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Abstract

The stable allocation model is a many-to-many matching model in which
each pair’s partnership is represented by a nonnegative integer. This pa-
per establishes a link between two different formulations of this model;
the choice function model studied thoroughly by Alkan and Gale and the
discrete-concave (M♮-concave) value function model introduced by Eguchi,
Fujishige and Tamura. We show that the choice functions induced from
M♮-concave value functions are endowed with consistency, persistence and
size-monotonicity. This implies, by the result of Alkan and Gale, that the
stable allocations for M♮-concave value functions form a distributive lattice
with several significant properties such as polarity, complementarity, and
uni-size property. Furthermore, we point out that these results can be ex-
tended for quasi M♮-concave value functions.
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1 Introduction

Since the pioneering work of Gale and Shapley [15], the (two-sided) stable
matching model has been generalized in many different ways [17, 20, 21].
Among them is the stable allocation model (schedule matching) of Alkan–
Gale [3]. This is a many-to-many matching model where each pair’s part-
nership is represented by a nonnegative integer. A thorough study of this
model was made by Alkan and Gale [3] in terms of choice functions. A value
function approach for the stable allocation model was initiated by Eguchi,
Fujishige and Tamura [8, 13] by utilizing concepts and results from discrete
convex analysis (Fujishige [11], Murota [23, 24]). Specifically, discrete con-
cavity called M♮-concavity plays the primary role as the property of value
functions.

The objective of this paper is to establish a substantial connection from
the value function approach to the choice function approach, with particu-
lar interest in the following questions about the M♮-concave value function
model:

• Whether stable allocations exist or not?

• Whether stable allocations form a lattice or not?

• Whether stable allocations form a distributive lattice or not?

Stable matching model In the college admissions problem considered
by Gale–Shapley [15], each student (college) has a strict preference ordering
on colleges (students). Additionally, each college has a quota, the maximum
number of students it can admit. This is the stable matching problem in its
original form.

Blair [6] generalized this model to a great extent. In his model, agents
on each side can have multiple partners and preferences are given by path-
independent choice functions. A choice function represents a preference on
combinations of agents, not on individuals. He showed that the set of (pair-
wise) stable matchings is nonempty and forms a lattice. However, the lattice
operations are not simple and the lattice is not necessarily distributive.

Fleiner [10] pointed out that the nonemptiness and the lattice struc-
ture of Blair’s model can be shown by using Tarski’s fixed point theorem
[31]. The fundamental observation in this approach is that stable match-
ings correspond to fixed points of a certain monotone function and the de-
ferred acceptance algorithm of Gale–Shapley can be regarded as an itera-
tion of this function. Moreover, Fleiner found that if the choice functions
are “w-increasing” (beyond being path-independent), the lattice operations
for stable matchings become simpler and the lattice of stable matchings is
distributive.
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Independently, Alkan [2] obtained a similar result: if the path-independent
choice functions are “cardinal-monotone,” which is a special case of Fleiner’s
w-increasingness, the lattice operations for stable matchings are simple and
the lattice of stable matchings is distributive. Furthermore, despite the
absence of quotas, each agent matches the same number of partners in
any stable matching, which is a generalization of the rural hospital theo-
rem. Hatfield–Milgrom [18] studied one-to-many matching in terms of con-
tracts signed between doctors and hospitals, and obtained results similar to
Fleiner’s [10] or Alkan’s [2]. It was shown that if hospitals’ choice functions
satisfy “law of aggregate demand,” which is similar to cardinal-monotonicity,
the strategy proofness holds for the deferred acceptance algorithm with doc-
tors proposing.

Stable allocation model The stable matching model has been extended
to stable allocation model. This is an extension from {0, 1}-variables to
integer-valued (or real-valued) variables. In this model, we determine how
much time each pair spend together, whereas in the matching model we
determine whether or not each pair takes partnership.

Bäıou and Balinski [4] were the first to consider this extension and de-
fined the generalized (pairwise) stability for stable allocation model. In
their model, each agent’s preference is represented by a strict ordering on
the opposite agents and each agent has capacity constraint.

Alkan and Gale [3] considered the stable allocation model with more
general preferences by extending Alkan’s choice function model [2] to vectors.
It was found that Alkan’s results can naturally be extended to their vector
versions. That is, if the choice functions have consistency and persistence,
which can be regarded as a vector version path-independence, the set of
stable allocations is nonempty and forms a lattice. Moreover, if the choice
functions additionally have “size-monotonicity,” which is a vector version of
cardinal monotonicity, the lattice of stable allocations is distributive and has
several significant properties which they called polarity, complementarity,
and uni-size property.

Discrete-concave value function model When variables take integers
or reals, it may be more natural or convenient to assume that agents’ pref-
erences are represented by value functions rather than by choice functions.

Eguchi, Fujishige and Tamura [8] proposed a stable allocation model
where allocations are integer vectors and each agent has his value function
to evaluate the desirability of allocations for him. It was found that a stable
allocation always exists if the value functions are M♮-concave. M♮-concavity
is a kind of concavity for discrete functions with relevance in mathematical
economics, to be described in Section 2.

Assuming that agent’s choice is to maximize his value function, we can
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define choice functions from value functions. Then the value function model
can be transformed to a choice function model. If there are no ties in the
maximum of the value function, the maximizer is uniquely determined and
the choice function returns a single vector as the possible choice. If this is
the case, we say that the value function is unique-selecting.

In this paper, we show that if the value functions are unique-selecting
and M♮-concave, the choice functions induced from them have consistency,
persistence and size-monotonicity, which are the properties highlighted in
Alkan–Gale [3] (Lemmas 3.8 and 4.9). A combination of these facts with the
results of [3] shows that the stable allocations for M♮-concave value functions
form a distributive lattice with several significant properties such as polarity,
complementarity, and uni-size property (Theorems 4.11 and 4.12).

Furthermore, we point out that these results can be extended for quasi
M♮-concave value functions (Theorems 5.6 and 5.7). Quasi M-concavity is
defined by ordinal relationship of function values, and not by values them-
selves. Therefore, the extensibility to quasi M-concave functions means
that the desirable structure of stable allocations is guaranteed solely by
the concave-like ordering of values. This agrees with the fact that the sta-
bility of allocations is defined not by function values themselves but by their
ordinal relationship.
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2 M♮-concave Functions

In this section we introduce the concept of M♮-concave functions, which
plays a central role in discrete convex analysis (see Murota [23] for details).

2.1 Definition

Let S be a nonempty finite set, and Z and R be the sets of integers and
reals, respectively. We define the positive support and the negative support
of x = (x(e) | e ∈ S) ∈ ZS , respectively, by

supp+(x) = { e ∈ S | x(e) > 0 } , supp−(x) = { e ∈ S | x(e) < 0 } .

For any x, y ∈ ZS , the vectors x ∧ y and x ∨ y in ZS are defined by

(x ∧ y)(e) = min{x(e), y(e)}, (x ∨ y)(e) = max{x(e), y(e)} (e ∈ S).

For each e ∈ S, we define χe as the vector whose e-component is 1 and
other components are 0. For a function f : ZS → R ∪ {−∞}, we define the
effective domain of f by

domf = {x ∈ ZS | f(x) ̸= −∞} .

A function f : ZS → R ∪ {−∞} with domf ̸= ∅ is called M♮-concave1 if
it satisfies

(M♮) ∀x, y ∈ domf, ∀e ∈ supp+(x− y), ∃e′ ∈ supp−(x− y) ∪ {0} :

f(x) + f(y) ≤ f(x− χe + χe′) + f(y + χe − χe′),

where χ0 is a zero vector.

M♮-concavity for a set function f is also defined by (M♮), where f : 2S →
R ∪ {−∞} is identified with f̂ : ZS → R ∪ {−∞} defined by

f̂(x) =

{
f(X) if x = χX for some X ∈ 2S ,

−∞ otherwise.

Here χX is the characteristic vector of X, i.e., χX(e) = 1 if e ∈ X and
χX(e) = 0 otherwise.

The condition (M♮) is originated from the exchange axiom in matroid
theory. Despite its seemingly complicated definition, M♮-concave functions
include many functions familiar to us; see Appendix A.

1M♮-concave functions are defined by Murota–Shioura [25] as a variant of M-convex
functions introduced by Murota [22].
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2.2 Properties

M♮-concave functions have nice features from the point of view of mathe-
matical economics.

A value function (or utility function) is usually assumed to be concave in
economics. For any M♮-concave function f : ZS → R ∪ {−∞}, there exists
a concave function f̄ : RS → R ∪ {−∞} with f̄(x) = f(x) for any x ∈ ZS .
That is, an M♮-concave function on ZS has a concave extension on RS .

Also a value function is usually assumed to have decreasing marginal
returns, which is equivalent to submodularity in the discrete case. An M♮-
concave function f : ZS → R ∪ {−∞} satisfies

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (x, y ∈ domf).

Kelso–Crawford [19] introduced gross substitutes condition for a set func-
tion U : 2S → R ∪ {−∞}:

(GS) For any p, q ∈ RS with p ≤ q and any X ∈ 2S which maximizes the
value of U [−p] , there exists Y ∈ 2S such that Y maximizes U [−q] and
Y ⊇ X ∩ { e ∈ S | p(e) = q(e) },

where U [−p] : 2S → R∪{−∞} is defined by U [−p](X) = U(X)−
∑

e∈X p(e).
This property (GS) is widely accepted as an important property of value
function in demand theory. If we interpret X ∈ 2S as a set of commodities,
U(X) as a monetary valuation for X, and p ∈ RS as prices, then the above
condition says: when each price increases or remains the same, the consumer
still wants commodities which are chosen before and whose prices remain
the same.

A gross substitute function U is M♮-concave. The converse is also true.
That is, a function f with domf ⊆ {0, 1}S is M♮-concave if and only if the
associated U is gross substitute [14, 16, 28]. Furthermore, it is known [7, 27]
that M♮-concavity for functions on ZS can be characterized by generalized
versions of (GS) under certain natural assumptions.
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3 Stable Allocation Model

We now consider two finite sets of agents I and J . We interpret I as workers
and J as firms. Each worker i ∈ I can work at multiple firms, and each firm
j ∈ J can employ multiple workers. Each firm employs each worker with
multi-units of labor time . An allocation is an I × J matrix of nonnegative
integers. The (i, j)-entry represents the number of units of labor time for
which i ∈ I works for j ∈ J . In the stable allocation model, each agent has
a preference on his labor allocation and the main theme is the stability of
allocation that we define later.

Let E = I × J , which is the set of all pairs of workers i ∈ I and firms
j ∈ J . Then an allocation X is an element of ZE

+, i.e., an I × J matrix
(x(i, j) | i ∈ I, j ∈ J). Let Ei = {i}×J for i ∈ I and Ej = I×{j} for j ∈ J .

We denote the i-th row of X by xi, i.e., xi = (x(i, j) | j ∈ J) ∈ ZEi
+ ≃ Z

|J |
+

and the j-th column of X by xj , i.e., xj = (x(i, j) | i ∈ I) ∈ Z
Ej

+ ≃ Z
|I|
+ .

Each agent k ∈ I ∪ J has a preference on allocations. We assume that k’s
preference for X ∈ ZE

+ depends only on xk.
To represent agents’ preferences mathematically, several ways can be

conceived. In Sections 3.1 and 3.2, we introduce two different submodels:
value function model and choice function model. The difference between the
two is how to represent agents’ preferences. In Section 3.3, we explain the
relation between these two submodels.

3.1 Value function model

We describe the value function model of Eguchi–Fujishige–Tamura [8] and
Fujishige–Tamura [13]. In this model, each agent k ∈ I ∪ J has a value
function fk : ZEk

+ → R∪{−∞} to evaluate the desirability of allocations for

k. We assume that for each k ∈ I ∪ J , domfk is bounded and has 0 ∈ ZEk
+

as the minimum point.
Let uk ∈ ZEk

+ be uk = sup(domfk), the upper bound of domfk, for all
k ∈ I ∪ J . We define the set of maximizers of fk subject to a capacity
x ∈ ZEk

+ by

argmax { fk(y) | y ≤ x } = { z ∈ ZEk
+ | z ≤ x and [∀y ≤ x, f(z) ≥ f(y)] } .

Then the (pairwise) stability notion is formalized as follows2:

Definition 3.1. (Stability in terms of value functions) An allocation X ∈
ZE
+ is stable with respect to {fk}k∈I∪J if it satisfies the following two condi-

tions:

1. For every k ∈ I ∪ J , xk ∈ argmax { fk(y) | y ≤ xk } .
2This is a special case of the Fujishige–Tamura model [13] found in the exposition in

Tamura [30].
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2. There is no blocking pair, where a blocking pair forX is a pair (i, j) ∈ E
such that for some yi ∈ domfi, yj ∈ domfj , the following hold:

fi(xi) < fi(yi), yi ≤ (xi ∨ ui(j)χj),

fj(xj) < fj(yj), yj ≤ (xj ∨ uj(i)χi),

yi(j) =yj(i).

Here it should be clear that xi, χj ∈ ZEi
+ ≃ Z

|J |
+ and xj , χi ∈ Z

Ej

+ ≃ Z
|I|
+ .

If the condition 1 fails, some agent k ∈ I∪J prefers to decrease his labor
time, and he tries to deviate from the allocation.

The inequality yi ≤ (xi ∨ ui(j)χj) in the condition 2 means that yi’s j-
component is virtually unbounded while the other components are bounded
by xi. The inequality yj ≤ (xj∨uj(i)χi) can be interpreted similarly. Then if
the condition 2 fails under the condition 1, there exists some pair (i, j) such
that both i and j prefer to increase the labor time between them and their
demands coincide, and they try to increase the allocation on (i, j) together.

It is known3 that when {fk}k∈I∪J are all M♮-concave functions, the last
equation in the above definition can be removed without changing the mean-
ing of stability. Therefore under the assumption of M♮-concavity, the above
definition can be rewritten in the following form:

Lemma 3.2. Assume that value functions {fk}k∈I∪J are all M♮-concave.
An allocation X ∈ ZE

+ is stable with respect to {fk}k∈I∪J if and only if it
satisfies the following two conditions:

1. For every k ∈ I ∪ J , xk ∈ argmax { fk(y) | y ≤ xk } .
2. For every pair (i, j) ∈ E, xi ∈ argmax { fi(y) | y ≤ (xi ∨ ui(j)χj) }

or xj ∈ argmax { fj(y) | y ≤ (xj ∨ uj(i)χi) }.

3.2 Choice function model

Let b ∈ ZS
+ be an upper bound vector and B = {x ∈ ZS

+ | x ≤ b } be a
feasible vectors set4. A function C : B → B is called a choice function if
C(x) ≤ x for all x ∈ B.

In this subsection, we explain the choice function model. Let each agent
k ∈ I ∪ J have an upper bound vector bk ∈ ZEk

+ and a choice function

Ck : Bk → Bk, where Bk = {x ∈ ZEk
+ | x ≤ bk }. For x ∈ Bk, we interpret

Ck(x) ∈ Bk as k’s choice subject to the capacity x, i.e., Ck(x) is k’s (unique)
most desirable allocation among { z ∈ Bk | z ≤ x }.

Then the (pairwise) stability notion due to [3] is formalized as follows:

3See Lemma 3.1 (i) in Fujishige–Tamura [13].
4In Alkan–Gale [3], B is defined more generally
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Definition 3.3. (Stability in terms of choice functions) An allocation X ∈
ZE
+ is stable with respect to {Ck}k∈I∪J if it satisfies the following two con-

ditions:

1. For every k ∈ I ∪ J , xk = Ck(xk),
2. For every pair (i, j) ∈ E, xi is j-satiated or xj is i-satiated (or both).

Here we say that xi is j-satiated, if Ci(y)(j) ≤ xi(j) holds for all y ≥ xi. We
say that xj is i-satiated similarly.

In Alkan–Gale [3], choice functions are assumed to possess two natural
properties below.

Definition 3.4. C is consistent if [ C(x) ≤ y ≤ x =⇒ C(y) = C(x) ].

Definition 3.5. C is persistent if [ x ≥ y =⇒ y ∧ C(x) ≤ C(y) ].

Consistency is quite a reasonable property since C(x) means the most
desirable allocation among { z ∈ B | z ≤ x }.

Persistence is a generalization of the substitutability that has widely
been used in ordinary matching models since Roth [29]. The condition
of persistence is equivalent to the following: for each y ∈ B and e ∈ S,
[ C(y)(e) < y(e) =⇒ C(x)(e) ≤ C(y)(e) (∀x ≥ y) ]. This says that if
an agent wants an item e strictly less than the capacity y(e), he does not
increase his demand on e when the capacity is enlarged to x.

When {Ck}k∈I∪J are all consistent and persistent, the definition of sta-
bility in Definition 3.3 can be rewritten in the following form:

Lemma 3.6. Assume that choice functions {Ck}k∈I∪J are all consistent and
persistent. An allocation X ∈ ZE

+ is stable with respect to {Ck}k∈I∪J if and
only if it satisfies the following two conditions:

1. For every k ∈ I ∪ J , xk = Ck(xk),
2. For every pair (i, j) ∈ E, xi = Ci(xi∨bi(j)χj) or xj = Cj(xj∨bj(i)χi).

Remark 3.7. For a choice function C : 2S → 2S , it is known that path-
independence condition

C(C(X) ∪ Y ) = C(X ∪ Y ) (X,Y ∈ 2S)

is equivalent to the combination of consistence and persistence (substi-
tutability) [1]. Hence for a choice function C : B → B, consistence and
persistence in conjunction can be regarded as a vector version of path-
independence.
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3.3 From value function model to choice function model

Let us say that a value function f : ZS
+ → R ∪ {−∞} is unique-selecting if

for any x ∈ ZS
+, argmax { f(y) | y ≤ x } is a singleton. Then we can define

a choice function C : B → B with B = {x ∈ ZS
+ | x ≤ sup(domf) } by

C(x) = argmax { f(y) | y ≤ x } (x ∈ B). (3.1)

We say that C is induced from f .
The following lemma asserts that M♮-concavity of value function f im-

plies persistence.

Lemma 3.8. For unique-selecting M♮-concave value function f , the choice
function C induced from f is consistent and persistent.

Proof. Consistency of C is obvious by the definition (3.1) of induction. Per-
sistence can be proved by using Lemma 5.2 of [12], which is valid for a
general M♮-concave function. For a unique-selecting M♮-concave function,
however, the following simpler proof is possible.

To prove by contradiction, suppose that there exist x, y ∈ ZS
+ such that

x ≥ y holds and y ∧ C(x) ≤ C(y) fails. Set x′ = C(x), y′ = C(y). Since
y ∧ x′ ≤ y′ fails, there is some e ∈ S such that y(e) ∧ x′(e) > y′(e). Then
e ∈ supp+(x′ − y′), so we can apply the exchange axiom (M♮) to x′, y′ and
e. Then for some e′ ∈ supp−(x′ − y′) ∪ {0} the following inequality holds:

f(x′) + f(y′) ≤ f(x′ − χe + χe′) + f(y′ + χe − χe′). (3.2)

In (3.2), we have two cases: e′ ∈ supp−(x′ − y′) or e′ = 0. In the case
of e′ ∈ supp−(x′ − y′), we have x′(e′) < y′(e′) ≤ y(e′) ≤ x(e′), and therefore
x′ − χe + χe′ ≤ x, which is also true in the other case of e′ = 0. Since
x′ = C(x) is the unique maximizer of f in { z ∈ ZS

+ | z ≤ x }, it holds that
f(x′ − χe + χe′) < f(x′). Similarly, we have f(y′ + χe − χe′) < f(y′), since
y′+χe−χe′ ≤ y by y′(e) < y(e)∧x′(e) ≤ y(e). These two strict inequalities
contradict (3.2).

By Lemmas 3.2, 3.6, and 3.8 we obtain the following fact.

Theorem 3.9. Assume that {fk}k∈I∪J are all unique-selecting M♮-concave
functions, and let Ck be the choice function induced from fk for each k ∈
I ∪ J . Then X ∈ ZE

+ is stable with respect to {fk}k∈I∪J if and only if it is
stable with respect to {Ck}k∈I∪J .

Note that when {Ck}k∈I∪J and {Bk}k∈I∪J are defined from {fk} as
above, the vector uk ∈ ZEk

+ in the value function model serves as the vector

bk ∈ ZEk
+ in the choice function model, i.e., Bk = {x ∈ ZEk

+ |x ≤ uk} for all
k ∈ I ∪ J since sup(domfk) = uk. Therefore we can identify bk in Lemma
3.6 with uk in Lemma 3.2.

10



4 Strong Lattice Structure of Stable Allocations

4.1 Choice function model

Alkan–Gale [3] showed that if choice functions are consistent and persistent,
there always exists a stable allocation.

Theorem 4.1. (Alkan–Gale [3]) If Ck is consistent and persistent for each
k ∈ I ∪ J , there exists a stable allocation.

Moreover, the set of all stable allocations forms a lattice. To state this
more precisely, we introduce orderings on allocations. For allocations X and
Y , we write CI(X ∨ Y ) for the allocation whose ith row is Ci(xi ∨ yi) for
all i ∈ I. Symmetrically we write CJ(X ∨ Y ) for the allocation whose jth
column is Cj(xj ∨ yj) for all j ∈ J . Then we can define an ordering ⪰I on
allocations by X ⪰I Y ⇐⇒ CI(X ∨ Y ) = X. Symmetrically, we define
an ordering ⪰J by X ⪰J Y ⇐⇒ CJ(X ∨ Y ) = X. Then the following
theorems hold.

Theorem 4.2. (Alkan–Gale [3]) If Ck is consistent and persistent for each
k ∈ I ∪ J , then for any stable allocations X and Y , the following holds:

X ⪰I Y ⇐⇒ X ⪯J Y.

The following fact is easily implied by known facts in the literature [2,
3, 10, 18].

Theorem 4.3. If Ck is consistent and persistent for each k ∈ I ∪ J , the
set of all stable allocations forms a lattice under the orderings ⪰I and ⪰J ,
respectively.

Proof. For completeness we provide a proof in Appendix B.

According to the above theorem, any two stable allocations X and Y
surely have a join (least upper bound) and a meet (greatest lower bound)
with respect to the ordering ⪰I , which we denote by X ∨I Y and X ∧I Y ,
respectively. However, ∨I and ∧I do not admit simple representations (see
Appendix B). It is also noted that the operations ∨I and ∧I are not neces-
sarily distributive.

Alkan–Gale identified a crucial property of choice functions that implies
many nice properties of the lattice of stable allocations. We use notation
|x| =

∑
e∈S x(e) for x ∈ ZS

+.

Definition 4.4. C is size-monotone if [ x ≥ y =⇒ |C(x)| ≥ |C(y)| ].
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Theorem 4.5. (Alkan–Gale [3]) If Ck is consistent, persistent, and size-
monotone for each k ∈ I ∪ J , the set of all stable allocations forms a dis-
tributive lattice under the ordering ⪰I . Moreover, for two stable allocations
X and Y , their join X ∨I Y and meet X ∧I Y coincide with CI(X ∨ Y ) and
CJ(X ∨ Y ), respectively.

Theorem 4.6. (Alkan–Gale [3]) If Ck is consistent, persistent, and size-
monotone for each k ∈ I ∪ J , then for any stable allocations X and Y , the
following hold:

1. |xk| = |yk| for all k ∈ I ∪ J .

2. (X ∨I Y ) ∨ (X ∧I Y ) = X ∨ Y , (X ∨I Y ) ∧ (X ∧I Y ) = X ∧ Y .

The condition 2 above is equivalent to the following: for each (i, j) ∈ E,
{(X ∨I Y )(i, j), (X ∧I Y )(i, j)} = {x(i, j), y(i, j)}.

Theorems 4.5 and 4.6 say that size-monotonicity guarantees a rich struc-
ture of the set of stable allocations.

Note that size-monotonicity is a natural extension of “cardinal mono-
tonicity” of Alkan [2] or “increasing property” (for a uniform weight) of
Fleiner [10]. Also it corresponds to “law of aggregate demand” of Hatfield–
Milgrom [18].

4.2 Value function model

Next we turn to M♮-concave value functions. Our main concern is the impli-
cations of M♮-concavity in the lattice structure of the set of stable allocations.
Specifically, we show that the choice function induced from an M♮-concave
value function satisfies size-monotonicity, which leads to the rich structure
of stable allocations by Theorems 4.5 and 4.6.

First of all, a stable allocation surely exists if each agent’s value function
is M♮-concave.

Theorem 4.7. (Eguchi–Fujishige–Tamura [8]) If fk is M♮-concave for each
k ∈ I ∪ J , there exists a stable allocation.

Remark 4.8. An alternative proof of Theorem 4.7 can be obtained from
a combination of Theorem 3.9 and Theorem 4.1. When {fk}k∈I∪J are all
unique-selecting, a straightforward combination shows the existence of a sta-
ble allocation. In the general case with some fk not being unique-selecting,
we can obtain the result through appropriate perturbations of fk.

Next we discuss the structure of the set of stable allocations. Here,
we show that M♮-concavity implies size-monotonicity which guarantees the
strong lattice structure of stable allocations. This implies, by Theorems 4.5
and 4.6, that M♮-concavity yields the rich structure of stable allocations,
which is stated in Theorems 4.11 and 4.12 as the main results of this paper.
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Lemma 4.9. For a unique-selecting M♮-concave value function f , the choice
function C induced from f is size-monotone.

Proof. To prove by contradiction, suppose that there exist x, y ∈ ZS
+ such

that x ≥ y and |C(x)| < |C(y)|. Set x′ = C(x), y′ = C(y). Then |x′| < |y′|.
Let e0 denote a new element not in S and put Ŝ = {e0} ∪ S. Let

f̂ : ZŜ
+ → R ∪ {−∞} be the function defined by

f̂(ze0 , z) =

{
f(z) if ze0 = −|z|
−∞ otherwise.

(4.1)

Then f(x′) = f̂(−|x′|, x′) and f(y′) = f̂(−|y′|, y′). By the exchange property
(M) in Lemma 4.10 below for (−|x′|, x′), (−|y′|, y′) and e0, there exists some
e ∈ supp−(x′ − y′) such that

f̂(−|x′|, x′) + f̂(−|y′|, y′) ≤ f̂(−|x′| − 1, x′ + χe) + f̂(−|y′|+ 1, y′ − χe).

By the definition of f̂ , the above inequality can be rephrased as follows:

f(x′) + f(y′) ≤ f(x′ + χe) + f(y′ − χe). (4.2)

On the other hand, as x′(e) < y′(e) ≤ y(e) ≤ x(e), we have x′ + χe ≤ x.
Since x′ = C(x) is the unique maximizer of f in { z ∈ ZS

+ | z ≤ x }, it holds
that f(x′+χe) < f(x′). Similarly, we have f(y′−χe) < f(y′) since y′−χe ≤
y′ ≤ y. These two strict inequalities contradict (4.2).

Lemma 4.10. ([23]) Let f : ZS → R ∪ {−∞} be an M♮-concave function

and put Ŝ = {e0} ∪ S (e0 /∈ S). Then the function f̂ : ZŜ → R ∪ {−∞}
defined by (4.1) satisfies the following condition5:

(M) ∀x, y ∈ domf̂ , ∀e ∈ supp+(x− y), ∃e′ ∈ supp−(x− y) :

f̂(x) + f̂(y) ≤ f̂(x− χe + χe′) + f̂(y + χe − χe′).

Here we define X ∨I Y as the allocation whose ith row is equal to
argmax { fi(z) | z ≤ (xi ∨ yi) } for all i ∈ I, and X ∧I Y as the allocation
whose jth column is equal to argmax { fj(z) | z ≤ (xj ∨ yj) } for all j ∈ J . It
is noted that these definitions of ∨I and ∧I are consistent with those given
in Section 4.1 in the choice function model. Indeed, Theorem 4.5 shows
X ∨I Y = CI(X ∨ Y ) and X ∧I Y = CJ(X ∨ Y ), whereas the ith row of
CI(X ∨Y ) is equal to argmax { fi(z) | z ≤ (xi ∨ yi) } and the jth column of
CJ(X ∨ Y ) is equal to argmax { fj(z) | z ≤ (xj ∨ yj) } by (3.1).

Combining Lemmas 3.8 and 4.9, and Theorems 3.9, 4.5 and 4.6, we
obtain the following theorems.

5A function f̂ that satisfies the condition (M) is said to be M-concave.
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Theorem 4.11. If fk is a unique-selecting M♮-concave value function for
each k ∈ I ∪ J , then the set of all stable allocations forms a distributive
lattice with operations ∨I and ∧I .

Theorem 4.12. If fk is a unique-selecting M♮-concave value function for
each k ∈ I ∪ J , then for any stable allocations X and Y , the following hold:

1. |xk| = |yk| for all k ∈ I ∪ J .

2. (X ∨I Y ) ∨ (X ∧I Y ) = X ∨ Y , (X ∨I Y ) ∧ (X ∧I Y ) = X ∧ Y .

These theorems establish an intimate connection of the M♮-concave value
function model to the choice function model with size-monotonicity.

Remark 4.13. Fleiner [10] pointed out that the nonemptiness and the lat-
tice structure of many-to-many matching model (with {0,1}-variables) can
be shown by using Tarski’s fixed point theorem. The fundamental obser-
vation in this approach is that “stable pairs” (which correspond to stable
matchings) can be regarded as fixed points of a certain monotone function.
In fact, this approach can be naturally extended to integer variables, i.e.,
Theorems 4.1, 4.2 and 4.3 can be obtained also by fixed point approach.

Moreover, Fleiner found that if the choice functions are w-increasing,
the lattice operations of stable matchings become distributive and simply
representable. Theorem 4.5 is an integer version of this result with w = 1.

Remark 4.14. Hatfield-Milgrom [18] studied one-to-many matching model
in terms of contracts between doctors and hospitals. They showed that
if hospitals preferences satisfy “law of aggregate demand” (which corre-
sponds to size-monotonicity) and other assumptions (which correspond to
consistency and persistence), the strategy proofness holds for the deferred
acceptance algorithm with doctors proposing. Hence it is expected that
size-monotonicity (beyond consistency and persistence) has significant im-
plication for strategy proofness also in the stable allocation model.
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5 Extension to Quasi-concave Model

In Sections 2 and 3, we have shown that M♮-concavity in value function
model leads to the strong lattice structure of stable allocations. In this sec-
tion, we show that this result can be extended for quasi M♮-concave model.

As described below, quasi M-concavity is defined by ordinal relationship
of function values, and not by values themselves. Therefore, the extensibility
to quasi M-concave functions means that the strong lattice structure of
stable allocations is guaranteed solely by the concave-like ordering of values.
This agrees with the fact that the stability of allocations is defined not by
function values themselves but by their ordinal relationship.

5.1 Quasi M♮-concavity

In this paper we have adopted the exchange property (M♮) as the definition
of M♮-concave functions (Section 2), but the original definition [23, 25] reads:
a function f is M♮-concave if f̂ in (4.1) satisfies the exchange property (M) in
Lemma 4.10. Then an M♮-concave function is known to satisfy (M♮). That
is,

f̂ satisfies (M) ⇐⇒ f satisfies (M♮). (5.1)

The concept of quasi M-concave function is proposed by Murota–Shioura
[26] by weakening the condition (M) to

(QM) ∀x, y ∈ domf̂ , ∀e ∈ supp+(x− y), ∃e′ ∈ supp−(x− y) :

f̂(x− χe + χe′)− f̂(x) ≥ 0 or f̂(y + χe − χe′)− f̂(y) ≥ 0. (5.2)

Just as M♮-concavity is defined (originally) in terms of M-concavity of the
associated f̂ , we define quasi M♮-concavity as follows.

Definition 5.1. A function f : ZS → R ∪ {−∞} with domf ̸= ∅ is called
quasi M♮-concave if f̂ defined in (4.1) satisfies (QM).

Obviously, (M) implies (QM), and therefore, an M♮-concave function is
quasi M♮-concave.

As an M♮-version of (QM), we consider:

(QM♮) ∀x, y ∈ domf, ∀e ∈ supp+(x− y), ∃e′ ∈ supp−(x− y) ∪ {0} :

f(x− χe + χe′)− f(x) ≥ 0 or f(y + χe − χe′)− f(y) ≥ 0. (5.3)

Lemma 5.2. Let f̂ and f be associated by (4.1). Then

f̂ satisfies (QM) =⇒ f satisfies (QM♮). (5.4)
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Figure 1: domf and the value of f at each point for Example 5.3

Proof. Take x, y ∈ domf , and put S+ = supp+(x−y) and S− = supp−(x−y).
(QM) for f̂ in (4.1) is translated to conditions on f as follows:

|x| > |y| ⇒ ∀e ∈ S+ : ∃e′ ∈ S− ∪ {e0} satisfies (5.3),

|x| = |y| ⇒ ∀e ∈ S+ : ∃e′ ∈ S− satisfies (5.3),

|x| < |y| ⇒ ∀e ∈ S+ ∪ {e0} : ∃e′ ∈ S− satisfies (5.3).

This implies (QM♮).

In contrast to (5.1), the converse of (5.4) does not hold.

Example 5.3. Here is an example of a function f that satisfies (QM♮)
but the associated f̂ does not satisfy (QM). Let S = {e1, e2}, f : ZS →
R ∪ {−∞} and

domf = { (1, 0), (2, 0), (1, 1), (0, 1) },

f(1, 0) = 1, f(2, 0) = 2, f(1, 1) = 3, f(0, 1) = 4.

(See Figure 1.) This f satisfies (QM♮). Define f̂ : ZŜ → R∪{−∞} by (4.1).
Then Ŝ = {e0, e1, e2} and

domf̂ = { (−1, 1, 0), (−2, 2, 0), (−2, 1, 1), (−1, 0, 1) },

f̂(−1, 1, 0) = 1, f̂(−2, 2, 0) = 2, f̂(−2, 1, 1) = 3, f̂(−1, 0, 1) = 4.

To check (QM), let x = (−1, 0, 1), y = (−2, 2, 0), and e = e0 ∈ supp+(x−y).
Since supp−(x− y) = {e1}, we can take only e1 as e′ ∈ supp−(x− y), and
then

f̂(−2, 1, 1)− f̂(−1, 0, 1) = 3− 4 = −1 < 0,

f̂(−1, 1, 0)− f̂(−2, 2, 0) = 1− 2 = −1 < 0.

Thus, (5.2) fails for all e′ ∈ supp−(x− y). Hence f̂ does not satisfy (QM).
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5.2 Quasi M♮-concave value function model

The choice functions induced from quasi M♮-concave functions have the same
nice properties as those induced from M♮-concave functions. The proofs for
quasi versions are almost the same as those for the original versions (Lemmas
3.8 and 4.9).

Lemma 5.4. For unique-selecting quasi M♮-concave value function f , the
choice function C induced from f is consistent and persistent.

Proof. Consistency is obvious by the definition of induction. To prove per-
sistence by contradiction, suppose that there exist x, y ∈ ZS

+ such that
x ≥ y holds and y ∧ C(x) ≤ C(y) fails. Set x′ = C(x), y′ = C(y). Since
y ∧ x′ ≤ y′ fails, there is some e ∈ S such that y(e) ∧ x′(e) > y′(e). Then
e ∈ supp+(x′− y′). By Lemma 5.2 we can apply the exchange axiom (QM♮)
to x′, y′ and e. Then for some e′ ∈ supp−(x′ − y′)∪ {0} the following holds:

f(x′ − χe + χe′)− f(x′) ≥ 0 or f(y′ + χe − χe′)− f(y′) ≥ 0. (5.5)

In (5.5), we have two cases: e′ ∈ supp−(x′ − y′) or e′ = 0. In the case
of e′ ∈ supp−(x′ − y′), we have x′(e′) < y′(e′) ≤ y(e′) ≤ x(e′), and therefore
x′ − χe + χe′ ≤ x, which is also true in the other case of e′ = 0. Since
x′ = C(x) is the unique maximizer of f in { z ∈ ZS

+ | z ≤ x }, it holds that
f(x′ − χe + χe′) < f(x′). Similarly, we have f(y′ + χe − χe′) < f(y′), since
y′+χe−χe′ ≤ y by y′(e) < y(e)∧x′(e) ≤ y(e). These two strict inequalities
contradict (5.5).

Lemma 5.5. For a unique-selecting quasi M♮-concave value function f , the
choice function C induced from f is size-monotone.

Proof. To prove by contradiction, suppose that there exist x, y ∈ ZS
+ such

that x ≥ y and |C(x)| < |C(y)|. Set x′ = C(x), y′ = C(y). Then |x′| < |y′|.
Let f̂ : ZŜ

+ → R ∪ {−∞} be defined by (4.1). Then f(x′) = f̂(−|x′|, x′)
and f(y′) = f̂(−|y′|, y′). Since f̂ satisfies (QM) for (−|x′|, x′), (−|y′|, y′) and
e0, there exists some e ∈ supp−(x′ − y′) such that

f̂(−|x′|−1, x′+χe)−f̂(−|x′|, x′) ≥ 0 or f̂(−|y′|+1, y′−χe)−f̂(−|y′|, y′) ≥ 0.

By the definition of f̂ , this can be rephrased as follows:

f(x′ + χe)− f(x′) ≥ 0 or f(y′ − χe)− f(y′) ≥ 0. (5.6)

On the other hand, as x′(e) < y′(e) ≤ y(e) ≤ x(e), we have x′ + χe ≤ x.
Since x′ = C(x) is the unique maximizer of f in { z ∈ ZS

+ | z ≤ x }, it holds
that f(x′+χe) < f(x′). Similarly, we have f(y′−χe) < f(y′) since y′−χe ≤
y′ ≤ y. These two strict inequalities contradict (5.6).
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By Lemmas 5.4 and 5.5 as well as Theorem 4.1, we can extend Theorems
4.11 and 4.12 as follows.

Theorem 5.6. If fk is a unique-selecting quasi M♮-concave value function
for each k ∈ I ∪ J , then the set of all stable allocations is nonempty and
forms a distributive lattice with operations ∨I and ∧I .

Theorem 5.7. If fk is a unique-selecting quasi M♮-concave value function
for each k ∈ I ∪ J , then for any stable allocations X and Y , the following
hold:

1. |xk| = |yk| for all k ∈ I ∪ J .

2. (X ∨I Y ) ∨ (X ∧I Y ) = X ∨ Y , (X ∨I Y ) ∧ (X ∧I Y ) = X ∧ Y .

Remark 5.8. Suppose that f is a unique-selecting value function and sat-
isfies (QM♮). Then, the choice function C induced from f is consistent and
persistent. However, C may not be size-monotone if f is not quasi M♮-
concave (i.e., if f̂ fails to satisfy (QM)). That is, (QM♮) is sufficient for
consistency and persistence, but not sufficient for size-monotonicity.

Example 5.9. Here is an example of a non size-monotone choice function
induced from a function f that is not quasi M♮-concave but satisfies (QM♮).
The function f is much the same as in Example 1, but domf contains an
additional point (0, 0) to meet the requirement for a value function. Let
S = {e1, e2} and

domf = { (0, 0), (1, 0), (2, 0), (1, 1), (0, 1) },

f(0, 0) = 0, f(1, 0) = 1, f(2, 0) = 2, f(1, 1) = 3, f(0, 1) = 4.

Let C be the choice function defined by (3.1), and let x = (2, 1), y = (2, 0).
Then x ≥ y but |C(x)| = |(0, 1)| = 1 < 2 = |(2, 0)| = |C(y)|. Hence C is not
size-monotone.
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A M♮-concave Functions: Examples and Opera-
tions

A.1 Examples of M♮-concave functions

We give some examples of M♮-concave functions [23, 24]. We denote variable
x = (x(e) | e ∈ S) ∈ ZS and let f : ZS → R ∪ {−∞}. The inner product of
w ∈ RS and x ∈ ZS is denoted as ⟨w, x⟩ =

∑
e∈S w(e) · x(e).

Linear function: A linear (or affine) function

f(x) = α+ ⟨w, x⟩

with w ∈ RS and α ∈ R is M♮-concave.

Quadratic function: A quadratic function

f(x) =
∑

e,e′∈S
a(e, e′) · x(e) · x(e′) = x⊤Ax

with a(e, e′) = a(e′, e) ∈ R (e, e′ ∈ S) is M♮-concave if and only if a(e, e′) ≤ 0
for all (e, e′) and

a(e1, e2) ≤ max{ a(e1, e3), a(e2, e3) } whenever {e1, e2} ∩ {e3} = ∅.

Separable convex function: A function f is called separable concave if it
can be represented as

f(x) =
∑
e∈S

φe(x(e))

with univariate concave functions φe (e ∈ S). A separable concave function
f is M♮-concave.

Component-sum concave function: A function f with domf ⊆ ZS
+

represented as
f(x) = φ(|x|) (x ∈ ZS

+)

with a univariate concave function φ is M♮-concave, where |x| is the sum of
all components of x.

Laminar concave function: A laminar family means a nonempty family
T of subsets of S such that T ∩T ′ = ∅ or T ⊆ T ′ or T ⊇ T ′ for any T, T ′ ∈ T .
A function f is called laminar concave if it can be represented as

f(x) =
∑
T∈T

φT (x(T ))

for a laminar family T and a family of univariate concave functions φT

indexed by T ∈ T , where x(T ) =
∑

e∈T x(e). A laminar concave function
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is M♮-concave. Actually, separable concave functions and component-sum
concave functions are special cases of such functions.

Weighted matroid: Let I be the family of independent sets of a matroid
on S and let w ∈ RS . The function defined as

f(x) =

{
⟨w, x⟩ if x = χI for some I ∈ I,
−∞ otherwise

is M♮-concave.

Linear and separable concave functions with submodular restric-
tion: Let ρ : 2S → Z+ be a submodular function (i.e., ρ(X) + ρ(Y ) ≥
ρ(X ∪ Y ) + ρ(X ∩ Y ) for all X,Y ∈ 2S) and let w ∈ RS . The function
defined as

f(x) =

{
⟨w, x⟩ if x ≥ 0 and x(X) ≤ ρ(X) for all X ∈ 2S ,

−∞ otherwise

is M♮-concave. Moreover, f is also M♮-concave if ⟨w, x⟩ is replaced by a
separable concave function

∑
e∈S φe(x(e)) with φe (e ∈ S) being univariate

concave functions.

Maximum-value function: Given ae ∈ R for all e ∈ S, we define a set
function µ : 2S → R ∪ {−∞} as

µ(X) =

{
max { ae | e ∈ X } if X ̸= ∅,
a∗ if X = ∅

by choosing a∗ ∈ R ∪ {−∞} such that a∗ ≤ min { ae | e ∈ S }. Then µ is
M♮-concave when identified with a function f : ZS → R ∪ {−∞} such that
domf ⊆ {0, 1}S and f(χX) = µ(X) for X ∈ 2S . This function corresponds
to unit demand preference [16].

A.2 Operations preserving M♮-concavity

We give some operations that preserve M♮-concavity [23].

Basic operations: For an M♮-concave function f : ZS → R ∪ {−∞} and
λ ∈ R and a ∈ ZS and w ∈ RS , the function f̃ : ZS → R ∪ {−∞} defined
below is M♮-concave:

f̃(x) = λf(x+ a) + ⟨w, x⟩ (x ∈ ZS).

Restriction and projection: For an M♮-concave function f : ZS → R ∪
{−∞} and a subset T ∈ 2S , the functions fT , f

T : ZT → R∪{−∞} defined
below are M♮-concave:

fT (x) = f(x,0S\T ) (x ∈ ZT ),

fT (x) = sup { f(x, y) | y ∈ ZS\T } (x ∈ ZT ).
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Convolution: For M♮-concave functions f1, f2, . . . , fk : ZS → R ∪ {−∞},
the function f̃ : ZS → R ∪ {−∞} defined by

f̃(x) = sup
{ k∑

i=1

fi(xi) | x1 + x2 + · · ·+ xk = x
}

(x ∈ ZS)

is M♮-concave. This operation corresponds to aggregation of utility func-
tions.

Remark A.1. There are other operations that preserve M♮-concavity not
described above. It is to be noted, however, that a sum of M♮-concave
functions is not necessarily M♮-concave.

B Proof of Theorem 4.3

The proof of Theorem 4.3 here is based heavily on several technical results
of Alkan–Gale [3]. We first introduce some definitions and lemmas.

For each k ∈ I ∪ J , we define σk : Bk → Bk by

σk(x) =
∨

{ z ∈ Bk | Ck(z) = Ck(x) } (x ∈ Bk).

If Ck is consistent and persistent, Ck(σk(x)) = Ck(x) holds for any x ∈ Bk.
We call σk(x) closure of x. For an allocation X, we write σI(X) for the
allocation whose ith row is σi(xi) for all i ∈ I. Similarly, we write σJ(X)
for the allocation whose jth column is σj(xj) for all j ∈ J .

We say that a vector x ∈ Bk is acceptable if Ck(x) = x, and we
write Ak = {x ∈ Bk | Ck(x) = x }. We also say that an allocation X is
I-acceptable if its ith row xi is acceptable for all i ∈ I, and J-acceptable if
its jth column xj is acceptable for all j ∈ J .

For any k ∈ I ∪ J and x, y ∈ Bk, we write x ⪰k y if Ck(x∨ y) = x. Then
X ⪰I Y , which is already defined in Section 4.1, can be defined equivalently
by the condition that xi ⪰i yi for all i ∈ I.

The following lemmas are due to Alkan–Gale [3]. Recall that bk ∈ ZEk
+

is the vector such that Bk = {x ∈ ZEk
+ |x ≤ bk} for all k ∈ I ∪ J .

Lemma B.1. If Ci (i ∈ I) is consistent and persistent, the following hold:

(1) [3, Lemma 7] xi ∈ Ai is j-satiated if and only if σi(xi)(j) = bi(j).

(2) [3, Lemma 8(1)] xi ∈ Ai is j-satiated if there exists yi that is j-satiated
and xi ⪰i yi.

(3) [3, Lemma 6] xi ∈ Ai is j-satiated if there exists yi such that Ci(yi) = xi
and yi(j) > xi(j).
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Lemma B.2 ([3, Lemma 10]). Assume that {Ck}k∈I∪J are all consistent and
persistent, and X is a stable allocation and Y is an I-acceptable allocation.
Then Y ⪰I X =⇒ Y ⪯J X.

The above lemmas also hold with (i, I) replaced by (j, J). We often use
the following inequalities in the proof:

X ≥ Y =⇒ CI(X) ⪰I CI(Y ), CJ(X) ⪰J CJ(Y ), (B.1)

X ⪰I Y =⇒ σI(X) ≥ Y. (B.2)

Now we begin the proof of Theorem 4.3. We will show below that any
two stable allocations X and Y have the greatest lower bound X ∧I Y with
respect to ⪰I . Then X ∧J Y exists symmetrically, and the greatest upper
bound X ∨I Y is given as X ∨I Y = X ∧J Y by Theorem 4.2. Thus, showing
the existence of X ∧I Y is already sufficient to establish the lattice property
with respect to ⪰I .

The greatest lower bound X ∧I Y can be constructed as follows. Define
sequences of allocations (Bn), (Un), (V n) by the following recursion rule6

for n = 0, 1, 2, · · · :
B0 = σI(X) ∧ σI(Y ),

Un = CI(B
n),

V n = CJ(U
n),

and Bn+1 is obtained from Bn as follows:

bn+1(i, j) = bn(i, j) if vn(i, j) = un(i, j),
bn+1(i, j) = vn(i, j) if vn(i, j) < un(i, j).

Note that (Bn) is a nonincreasing nonnegative sequence and hence con-
verges, and then (Un) and (V n) also converge. Call the limits of the se-
quences B̂, Û , V̂ , respectively. We will show:

(i) Û = V̂ .

(ii) Û is a stable allocation with X ⪰I Û and Y ⪰I Û .

(iii) Any stable allocation W with X ⪰I W and Y ⪰I W satisfies Û ⪰I W .

Note that (ii) and (iii), in conjunction, mean Û = X ∧I Y .
Before proving (i), (ii), (iii), we first show the following:

(I) X ⪰I U0, Y ⪰I U0, and U0 ⪰I U1 ⪰I U2 ⪰I · · · ⪰I Û .

(II) X ⪯J V 0, Y ⪯J V 0, and V 0 ⪯J V 1 ⪯J V 2 ⪯J · · · ⪯J V̂ .

6This recursion rule is the same as in the proof of Theorem 1 of Alkan–Gale [3], but
with a different initial value B0.
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(I) : By the definition, we have U0 = CI(B
0) = CI(σI(X) ∧ σI(Y )).

Since σI(X) ≥ σI(X) ∧ σI(Y ), we have

X = CI(σI(X)) ⪰I CI(σI(X) ∧ σI(Y )) = U0

by using (B.1). Similarly, Y ⪰I U0. Moreover, since Un = CI(B
n) and (Bn)

is nonincreasing, we obtain from (B.1) that U0 ⪰I U1 ⪰I U2 ⪰I · · · ⪰I Û .
Thus (I) is proved.

(II) : First we show X ⪯J V 0 and Y ⪯J V 0. From CJ(X∨Y ) ⪰J X and
Lemma B.2, we have CJ(X ∨ Y ) ⪯I X, which implies CJ(X ∨ Y ) ≤ σI(X)
by (B.2). Similarly, we have CJ(X ∨ Y ) ≤ σI(Y ). Then

CJ(X ∨ Y ) ≤ (σI(X) ∧ σI(Y )) ∧ (X ∨ Y ) = B0 ∧ (X ∨ Y ). (B.3)

On the other hand, from B0 = σI(X)∧ σJ(Y ) ≤ σI(X) and persistence, we
have B0 ∧X ≤ CI(B

0). Similarly, B0 ∧ Y ≤ CI(B
0). Therefore

B0 ∧ (X ∨ Y ) ≤ CI(B
0) = U0. (B.4)

From (B.3) and (B.4), we have CJ(X ∨ Y ) ≤ U0. Hence X = CJ(X) ⪯J

CJ(X ∨ Y ) ⪯J CJ(U
0) = V 0 by (B.1). Similarly we can obtain Y ⪯J V 0.

Next we show V n ⪯J V n+1. From the recursion rule, we have V n ≤ Bn+1

and V n ≤ Un, i.e., V n ≤ Bn+1 ∧ Un, whereas Bn+1 ∧ Un ≤ Un+1 by the
persistence of CI and Bn ≥ Bn+1. Hence we have V n ≤ Un+1, from which
follows CJ(V

n) ⪯J CJ(U
n+1) by (B.1). The right-hand side CJ(U

n+1) is
equal to V n+1 by the recursion rule, and the left-hand side is equal to V n,
since V n = CJ(U

n) = CJ(CJ(U
n)) = CJ(V

n). Thus we have obtained
V n ⪯J V n+1, completing the proof of (II).

Now we prove (i), (ii), and (iii).

(i) By the recursion rule, V n ≤ Un holds for any n ≥ 0. Since (Bn)
converges, there is no (i, j) such that v̂(i, j) < û(i, j). Therefore Û = V̂ .

(ii) The latter half of (ii), X ⪰I Û and Y ⪰I Û follow directly from (I).
The stability of Û can be proved as follows. By the recursion rule and (i),
we have CI(B̂) = CI(Û) = Û and CJ(Û) = Û . Hence the first condition
of the stability: [ for every k ∈ I ∪ J , Ck(ûk) = ûk ] holds. The second
condition:

[ for every (i, j) ∈ I × J , ûi is j-satiated or ûj is i-satiated ]

can be shown as follows. We consider following three cases, which exhaust
all possibilities since b̂(i, j) ≤ b0(i, j) ≤ bi(j).
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Case 1: b̂(i, j) = b0(i, j) = bi(j).

Since Ci(̂bi) = ûi, it holds that σi(ûi)(j) ≥ b̂(i, j) = bi(j) and hence ûi
is j-satiated from Lemma B.1 (1).

Case 2: b̂(i, j) ≤ b0(i, j) < bi(j).

Since b0(i, j) = σi(xi)(j)∧ σi(yi)(j), b
0(i, j) < bi(j) means σi(xi)(j) <

bi(j) or σi(yi)(j) < bi(j). By Lemma B.1 (1), we have:

[xi is not j-satiated] or [yi is not j-satiated].

Since X and Y are stable, we have:

[xj is i-satiated] or [yj is i-satiated].

Combining this with Lemma B.1 (2) and (II), we see that v̂j(= ûj) is
i-satiated.

Case 3: b̂(i, j) < b0(i, j) = bi(j).

When b̂(i, j) < b0(i, j), from the recursion rule, there exists m ≥ 0
such that vm(i, j) < um(i, j). Here we have vmj = Cj(u

m
j ). Hence, vmj

is i-satiated by Lemma B.1 (3). Combining this with Lemma B.1 (2)
and (II), we see that v̂j(= ûj) is i-satiated.

(iii) To prove (iii), it is sufficient to show that any stable allocation
W with X ⪰I W and Y ⪰I W satisfies W ≤ B̂, since that implies W =
CI(W ) ⪯I CI(B̂) = Û by (B.1). By induction on n ≥ 0, we prove W ≤ Bn,
which implies W ≤ B̂.

Because X ⪰I W and Y ⪰I W , we have W ≤ σI(X) and W ≤ σI(Y )
from (B.2), and hence W ≤ σI(X) ∧ σI(Y ) = B0.

Assuming W ≤ Bn, we prove W ≤ Bn+1. Since W ≤ Bn, it holds
that W = CI(W ) ⪯I CI(B

n) = Un by (B.1), and therefore W ⪰J Un by
Lemma B.2. Then we have CJ(U

n∨W ) = W . On the other hand, from the
persistence of CJ and Un ≤ Un ∨W , we have Un ∧CJ(U

n ∨W ) ≤ CJ(U
n).

Thus Un ∧W ≤ V n holds. This shows, by the recursion rule, that:

if vn(i, j) < un(i, j), then w(i, j) ≤ vn(i, j) = bn+1(i, j),
if vn(i, j) = un(i, j), then w(i, j) ≤ bn(i, j) = bn+1(i, j).

Hence we have W ≤ Bn+1.
The proof of Theorem 4.3 is completed.
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