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Abstract

An algorithm for the submodular welfare problem is proposed based
on the theory of discrete convex analysis. The proposed algorithm is
a heuristic method built upon the valuated matroid partition algo-
rithms, and gives the exact optimal solution for a reasonable subclass
of submodular welfare problems. The algorithm has a guaranteed ap-
proximation ratio for a special case. Computational results show fairly
good performance of the proposed algorithm.

1 Introduction

1.1 Submodular welfare problem

Let V = {1, . . . , n}. A function w : 2V → R is said to be submodular if

w(X) + w(Y ) ≥ w(X ∩ Y ) + w(X ∪ Y ) (1.1)

for all X,Y ⊆ V . The problem addressed in this paper is the so-called
submodular welfare problem [27], which is an optimization problem of the
form:

maximize Φ(X1, . . . , Xm) := w1(X1) + · · ·+ wm(Xm)
subject to: {X1, . . . , Xm} is a partition of V ,

(1.2)
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where w1, . . . , wm : 2V → R are given submodular functions. This is a fun-
damental problem in discrete optimization, where the name of “submodular
welfare problem” is used primarily in the area of combinatorial auction.

Suppose that, in a combinatorial auction, there are m players and n
items. Each player i has a utility function wi : 2

V → R that represents his
utility of a combination of items. Each utility function may naturally be
assumed to be submodular, in accordance with the principle of “decreasing
marginal utility” in economics. The objective of combinatorial auction is to
maximize the “social welfare,” the sum of the utilities of the m players, by
distributing n items to the players.

Many important optimization problems are contained in this class of
problems. For example, set k-cover [1], max k-cut [20], budgeted alloca-
tion [3, 23], generalized assignment problem [19], and so on.

The submodular welfare problem is NP-hard, as it contains submodular
set function maximization, which is known to be NP-hard. Accordingly,
several approximation algorithms are proposed in the literature. Lehmann,
Lehmann, and Nisan [27] showed that a simple greedy algorithm gives 1/2-
approximation. Mirrokni, Schapira, and Vondrák [30] showed that approxi-
mating better than 1−1/e requires exponentially many function evaluations,
regardless of the P ̸= NP conjecture. Vondrák [45] proposed the continu-
ous greedy algorithm, a randomized algorithm, which provides a (1− 1/e)-
approximation, attaining the best possible approximation ratio.

1.2 Valuated matroid partition problem

The purpose of this paper is to design an algorithm for the submodular
welfare problem by fully utilizing the algorithmic results in discrete convex
analysis [35, 36, 37]. Specifically, we focus on an important subclass of sub-
modular functions, M♮-concave functions, to be called matroid valuations in
this paper.

In combinatorial optimization, it is customary to regard submodular
functions as a discrete analogue of convex functions. However, submodular
functions also have concavity aspects [15, 29]. In particular, for a concave
function φ : R→ R, the set function w : 2V → R defined by

w(X) := φ(|X|) (1.3)

is submodular. Concavity aspects of submodular functions are captured by
M ♮-concavity in discrete convex analysis [21,36].

Let us say that a set function w : 2V → R∪{−∞} is a matroid valuation
(or M♮-concave functions on 0-1 vectors) if for all X,Y ⊆ V and x ∈ X \ Y ,

w(X) + w(Y ) ≤ max{w(X \ {x}) + w(Y ∪ {x}),
max

y∈Y \X
[w(X \ {x} ∪ {y}) + w(Y ∪ {x} \ {y})]}. (1.4)
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This is an extension of the valuated matroid of Dress and Wenzel [13, 14],
which is a function on bases, to a function on independent sets. A matroid
rank function is known to be a matroid valuation, and accordingly, we may
regard matroid valuation as a generalization of matroid rank function. The
function (1.3) is also a matroid valuation. A matroid valuation, in general,
is known to be submodular.

When all the utility functions wi are matroid valuations, the submod-
ular welfare problem coincides with the valuated matroid partition prob-
lem [31,32,35], which has been studied in depth in discrete convex analysis.
In economic terms, a matroid valuation corresponds to a utility function of
gross substitutes [22]. Hence the valuated matroid partition problem corre-
sponds to a combinatorial auction of gross substitutes goods [27].

We give an illustrative example of submodular functions and matroid
valuations.

Example 1.1. Let V be a finite set. For a univariate concave function
φ : R→ R, the function w : 2V → R defined by (1.3) is a matroid valuation
(hence is a submodular function). Since w(X) depends only on the cardinal-
ity of X (i.e., the number of items), this is a typical case of “substitutivity”
of items. Next, suppose that a family of subsets A1, . . . , Al of V is specified
together with univariate concave functions φ1, . . . , φl : R → R. Then the
function

w(X) := φ1(|X ∩A1|) + · · ·+ φl(|X ∩Al|) (1.5)

is, in general, a submodular function. This function represents the sub-
stitutivity of items in each subset Ai. It is known that if the set family
{A1, . . . , Al} forms a laminar family, i.e., if for all i, j = 1, . . . , l,

Ai ⊆ Aj , or Ai ⊇ Aj , or Ai ∩Aj = ∅, (1.6)

then the function w defined by (1.5) is a matroid valuation.

Our focus on matroid valuations is motivated by the computational ad-
vantage that they offer. They can be maximized in polynomial time by a
simple greedy algorithm. Furthermore, the valuated matroid partition prob-
lem can be solved, to exact optimality, in polynomial time by valuated ma-
troid partition algorithms. In other words, the valuated matroid partition
problem is a solvable subclass of the submodular welfare problem, which
fact was also observed in Lehmann, Lehmann, and Nisan [27]. It is noted in
this connection that the valuated matroid partition problem is a special case
of the valuated matroid intersection problem, which is fully studied in dis-
crete convex analysis and for which (strongly) polynomial time algorithms
are available [31,32].
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1.3 Our contribution

A heuristic algorithm for the submodular welfare problem is proposed. The
basic idea is to apply the valuated matroid partition algorithm to the sub-
modular welfare problem with some appropriate modifications. If all the
utility functions are indeed matroid valuations, the proposed algorithm co-
incides with the valuated matroid partition algorithm, and exactly solves
the problem. We expect that if the utility functions are “close enough” to
matroid valuations, the algorithm will find a good solution, which is verified
in numerical experiments.

We here give an overview of the proposed algorithm, whereas the details
are given in Section 4. As a matter of course, if the given functions are not
matroid valuations, the valuated matroid partition algorithm fails to find an
optimal solution, and, in the worst case, the algorithm falls into an infinite
loop. We here modify the valuated matroid partition algorithm to avoid this
worst case behavior as follows.

The augmenting path algorithm for the valuated matroid partition can
be regarded as an extension of the standard algorithm for the maximum-
size bipartite matching problem (see Section 3 for details). The algorithm
iteratively finds a shortest path on an auxiliary network, and updates the
solutions by augmenting the path. Here we have the following properties
when the functions are all matroid valuations.

(1) If the network has a negative cycle, then an improved solution, having
a better objective value, can be obtained.

(2) If the network has no negative cycles, then the current solution is
optimal.

The property (1) guarantees the finite termination of the algorithm and
the property (2) guarantees the (global) optimality of the solution at the
termination.

If the given functions are not matroid valuations, the above two proper-
ties are not necessarily guaranteed. The failure of the property (1) is more
problematic since it may cause an infinite loop. To avoid an infinite loop,
we modify that part of the algorithm which deals with negative cycles. This
is the main novel component of our algorithm. We also have to modify some
other parts to cope with the difficulties caused by non-matroidal valuations.

The resulting algorithm has a theoretical guarantee of approximation
ratio under a certain assumption, which is very often satisfied in practice.
The algorithm performs quite well for a number of practical problems used
in our computational experiments.
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1.4 Organization of the paper

The paper is organized as follows. In Section 2, we review matroid val-
uations. In Section 3, we introduce algorithms for the valuated matroid
partition problem. In Section 4, we describe how to modify the algorithm to
cope with functions that are not matroid valuations. Computational results
are shown in Section 5. We end with conclusion in Section 6.
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2 Valuated matroid

In this section, we introduce valuated matroid, which is a quantitative ex-
tension of matroid.

Let V be a finite set. A set function w : 2V → R ∪ {−∞} is a matroid
valuation (or M♮-concave function on 0-1 vectors) if for all X,Y ⊆ V and
x ∈ X \ Y ,

w(X) + w(Y ) ≤ max{w(X \ {x}) + w(Y ∪ {x}),
max

y∈Y \X
[w(X \ {x} ∪ {y}) + w(Y ∪ {x} \ {y})]}. (2.1)

We call
domw := {X ⊆ V : w(X) > −∞}

the effective domain of w. A matroid valuation, as defined here, coincides
with the valuated matroid (V,w) in the sense of Dress and Wenzel [13, 14]
if |X| = |Y | for all X,Y ∈ domw. See [35, Chapter 5] and [36, Chapter 6]
for details about valuated matroids and M♮-concave functions.

In economic terms, a matroid valuation corresponds to a utility function
of gross substitutes. Let f : 2V → R be a utility function of an agent. Given
a price vector p ∈ RV , the agent solves the optimization problem

maximize f(X)− p(X), where p(X) :=
∑
x∈X

p(x).

Let D(p) be the set of optimal solutions of this problem, called the demand
set. The gross substitutes condition, introduced by Kelso and Crawford [26],
is the following:

(GS) For any two price vectors p and q such that p(x) ≤ q(x)
for all x ∈ V , and for any X ∈ D(p), there exists Y ∈ D(q) such
that X ∩ {x ∈ V : p(x) = q(x)} ⊆ Y .

Fujishige and Yang [22] pointed out that a function f satisfies the condition
(GS) if and only if f is a matroid valuation.

Some fundamental examples of matroid valuations follow.

Example 2.1. A matroid rank function is a matroid valuation [21,37].

Example 2.2. The negative of the Hamming distance to an independent
set of a matroid is a matroid valuation. That is,

w(X) := −min{|X∆Y | : Y is an independent set} (2.2)

is a matroid valuation. Note that w(X) is equal to the rank of X minus |X|.

6



Example 2.3. A linear function on independent sets of a matroid is a
matroid valuation. The effective domain of this matroid valuation is the
family of independent sets.

Example 2.4. A weighted matroid rank function

w(X) := max{
∑
x∈I

c(x) : I ⊆ X is an independent set }

with a nonnegative vector c ∈ RV is a matroid valuation [41].

Example 2.5. For a concave function φ : R→ R, the set function w : 2V →
R defined by

w(X) := φ(|X|)

is a matroid valuation.

Example 2.6. Let {A1, . . . , Al} be a laminar family of V and φ1, . . . , φl :
R→ R be univariate concave functions. Then

w(X) := φ1(|X ∩A1|) + · · ·+ φl(|X ∩Al|) (2.3)

is a matroid valuation. See (1.6) for the definition of a laminar family.

Example 2.7. The sum of a matroid valuation w : 2V → R and a linear
function p : 2V → R is also a matroid valuation.

Example 2.8. For a matrix (a(x, y) : x, y ∈ V ) with a(x, y) = a(y, x) ∈ R,
the function

w(X) :=
∑

x∈X,y∈X
a(x, y)

is a matroid valuation if and only if a(x, y) ≤ 0 and for all x, y ∈ V and

a(x, y) ≤ max{a(x, z), a(y, z)} if z ̸∈ {x, y}.

Example 2.9. Let G = (V,W ;E) be a bipartite graph with vertex set
V ∪W and edge set E, and let γ : E → R be an edge weight. Then

w(X) := max{
∑
e∈M

γ(e) : M ⊆ E is a matching, ∂M ∩ V = X}

for X ⊆ V is a matroid valuation on V . Here ∂M denotes the set of vertices
incident to (i.e., covered by) M .

The following three examples are from economics.
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Example 2.10. A utility function of a unit demand preference [25] is defined
by

w(X) := max
x∈X

a(x)

for a nonnegative vector a ∈ RV , where w(∅) = 0 by definition. This is a
matroid valuation.

Example 2.11. Let u : 2V → R be a utility function and p ∈ RV be a
vector representing the price of each item. The function

w(X) := u(X)− p(X)

denotes the “actual utility” of buying items X by price p(X). Such utility
is called transferable utility or quasi-linear utility.

If u(X) is a matroid valuation, by Example 2.7, the corresponding trans-
ferable utility function is also a matroid valuation. A special case with
u(X) = φ(|X|) is considered by Beviá, Quinzii, and Silva [7].

Example 2.12. Let V be a finite set and let V1, . . . , VN be a partition of
V and d1, . . . , dN ∈ Z+ be parameters. The function defined by

w(X) =

N∑
j=1

min{|X ∩ Vj |, dj} (2.4)

is a matroid rank function and hence is a matroid valuation (cf. Exam-
ple 2.1). This is the rank function of a direct sum of uniform matroids
(e.g., [18]). In the case of d1 = · · · = dN = 1, this function represents
the rank function of a partition matroid [39]. The function (2.4) admits
the following economic interpretation: V corresponds to a set of items, and
V1, . . . , VN correspond to categories of items. If a buyer wants d1 items
in category V1, d2 items in category V2, and so on, his utility function is
represented by the function (2.4).

Matroid valuations have many properties analogous to concave functions.
For example, a local maximality implies the global maximality, the concave
conjugate (Legendre-Fenchel conjugate) is well-defined, the subdifferential
exists for all x ∈ domw, and so on.

The sum of a matroid valuation and a linear function is a matroid valu-
ation, and a supremum convolution (aggregation) of matroid valuations

(w1□w2)(X) := sup
Y
{w1(Y ) + w2(X \ Y )}

is a matroid valuation. However, a sum of matroid valuations is not neces-
sarily a matroid valuation. This is an important difference between matroid
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valuations and concave functions. Nevertheless, a sum of two matroid val-
uations is an tractable object (see Theorem 2.13 below), whereas a sum of
three or more matroid valuations is intractable.

The following problem is known as the valuated matroid partition prob-
lem [31,32,35]. Given matroid valuations w1, . . . , wm : V → R,

maximize Φ(X1, . . . , Xm) := w1(X1) + · · ·+ wm(Xm),
subject to: {X1, . . . , Xm} is a partition of V .

(2.5)

For a valuated matroid partition problem, the following theorem, called
valuated matroid intersection theorem, plays a fundamental role. This the-
orem is an extension of the celebrated matroid intersection theorem of Ed-
monds [15, 21], and can also be understood as a discrete version of the
hyperplane separation theorem.

Theorem 2.13 (Valuated matroid intersection [31], Theorem 5.2.40 in [35]).
Let w1, w2 : 2V → R be matroid valuations, and consider the optimization
problem:

maximize w1(X) + w2(X). (2.6)

• X∗ is an optimal solution of (2.6) if and only if there exists a vector
p ∈ RV such that

X∗ ∈ argmax
X
{w1(X)− p(X)},

X∗ ∈ argmax
X
{w2(X) + p(X)}.

• If both w1 and w2 are integer-valued, we can take an integer vector as
the p above.

An adaptation of this theorem to the valuated matroid partition problem
is called valuated matroid partition theorem.

Corollary 2.14 (Valuated matroid partition). Let w1, . . . , wm : 2V → R be
matroid valuations. A partition (X∗

1 , . . . , X
∗
m) of V is an optimal solution

of the valuated matroid partition problem (2.5) if and only if there exists
p ∈ RV such that p(V ) = 0 and

X∗
1 ∈ argmax

X
{w1(X)− p(X)},

...

X∗
m ∈ argmax

X
{wm(X)− p(X)}.
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In the next section, we introduce algorithms for the valuated matroid
partition problem, which are based on the valuated matroid partition theo-
rem above.

In the rest of the paper, we assume, to simplify the arguments, that a
valuation w is defined (effectively) on 2V , i.e., w(X) > −∞ for all X ⊆ V .
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3 Valuated matroid partition algorithms

In this section, we review algorithms for valuated matroid partition, which
form the basis of our algorithm to be described in Section 4.

The valuated matroid partition problem (2.5) can be formulated as a
valuated matroid intersection problem, which is studied well in discrete con-
vex analysis and for which (strongly) polynomial time algorithms (of several
types) are available [31,32].

Let V (1), . . . , V (m) be disjoint copies of V . For v ∈ V , we write v(i) for
the copy of v in V (i). Let Φ : 2V

(1)∪···∪V (m) → R be a matroid valuation on
V (1) ∪ · · · ∪ V (m) defined as the direct sum of w1, . . . , wm by

Φ(X1, . . . , Xm) := w1(X1) + · · ·+ wm(Xm), (3.1)

where Xi ⊆ V (i) (i = 1, . . . ,m), and let δ be another matroid valuation on
V (1) ∪ · · · ∪ V (m) defined by

δ(X1, . . . , Xm) :=

{
0,

∑m
i=1 |Xi ∩ {v(i)}| ≤ 1 (∀v ∈ V ),

−∞, otherwise.
(3.2)

Note that δ is the indicator function of a partition matroid. Then the
problem:

maximize Φ(X1, . . . , Xm) + δ(X1, . . . , Xm) (3.3)

is a valuated matroid intersection problem (2.6) that is equivalent to the
valuated matroid partition problem (2.5); see Remark 3.1.

Remark 3.1. In (2.6), we have assumed that the functions w1 and w2 are
finite-valued for all subsets. To meet this condition we can use

δβ(X) := −β ·min{|X∆Y | : δ(Y ) = 0} (3.4)

with a sufficiently large β. Then the problem (3.3) is equivalent to the
following problem:

maximize Φ(X1, . . . , Xm) + δβ(X1, . . . , Xm) (3.5)

with finite-valued functions Φ and δβ.

The algorithms for the valuated matroid partition problem are based on
this reduction to the valuated matroid intersection problem. We here intro-
duce two types of algorithms: cycle-canceling algorithm (primal algorithm)
and augmenting path algorithm (primal-dual algorithm).

We construct a network as a bipartite graph G that represents the con-
straint of the partition matroid. The left vertices are V . The right vertices
are V (1) ∪ · · · ∪ V (m). The (undirected) edges are defined by

E = {{v, v(i)} : v ∈ V, i = 1, . . . ,m}.
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V (2)
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Figure 3.1: The bipartite network G for the valuated matroid partition
problem (m = 2).

Then a matching M of G corresponds to a subpartition of V by

(X1, . . . , Xm) := (∂M ∩ V (1), . . . , ∂M ∩ V (m)), (3.6)

where ∂M denotes the set of matched vertices and v(i) and v are identified.
See Figure 3.1 for the bipartite network. Note that v ∈ Xi if and only if
{v, v(i)} ∈ M . To simplify the notation, we write Φ(M) for the function
(3.1) with the understanding above. That is,

Φ(M) := Φ(∂M ∩ V (1), . . . , ∂M ∩ V (m))

= w1(∂M ∩ V (1)) + · · ·+ wm(∂M ∩ V (m)). (3.7)

Just as in the standard treatment of bipartite matching, we orient the edges
E as

(u, u(i)) if {u, u(i)} ̸∈M, (3.8)

(u(i), u) if {u, u(i)} ∈M. (3.9)

Basically, the valuated matroid partition algorithm finds the maximum
weight maximum cardinality matching on this network, whose edge weights
represent the matroid valuation.

We encode the matroid valuations to weights γ of the network. Let M
be a current matching and (X1, . . . , Xm) be the corresponding subpartition.
We add a source-vertex s, a sink-vertex t, and the following edges to the
network:

E◦ := {(s, u) : u ̸∈ ∂M}, (3.10)

E• := {(v, s) : v ∈ ∂M}, (3.11)

E+ := {(u(i), t) : u(i) ̸∈ ∂M, i = 1, . . . ,m}, (3.12)

E− := {(t, v(i)) : v(i) ∈ ∂M, i = 1, . . . ,m}, (3.13)

E× := {(u(i), v(i)) : u(i) ̸∈ ∂M, v(i) ∈ ∂M, i = 1, . . . ,m}. (3.14)
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Figure 3.2: The auxiliary network G(M) for the valuated matroid partition
problem.

Here, the edge (s, u) in E◦ denotes that u is in some Xi (i = 1, . . . ,m) and
the edge (v, s) in E• denotes that v is not in any Xi (i = 1, . . . ,m). The
edge (u(i), t) in E+ corresponds to the operation of inserting element u to
Xi, the edge (t, v

(i)) in E− corresponds to the operation of removing element
v from Xi, and the edge (u(i), v(i)) in E× corresponds to the operation of
exchanging elements u ̸∈ Xi and v ∈ Xi. We define edge weights γ of these
edges corresponding to these operations as follows:

γ(u(i), t) = wi(X)− wi(X ∪ {u}), (3.15)

γ(t, v(i)) = wi(X)− wi(X \ {v}), (3.16)

γ(u(i), v(i)) = wi(X)− wi(X \ {v} ∪ {u}), (3.17)

and γ(e) = 0 for other edges. We write G(M) for this weighted network,
i.e.,

G(M) := (V (G(M)), E(G(M))),

V (G(M)) := {s} ∪ V ∪ V (1) ∪ · · · ∪ V (m) ∪ {t}, (3.18)

E(G(M)) := E ∪ E◦ ∪ E• ∪ E+ ∪ E− ∪ E×.

See Figure 3.2 for the auxiliary network. We emphasize that G(M) is no
longer bipartite, but we talk of a matching to mean a matching on the
bipartite graph induced on E. Both the cycle-canceling algorithm and the
augmenting path algorithm work on this network.

We first explain the cycle-canceling algorithm, which starts from a max-
imum cardinality matching and iteratively updates the matching to an opti-
mal matching. As in the standard argument for bipartite matchings, a cycle
C in G(M) induces a new matching

M ′ = (M∆C) ∩ E, (3.19)

where ∆ denotes the symmetric difference, i.e., M∆C := (M \C)∪ (C \M).
For the valuated matroid partition problem, the most important prop-

erty is the following theorem that states the relation between optimality for
the problem (2.5) and the existence of negative cycles in G(M).
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Theorem 3.2.

(1) Let C be a negative cycle with the fewest edges in G(M). Then

Φ(M ′) = Φ(M)− γ(C). (3.20)

(2) If G(M) does not contain negative cycles, then M is an optimal solu-
tion.

In the above theorem, (1) is proved by “unique max lemma”, and (2) is
proved by the “upper bound lemma”. For more details, see [32,35].

Theorem 3.2 suggests an algorithm for the valuated matroid partition
problem, which iteratively finds a negative cycle with the fewest edges, and
forms the symmetric difference of the current matching with the cycle. This
type of an algorithm is called the cycle-canceling algorithm. Here, for our
purpose, we introduce a variant of the valuated matroid partition problem
with a cardinality constraint and describe the algorithm for that form.

For a nonnegative integer k, we consider the following problem:

maximize Φ(X1, . . . , Xm) := w1(X1) + · · ·+ wm(Xm),
subject to: {X1, . . . , Xm} is a subpartition of V ,

|X1 ∪ · · · ∪Xm| = k.
(3.21)

If k = |V |, this problem coincides with the original problem (2.5). It is
important that Theorem 3.2 remains true for the problem (3.21).

The cycle-canceling algorithm for (3.21) is shown in Algorithm 1. To

Algorithm 1 Cycle-canceling algorithm

1: Let M be an initial matching of size k (e.g., M = {(v1, v(1)1 ), . . . ,

(vk, v
(1)
k )} for v1, . . . , vk ∈ V )

2: loop
3: Find a negative cycle C with the fewest edges
4: if there are no negative cycles then
5: return M as an optimal solution
6: else
7: M ← (M∆C) ∩ E
8: end if
9: end loop

find a negative cycle with the fewest edges (line 3 of Algorithm 1), we can
use the Bellman–Ford shortest path algorithm.

If all valuations w1, . . . , wm are integer-valued, Algorithm 1 terminates in
a finite number of iterations because, by Theorem 3.2 (1), the objective value
Φ(M) increases monotonically. This means that Algorithm 1 is a pseudo-
polynomial time algorithm. Note that there exists a (strongly) polynomial
time algorithm of cycle-canceling type; see [32,35].
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Next, we introduce the augmenting path algorithm. The algorithm starts
from the empty matching and in the k-th step, it constructs an optimal
solution for the problem (3.21).

Let M be a current matching of size k − 1. Consider a simple path P
that starts from the source-vertex s and terminates at the sink-vertex t. If
we update M to

M ′ := (M∆P ) ∩ E (3.22)

by augmenting this path, we obtain a new matching of size k. An important
observation is the following.

Proposition 3.3. Suppose that G(M) has no negative cycles. Let P be
a shortest path that starts from the source-vertex s and terminates at the
sink-vertex t, and let M ′ := (M∆P ) ∩ E. Then G(M ′) has no negative
cycles.

By the optimality criterion (Theorem 3.2), if we iteratively augment by
the shortest paths, the obtained matchings are optimal solution of (3.21) for
each size k. This is indeed the augmenting path algorithm [32,35], which is
described as Algorithm 2.

Algorithm 2 Augmenting path algorithm

1: Let M = ∅ be an initial solution
2: for k = 1, . . . , n do
3: Find a shortest path P that starts from the source-vertex s and ter-

minates at the sink-vertex t
4: Update M ← (M∆P ) ∩ E
5: end for

Note that, by Proposition 3.3, we can use Dijkstra’s shortest path algo-
rithm for line 3 of Algorithm 2.

Algorithms 1 and 2 exactly solve the valuated matroid partition prob-
lem. Hence, in particular, the submodular welfare problem with utility func-
tions introduced in Examples 2.1–2.12, which are matroid valuations, can
be solved to exact optimality by the valuated matroid partition algorithms.
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4 Proposed algorithm

We here propose a heuristic algorithm for the submodular welfare problem
based on the valuated matroid partition algorithms. Basically, the algorithm
is a combination of Algorithms 1 and 2 with some heuristics to cope with
difficulties caused by non-matroidal valuations.

The idea of our algorithm is an optimistic expectation that, if the utility
functions are “close enough” to matroid valuations, the algorithms designed
for matroid valuations will find reasonably good solutions. As a specific
example, we may consider utility functions of the form of (1.5): w(X) =
φ1(|X ∩A1|)+ · · ·+φl(|X ∩Al|). Such a function is submodular in general,
and is a matroid valuation if the underlying set family {A1, . . . , Al} is a
laminar family (Example 2.6). Our optimistic expectation is that, if the
set family is “almost laminar,” the valuated matroid partition algorithms
will perform reasonably well, and hence can be used as building blocks in
designing an algorithm that works reasonably well for general submodular
utility functions.

We first observe what will happen if not every utility function wi is a
matroid valuation. Recall that the valuated matroid partition algorithms
rely on Theorem 3.2 for the optimality characterization in terms of negative
cycles in G(M). When wi are not matroid valuations, this characterization
is no longer true. We have to modify the algorithm to resolve this problem.

We outline the proposed algorithm. Consider the augmenting path al-
gorithm (Algorithm 2) and suppose that we have an optimal matching M
of size k. Since the optimality criterion (Theorem 3.2) is not valid, there
may possibly be negative cycles in G(M) and hence we may not be able to
compute the shortest path in G(M) efficiently. To overcome this situation,
we apply the cycle-canceling algorithm (Algorithm 1) to remove negative
cycles, before we try to find a shortest path.

Let us discuss the detailed procedure for the cycle-canceling part which
is the core of our algorithm. The most crucial issue is the failure of the
first statement of Theorem 3.2. Even if we take a negative cycle C with the
fewest edges, the weight of the updated matching M ′ can be less or greater
than Φ(M) − γ(C); recall (3.1) and (3.15)–(3.17) for the definitions of Φ
and γ. This means, in particular, that the straightforward cycle-canceling
procedure, i.e., iteratively updating a matching with a negative cycle with
the fewest edges, may not terminate in a finite number of iterations. To
guarantee the finite termination, we introduce the following heuristics:

Repeat the following until there exists no negative cycles. Let C
be a negative cycle with the fewest edges and setM ′ := (M∆C)∩
E. If Φ(M ′) > Φ(M), then update M to M ′ and reconstruct the
network. Otherwise, modify γ by setting γ(e) := 0 for all e ∈ C.

Clearly this procedure terminates in a finite number of iterations if all valu-
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ations w1, . . . , wm are integer-valued. Note that, in a graph-theoretic view,
the operation “γ(e) := 0 for all e ∈ C” corresponds to the contraction of C.
The proposed algorithm is shown in Algorithm 3.

We analyze the complexity of the algorithm. For simplicity, we assume
that all wi are nonnegative integer-valued. Let W := maxM Φ(M) with
the maximum taken over all matchings M . In each iteration of the outer
for-loop (line 2 to line 21) for a fixed k, the inner loop (line 4 to line 16)
is executed at most O(|E(G(M))|W ) = O(n2mW ) times, because either
the number of negative edges is decreased (by line 14) or the objective
value is increased (by line 11). Line 5 takes O(n|V (G(M))||E(G(M))|) =
O(n4m2) time to perform the Bellman–Ford algorithm for each left vertex
since every cycle of G(M) contains at least one left vertex. Therefore the
inner loops take O(n6m3W ) time in total, and hence the algorithm takes
O(n7m3W ) time. This estimated complexity appears very expensive, but
in our experiments, the algorithm has turned out to be sufficiently efficient
for practical problems.

Algorithm 3 Proposed algorithm for submodular welfare problem

1: Let M = ∅ be an initial solution
2: for k = 1, . . . , n+ 1 do
3: G← G(M) in (3.18)
4: loop
5: Find a negative cycle C with the fewest edges in G
6: if there are no negative cycles then
7: break
8: end if
9: Let M ′ := (M∆C) ∩ E

10: if Φ(M ′) > Φ(M) then
11: M ←M ′

12: G← G(M) in (3.18)
13: else
14: Set γ(e)← 0 for all e ∈ C in G
15: end if
16: end loop
17: if k < n then
18: Find a shortest path P of G that starts from the source-vertex s

and terminates at the sink-vertex t
19: Update M ← (M∆P ) ∩ E
20: end if
21: end for

As for the approximation ratio, we can establish only a partial theoretical
bound. The contraction operation (line 14) is a heuristic operation that
is necessary to guarantee the finite termination, but it prevents us from
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establishing an approximation ratio of the algorithm. Under the assumption
that this contraction does not occur at the last stage of the algorithm, i.e.,
the network G at the termination of the algorithm is identical with the
auxiliary network G(M) defined in (3.18), we can prove the approximation
bound with factor 2.

Theorem 4.1. Suppose that all valuations wi are nonnegative monotone
nondecreasing submodular functions. If G = G(M) at the end of Algo-
rithm 3, the obtained solution (X1, . . . , Xm) satisfies

2Φ(X1, . . . , Xm) ≥ Φ(X∗
1 , . . . , X

∗
m), (4.1)

where (X∗
1 , . . . , X

∗
m) is an optimal solution of the submodular welfare prob-

lem (1.2).

For the proof of Theorem 4.1, we can make use of a result of Fisher,
Nemhauser, and Wolsey (Theorem 5.1 in [17]). To be self-contained, we
here state an adaption of their result1 together with a proof.

Lemma 4.2. Suppose that all valuations wi are nonnegative monotone non-
decreasing submodular functions. If a partition (X1, . . . , Xm) of V satisfies

Φ(X1, . . . , Xm) ≥ Φ(X1, . . . , Xi \ {u}, . . . , Xj ∪ {u}, . . . , Xm) (4.2)

for all u ∈ Xi and j ̸= i, we have

2Φ(X1, . . . , Xm) ≥ Φ(X∗
1 , . . . , X

∗
m). (4.3)

where (X∗
1 , . . . , X

∗
m) is an optimal solution of the submodular welfare prob-

lem (1.2).

Proof. Denote by X the subset of V (1) ∪ · · · ∪ V (m) that corresponds to
(X1, . . . , Xm), and similarly for X∗. Since Φ is monotone submodular, we
have the following inequality (e.g., Proposition 2.4 in [38]):

Φ(X∗) ≤ Φ(X) +
∑

v(i)∈X∗\X

(
Φ(X ∪ {v(i)})− Φ(X)

)
.

Since X represents a partition of V , for each v(i) ∈ X∗ \ X, there exists
v(j) ∈ X \X∗ for some j ̸= i. By submodularity of Φ and (4.2),

Φ(X ∪ v(i))− Φ(X) ≤ Φ(X ∪ {v(i)} \ {v(j)})− Φ(X \ {v(j)})
≤ Φ(X)− Φ(X \ {v(j)}).

1Fisher, Nemhauser, and Wolsey [17] deals with independence systems in general.
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Therefore, together with monotonicity, we obtain

Φ(X∗) ≤ Φ(X) +
∑

x∈X\X∗

(Φ(X)− Φ(X \ {x}))

≤ Φ(X) +
∑
x∈X

(Φ(X)− Φ(X \ {x})) . (4.4)

For the summation in (4.4), by letting X = {x1, . . . , x|X|}, we have

(Φ(X)− Φ(X \ {x1})) + (Φ(X)− Φ(X \ {x2})) + · · ·
≤ (Φ(X)− Φ(X \ {x1})) + (Φ(X \ {x1})− Φ(X \ {x1, x2})) + · · ·
=Φ(X)− Φ(∅) ≤ Φ(X).

Substituting this estimate into (4.4), we obtain (4.3).

Proof of Theorem 4.1. Suppose that G = G(M) at the end of the algorithm.
When the algorithm is terminated in line 7, the network G has no negative
cycles. Since G(M) = G, by assumption, G(M) has no negative cycles. By
the construction of the graph, for each u ∈ Xi and j ̸= i, there exists a cycle
C that

Φ(X1, . . . , Xm)− Φ(X1, . . . , Xi \ {u}, . . . , Xj ∪ {u}, . . . , Xm) = γ(C),
(4.5)

where γ(C) ≥ 0 since there are no negative cycles. Therefore we can apply
Lemma 4.2 to prove the theorem.

Remark 4.3. The condition G = G(M) in Theorem 4.1 is satisfied if line
14 is not executed after the last substitution of G← G(M).

Remark 4.4. Lehmann, Lehmann, and Nisan [27] proved that a simple
greedy algorithm attains 2-approximation ratio for general submodular util-
ities. Our result is not as good as theirs because we need the assumption of
G = G(M), but in practice this assumption is very often satisfied and our
algorithm outperforms their algorithm. See Subsection 5.2.

Remark 4.5. The proposed algorithm (Algorithm 3) can be applied for
non-submodular (i.e., general) utilities. In such case, of course, we cannot
prove any approximation bound.

Remark 4.6. The proposed algorithm (Algorithm 3) can be regarded as
a kind of ejection chain method [24] in meta-heuristics, which generalizes
alternating path type algorithms of some graph algorithms. Ejection chain
method combines simple neighborhoods (e.g., swapping two elements) to
build more general neighborhoods (e.g., swapping 2k elements simultane-
ously). Depending on the problem, there are many ways to construct ejec-
tion chains and some methods detect negative cycles in the state space.
See [2, 24] for more details.
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5 Computational results

5.1 Set k-cover problem

Abrams, Goel, and Plotkin [1] considered the following problem, the set
k-cover problem2, for wireless sensor monitoring.

We are given n sensors and l locations. Each sensor x covers a
subset of locations Sx. The problem is to find a k-partition of
sensors X1, . . . , Xk that maximizes the total number of locations
covered, i.e.,

maximize w(X1) + · · ·+ w(Xk)
subject to X1, . . . , Xk: partition of {1, . . . , n}
where w(X) = |

∪
x∈X Sx|.

Since the coverage function

w(X) =

∣∣∣∣∣ ∪
x∈X

Sx

∣∣∣∣∣ (5.1)

is submodular, this problem can be regarded as a submodular welfare prob-
lem (1.2). Set k-cover problem is NP-hard, and (15/16 + ϵ)-approximation
is NP-complete [1].

Here we remark that the coverage function (5.1) can be represented as a
sum of matroid rank functions. This follows from an alternative expression

w(X) =

l∑
j=1

rj(X)

with matroid rank functions

rj(X) :=

{
1, j ∈

∪
x∈X Sx,

0, otherwise.

A function that can be represented as a sum of matroid rank functions is
called matroid rank sum function. Matroid rank sum functions are regarded
as a class of submodular functions with some useful properties (see [41]).

A matroid rank function is a matroid valuation (Example 2.1), but a
matroid rank sum function is not necessarily a matroid valuation, and max-
imization of a matroid rank sum function is NP-hard since it contains the
set k-cover problem. In spite of this, we hope that matroid rank sum func-
tions are often “close” to matroid valuations, so that our algorithm performs
fairly well for instances in this class.

Here we ran experiments for two types of datasets, following [12].

2“Set k-cover problem” is originally considered by Slijepcevic and Potkonjak [43], which
is slightly different from this problem.
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• Data set “RANDOM”: Fix the number of sensors n and the number
of locations l. For each location j, an integer dj is chosen uniformly
in a prescribed integer interval [dmin, dmax]. Each of the dj sensors
covering j is then randomly selected. We use n = 20, l = 50, and
[dmin, dmax] = [3, 5], and the experiments were run with k = 5.

• Data set “GEOMETRIC”: Fix the number of sensors n. Put n sensors
and l′ locations as random points in the unit square. A sensor covers
all locations within distance r. Locations that are covered by less than
dmin(= 4) sensors are deleted (hence the number l of locations is less
than or equal to l′). We use n = 20, l′ = 50, and r = 0.4, and the
experiments were run with k = 5.

We compare our algorithm with the simple randomized algorithm pro-
posed by Abrams, Goel, and Plotkin [1] (AGP for short). Their algorithm
assigns each location to a randomly chosen sensor. The algorithm is a
(1− 1/e)-approximation algorithm (in expectation). We ran this algorithm
100 times and took the best.

Since the instances are not so large, we can compute the exact solution
of these instances via integer programming. The outputs of the AGP and
our algorithms are compared with the exact solutions computed by ILOG
CPLEX 11.200.

The results are shown in Tables 5.1 and 5.2. The ratios to the opti-
mal values are attached in the parentheses. The “Cycle” column shows the
number of detected negative cycles (i.e., the number of executions of line
9 of Algorithm 3) and the number of the contractions (i.e., the number of
executions of line 14 of Algorithm 3) in the format of “(number of con-
tractions) / (number of detected negative cycles)”. These values, which are
equal to zero for the valuated matroid partition problem, can be regarded
as a measure of “closeness” to the valuated matroid partition problem. In
the column of “Guarantee” we put T if G = G(M) at the termination of
the algorithm and F otherwise. Recall that this condition is the assumption
for the approximation guarantee (Theorem 4.1).

For all instances, the proposed algorithm outperforms the AGP algo-
rithm and has a 2-approximation guarantee (i.e., G = G(M) at the end of
termination). The proposed algorithm finds only a small number of negative
cycles for all the instances except RND.3. This means these instances are
“close” to the valuated matroid partition problem.

5.2 Budgeted allocation problem

The budgeted allocation problem, proposed by Garg, Kumar, and Pan-
dit [23], also known as budgeted constrained auction problem, is the fol-
lowing problem.
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Table 5.1: Set k-cover problem (RANDOM instances)

Problem Optimal AGP (ratio) Proposed (ratio) Cycle Guarantee

RND.0 175 146 (0.834) 171 (0.977) 0/0 T
RND.1 182 150 (0.824) 178 (0.978) 0/3 T
RND.2 178 149 (0.837) 176 (0.989) 0/0 T
RND.3 178 150 (0.842) 175 (0.983) 94/99 T
RND.4 176 146 (0.829) 172 (0.977) 0/0 T
RND.5 176 148 (0.840) 170 (0.966) 0/1 T
RND.6 175 143 (0.817) 171 (0.977) 0/3 T
RND.7 180 153 (0.850) 173 (0.961) 0/0 T
RND.8 184 148 (0.804) 178 (0.967) 0/1 T
RND.9 179 148 (0.826) 176 (0.983) 0/0 T

Average (0.830) (0.975)

“Cycle”: (number of contractions) / (number of detected negative cycles)
“Guarantee”: T if G = G(M), and F otherwise.

Consider m bidders and n items V . Each bidder i is willing to
pay an amount bix > 0 for item x ∈ V and has a budget Bi

at which his total payment is capped. The problem is to assign
each item to at most one bidder in order to maximize the total
payment obtained:

maximize w1(X1) + · · ·+ wm(Xm)
subject to X1, . . . , Xm: subpartition of V ,

where wi(X) = min{
∑
x∈X

bix, Bi}, i = 1, . . . ,m.

The budgeted allocation problem is NP-hard (in fact, approximating to
a factor better than 15/16 is NP-hard [5]). There is a 3/4-approximation
algorithm based on linear programming relaxation [44].

We compare our algorithm with the simple greedy algorithm for 1/2-
approximation by Lehmann, Lehmann, and Nisan [27] (LLN for short). We
generated the following instances and ran the experiment with them.

(1) R102570 instances are generated with m = 10, n = 25, Bi = 70, and
bix ∈ [10, 30] uniformly random.

(2) R204060 instances are generated with m = 20, n = 40, Bi = 60, and
bix ∈ [20, 40] uniformly random.

Since the instances are not so large, we can compute the exact solution
of these instances via integer programming. The outputs of the LLN and
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Table 5.2: Set k-cover problem (GEOMETRIC instances)

Problem Optimal AGP (ratio) Proposed (ratio) Cycle Guarantee

GEO.0 198 175 (0.883) 193 (0.975) 0/1 T
GEO.1 192 178 (0.927) 187 (0.974) 0/3 T
GEO.2 223 191 (0.856) 216 (0.969) 0/5 T
GEO.3 218 193 (0.885) 213 (0.977) 0/7 T
GEO.4 213 188 (0.882) 208 (0.977) 0/5 T
GEO.5 207 185 (0.893) 203 (0.981) 0/2 T
GEO.6 224 191 (0.852) 219 (0.978) 0/9 T
GEO.7 210 171 (0.814) 202 (0.962) 0/4 T
GEO.8 206 184 (0.893) 201 (0.976) 0/3 T
GEO.9 181 156 (0.861) 175 (0.966) 0/2 T

Average (0.874) (0.973)

“Cycle”: (number of contractions) / (number of detected negative cycles)
“Guarantee”: T if G = G(M), and F otherwise.

our algorithms are compared with the exact solutions computed by ILOG
CPLEX 11.200. The results show that our algorithm performs very well,
better than LLN for all instances. In particular, R204060 instances can be
solved exactly by the proposed algorithm without resorting to the negative
cycle canceling heuristics. This means that these instances are very close to
the valuated matroid partition problem.

5.3 Generalized assignment problem

Generalized assignment problem (GAP) is a problem similar to the budgeted
allocation problem, and is described as follows:

There are m bidders and n items V . Each bidder i is willing to
pay an amount bix > 0 for item x ∈ V and has a budget Bi at
which his total payment is capped. When a bidder i gets item
x, he gets profit cix. The problem is to maximize the total profit
of bidders by distributing n items with the budget constraint:

maximize w1(X1) + · · ·+ wm(Xm)
subject to X1, . . . , Xm: partition of V ,

where wi(X) =

{∑
x∈X cix if

∑
x∈X bix ≤ Bi,

−∞ otherwise.

The above problem, called Max-GAP in particular, is a submodular welfare
problem since wi is a submodular function. If bidder i’s pricing bix of x does
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Table 5.3: Budgeted allocation problem (R102570 instances)

Problem Optimal LLN (ratio) Proposed (ratio) Cycle Guarantee

R102570.0 646 633 (0.979) 643 (0.995) 0/5 T
R102570.1 649 635 (0.978) 646 (0.995) 0/1 T
R102570.2 650 640 (0.984) 650 (1.000) 0/2 T
R102570.3 639 625 (0.978) 636 (0.995) 0/3 T
R102570.4 648 631 (0.973) 648 (1.000) 0/2 T
R102570.5 649 639 (0.984) 649 (1.000) 0/2 T
R102570.6 648 635 (0.979) 648 (1.000) 0/2 T
R102570.7 646 636 (0.984) 645 (0.998) 0/1 T
R102570.8 649 644 (0.992) 649 (1.000) 0/1 T
R102570.9 643 631 (0.981) 642 (0.998) 0/1 T

Average (0.981) (0.998)

“Cycle”: (number of contractions) / (number of detected negative cycles)
“Guarantee”: T if G = G(M), and F otherwise.

Table 5.4: Budgeted allocation problem (R204060 instances)

Problem Optimal LLN (ratio) Proposed (ratio) Cycle Guarantee

R204060.0 1159 1135 (0.979) 1159 (1.000) 0/0 T
R204060.1 1174 1119 (0.953) 1174 (1.000) 0/0 T
R204060.2 1173 1152 (0.982) 1173 (1.000) 0/0 T
R204060.3 1165 1122 (0.963) 1165 (1.000) 0/0 T
R204060.4 1167 1136 (0.973) 1167 (1.000) 0/0 T
R204060.5 1166 1118 (0.958) 1166 (1.000) 0/0 T
R204060.6 1176 1131 (0.961) 1176 (1.000) 0/0 T
R204060.7 1172 1129 (0.963) 1172 (1.000) 0/0 T
R204060.8 1158 1106 (0.955) 1158 (1.000) 0/0 T
R204060.9 1165 1117 (0.958) 1165 (1.000) 0/0 T

Average (0.964) (1.000)

“Cycle”: (number of contractions) / (number of detected negative cycles)
“Guarantee”: T if G = G(M), and F otherwise.
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not depend on the item x, i.e., bix = biy for all x, y ∈ V , his utility function
wi is a matroid valuation. Hence, if each bidder’s pricing of items does not
vary so much across items, his utility function wi is “close” to a matroid
valuation.

For consistency with the existing literature it is convenient to consider
the minimization variant of GAP, called Min-GAP:

minimize wi(X1) + · · ·+ wm(Xm)
subject to X1, . . . , Xm: partition of V ,

where wi(X) =

{∑
x∈X cix if

∑
x∈X bix ≤ Bi,

+∞ otherwise.

(5.2)

Obviously, we can transform Max-GAP and Min-GAP to each other by
changing the sign of wi (i = 1, . . . ,m). We emphasize that, in Min-GAP,
the objective functions wi are supermodular.

The difficulty of Min-GAP comes from the feasibility constraint. To
relax the feasibility, we here use the penalty function method. Let β be a
large number and consider the following problem:

minimize wiβ(X1) + · · ·+ wmβ(Xm)
subject to X1, . . . , Xm: partition of V ,
where wiβ(X) =

∑
x∈X cix + βmax{0,

∑
x∈X bix −Bi}.

(5.3)

If β is sufficiently large, the problem (5.3) is equivalent to the problem (5.2).
Note that the function wiβ is supermodular if β ≥ 0.

We here use the datasets from ORLIB [6]3 to evaluate our algorithm.
There are four types of instances, called type a, type b, type c, and type d.
See [8] for detailed description of the instances. For example, the instance
“a10200” is of type a with m = 10 and n = 200. Since these problems are
Min-GAP, the ratios (Proposed)/(Best known) are greater than or equal to
1. The results are shown in Tables 5.5 and 5.6, where ∗-marked values are
known to be optimal.

In the literature, instances of types a and b are considered relatively easy
and instances of types c and d are considered relatively hard. Our algorithm
finds many negative cycles for instances of types c and d.

5.4 Max cut problem

Let G = (V,E) be an undirected graph with (possibly negative) edge weight
l : E → R. An m-partition (X1, . . . , Xm) of V is called m-cut, and the cut
value of this m-partition is defined as the sum of the edge weights connecting
different parts:

l(X1, . . . , Xm) :=
∑

u∈Xi,v∈Xj ,i ̸=j

l(u, v).

3http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html [8]
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Table 5.5: Generalized assignment problem Min-GAP (instances of types a
and b)

Problem Best known Proposed (ratio) Cycle Guarantee

a05100 1698∗ 1698 (1.000) 0/0 T
a05200 3235∗ 3235 (1.000) 0/0 T
a10100 1360∗ 1360 (1.000) 0/0 T
a10200 2623∗ 2623 (1.000) 0/0 T
a20100 1158∗ 1158 (1.000) 0/0 T
a20200 2339∗ 2341 (1.001) 0/0 T
b05100 1843 1855 (1.006) 113/230 T
b05200 3552 3565 (1.003) 4968/5197 T
b10100 1407 1413 (1.004) 0/7 T
b10200 2828 2848 (1.007) 1764/1918 T
b20100 1166 1168 (1.002) 0/3 T
b20200 2340 2343 (1.001) 0/9 T

“Cycle”: (number of contractions) / (number of detected negative cycles)
“Guarantee”: T if G = G(M), and F otherwise
∗: known to be optimal.

Then the max (multi-)cut problem is the following problem:

maximize l(X1, . . . , Xm)
subject to X1, . . . , Xm: partition of V .

This problem can be written as a general partition problem as follows. Let

w(X) := −
∑

u,v∈X
l(u, v). (5.4)

Then we have

l(X1, . . . , Xm) = w(X1) + · · ·+ w(Xm)− w(V ). (5.5)

Therefore the max cut problem is equivalent to the following:

maximize w(X1) + · · ·+ w(Xm)
subject to X1, . . . , Xm: partition of V .

Proposition 5.1. If l(e) is nonnegative for all e ∈ E, then the function
w in (5.4) is submodular. If l(e) is nonpositive for all e ∈ E, then w is
supermodular.

In the context of combinatorial auction, the utility function of the form

w(X) =
∑
u∈X

a(u) +
∑

u,v∈X
b(u, v)
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Table 5.6: Generalized assignment problem Min-GAP (instances of types c
and d)

Problem Best known Proposed (ratio) Cycle Guarantee

c05100 1931∗ 1969 (1.019) 63/167 T
c05200 3456∗ 3482 (1.007) 4261/4509 T
c10100 1402∗ 1415 (1.009) 531/567 T
c10200 2806∗ 2820 (1.004) 4863/5011 T
c20100 1243∗ 1257 (1.011) 247/226 T
c20200 2391 2402 (1.004) 1241/1311 F
d05100 6353∗ 6729 (1.059) 9/264 T
d05200 12743 13272 (1.041) 2759/3337 T
d10100 6349 6662 (1.049) 683/849 F
d10200 12436 13058 (1.050) 2131/2631 T
d20100 6196 6528 (1.053) 645/699 T
d20200 12264 12974 (1.057) 2167/2473 T

“Cycle”: (number of contractions) / (number of detected negative cycles)
“Guarantee”: T if G = G(M), and F otherwise
∗: known to be optimal.

is called quadratic function [42] (or 2-wise dependent function [11], or 2-
additive function [10]). Such w is supermodular if b is nonnegative, and
submodular if b is nonpositive. Shioura and Suzuki [42] discussed computa-
tional complexity of the welfare problem with quadratic utilities.

We use the instances from Biq Mac Library4. Since these instances are
for the maximum (two-)cut problem, we have m = 2 for these instances. We
compare our algorithm with the optimal solution also collected in Biq Mac
Library.

5.4.1 Random-weighted instances

We first examine the random-weighted instances. There are two types of
random instances in Biq Mac Library:

• w instances: a random graph of n = 100 vertices with edge density
0.1, 0.5, or 0.9 whose edges have weights [−10, 10].

• pw instances (p stands for “positive”): a random graph of n = 100
vertices with edge density 0.1, 0.5, or 0.9 whose edges have weights
[0, 10].

4http://biqmac.uni-klu.ac.at/biqmaclib.html [4].
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For example, the instance named “w01 100.3” is the 3rd of the w instances
with p = 0.1 and n = 100. The results are shown in Tables 5.7 and 5.8.
The ratios denote (Proposed)/(Optimal). The results show that the positive
instances are closer to the valuated matroid partition problem.

5.4.2 Instances from statistical physics

We next examine instances used in statistical physics (spin glasses). There
are two types of instances available at Biq Mac Library5:

• ising instances: one-dimensional Ising chain. For example, the instance
named “ising2.5-100 5555” is for the chain of length n = 100 with
model parameter 2.5 with random seed 5555.

• t2g or t3g instances: two- or three-dimensional toroidal grid. For
example, the instances named “t2g10 5555” is for two-dimensional
toroidal grid of size n = 10× 10 with random seed 5555.

For a detailed description of these instances, see [4, 28].

5http://biqmac.uni-klu.ac.at/biqmaclib.html [4].
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Table 5.7: Maximum cut (random instances)

Problem Optimal Proposed (ratio) Cycle Guarantee

w01 100.0 651 624 (0.958) 107/204 T
w01 100.1 719 679 (0.944) 194/270 T
w01 100.2 676 646 (0.955) 95/186 T
w01 100.3 813 771 (0.948) 59/140 T
w01 100.4 668 598 (0.895) 74/160 T
w01 100.5 643 553 (0.860) 130/219 T
w01 100.6 654 584 (0.892) 68/161 T
w01 100.7 725 684 (0.943) 122/210 T
w01 100.8 721 690 (0.957) 100/203 T
w01 100.9 729 707 (0.969) 145/246 T

Average (0.932)

Problem Optimal Proposed (ratio) Cycle Guarantee

w05 100.0 1646 1538 (0.934) 337/455 T
w05 100.1 1606 1580 (0.983) 481/601 T
w05 100.2 1902 1778 (0.934) 505/650 T
w05 100.3 1627 1505 (0.925) 629/745 T
w05 100.4 1546 1451 (0.938) 673/804 T
w05 100.5 1581 1456 (0.920) 449/533 T
w05 100.6 1479 1380 (0.933) 610/712 T
w05 100.7 1987 1907 (0.959) 703/806 T
w05 100.8 1311 1219 (0.929) 870/975 T
w05 100.9 1752 1740 (0.993) 533/654 T

Average (0.944)

Problem Optimal Proposed (ratio) Cycle Guarantee

w09 100.0 2121 2040 (0.961) 698/798 T
w09 100.1 2096 1944 (0.927) 774/900 T
w09 100.2 2738 2558 (0.934) 537/644 T
w09 100.3 1990 1983 (0.996) 703/837 T
w09 100.4 2033 1970 (0.969) 817/932 T
w09 100.5 2433 2433 (1.000) 925/1053 T
w09 100.6 2220 1998 (0.900) 991/1143 T
w09 100.7 2252 2238 (0.993) 807/921 T
w09 100.8 1843 1796 (0.974) 813/963 T
w09 100.9 2043 1876 (0.918) 865/998 T

Average (0.957)

“Cycle”: (number of contractions) / (number of detected negative cycles)
“Guarantee”: T if G = G(M), and F otherwise.
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Table 5.8: Maximum cut (random positive instances)

Problem Optimal Proposed (ratio) Cycle Guarantee

pw01 100.0 2019 1987 (0.984) 0/45 T
pw01 100.1 2060 2027 (0.983) 234/261 T
pw01 100.2 2032 2012 (0.990) 0/31 T
pw01 100.3 2067 2052 (0.992) 0/49 T
pw01 100.4 2039 1982 (0.972) 2/32 T
pw01 100.5 2108 2068 (0.981) 59/97 T
pw01 100.6 2032 2017 (0.992) 0/36 T
pw01 100.7 2074 2056 (0.991) 42/78 T
pw01 100.8 2022 1989 (0.983) 0/28 T
pw01 100.9 2005 1981 (0.988) 143/165 T

Average (0.985)

Problem Optimal Proposed (ratio) Cycle Guarantee

pw05 100.0 8190 8143 (0.994) 0/73 T
pw05 100.1 8045 7924 (0.984) 186/260 T
pw05 100.2 8039 7963 (0.990) 652/705 T
pw05 100.3 8139 8034 (0.987) 474/541 T
pw05 100.4 8125 8056 (0.991) 90/133 T
pw05 100.5 8169 8116 (0.993) 177/256 T
pw05 100.6 8217 8193 (0.997) 388/447 T
pw05 100.7 8249 8190 (0.992) 0/51 T
pw05 100.8 8199 8074 (0.984) 0/67 T
pw05 100.9 8099 8049 (0.993) 369/287 T

Average (0.990)

Problem Optimal Proposed (ratio) Cycle Guarantee

pw09 100.0 13585 13462 (0.990) 0/42 T
pw09 100.1 13417 13370 (0.996) 0/77 T
pw09 100.2 13461 13408 (0.996) 0/71 T
pw09 100.3 13656 13548 (0.992) 0/70 T
pw09 100.4 13514 13514 (1.000) 234/293 T
pw09 100.5 13574 13547 (0.998) 2/63 T
pw09 100.6 13640 13533 (0.992) 0/59 T
pw09 100.7 13501 13452 (0.996) 117/174 T
pw09 100.8 13593 13553 (0.997) 87/124 T
pw09 100.9 13658 13587 (0.994) 82/157 T

Average (0.995)

“Cycle”: (number of contractions) / (number of detected negative cycles)
“Guarantee”: T if G = G(M), and F otherwise.
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Table 5.9: Maximum cut (ising instances)

Problem Optimal Proposed (ratio) Cycle Guarantee

ising2.5-100 5555 2460049 2197899 (0.893) 268/378 T
ising2.5-100 6666 2031217 1851543 (0.911) 355/458 T
ising2.5-100 7777 3363230 3274129 (0.973) 423/537 T
ising2.5-150 5555 4363532 4044852 (0.926) 1023/1202 T
ising2.5-150 6666 4057153 3661955 (0.902) 1271/1261 T
ising2.5-150 7777 4243269 4101118 (0.966) 812/1021 T
ising2.5-200 5555 6294701 5971157 (0.948) 801/1024 T
ising2.5-200 6666 6795365 6544015 (0.963) 1098/1346 T
ising2.5-200 7777 5568272 5253044 (0.943) 733/986 T
ising2.5-250 5555 7919449 7326828 (0.925) 637/968 T
ising2.5-250 6666 6925717 6447957 (0.931) 775/1048 T
ising2.5-250 7777 6596797 6104229 (0.925) 1392/1719 T
ising2.5-300 5555 8579363 8010655 (0.933) 618/1002 T
ising2.5-300 6666 9102033 8374765 (0.920) 1337/1790 T
ising2.5-300 7777 8323804 7925367 (0.952) 1128/1590 T
ising3.0-100 5555 2448189 2236489 (0.913) 323/430 T
ising3.0-100 6666 1984099 1829937 (0.922) 559/663 T
ising3.0-100 7777 3335814 3142714 (0.942) 424/524 T
ising3.0-150 5555 4279261 3963090 (0.926) 400/589 T
ising3.0-150 6666 3949317 3627200 (0.918) 682/848 T
ising3.0-150 7777 4211158 4085580 (0.970) 551/736 T
ising3.0-200 5555 6215531 5879563 (0.945) 570/808 T
ising3.0-200 6666 6756263 6544388 (0.968) 773/1037 T
ising3.0-200 7777 5560824 5244404 (0.943) 153/364 T
ising3.0-250 5555 7823791 7247703 (0.926) 825/1146 T
ising3.0-250 6666 6903351 6299186 (0.912) 548/862 T
ising3.0-250 7777 6418276 6099705 (0.950) 1122/1434 T
ising3.0-300 5555 8493173 7987702 (0.940) 1458/1865 T
ising3.0-300 6666 8915110 8185811 (0.918) 1019/1472 T
ising3.0-300 7777 8242904 7947532 (0.964) 722/1120 T

“Cycle”: (number of contractions) / (number of detected negative cycles)
“Guarantee”: T if G = G(M), and F otherwise.
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Table 5.10: Maximum cut (t2g/t3g instances)

Problem Optimal Proposed (ratio) Cycle Guarantee

t2g10 5555 6049461 5695406 (0.941) 16/125 T
t2g10 6666 5757868 5244491 (0.910) 31/104 T
t2g10 7777 6509837 5998835 (0.921) 72/172 T
t2g15 5555 15051133 13703423 (0.910) 49/289 T
t2g15 6666 15763716 13761173 (0.872) 27/282 T
t2g15 7777 15269399 14801682 (0.969) 49/289 T
t2g20 5555 24838942 23227409 (0.935) 77/542 T
t2g20 6666 29290570 27514389 (0.939) 80/593 T
t2g20 7777 28349398 25318886 (0.893) 129/647 T
t3g5 5555 10933215 9690353 (0.886) 50/186 T
t3g5 6666 11582216 10813582 (0.933) 75/194 T
t3g5 7777 11552046 10871750 (0.941) 85/216 T
t3g6 5555 17434469 16232171 (0.931) 184/430 T
t3g6 6666 20217380 19190413 (0.949) 123/358 T
t3g6 7777 19475011 18181794 (0.933) 102/363 T
t3g7 5555 28302918 26220536 (0.926) 176/635 T
t3g7 6666 33611981 31625244 (0.940) 40/410 T
t3g7 7777 29118445 27196173 (0.933) 225/650 T

“Cycle”: (number of contractions) / (number of detected negative cycles)
“Guarantee”: T if G = G(M), and F otherwise.
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6 Conclusion

We have proposed a heuristic algorithm for the submodular welfare prob-
lem. The basic idea is to apply the valuated matroid partition algorithm
to the submodular welfare problem with some appropriate modifications.
The resulting algorithm has a theoretical guarantee of approximation ratio
under a certain assumption, which is very often satisfied in practice. The
algorithm performs quite well for a number of practical problems used in
our computational experiments.
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