
Let f : Zn → Z ∪ {+∞} be an L♮-convex function. If x ∈ dom f satisfies

f(x) ≤ min
X⊆[n]

{f(x+ χX), f(x− χX)}, (2.3)

then x is a global minimum of f .

2The original definition [32] of matroid valuation on independent sets is a monotone
M♮-concave function on {0, 1}n.

6

The local optimality conditions above are useful to derive an explicit
representation of subgradients and subdifferentials. A vector p ∈ Zn is a
subgradient of f at x ∈ dom f if for all y ∈ Zn,

⟨p, y − x⟩ ≤ f(y)− f(x). (2.4)

The subdifferential ∂f(x) of f at x is the set of all subgradients of f at x,
i.e.,

∂f(x) := {p ∈ Zn : ⟨p, y − x⟩ ≤ f(y)− f(x) (∀y ∈ Zn)}. (2.5)

It is emphasized that we consider integer vectors p as subgradients. Subgra-
dients and subdifferentials are key ingredients in optimization algorithms.
By definition, p ∈ ∂f(x) if and only if x ∈ argminy{f(y) − ⟨p, y⟩}, and in
particular, 0 ∈ ∂f(x) if and only if x is a global minimum of f .

The subdifferentials of discrete convex functions turn out to be familiar
object in combinatorial optimization. Since the sum of an M♮- (resp. L♮-)
convex function and a linear function is also an M♮- (resp. L♮-)convex func-
tion, we obtain the following theorems by combining the local optimality
conditions of discrete convex functions.

Theorem 2.5 (Subdifferential of M♮-convex functions (Theorem 6.61 [35])).
Let f : Zn → Z ∪ {+∞} be an M♮-convex function. Then ∂f(x) ̸= ∅ for all
x ∈ dom f . We have p ∈ ∂f(x) if and only if, for all i, j ∈ [n],

−pi ≤ f(x− χi)− f(x),

pj ≤ f(x+ χj)− f(x), (2.6)

pj − pi ≤ f(x− χi + χj)− f(x).

The above theorem shows that the subgradients of an M♮-convex func-
tion are integer vectors contained the polytope arising from the dual of
the shortest path problem [42]. For an L♮-convex function f , on the other
hand, the subdifferential ∂f(x) at x forms an integral generalized polyma-
troid [10,11,12,35] as follows.

Theorem 2.6 (Subdifferential of L♮-convex functions (Theorem 7.43 [35])).
Let f : Zn → Z ∪ {+∞} be an L♮-convex function. Then ∂f(x) ̸= ∅ for all
x ∈ dom f . We have p ∈ ∂f(x) if and only if, for all X ⊆ [n],

f(x)− f(x− χX) ≤ ⟨p, χX⟩ ≤ f(x+ χX)− f(x).

7

2.3 Conjugacy

One of the most important property of discrete convex functions is the
Legendre-Fenchel conjugacy between M♮ and L♮. The discrete Legendre-
Fenchel conjugate f∗ of a function f : Zn → Z∪{+∞} is defined as follows:

f∗(p) := sup
x∈Zn
{⟨p, x⟩ − f(x)}, p ∈ Zn.

Note that this defines a function f∗ : Zn → Z∪{+∞}, provided dom f ̸= ∅.
Then the following theorem holds.

Theorem 2.7 (Discrete conjugacy (Theorem 8.12 [35])). If f is M♮-convex,
then f∗ is L♮-convex. Similarly, if f is L♮-convex, then f∗ is M♮-convex.
Furthermore, if f is M♮- or L♮-convex, then f∗∗ = f .

Corollary 2.8 (Discrete Young-Fenchel inequality). Let f be an M♮-convex
or L♮-convex function. Then

f(x) + f∗(p) ≥ ⟨p, x⟩ for all x, p ∈ Zn.

Equality holds if and only if x ∈ ∂f∗(p).

The relation of global optimalities and subgradients with respect to the
Legendre-Fenchel conjugacy is summarized as follows [35].

x ∈ argmin
x∈Zn

{f(y)− ⟨p, y⟩} ⇐⇒ x ∈ ∂f∗(p)

⇕

p ∈ argmin
q∈Zn

{f∗(q)− ⟨q, x⟩} ⇐⇒ p ∈ ∂f(x)

Figure 2.1: Relation of global optimalities, subgradients, with respect to the
Legendre-Fenchel duality

The following theorem, discrete Fenchel duality, is a fundamental theo-
rem in discrete convex analysis. See [35] for details.

Theorem 2.9 (Discrete Fenchel duality (Theorem 8.21 [35])). Let f and g
be both M♮-convex functions or both L♮-convex functions. Then

inf
x∈Zn
{f(x) + g(x)} = − inf

p∈Zn
{f∗(p) + g∗(−p)}. (2.7)

Remark 2.10. In the continuous DC theory, subdifferentiability: ∂f(x) ̸= ∅
for x ∈ dom f and biconjugacy: f∗∗ = f play crucial roles. Hence, to
construct a discrete analogue of the DC theory, we need a class of “convex

8

functions” on Zn that have these properties. As mentioned in this section,
M♮- and L♮-convex functions do have these properties. This is the reason
why we employ these classes of functions in developing a discrete DC theory.

We here illustrate that subdifferentiability and biconjugacy are nontrivial
or even rare in discrete case by showing a concrete example of a “convex
function” f such that ∂f(x) = ∅ for some x ∈ dom f and f∗∗ ̸= f . This
example is taken from [33].

Let D = {(0, 0, 0),±(1, 1, 0),±(0, 1, 1),±(1, 0, 1)} and f : Z3 → Z ∪
{+∞} be defined by

f(x1, x2, x3) :=

{
(x1 + x2 + x3)/2, x ∈ D,

+∞, otherwise.

This function can be naturally extended to a convex function on conv(D)
(the convex hull of D) and D is a “convex set” in the sense of conv(D)∩Zn =
D.

We first calculate the subgradient of f at the origin. Suppose p ∈
∂f(0) ⊆ Z3. Since f(y)− f(0) ≥ ⟨p, y⟩ for all y, we must have

1 ≥ p1 + p2, 1 ≥ p2 + p3, 1 ≥ p3 + p1,
−1 ≥ −p1 − p2, −1 ≥ −p2 − p3, −1 ≥ −p3 − p1.

However, this system does not admit an integer solution, although it is
satisfied by (p1, p2, p3) = (1/2, 1/2, 1/2). Hence ∂f(0) = ∅.

Next we calculate the biconjugate of f . The conjugate function of f is

f∗(p) = max{0, |p1 + p2 − 1|, |p2 + p3 − 1|, |p3 + p1 − 1|}

and the biconjugate is

f∗∗(x) = sup
p∈Z3

{⟨p, x⟩ − f∗(p)}.

Hence

f∗∗(0) = − inf
p∈Z3

max{0, |p1 + p2 − 1|, |p2 + p3 − 1|, |p3 + p1 − 1|}.

Therefore we have f∗∗(0) = −1 ̸= 0 = f(0). This shows f∗∗ ̸= f .

Remark 2.11. There are some possible candidates for a class of “discrete
convex functions,” but many of them lack biconjugacy and/or subdifferen-
tiability. In particular, integrally convex functions, proposed by Favati and
Tardella [6], are a reasonable candidate, but do not have these properties.
The function f demonstrated in Remark 2.10 is, in fact, an integrally convex
function.

9

2.4 Algorithms

We close this section with some algorithmic aspects of discrete convex anal-
ysis. Suppose that we can only access to functions by evaluating the value
of the functions. This model is called value oracle model (e.g., [51]).

Function minimization Since the local optimality of discrete convex
functions can be efficiently checked, a global minimum of discrete convex
functions can be efficiently computed by descent type methods with scaling
techniques. Note also that we can evaluate the conjugate function f∗(p) by
minimizing f(x)− ⟨p, x⟩.

Theorem 2.12 (M♮-convex minimization [35]). M♮-convex minimization
can be done with O(n3 log(K∞/n)) function evaluations, where K∞ :=
max{∥x− y∥∞ : x, y ∈ domf}.

Theorem 2.13 (L♮-convex minimization [23, 35]). L♮-convex minimization
can be done with O(σ(n) log(K̂∞/n)) function evaluations, where σ(n) is the
number of function evaluations in submodular set function minimization,
and K̂∞ := max{∥x− y∥∞ : x, y ∈ domf}.

The current best complexity σ(n) of submodular set function minimiza-
tion is O(n5) by Iwata and Orlin [19] or Orlin [40].

Subgradient computation For an M♮-convex function f , the subdiffer-
ential ∂f(x) at x corresponds to a polyhedron (2.6) that appears in the dual
of the shortest path problem. Therefore we can obtain a subgradient p by
solving a shortest path problem. More concretely, consider a weighted di-
graph G = (V,E,w), where V = {0} ∪ [n] and E = V × V , and the edge
length w defined as

w(0, j) = f(x+ χj)− f(x),

w(i, 0) = f(x− χi)− f(x),

w(i, j) = f(x+ χj − χi)− f(x).

As a consequence of M♮-convexity of f , this edge length w satisfies the
triangle inequality and hence the graph does not have a negative cycle [35].
Therefore there exists a feasible potential p that satisfies (2.6). We can
obtain such potential p explicitly by computing the shortest paths on this
graph with O(n2) function evaluations.

For an L♮-convex function f , the subdifferential ∂f(x) at x forms an
integral generalized polymatroid. Therefore we can obtain a subgradient p
by the following simple method [5, 11]. Let π be a permutation of [n] and

10

let k ∈ [n] ∪ {0}. Then the vector pπ,k ∈ Zn defined by

pπ,k(π(j)) := f(x+ χ{π(1),...,π(j)})− f(x+ χ{π(1),...,π(j−1)}), 1 ≤ j ≤ k,

pπ,k(π(j)) := f(x− χ{π(j),...,π(n)})− f(x− χ{π(j+1),...,π(n)}), k < j ≤ n

(2.8)

is a subgradient of f at x, which can be computed with O(n) function
evaluations. Every p ∈ ∂f(x) is obtained in this way.

11

3 Discrete DC functions

3.1 Definition and examples

Let us say that a function f : Zn → Z∪{+∞,−∞} is a discrete DC function
if it can be written as a difference of two discrete convex functions: f = g−h
for some discrete (M♮- or L♮-)convex functions g, h : Zn → Z ∪ {+∞}. We
use the convention that (+∞)− (+∞) = (+∞).

We call an expression f = g − h a discrete DC representation of f . For
a discrete DC function f , its discrete DC representation is not unique, i.e.,
there are many possibilities of representing f = g1 − h1 = g2 − h2 = · · · .
It is worth noting that a function f is a discrete DC function if and only if
there exists a function h such that both f + h and h are discrete convex.
We refer to such function h as a control function of f .

Since there are two classes of convex functions, M♮-convex functions
and L♮-convex functions, we can distinguish four types of discrete DC func-
tions: M♮−M♮ DC functions, M♮−L♮ DC functions, L♮−M♮ DC functions,
and L♮−L♮ DC functions, depending on the types of g and h in f = g − h.

Example 3.1 (Cut function of weighted graph). Let G = (V,E) be a graph
and w : E → Z be a (not necessarily nonnegative) weight function on the
edge set E. A cut S is a nonempty proper subset of V and the value of a cut
function c : 2V → Z is the sum of the weights of the edges crossing a cut.
If all weights are nonnegative, c is a submodular (i.e., L♮-convex) function.
Therefore, if we split the edges to negative ones and positive ones, we obtain
a representation of a cut function as an L♮−L♮ DC function.

Example 3.2 (Difference of submodular functions). A function which is
the difference of two submodular functions naturally arise in the area of
machine learning. One typical example is the mutual information f(X) :=
I(X|C) = H(X)−H(X|C), which is a difference of two entropies. Since the
entropy function H is submodular, the mutual information is a difference
of two submodular functions. See [20, 38] for more applications in the area
of machine learning. Note that, the class of such functions coincide exactly
with L♮−L♮ DC functions on {0, 1}n.
Example 3.3. Let δ be the indicator function of the family of independent
sets of a matroid M and f be a submodular set function. Then δ − f
is an M♮−L♮ DC function which corresponds to a supermodular function
restricted to the independent sets of a matroid.

Example 3.4 (Degree-determinant of polynomial matrix). Let A = A(s) be
a polynomial matrix of size m×n (m ≤ n) in variable s. Let A[I] denote the
submatrix induced by a column index set I ⊆ [n]. Then g(I) := deg(detA[I])
is an M♮-concave function on {I ⊆ [n] : |I| = m}; see [34] for more details.

For two polynomial matrices A(s) and B(s) of size m × n (m ≤ n),
deg(detA[I]/detB[I]) is an M♮−M♮ DC function on {I ⊆ [n] : |I| = m}.

12

3.2 Representability

We turn to representability of discrete DC functions.

Proposition 3.5. Every lower-bounded discrete DC function f = g − h
admits a nonnegative discrete DC representation of the same type.

Proof. The proof is shown in later (Section 4.2).

In the continuous case, many functions that arise in practice are DC
functions [18,50]. In particular, the following characterization is useful.

Theorem 3.6 (Classical result, e.g., p. 47 in Hiriart-Urruty [15]). Every
C2-function with bounded Hessian is a (continuous) DC function3.

Proof. Let h(x) := µ∥x∥2 with a sufficiently large µ > 0. Then f = (f +
h)−h is a discrete DC representation of f since f +h is convex because the
Hessian of f + h is positive definite for a sufficiently large µ.

In the discrete case, a similar theorem holds for L♮−L♮ DC functions
(Theorem 3.8). However, for the other classes of discrete DC functions, this
is not the case.

L♮−L♮ DC representability To prove the representability as an L♮−L♮

DC function, we trace the proof of Theorem 3.6 with the aid of discrete con-
vex analysis. The discrete L♮-Hessian matrix H(x) := [Hij(x)] of a function
f : Zn → Z is defined as follows [28,29]:

Hij(x) := f(x+ ei + ej)− f(x+ ei)− f(x+ ej) + f(x) (i ̸= j),

Hii(x) := f(x) + f(x+ 1+ ei)− f(x+ 1)− f(x+ ei)−
∑
j ̸=i

Hij(x).

Theorem 3.7 (Hessian characterization of L♮-convexity [28]). A function
f : Zn → Z is L♮-convex if and only if the L♮-Hessian H of f satisfies, for
every x ∈ Zn,

Hij(x) ≤ 0 (i ̸= j),

n∑
j=1

Hij(x) ≥ 0 (∀i ∈ [n]). (3.1)

Using the L♮-Hessian, we can prove L♮−L♮ DC representability of an
arbitrary (well-behaved) function.

3Usually this theorem is used in combination of Hartman’s theorem [13] to prove the
statement that “every C2 function is a continuous DC function.” See Hartman [13],
Hiriart-Urruty [15] or Tuy [50].

13

Theorem 3.8. If a function f : Zn → Z has bounded L♮-Hessian, then f is
an L♮−L♮ DC function.

Proof. Let H(x) be the L♮-Hessian of f at x ∈ Zn. Suppose |Hij(x)| ≤ α
for all x ∈ Zn and i, j ∈ [n]. Then it is easy to verify that the function
h(x) := (nα/2)x⊤Ax is a control function of f , where

A =

n −1 · · · −1
−1 n · · · −1
...

...
. . .

...
−1 −1 · · · n

 .

Indeed, the L♮-Hessian of h is equal to nαA, which satisfies (3.1), and the
L♮-Hessian of f + h is equal to H + nαA, which also satisfies (3.1) by the
choice of α.

The above theorem is a generalization of the classical result that every set
function is a difference of submodular set functions. The control function
h used in the above proof gives h(χX) = (nα/2) (|X|(n− |X|) + |X|) for
X ⊆ [n].

Corollary 3.9.

(1) Let D ⊂ Zn be a finite subset. Then for every function f : D → Z,
there exists nonnegative L♮-convex functions g, h : Zn → Z such that
f(x) = g(x)− h(x) for every x ∈ D.

(2) Every set function f : {0, 1}n → Z is a difference of nonnegative
monotone submodular functions.

Proof. (1) Let f̄ : Zn → Z be defined by f̄(x) = f(x) (x ∈ D) and f̄(x) = 0
(x ̸∈ D). Since the L♮-Hessian of f̄ is bounded, f̄ is an L♮−L♮ DC function
by Theorem 3.8. Since f̄ is lower bounded, f̄ admits a nonnegative L♮−L♮

representation: f̄ = g − h by Proposition 3.5. By restricting the functions
onto D, we obtain (1).

(2) By (1) of this corollary, we have nonnegative submodular set func-
tions g, h : {0, 1}n → Z such that f = g − h. Note that L♮-convex functions
on {0, 1}n are nothing but submodular set functions. We can modify g and
h to monotone functions as follows. Let

α = min
i∈[n]
{min{0, g(χ[n])− g(χ[n]\{i}), h(χ[n])− h(χ[n]\{i})}}.

Then both g(x)−α⟨1, x⟩ and h(x)−α⟨1, x⟩ are nonnegative monotone and
hence f(x) = (g(x)−α⟨1, x⟩)− (h(x)−α⟨1, x⟩) is a desired representation.
Note that 1 = χ[n] and ⟨1, x⟩ = | supp+(x)| for x ∈ {0, 1}n.

We mention that Iyer and Bilmes [20] recently proved a proposition
similar to our Corollary 3.9 (2). But our proof technique is different from
theirs.

14

M♮−M♮ DC representability We here show the existence of a non-
M♮−M♮ DC function. To prove this, we use the Hessian characterization
of M♮-convex functions. The discrete M♮-Hessian matrix H(x) := [Hij(x)]
of a function f : Zn → Z is defined as follows [14,29]:

Hij(x) := f(x+ ei + ej)− f(x+ ei)− f(x+ ej) + f(x), i, j ∈ [n].

Theorem 3.10 (Hessian characterization of M♮-convex functions [14, 36]).
A function f : Zn → Z is M♮-convex if and only if the M♮-Hessian H of f
satisfies, for every x ∈ Zn,

Hij(x) ≥ 0 (∀i, j), Hij(x) ≥ min{Hik(x),Hjk(x)} (i ̸= k, j ̸= k). (3.2)

Proposition 3.11. There exists a function that is not an M♮−M♮ DC func-
tion.

Proof. We verify that f(x, y, z, w) := xz + xw + yz is not an M♮−M♮ DC
function. The M♮-Hessian of f (at the origin) is given by

Hf =

0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

 .

Suppose that h is a control function of f , i.e., both f+h and h are M♮-convex.
Denote the M♮-Hessian of h by

Hh =

∗ a p q
a ∗ r b
p r ∗ c
q b c ∗

 .

We show that, for any choice of the diagonal elements of Hh, there is no
{a, b, c, p, q, r} such that both Hf+h = Hf +Hh and Hh satisfy (3.2).

We first show that a, b, c cannot be the minimum in {a, b, c, p, q, r}. Since
a ≥ min{p+1, r+1} by (3.2) for Hf+h, a cannot be the minimum. Similarly,
since c ≥ min{p + 1, q + 1} by (3.2) for Hf+h, c cannot be the minimum.
Suppose that b is the minimum. Then, since b ≥ min{a, q} by (3.2) for Hh

and a cannot be the minimum, we must have b = q. However, since b ≥
min{a, q+1} by (3.2) for Hf+h, we must have b = a. This is a contradiction.

Next, we show that p, q, r cannot be the minimum in {a, b, c, p, q, r}.
Since q ≥ min{a, b} and neither a nor b is the minimum, q cannot be the
minimum. Similarly, since r ≥ min{b, c} and neither b nor c is the minimum,
r cannot be the minimum. Then, since p ≥ min{a, r} and neither a nor r is
the minimum, p cannot be the minimum.

15

Remark 3.12. For the function f(x, y, z, w) used in the proof of Proposi-
tion 3.11, we have the expression

xz + xw + yz =
1

2

(
(x+ z)2 + (x+ w)2 + (y + z)2 − 2x2 − 2z2 − w2 − y2

)
,

where each term on the right-hand side above is M♮-convex or M♮-concave.
This shows that the class of M♮−M♮ DC functions is not closed under sum.
This is related to the fact that the class of M♮-convex functions is not closed
under sum. On the other hand, the set of L♮−L♮ DC functions forms a linear
space since a sum of L♮-convex functions is L♮-convex.

In the continuous case, the set of DC functions is closed under sum,
multiplication, scalar-product, min, and max. In other words, continuous
DC functions form an algebra and a lattice.

M♮−L♮ and L♮−M♮ representability Since an M♮-convex function g :
Zn → Z is supermodular and an L♮-convex function h : Zn → Z is sub-
modular, an M♮−L♮ DC function f = g − h with dom f = Zn is necessarily
supermodular on Zn. Hence a function that is not supermodular is not an
M♮−L♮ DC function. Similarly, a function that is not submodular is not an
L♮−M♮ DC function.

We pose the following as an open problem.

Problem 3.13. Give a necessary and sufficient condition for a function to
be an M♮−M♮, M♮−L♮ or L♮−M♮ DC function.

16

4 Discrete DC programming

4.1 General framework and examples

Discrete DC programming is a framework of minimization of a discrete DC
function f = g − h:

minimize g(x)− h(x), for x ∈ Zn. (4.1)

We call this problem discrete DC programming problem. We distinguish
four classes, according to the four types of discrete DC functions: M♮−M♮

DC programming, M♮−L♮ DC programming, L♮−M♮ DC programming, and
L♮−L♮ DC programming.

Example 4.1 (Minimum cut with some negative weight edges). Aminimum
cut problem of a graph with possibly negative weight edges is an L♮−L♮ DC
programming problem. See Example 3.1.

Example 4.2 (DS programming). Minimization problem of a difference of
submodular set functions is exactly L♮−L♮ DC programming problem on
{0, 1}n. See Example 3.2.

Example 4.3 (Matroid constrained submodular maximization). Let g be
the indicator function of the family of independent sets of a matroid and h
be a submodular set function. Then minimizing g − h, which is a matroid
constrained submodular maximization [7], is an M♮−L♮ DC programming
problem. See Example 3.3.

Example 4.4 (Minimization of degree of determinant). Let A = A(s) be
a polynomial matrix of size m × n (m ≤ n) in variable s and let B be a
constant matrix of size m′ × n. Then the following problem is an M♮−M♮

DC programming problem:

minimize deg(det(A[I]))
subject to I ⊆ [n], |I| = m, columns of B[I] are linear independent.

Note that, the maximization counterpart:

maximize deg(det(A[I]))
subject to I ⊆ [n], |I| = m, columns of B[I] are linear independent

is a problem of maximizing a sum of two M♮-concave functions, which can
be solved efficiently by valuated matroid intersection algorithms [30,31,34].

Example 4.5 (Fractional discrete convex programming). Let g and h be
positive-valued discrete convex functions. Then

inf
x∈Zn

g(x)

h(x)
≥ α ⇐⇒ inf

x∈Zn
{g(x)− αh(x)} ≥ 0.

Therefore we can solve the fractional discrete convex programming problem
by solving a sequence of discrete DC programming problems.

17

4.2 Toland-Singer duality

The most important theorem in DC programming (in the continuous case)
is the Toland-Singer duality [44,47]:

inf
x∈Rn
{g(x)− h(x)} = inf

p∈Rn
{h∗(p)− g∗(p)}. (4.2)

We first establish the discrete version of this theorem. The identity of the
Toland-Singer duality should not be confused with the Fenchel duality (2.7)
in Theorem 2.9.

Theorem 4.6 (Discrete Toland-Singer duality). Let f = g−h be a discrete
DC function of either type (M♮−M♮, M♮−L♮, L♮−M♮, L♮−L♮). Then

inf
x∈Zn
{g(x)− h(x)} = inf

p∈Zn
{h∗(p)− g∗(p)}. (4.3)

Proof. By virtue of the conjugacy (Theorem 2.7) in discrete convex analysis,
the proof goes in parallel with that for the continuous version of the Toland-
Singer duality [44,47]:

inf
x
{g(x)− h(x)} = inf

x
{g(x)− h∗∗(x)}

= inf
x
{g(x)− sup

p
{⟨p, x⟩ − h∗(p)}}

= inf
x
inf
p
{g(x)− ⟨p, x⟩+ h∗(p)}

= inf
p
{h∗(p)− sup

x
{⟨p, x⟩ − g(x)}}

= inf
p
{h∗(p)− g∗(p)}.

It is emphasized that the key of the above proof is the biconjugacy,
h∗∗ = h, that holds for both M♮- and L♮-convex functions (Theorem 2.7).

Let us dwell on the issue of M♮/L♮ conjugacy in the discrete Toland-
Singer duality. Recall from Theorem 2.7 that the Legendre-Fenchel conju-
gate of an M♮-convex function is an L♮-convex function and vice versa. For
an M♮−M♮ DC program for g − h, for example, the discrete Toland-Singer
duality establishes its relation to an L♮−L♮ DC program for h∗ − g∗, and
vice versa. For an L♮−M♮ DC program for g−h, in contrast, the dual prob-
lem is another L♮−M♮ DC program for h∗ − g∗. Similarly, for an M♮−L♮

DC program for g− h, the dual problem is another M♮−L♮ DC program for
h∗ − g∗. In this sense, the class of L♮−M♮ DC programs and that of M♮−L♮

DC programs are both self-dual. It is worth mentioning that replacing g
and h with their conjugates g∗ and h∗, respectively, in (4.3) results in the
formula

inf
x∈Zn
{g∗(x)− h∗(x)} = inf

p∈Zn
{h∗∗(p)− g∗∗(p)},

18

which is equivalent, by biconjugacy, to (4.3) with g and h interchanged. In
this sense, the discrete Toland-Singer duality is self-dual under conjugacy.
Such richer duality structure, which we may refer to as “typed duality,” is the
main feature of discrete DC programming that is not shared by continuous
DC programming.

In the rest of the paper, we consider the case that the problem (4.1) has
an optimal solution with a finite optimal value, i.e., infx{g(x)−h(x)} > −∞.
In this case, by the Toland-Singer duality, we also have infp{h∗(p)−g∗(p)} >
−∞. These finiteness conditions imply, in particular, that

dom g ⊆ domh and domh∗ ⊆ dom g∗. (4.4)

We assume these inclusions in the rest of the paper.
As an application of the Toland-Singer duality, we give here a proof of

Proposition 3.5.

Proof of Proposition 3.5. The proof goes in parallel with that for the con-
tinuous version by Hiriart-Urruty [15].

Without loss of generality we assume f ≥ 0; otherwise we may replace
f by f − inf f . Let g1(x) := g(x) − (⟨b, x⟩ − h∗(b)) and h1(x) := h(x) −
(⟨b, x⟩ − h∗(b)) with b ∈ domh∗. Then g1 − h1 = g − h, h1(x) ≥ 0 by the
Young-Fenchel inequality (Corollary 2.8), and min g1(x) = −g∗(b)+h∗(b) ≥
minp{h∗(p)− g∗(p)} = minx f(x) ≥ 0 by the Toland-Singer duality.

4.3 Hardness results

In the continuous case, DC programming is known to be hard. Hence we
expect that the discrete DC programming is also hard. Indeed, we can prove
the following proposition.

Proposition 4.7.

• M♮−M♮, M♮−L♮, and L♮−L♮ DC programming on Zn are NP-hard.

• M♮−L♮ and L♮−L♮ DC programming on {0, 1}n are NP-hard, and
L♮−M♮ DC programming on {0, 1}n is in P.

Proof. M♮−L♮ and L♮−L♮ DC programs on {0, 1}n contain submodular set
function maximization, which is NP-hard, and M♮−M♮ DC programming is
the Toland-Singer dual of L♮−L♮ DC programming. L♮−M♮ DC program-
ming on {0, 1}n is a submodular set function minimization, which is in P.

Remark 4.8. L♮−M♮ DC programming problem is a special case of sub-
modular function minimization problem on a distributive lattice [48]. Hence
it can be solved in polynomial time in the length of a maximal chain in the
lattice [35,41]. See Section 5.5.

19

Table 4.1: Complexity of discrete DC programming minx{g(x)− h(x)}

(a) x ∈ Zn

g\h M♮ L♮

M♮ NP-hard NP-hard
L♮ open NP-hard

(b) x ∈ {0, 1}n

g\h M♮ L♮

M♮ open NP-hard
L♮ P NP-hard

4.4 Optimality criteria

We first state a necessary and sufficient condition for the global optimality of
discrete DC function, which is a discrete version of the well-known theorem
by Hiriart-Urruty [16].

For ϵ ≥ 0 we define the (integral) ϵ-subdifferential [17] of g at x by

∂ϵg(x) := {p ∈ Zn : ⟨p, y − x⟩ ≤ g(y)− g(x) + ϵ (∀y ∈ Zn)}. (4.5)

Note that p ∈ ∂ϵg(x) if and only if

g(x) + g∗(p) ≤ ⟨p, x⟩+ ϵ. (4.6)

Since g is assumed to be integer-valued and p is an integer vector, we have
∂ϵg(x) = ∂ϵ′g(x) for ϵ′ = ⌈ϵ⌉. Therefore, we may assume ϵ ∈ Z. If g is a
discrete convex function of either type (M♮ or L♮), we have

∂ϵg(x) ̸= ∅ for every ϵ ≥ 0

for every x ∈ dom f by Theorems 2.5 and 2.6, as well as the inclusion
∂ϵg(x) ⊇ ∂g(x).

Proposition 4.9. x ∈ Zn is a global minimum of a discrete DC function
f = g − h if and only if, for every ϵ ≥ 0,

∂ϵh(x) ⊆ ∂ϵg(x). (4.7)

Proof. Suppose that x is a minimum of g−h. Then, by the discrete Toland-
Singer duality (Theorem 4.6), for all p ∈ domh∗,

g(x)− h(x) ≤ h∗(p)− g∗(p), i.e., g(x) + g∗(p) ≤ h(x) + h∗(p).

Therefore, by (4.6) for g and h, we see that p ∈ ∂ϵh(x) implies p ∈ ∂ϵg(x),
i.e., ∂ϵh(x) ⊆ ∂ϵg(x).

Conversely, suppose that x is not a global minimum. Then, by the
discrete Toland-Singer duality, there exists p ∈ domh∗ such that

g(x)− h(x) > h∗(p)− g∗(p),

i.e.,
g(x) + g∗(p)− ⟨p, x⟩ > h(x) + h∗(p)− ⟨p, x⟩.

20

By the discrete Young-Fenchel inequality (Corollary 2.8), the right-hand
side is nonnegative. Hence we can take ϵ = h(x) + h∗(p)− ⟨p, x⟩ to meet

g(x) + g(p) > ⟨p, x⟩+ ϵ ≥ h(x) + h∗(p).

This shows p ∈ ∂ϵh(x) but p ̸∈ ∂ϵg(x), i.e., ∂ϵh(x) ̸⊆ ∂ϵg(x).

Checking the condition ∂ϵh(x) ⊆ ∂ϵg(x) (∀ϵ ≥ 0) in (4.7) for global
optimality is difficult, even in the continuous case [46]. This is not surpris-
ing, since (discrete) DC programming problem is a non-convex optimization
problem. Hence we may reasonably focus on a local optimal solution.

Instead of requiring the condition ∂ϵh(x) ⊆ ∂ϵg(x) for all ϵ ≥ 0, we
consider a special case with ϵ = 0, i.e.,

∂h(x) ⊆ ∂g(x). (4.8)

This will turn out to be a fruitful compromise; this condition guarantees a
certain local optimality (Proposition 4.11), and it is amenable to algorithmic
verification for some types of discrete DC programming (Section 5). In this
paper, we refer to (4.8) as the local optimality condition for f = g − h.

We start with a technical lemma.

Lemma 4.10. Let f = g − h be a discrete DC function and U ⊆ Zn be a
set containing x. If ∂g(x)∩∂h(y) ̸= ∅ for every y ∈ U , then x is a minimum
of f in U .

Proof. This proof goes in parallel with the proof of Corollary 1 of Tao and
Hoai An [46]. Let y ∈ U and pick p ∈ ∂g(x) ∩ ∂h(y). Then we have

⟨p, y − x⟩ ≤ g(y)− g(x),

⟨p, x− y⟩ ≤ h(x)− h(y).

Adding these two we obtain

g(x)− h(x) ≤ g(y)− h(y).

The local optimality condition (4.8) does imply local optimality in a
certain neighborhood specified by (4.9) below.

Proposition 4.11 (Local optimality). If x ∈ Zn satisfies (4.8), then x is a
minimum of f = g − h in

U =
∪
{∂h∗(p) : p ∈ ∂g(x)}. (4.9)

Proof. For each y ∈ U , y ∈ ∂h∗(p) for some p ∈ ∂g(x). Since y ∈ ∂h∗(p) is
equivalent to p ∈ ∂h(y), we obtain p ∈ ∂h(y)∩∂g(x) ̸= ∅. Then f(x) ≤ f(y)
by Lemma 4.10.

21

Example 4.12. Consider a discrete DC function f(x) = x4 − 16(x − 1)2

(x ∈ Z), i.e., f = g − h where g(x) = x4 and h(x) = 16(x− 1)2. For x = 2,
we have ∂h(x) ⊆ ∂g(x) since

∂h(x) = {16, 17, . . . , 48}, ∂g(x) = {15, 16, . . . , 65}.

Therefore x is minimum in U =
∪

p∈∂g(x) ∂h
∗(p) = {1, 2, 3} by Proposi-

tion 4.11. However, x = 2 is not a global minimum, since f(2) = 0 > −175 =
f(−3). Indeed, for ϵ = 17, the inclusion of (4.7) fails, since ∂ϵh(x) ̸⊆ ∂ϵg(x)
with

∂ϵh(x) = {−1, 0, . . . , 65}, ∂ϵg(x) = {0, 1, . . . , 82}.

The relation of the global optimality and the local optimality is summa-
rized in Figure 4.1.

local optimality:

global optimality ⇐⇒ ∂ϵh(x) ⊆ ∂ϵg(x)

Prop. 4.9

⇓

∂h(x) ⊆ ∂g(x)

⇓ Prop. 4.11

x is minimum in

U =
∪

p∈∂g(x)

∂h∗(p)

Figure 4.1: Relation of global and local optimalities.

Recall the discrete Toland-Singer duality (4.3) in Theorem 4.6. The
following proposition states that an optimal solution p of the dual problem
can be constructed from an optimal solution x of the primal problem. This
is sometimes referred to as optimal solution transportation in the literature
of (continuous) DC programming.

Proposition 4.13 (Optimal solution transportation).

(1) If p ∈ ∂g(x) ∩ ∂h(x) then

g(x)− h(x) = h∗(p)− g∗(p).

(2) If x is a global minimum of g−h, then any p ∈ ∂g(x)∩h(x) is a global
minimum of h∗ − g∗.

22

Proof. (1) By the discrete Young-Fenchel inequality (Corollary 2.8), we have

g(x) + g∗(p) = ⟨p, x⟩ = h(x) + h∗(p).

Therefore
g(x)− h(x) = h∗(p)− g∗(p).

(2) By (1), we have g(x) − h(x) = h∗(p) − g∗(p). Since the left-hand
side is a minimum, p is a minimum of h∗−g∗, by the discrete Toland-Singer
duality.

It is noted that, in Proposition 4.13 (2), the condition p ∈ ∂g(x)∩∂h(x)
with a global minimum x can be simplified to p ∈ ∂h(x) by (4.8).

4.5 Approximation ratio

In general, there are no theoretical guarantee for the approximation ratio of
a local optimal solution.

Example 4.14. Let a < b be positive integers. Let g and h be univariate
convex functions defined as

g(x) =

{
0, x ≤ b,

+∞, x > b,

h(x) =

{
0, x ≤ a,

x− a, x > a

and consider a discrete DC programming problem to minimize f(x) = g(x)−
h(x) for x ∈ Z. Every x < a satisfies (4.8) and hence x is a local minimum
with f(x) = 0. However, the global minimum is x = b and f(b) = a− b.

In some special case, however, we can prove an approximation ratio. In
this case, we consider that f = g − h is a “perturbed” convex function, i.e.,
h is smaller than g.

Theorem 4.15. Let g : {0, 1}n → Z ∪ {+∞} be a function on {0, 1}n
and h : {0, 1}n → Z be a monotone nondecreasing L♮-convex function. If
x ∈ {0, 1}n satisfies ∂h(x) ⊆ ∂g(x) in (4.8), then for any y ∈ {0, 1}n,

g(x)− 2h(x) ≤ g(y)− h(y). (4.10)

Proof. Let X = supp+(x) and Y = supp+(y), and take a permutation π of
[n] as

{π(1), . . . , π(|X|)} = X,

{π(|X \ Y |+ 1), . . . , π(|X ∪ Y |)} = Y.

23

By the construction (2.8) of subgradients of L♮-convex functions, the vector
p ∈ Zn whose π(i)-th entries are given by

p(π(i)) := h(χ{π(1),...,π(i))})− h(χ{π(1),...,π(i−1)}), i = 1, . . . , n,

belongs to ∂h(x). Since ∂h(x) ⊆ ∂g(x), we have p ∈ ∂g(x). Therefore

g(x)− ⟨p, x⟩ ≤ g(y)− ⟨p, y⟩. (4.11)

By the definition of p and monotonicity of h,

⟨p, x⟩ = h(x),

⟨p, y⟩ = h(χX∪Y)− h(χX\Y) ≥ h(y)− h(x).

Substituting these into (4.11), we obtain

g(x)− 2h(x) ≤ g(y)− h(y).

Corollary 4.16. Let g : {0, 1}n → Z ∪ {+∞} be a function that takes
negative values on its effective domain, i.e., g(x) ≤ 0 for all x ∈ dom g, and
let h : {0, 1}n → Z be a monotone nondecreasing L♮-convex function. If x
satisfies ∂h(x) ⊆ ∂g(x), then

h(x)− g(x) ≥ (1/2) max
y∈{0,1}n

{h(y)− g(y)}.

Proof. Since g(x) ≤ 0, we have

h(x)− g(x) ≥ (1/2)(2h(x)− g(x)).

By (4.10), the right-hand side is bounded from below by h(y)− g(y) for any
y.

As a further corollary, we obtain the following bound for the matroid
constraint submodular maximization problem (see Example 4.3).

Corollary 4.17. Let δ be the indicator function of the family I of indepen-
dent sets of a matroidM and h be a monotone nondecreasing submodular
set function. If x = χX satisfies ∂h(x) ⊆ ∂δ(x), then x is a 1/2 approxima-
tion solution, i.e.,

h(χX) ≥ (1/2)max
Y ∈I

h(χY).

It is known [3] that the matroid constraint monotone submodular max-
imization problem can be solved in polynomial time with approximation
ratio 1− 1/e by the continuous greedy algorithm.

24

Example 4.18. We cannot drop the monotonicity condition in Theorem 4.15.
Consider the following functions g and h on {0, 1}2:

g(0, 0) = 0, g(1, 0) = 0, g(0, 1) = 0, g(1, 1) = +∞,

h(0, 0) = 0, h(1, 0) = 1, h(1, 0) = 3, h(1, 1) = 0.

The function h is submodular. Let us compute the subdifferential at x =
(1, 0). First, p ∈ ∂g(x) if and only if

−p1 ≤ 0, p2 − p1 ≤ 0.

Hence we have ∂g(x) = {p ∈ Z2 : p1 ≥ 0, p2 ≤ p1}. Next, p ∈ ∂h(x) if and
only if

p2 ≤ −1, −p1 ≤ −1, p2 − p1 ≤ 2.

The third inequality is redundant and we have ∂h(x) = {p ∈ Z2 : p1 ≥
1, p2 ≤ −1}. Therefore ∂h(x) ⊆ ∂g(x). Let y = (0, 1). Then the inequality
in (4.10) reads as

g(x)− 2h(x) = −2 ̸≤ −3 = g(y)− h(y).

Indeed, by increasing h(0, 1), the approximation ratio tends to be arbitrarily
worse.

Example 4.19. The inequality in (4.10) is tight. Consider

g(0, 0) = 0, g(1, 0) = 0, g(0, 1) = 0, g(1, 1) = +∞,

h(0, 0) = 0, h(1, 0) = 1, h(1, 0) = 2, h(1, 1) = 2.

The function h is monotone submodular. Let us compute the subdifferential
at x = (1, 0). First, we have ∂g(x) = {p ∈ Z2 : p1 ≥ 0, p2 ≤ p1} as in
Example 4.18. Next, p ∈ ∂g(x) if and only if

−p1 ≤ −1, p2 ≤ 1, p2 − p1 ≤ 1.

The third inequality is redundant and we have ∂h(x) = {p ∈ Z2 : p1 ≥
1, p2 ≤ 1}. Therefore ∂h(x) ⊆ ∂g(x). Let y = (0, 1). Then the inequality in
(4.10) holds with equality:

g(x)− 2h(x) = −2 = g(y)− h(y).

Problem 4.20. Establish a statement about approximation ratio when h
is an M♮-convex function.

25

5 Algorithms

As mentioned in Section 1, there are two types of algorithms in continuous
DC programming; the convex analysis approach (e.g., the DC algorithm)
and the enumerative approach (e.g., branch-and-bound/cutting plane al-
gorithm). We here propose discrete DC algorithms to be categorized as
“discrete convex analysis approach.”

We first propose a general framework of discrete DC algorithm (Algo-
rithm 1), which is a direct translation of the continuous DC algorithm. Our
general framework can be applied to all class of discrete DC programming
problems. We then propose algorithms tailored to M♮−M♮ , M♮−L♮ , and
L♮−L♮ DC programming problems (Algorithms 2, 4, and 5). These algo-
rithms exploit the polyhedral structure of discrete convex functions.

5.1 Generic discrete DC algorithm

We first describe the general framework of discrete DC algorithm which is a
direct translation of the continuous DC algorithm (also known as Concave-
Convex Procedure in the area of machine learning). In DC programming,
the difficulty in the problem minx{g(x) − h(x)} comes from the concavity
of −h. The idea of the DC algorithm is to iteratively approximate h with
its subgradient p ∈ ∂h(x) and solve the convex minimization problem

min
x
{g(x)− ⟨p, x⟩}.

The solution set of this problem is given by ∂g∗(p).
A straightforward adaptation of the above idea to discrete DC program-

ming yields the following algorithm (Algorithm 1). Note that the algorithm
has a symmetry between the primal and dual problems in the Toland-Singer
duality.

Algorithm 1 Generic form of discrete DC algorithm

Let x(1) be an initial solution
for k = 1, 2, . . . do

(Primal phase) Pick p(k) ∈ ∂h(x(k))
(Dual phase) Pick x(k+1) ∈ ∂g∗(p(k))
if g(x(k))− ⟨p(k), x(k)⟩ = g(x(k+1))− ⟨p(k), x(k+1)⟩ then

Return x(k)

end if
end for

Proposition 5.1 (Convergence of the discrete DC algorithm). Let g, h :
Zn → Z ∪ {+∞} be discrete (M♮- or L♮-)convex functions.

26

(1) g(x(k))− h(x(k)) decreases strictly monotonically. Hence, the algorithm
terminates in a finite number of iterations.

(2) When the algorithm terminates, x is a minimum of f = g − h within
∂g∗(p).

Proof. (1) We first note that the termination condition is equivalent to x(k) ∈
∂g∗(p(k)). Suppose x(k) ̸∈ ∂g∗(p(k)). By the Young-Fenchel inequality,

g(x(k)) + g∗(p(k)) > ⟨p(k), x(k)⟩ = h(x(k)) + h∗(p(k)).

Therefore

g(x(k))− h(x(k)) > h∗(p(k))− g∗(p(k)). (5.1)

Similarly, by the Young-Fenchel inequality,

h(x(k+1)) + h∗(p(k)) ≥ ⟨p(k), x(k+1)⟩ = g(x(k+1)) + g∗(p(k)).

Therefore

h∗(p(k))− g∗(p(k)) ≥ g(x(k+1))− h(x(k+1)). (5.2)

By combining (5.1) and (5.2) we obtain

g(x(k))− h(x(k)) > g(x(k+1))− h(x(k+1)),

which shows that g(x(k)) − h(x(k)) strictly decreases monotonically. This
guarantees the finite termination since g − h is integer-valued and bounded
from below.

(2) When the algorithm terminates, we obtain a pair (x, p) such that

x ∈ ∂g∗(p), p ∈ ∂h(x).

For every y ∈ ∂g∗(p) we have p∗ ∈ ∂g(y) ∩ ∂h(x). Then the claim follows
from Lemma 4.10.

To realize the generic discrete DC algorithm, we need to implement the
primal phase (subgradient computation for h) and the dual phase (function
minimization for g). As mentioned in Section 2, both phases can be carried
out efficiently by the existing algorithms in discrete convex analysis. For an
L♮−L♮ DC program where both g and h are L♮-convex and dom g, domh ⊆
{0, 1}n, our generic algorithm coincides with the submodular-supermodular
procedure proposed by Narasimhan and Bilmes [38].

It would be nice if the local optimality condition ∂h(x) ⊆ ∂g(x) in (4.8) is
guaranteed at the termination of the discrete DC algorithm (Algorithm 1).
As it stands, however, the algorithm does not have this property, mainly

27

because it does not specify which subgradient p(k) ∈ ∂g(x(k)) to pick in the
primal phase. By modifying the primal phase to

p(k) ∈ ∂g(x(k)) \ ∂h(x(k)), (5.3)

we can guarantee the local optimality condition ∂h(x) ⊆ ∂g(x) at the ter-
mination of the algorithm.

To implement the modified primal phase (5.3), we take advantage of the
“discreteness” and/or “polyhedral structure” of each class of discrete convex
functions, which is described below.

5.2 M♮−M♮ DC programming

If both g and h are M♮-convex, we can verify the local optimality condi-
tion ∂h(x) ⊆ ∂g(x) in (4.8) in polynomial time by enumerating all faces
of these subdifferentials since the number of faces of ∂h(x) is polynomial
in n (Proposition 5.4). Therefore we can construct a polynomial time (per
iteration) algorithm (Algorithm 2 below) to obtain a local optimal solution
that satisfies ∂h(x) ⊆ ∂g(x) in (4.8).

Lemma 5.2. For an M♮-convex function h,

max
p∈∂h(x)

⟨p,−χi⟩ = h(x− χi)− h(x),

max
p∈∂h(x)

⟨p, χj⟩ = h(x+ χj)− h(x),

max
p∈∂h(x)

⟨p, χj − χi⟩ = h(x+ χj − χi)− h(x).

Proof. This lemma can be obtained immediately from Proposition 5.1 of [35]
but, to be self-contained, we give a direct proof here. We only prove the
third identity. The other two can be proved in the same way.

By the definition of subgradients, we have max⟨p, χj −χi⟩ ≤ h(x+χj −
χi) − h(x). To prove the equality, we construct a subgradient p ∈ ∂h(x)
that satisfies the equality. Consider a weighted directed graph G = (V,E)
where V = [n] ∪ {0} and E = V × V with w(k, 0) = h(x − χk) − h(x),
w(0, l) = h(x + χl) − h(x), and w(k, l) = h(x − χk + χl) − h(x) for all
k, l ∈ [n]. Note that w satisfies the triangle inequality by the M♮-convexity
of h. Let d(k) (k ∈ V) be the shortest path distance from i to k and let
p(k) = d(k)−d(i) for k ∈ [n]. Then p is a feasible potential (i.e., p ∈ ∂h(x))
and p(j)− p(i) = d(j) = w(i, j) = h(x−χi +χj)− h(x). Therefore we have
⟨p, χj − χi⟩ = h(x− i+ j)− h(x) for this p.

28

Lemma 5.3. Let g : Zn → Z∪{+∞} be an M♮-convex function andD ⊆ Zn.
Then D ⊆ ∂g(x) holds if and only if, for all i, j ∈ [n],

max
p∈D
⟨p,−χi) ≤ g(x− χi)− g(x),

max
p∈D
⟨p, χj) ≤ g(x+ χj)− g(x), (5.4)

max
p∈D
⟨p, χj − χi) ≤ g(x− χi + χj)− g(x).

Proof. (if part): Suppose (5.4). Then, for every p ∈ D,

−p(i) ≤ g(x− χi)− g(x),

p(j) ≤ g(x+ χj)− g(x), (5.5)

p(j)− p(i) ≤ g(x− χi + χj)− g(x).

Therefore p ∈ ∂g(x) by the explicit formula of M♮-subgradients (Theo-
rem 2.5).

(only if part): Suppose D ⊆ ∂g(x). Then, for every a ∈ Rn,

max
p∈D
⟨p, a) ≤ max

p∈∂g(x)
⟨p, a⟩.

By choosing a = −χi, χj , and χj − χi and using Lemma 5.2, we obtain
(5.4).

Proposition 5.4. Let g and h be M♮-convex functions. Then ∂h(x) ⊆ ∂g(x)
holds if and only if, for all i, j ∈ [n],

h(x− χi)− h(x) ≤ g(x− χi)− g(x),

h(x+ χi)− h(x) ≤ g(x+ χj)− g(x), (5.6)

h(x− χi + χj)− h(x) ≤ g(x− χi + χj)− g(x).

Proof. Apply Lemma 5.3 with D = ∂h(x) and use Lemma 5.2.

From Proposition 5.4, we are naturally led to Algorithm 2 below. When
the algorithm terminates, x satisfies (5.6) and hence the local optimality
condition ∂h(x) ⊆ ∂g(x) in (4.8).

Algorithm 2 M♮−M♮ DC algorithm

loop
Find a ∈

∪
i,j∈[n]{−χi, χj , χj − χi} such that h(x + a) − h(x) > g(x +

a)− g(x)
If no such a exists, return x
Find p ∈ ∂h(x) such that ⟨p, x⟩ = h(x+a)−h(x) (by the shortest path
algorithm)
x← argmin{g(y)− ⟨p, y⟩ : y ∈ Zn}

end loop

29

Remark 5.5. Since the optimality condition (5.6) is expressed only in the
(primal) function values, we can construct a simple “primal” algorithm be-
low with guaranteed convergence to a local optimal solution.

Algorithm 3 Simplified M♮−M♮ DC algorithm

repeat
x← argmin{g(y)− h(y) : y ∈

∪
i,j∈[n]{x− χi, x+ χj , x− χi + χj}}

until convergence
Return x

5.3 M♮−L♮ DC programming

If g is M♮-convex and h is L♮-convex, the local optimality condition ∂h(x) ⊆
∂g(x) in (4.8) can be verified in polynomial time. The basic idea is the
same as in the M♮−M♮ case: we enumerate all faces of a subdifferential of
an M♮-convex function.

Proposition 5.6. Let g be an M♮-convex function and h be an L♮-convex
function. Then ∂h(x) ⊆ ∂g(x) holds if and only if, for all p ∈ ∂h(x),

⟨p,−χi⟩ ≤ g(x− χi)− g(x), i ∈ [n],

⟨p, χj⟩ ≤ g(x+ χj)− g(x), j ∈ [n], (5.7)

⟨p, χi − χi⟩ ≤ g(x− χi + χj)− g(x), i, j ∈ [n].

Proof. Apply Lemma 5.3 with D = ∂h(x).

The maximization of the left-hand sides of (5.7) can be solved by the
greedy algorithm, although no simple expressions are available for those
maximum values. Therefore, if ∂h(x) ̸⊆ ∂g(x), we can obtain a certificate
p such that p ∈ ∂h(x) and p ̸∈ ∂g(x) in polynomial time. Combining this
procedure with the generic discrete DC algorithm, we obtain Algorithm 4
below. When the algorithm terminates, we have x ∈ Zn that satisfies the
local optimality condition ∂h(x) ⊆ ∂g(x) in (4.8).

Algorithm 4 M♮−L♮ DC algorithm

loop
Find p ∈ ∂h(x) that violates (5.7) (by the greedy algorithm)
If no such p exists, return x
x← argmin{g(y)− ⟨p, y⟩ : y ∈ Zn}

end loop

30

5.4 L♮−L♮ DC programming

For an L♮-convex function g, its subdifferential ∂g(x) has exponentially many
faces. Therefore we cannot use a similar technique as that for M♮−M♮ or
M♮−L♮ DC programming. Indeed, if both g and h are L♮-convex, the prob-
lem of testing for inclusion ∂h(x) ⊆ ∂g(x) is equivalent to the so-called
submodular containment problem, which is co-NP complete [25]. However,
by the Toland-Singer duality, an L♮−L♮ DC program is transformed to an
M♮−M♮ DC program and its local optimality condition ∂g∗(p) ⊆ ∂h∗(p) can
be checked in polynomial time by the method described above.

Once a dual local minimum solution p is obtained, by optimal solution
transportation (Proposition 4.13), we can construct a primal solution x by
taking x from ∂g∗(p) that satisfies g(x) − h(x) = h∗(p) − g∗(p). Note that
the dual solution p certainly satisfies the dual local optimality condition
∂g∗(p) ⊆ ∂h∗(p), but the constructed primal solution x does not necessarily
satisfy the primal local optimality condition ∂h(x) ⊆ ∂g(x).

Algorithm 5 L♮−L♮ DC algorithm

Compute p ∈ Zn by applying Algorithm 2 or 3 to the dual problem:
min{h∗(p)− g∗(p) : p ∈ Zn}
Return x ∈ ∂g∗(p)

5.5 L♮−M♮ DC programming

Since g is L♮-convex, we cannot use a similar technique as that for M♮−M♮

or M♮−L♮ DC programming. Furthermore, since the dual of L♮−M♮ DC
program is another L♮−M♮ DC program, we cannot use the technique for
L♮−L♮ DC programming. However, since the problem is a “submodular
function minimization on a distributive lattice”, it can be solved efficiently
(see Remark 5.7 below), independently of our generic form of the discrete
DC algorithm. Establishing an algorithm of “discrete DC algorithm” type
for L♮−M♮ DC programming is an interesting problem.

Remark 5.7. Consider an L♮−M♮ DC programming problem minx{g(x)−
h(x)} on Zn. Since an L♮-convex function g : Zn → Z∪{+∞} is submodular
on Zn and an M♮-convex function h : Zn → Z ∪ {+∞} is supermodular on
Zn, f := g − h is submodular on dom g (by the convention of (+∞) −
(+∞) = (+∞)). Furthermore, by the finiteness assumption (4.4), we have
dom f = dom g. Since dom f forms a distributive lattice (with respect to
component-wise max and min), an L♮−M♮ DC programming problem is a
special case of submodular function minimization problem on a distributive
lattice [48]. Hence, if dom f is a finite set, this problem can be solved in
polynomial time in the length of a maximal chain in the lattice [26, 35, 41].
For example, if dom f = [0,K]n, we can minimize f in O(poly(nK)) time.

31

For the convenience of readers, we give a brief description of a method for
submodular function minimization on a distributive lattice. The following
argument is based on Note 10.15 in [35] and Section 4 in [41].

Let f : L → Z be a submodular function on a distributive lattice L =
(L,∨,∧). Let I ⊆ L be the set of join-irreducible elements, and define
ϕ : L→ 2I by

ϕ(x) = {y ∈ I : x ∧ y = y}, x ∈ L.

By Birkhoff’s representation theorem [2], ϕ is a lattice isomorphism. Note
that ϕ−1(X) =

∨
x∈X x for X ⊆ I.

Let F : 2I → Z be defined by F (X) := f(ϕ−1(X)). Then F is a
submodular set function on I. Indeed,

F (X) + F (Y) = f(ϕ−1(X)) + f(ϕ−1(Y))

≥ f(ϕ−1(X) ∨ ϕ−1(Y)) + f(ϕ−1(X) ∧ ϕ−1(Y))

= f(ϕ−1(X ∪ Y)) + f(ϕ−1(X ∩ Y))

= F (X ∪ Y) + F (X ∩ Y).

Furthermore, since f(x) = F (ϕ(x)) for every x ∈ L, we have

min
X⊆I

F (X) = min
x∈L

f(x).

Therefore we can solve the submodular function minimization problem on
a distributive lattice (right-hand side) through the submodular set function
minimization (left-hand side). The complexity is polynomial in |I|, which is
equal to the length of a maximal chain of L.

Acknowledgement

The authors thank Akiyoshi Shioura for helpful discussions, Satoru Iwata
for providing the information about reference [25], Tom McCormick and
Maurice Queyranne for communicating references [41].

This work is supported by KAKENHI (21360045) and the Aihara Project,
the FIRST program from JSPS.

32

References

[1] M. Bačák and J. M. Borwein (2011): On difference convexity of locally
Lipschitz functions. Optimization, vol. 60, pp. 961–978.

[2] G. Birkhoff (1937): Rings of sets. Duke Mathematical Journal, vol 3,
pp. 443―454.

[3] G. Calinescu, C. Chekuri, and M. Pál, and J. Vondrák (2011): Maximiz-
ing a monotone submodular function subject to a matroid constraint.
SIAM Journal on Computing, vol. 40, pp. 1740–1766.

[4] A. W. M. Dress and W. Wenzel (1992): Valuated matroids. Advances
in Mathematics, vol. 93, pp. 214–250.

[5] J. Edmonds (1970): Submodular functions, matroids and certain poly-
hedra. In: R. Guy, H. Hanani, N. Sauer, and J. Schönheim, eds., Com-
binatorial Structures and Their Applications, Gordon and Breach, New
York, pp. 69–87.

[6] P. Favati and F. Tardella (1990): Convexity in nonlinear integer pro-
gramming. Ricerca Operativa, vol. 53, pp. 3–44.

[7] U. Feige, V. S. Mirrokni, and J. Vondrák (2011): Maximizing non-
monotone submodular functions. SIAM Journal on Computing, vol. 40,
pp. 1133–1153.

[8] S. Fujishige (2005): Submodular Functions and Optimization. 2nd ed.,
Annals of Discrete Mathematics, vol. 58, Elsevier, Amsterdam.

[9] S. Fujishige and K. Murota (2000): Notes on L-/M-convex functions
and the separation theorems. Mathematical Programming, vol. 88,
pp. 129–146.

[10] A. Frank (1984): Generalized polymatroids. In A. Hajnal, L. Lovász,
and V. T. Sós, eds., Finite and Infinite Sets, (Proceedings of 6th Hun-
garian Combinatorial Colloquium, 1981), Colloquia Mathematica Soci-
etatis János Bolyai, vol. 37, pp. 285–294, North-Holland.

[11] A. Frank (2011): Connections in Combinatorial Optimization. Oxford
Lecture Series in Mathematics and Its Applications, 38, Oxford Uni-
versity Press.

[12] A. Frank and É. Tardos (1988): Generalized polymatroids and submod-
ular flows. Mathematical Programming, vol. 42, pp. 489–563.

[13] P. Hartman (1959): On functions representable as a difference of convex
functions. Pacific Journal of Mathematics, vol. 9, pp. 707–713.

33

[14] H. Hirai and K. Murota (2004): M-convex functions and tree metric.
Japan Journal of Industrial and Applied Mathematics, vol. 21, pp. 391–
403.

[15] J. B. Hiriart-Urruty (1985): Generalized differentiability, duality and
optimization for problems dealing with differences of convex func-
tions. Lecture Notes in Economics and Mathematical Systems, vol. 256,
pp. 37–70.

[16] J. B. Hiriart-Urruty (1989): From convex optimization to nonconvex
optimization, Part I: Necessary and sufficient conditions for global op-
timality. In: F. H. Clarke, V. F. Dem’yanov, and F. Giannessi, eds.,
Nonsmooth Optimization and Related Topics, Ettore Majorana In-
ternational Sciences, Physical Sciences, Series 43, Plenum Press, New
York, pp. 219–239.

[17] J.-B. Hiriart-Urruty and C. Lemaréchal (1993): Convex Analysis and
Minimization Algorithms I, II. Springer-Verlag, Berlin.

[18] R. Horst, N. V. Thoai (1999): DC Programming: Overview. Journal of
Optimization Theory and Applications, vol. 103, pp. 1–43.

[19] S. Iwata and J. B. Orlin (2009): A simple combinatorial algorithm for
submodular function minimization. In Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial
and Applied Mathematics, pp. 1230–1237.

[20] R. Iyer and J. Bilmes (2012): Algorithms for approximate minimization
of the difference between submodular functions, with applications. In
Proceedings of the 28th Conference on Uncertainty in Artificial Intelli-
gence, pp. 407–417. Also: http://arxiv.org/abs/1207.0560.

[21] Y. Kawahara, K. Nagano, and Y. Okamoto (2011): Submodular frac-
tional programming for balanced clustering. Pattern Recognition Let-
ters, vol. 32, pp. 235–243.

[22] Y. Kawahara and T. Washio (2011): Prismatic algorithm for discrete
D.C. programming problem. In Proceedings of the 25th Annual Con-
ference on Neural Information Processing Systems, pp. 2106–2114.

[23] V. Kolmogorov and A. Shioura (2009): New algorithms for convex cost
tension problem with application to computer vision. Discrete Opti-
mization, vol. 6, pp. 378–393.

[24] J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko (2009): Non-
monotone submodular maximization under matroid and knapsack con-
straints. In Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, pp. 323–332.

34

[25] S. T. McCormick (1996): Submodular containment is hard, even for
networks. Operations Research Letters, vol. 19, pp. 95–99.

[26] S. T. McCormick (2006): Submodular function minimization. In: K.
Aardal, G. Nemhauser, and R.Weismantel, eds., Discrete Optimization,
Handbooks in Operations Research and Management Science, vol. 12,
Elsevier Science Publishers, Berlin, Chapter 7, pp. 321–391.

[27] B. L. Miller (1971): On minimizing nonseparable functions defined on
the integers with an inventory applications. SIAM Journal on Applied
Mathematics, vol. 21, pp. 166–185.

[28] S. Moriguchi and K. Murota (2005): Discrete Hessian matrix for L-
convex functions. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E83-A, pp. 1104–1108.

[29] S. Moriguchi and K. Murota (2012): On discrete Hessian matrix and
convex extensibility. Journal of Operations Research Society of Japan,
vol. 55, pp. 48–62.

[30] K. Murota (1996): Valuated matroid intersection, I: optimality criteria.
SIAM Journal on Discrete Mathematics, vol.9, pp. 545–561.

[31] K. Murota (1996): Valuated matroid intersection, II: algorithms. SIAM
Journal on Discrete Mathematics, vol.9, pp. 562–576.

[32] K. Murota (1997): Matroid valuation on independent sets. Journal of
Combinatorial Theory, Series B, vol. 69, pp. 59–78.

[33] K. Murota (1998): Discrete convex analysis. Mathematical Program-
ming, vol. 83, pp. 313–371.

[34] K. Murota (2000): Matrices and Matroids for Systems Analysis.
Springer-Verlag, Berlin.

[35] K. Murota (2003): Discrete Convex Analysis. Society for Industrial and
Applied Mathematics, Philadelphia.

[36] K. Murota (2009): Recent developments in discrete convex analysis. In:
W. Cook., L. Lovász, J. Vygen, eds., Research Trends in Combinatorial
Optimization, Springer, Berlin, Chapter 11, pp. 219–260.

[37] K. Murota and A. Shioura (1999): M-convex function on generalized
polymatroid. Mathematics of Operations Research, vol. 24, pp. 95–105.

[38] M. Narasimhan and J. Bilmes (2005): A submodular-supermodular pro-
cedure with applications to discriminative structure learning. In Pro-
ceedings of the 21st Conference on Uncertainty in Artificial Intelligence,
pp. 404–412.

35

[39] S. Onn (2010): Nonlinear Discrete Optimization: An Algorithmic The-
ory. European Mathematical Society, Zurich.

[40] J. B. Orlin (2009): A faster strongly polynomial time algorithm for
submodular function minimization. Mathematical Programming, Series
A, vol. 118, pp. 237–251.

[41] M. Queyranne and F. Tardella (2004): Submodular function minimiza-
tion in Zn and searching in Monge arrays. Unpublished manuscript,
Presented by M. Queyranne at CTW04 (Cologne Twente Workshop
2004), Electronic Notes in Discrete Mathematics, vol. 17, p. 5.

[42] A. Schrijver (2003): Combinatorial Optimization: Polyhedra and Effi-
ciency, Springer-Verlag, Berlin.

[43] A. Shioura (2000): Level set characterization of M-convex functions.
IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, E83-A, pp. 586–589.

[44] I. Singer (1979): A Fenchel-Rockafellar type duality theorem for max-
imization. Bulletin of the Australian Mathematical Society, vol. 20,
pp. 193–198.

[45] P. D. Tao and S. El Bernoussi (1987): Duality in D.C. (difference of
convex functions) optimization: Subgradient methods. In: K. H. Hoff-
man, J. Zowe, J. B. Hiriart-Urruty, and C. Lemaréchal, eds., Trends in
Mathematical Optimization, International Series of Numerical Mathe-
matics, vol. 84, Birkhäuser, Basel, pp. 277–293.

[46] P. D. Tao and L. T. Hoai An (1997): Convex analysis approach to D.C.
programming: Theory, algorithms and applications. Acta Mathematica
Vietnamica, vol. 22, pp. 289–355.

[47] J. F. Toland (1979): A duality principle for non-convex optimisation
and the calculus of variations. Archive for Rational Mechanics and Anal-
ysis, vol. 71, pp. 41–61.

[48] D. M. Topkis (1978): Minimizing a submodular function on a lattice.
Operations Research, vol. 26, pp. 305–321.

[49] H. Tuy (1987): Global minimization of a difference of two convex func-
tions. Mathematical Programming Study, vol. 30, pp. 150–182.

[50] H. Tuy (1995): D.C. optimization: Theory, methods and algorithms. In:
R. Horst and P. M. Pardalos, eds., Handbook of Global Optimization,
Kluwer Academic Publishers, Dordrecht, pp. 149–216.

36

[51] J. Vondrák (2008): Optimal approximation for the submodular welfare
problem in the value oracle model. In Proceedings of the 40th annual
ACM Symposium on Theory of Computing, pp. 67–74.

[52] A. L. Yuille and A. Rangarajan (2003): The concave-convex procedure.
Neural Computation, vol. 15, pp. 915–936.

37

