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Abstract

This paper develops a framework for fitting real functions with domains in the Euclidean space, when data
are sparse but a slow variation allows for a useful fit. We measure the variation by Lipschitz Bound (LB) –
functions which admit smaller LB are considered to vary more slowly. Since most functions in practice are
wiggly and do not admit a small LB, we extend this framework by approximating a wiggly function, f , by
ones which admit a smaller LB and do not deviate from f by more than a specified Bound Deviation (BD)
across the domain of interest. In fact for any arbitrary positive LB one can find such a BD, thus defining a
trade-off function (LB-BD function) between the variation measure (LB) and the deviation measure (BD).
We show that the LB-BD function satisfies nice properties such as monotonicity (non-increasing trend) and
convexity. We also present a method to obtain it using convex optimization. For a function with given
LB and BD, we find the optimal fit and present deterministic bounds for the prediction error of various
methods. This result is an extension of the case with no deviation in the literature. Given the LB-BD
function, we discuss picking an appropriate LB-BD pair for fitting and calculating the prediction errors.
The developed methods can naturally accommodate an extra assumption of periodicity to obtain better
prediction errors. Finally we present an application of this framework to air pollution data with sparse
observations over time.

Key Words: Lipschitz Bound; Sparse data; Interpolation; Approximation; Linear Interpolation;
Convex Optimization; Periodic Function

1 Introduction

This paper investigates the problem of approximating (fitting) functions when data are sparse over
time or spatial domains of data (with a special focus on the 1-dimensional domain case). Such
“data-sparse” situations are often encountered when collecting large amounts of data is expensive or
practically implausible. For example in many air pollution studies including the Southern California
Children Health Study, (Franklin et al. (2012), Gauderman et al. (2004), Gauderman et al. (2007)),
only sparse data are collected over time for concentrations of several elements (metals, gases) in
some homes and schools in Southern California to assess the effect of air pollution exposure on
children’s lung function. Using such sparse data, we are interested in approximating the exposure
for a given location over a time period of interest. In such cases some properties of the data might
allow for a good approximation (prediction/fit) despite the sparse data structure. For example for
Ozone concentrations in Southern California, bi-weekly measurements (the measuring filters are
installed and collected in such periods) are available and therefore the process over time varies
“slowly”. Figure 1 depicts the biweekly moving average of Ozone concentration for a central site (in
Upland, CA) in Southern California (where complete data are available) during 2004–2007. There
might be also other properties of the process that help us fit the function in sparse data situations.
For example many processes over time show an approximate periodic pattern on annual scale
(e.g. weather and air pollution). The approximate periodicity for the Ozone process in Southern
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California can also be seen in Figure 1. This work utilizes such properties to improve the methods
of fitting.

When we are working with (at least one-time) differentiable real functions defined on the
d-dimensional Euclidean space Rd, we can naturally define a measure of variation of the function f
by the supremum of its first-order derivative (or gradient for multidimensional case) on the domain:
sup ||f ′(x)||, x ∈ D, where ||.|| is the Euclidean norm. Of course this definition is not useful for
most processes we encounter in the real world – even if they show some global slow-variation –
because often there are irregular small variations which make the function non-differentiable (see
Figure 1). Another problem with this definition is the domain D needs to have sufficient properties
for the derivative to be well-defined (one such sufficient property is D being an open subset of Rd).

The key concept we use in this paper is a measure of variation (or roughness) for general
non-differentiable functions on a given domain. At first we consider functions which admit a
Lipschitz Bound (LB) on the specified domain and assign the variation of the function to be the
infimum of all such bounds. A function f : D ⊂ Rd → R, where D is a subset of Rd is said to have
Lipschitz Bound (LB) m if |f(x)−f(y)| ≤ m||x−y|| where ||.|| denotes L2 norm. The interpolation
of functions with a given Lipschitz Bound is also considered in Gaffney et al. (1976), Sukharev
(1978), Beliakov (2006), Sergeyev and Kvasov (2010) and the optimal interpolator (which is a
piece-wise linear function) in terms of the worst-case error is found.

The Lipschitz framework immediately includes piece-wise differentiable functions but this
generalization is still not adequate (useful) for processes we encounter in practice because they
do not admit a small enough Lipschitz Bound for the fits or the prediction errors obtained may
not be reasonable. We call such functions “wiggly” functions. (Note that this is not an accurate
mathematical definition.) As one of the contributions of this work, we extend this framework by
approximating a wiggly function f : D ⊂ Rd → R which does not admit a small enough LB by
another function g, which does admit a small LB and deviates from f only by a small “Bound
Deviation” (BD), σ in terms of the sup norm: ||f − g||∞ = sup

x∈D
|f(x) − g(x)|. Then we find the

optimal approximation of a given function f with known LB and BD and provide the prediction
(approximation) errors for the optimal solution and other standard approximation methods, thus
extending the results in Gaffney et al. (1976), Sukharev (1978), Beliakov (2006), Sergeyev and
Kvasov (2010) to a much more practical class of functions.

Another key observation is: for each given LB=m, (which may not be satisfied by f), we
can consider all the functions g which satisfy the LB, m, and calculate the infimum of the distance
of all those function from f (in terms of the supremum norm) and denote it by γf (m). Thus we
can construct a generalized concept of LB in which a given function can be considered to have any
m ≥ 0 as LB, albeit up to a “Bound Deviation”, γf (m), which is the price one pays for getting m
as LB. We call this trade-off function, γf , the LB-BD function (or curve) of f . We develop methods
for approximating functions using this framework and in particular find the optimal methods in this
case. We also develop methods for calculating the LB-BD function from data. For the simulation
and applications, we mainly focus on the 1-dimensional (1-d) domain case. However our framework
can also be considered for the multidimensional domain case which deserves an extensive analysis
that is beyond the scope of this paper.

In order to assess the performance of approximation methods, we need to define appropriate
error measures. The definition of the error should depend on the specific application. Two important
cases are as follows: (1) point-wise approximation; (2) integral approximation. In (1), the goal is
to achieve good approximations to the function f at all points in the domain, while in (2) we are
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Fig. 1: Biweekly moving average of Ozone concentrations (O3) plotted at a central station in Upland(UPL)
in Southern California. We observe a general pattern which varies slowly over time and some small
variations on top of that. The process is also approximately periodic at least when we focus on one
given year (i.e. the beginning and end values approximately are the same).

interested in approximating the integral of the function f on the domain D. Therefore different
errors should be considered accordingly. For example we can use supx∈D |f(x)− f̂(x)| for the first

case and |
∫
D
f(x)dx−

∫
D
f̂(x)dx| for the second case. In (2) the distinction between interpolation

and approximation becomes less important and in fact, simple averaging of the available data
(AV G), can be considered a reasonable method for that purpose and is often used in practice for
example in the study of air pollution exposure assessment in Franklin et al. (2012). However even
for the integral approximation case, we developed methods which outperform the simple averaging
(and any other possible method) – a fact we show both by theory and simulations.

Since we assume the data are very sparse over time, the use of classical statistical methods
such as regression may not be suitable. This is because with only few data points, it is either
impossible to estimate the trends and the error (due to having too many parameters) or the
estimates will be extremely poor, resulting in issues such as “over-fitting”. As an example consider
an unknown function

f : [a, b]→ R,

for which only 3 points x1, x2, x3 ∈ [a, b] are observed:

f(x1), f(x2), f(x3).

Clearly even a simple regression model of the kind

f(x) = a0 + a1B1(x) + a2B2(x) + ε(x),
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where Bi(x), i = 1, 2 are basis functions and ε(x) ∼ N(0, σ2), cannot be fitted because the number
of parameters a0, a1, a2, σ

2 is larger than the number of data points. Therefore one needs to make
an assumption such as σ2 = 0, in which case the fit will interpolate the points. The problem with
such a fit is: in some cases there is no limit on how poorly the approximation performs outside the
sampled points and we illustrate this point better in the simulations. Also note that even if we
have access to more data, say 8 points, the fit would most likely remain very poor because: (1) the
proposed model and in particular the basis functions could be inappropriate; (2) the parameter
estimates can be extremely poor.

As another example consider the data consisting of a series of measurements of head
accelerations (y-axis) versus time (x-axis) (Figure 2) in a simulated motorcycle accident, used to
test crash helmets (see Silverman (1985)). These data are available as a part of the R package
library, MASS. The full data set is depicted (black curve) and we have chosen a subset of 15 points
(filled circles). The“locally weighted regression” (LOESS) fit (dotted), Cleveland et al. (1992), and
smoothing spline fit (dashed) are also given and we observe that while these methods perform
well at the beginning of the series, where more data are available, they fail dramatically at larger
values (larger than 30), where less data are available. The LOESS and smoothing spline fits are
fitted using R packages which estimate the parameters automatically with the standard available
techniques, from which the predicted curves are created. In contrast, the thick curve is created
using the Lipfit method developed in this paper, performs better by tracking the data closely. The
problem with most of the classical curve fitting methods (regression/regularization) – when applied
to the data which are sparse in some intervals – is there is nothing to prevent their fits from going
well beyond the range of the data as shown in the above example. On the other hand Lipfit is
guaranteed to stay within the data range by definition. In general methods which produce fits
which stay within the range of the data are desirable and can be useful in data sparse situations.
We say a method is data-range faithful if it does not go beyond the available data range. More
formally we give the following definition and later we will see that the Lipfit method introduced in
this paper satisfies this property.

Definition 1.1: Suppose the data (xi, yi), i = 1, 2, · · · , n are given, where xi is the vector of predictors
and yi is the target variable. Also assume the goal is to fit the outcome (target) variable on D.
Then let

ymin = min{yi, i = 1, · · · , n}, ymax = max{yi, i = 1, · · · , n}.

The data-range is defined to be the interval [ymin, ymax]. A method is said to be data-range faithful,
if the prediction from the method denoted by ŷ satisfies:

ŷ(x) ∈ [ymin, ymax], x ∈ D.

Because classical regression and regularization techniques cannot be applied to such sparse
data cases, alternative methods must be sought. For example we can consider these three simple
methods: (1) take the average of f(x1), f(x2), f(x3) which we denote by AV G and approximate
all unknown values f(x) by this average; (2) To every point x ∈ D find its nearest neighbor in
{x1, x2, x3} and assign to f(x) – a method we denote by NN ; (3) for the 1-dimensional case,
construct a curve by joining the available points and use that for approximation – a method we call
“Linear Interpolation” (LI).
One might claim: at this point, this is the best one can hope for; there is not much difference
between solutions (1), (2) and (3); and no further investigation is useful or necessary. However by a
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Fig. 2: Motorcycle head acceleration data. The data points (filled circles) are sampled from the full data
(thin black curve). The LOESS (dotted) and the smoothing spline (dashed) fits are poor for values
bigger than 30 (where the data are sparse) and goes way beyond the range of data points, while
Lipfit (thick curve) still achieves a reasonable fit.

closer inspection, one notes that method (1) is indifferent to the times we have observed the data
in the given period, while methods (2) and (3) utilize that information for possibly improving the
interpolations. Moreover we can ask the following questions:
Question 1: Are there data-range faithful methods which perform well in approximating the function,

especially in data-sparse situations?

Question 2: Is there a framework in which, using minimal assumptions, we can define what it means for a

process to be slow-moving and we can find/compare the accuracy of various methods, such as methods (1),

(2) and (3)?

Question 3: Which one of the methods (2) and (3) is better in terms of approximation error? Also are

there any other methods that outperform (1), (2) and (3)?

Question 4: Given an approximation method, what is an optimal sampling scheme to get the smallest

error in the approximation?

Question 5: In the 1-dimensional case, can we use the extra assumption of periodicity in the approximation

and how does this affect the approximation error and optimal sampling scheme?

This paper answers all the above questions. In particular, it shows that under reasonable
assumptions a better non-trivial solution exists and indeed is optimal in terms of the appropriate
error. For periodic curves, we modify the methods to take advantage of this extra information and
quantify exactly the gain in the accuracy and its effect on the sampling scheme.

Many of the definitions and results laid out in this paper are developed for the
multidimensional domain case. However our focus, especially for the simulations and the application
is on the 1-dimensional case. This is because the multidimensional case deserves an extensive
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investigation. Also one can get a good intuition from the 1-dimensional case in order to study the
multidimensional domain case in which some of the results may be more difficult to prove or do not
hold.

The “optimal central algorithm” for Lipschitz functions – which is a special case of Lipfit
when there is no deviation – was studied in Gaffney et al. (1976). General formulae in the
multidimensional case are provided in Sukharev (1978). Beliakov (2006) developed a fast algorithm
for computing central optimal interpolant. Hansen et al. (1992a) and Hansen et al. (1992b) study
the problem of finding the maximum of a univariate Lipschitz function on a given domain.

To the best of our knowledge, the new contributions of this paper are the following: (1)
We Compared the approximation methods in terms of several appropriately defined approximation
(prediction) errors depending on the application, for example we make the contrast between
approximating the function point-wise and approximating the integral of the function. (2) We
rigorously introduced “data-informed” errors, which are essentially the approximation errors given
both the position of the observations and their values. Also we explicitly calculate these errors
for the 1-dimensional case and provide a method to calculate them for any dimension. These are
useful in practice because we often can obtain smaller errors when considering the data-informed
versions. These errors are also useful in theory. For example while the Linear Interpolation (LI) or
Nearest Neighbor (NN) methods obtain the same error using the not data-informed errors, the
data-informed errors are different. (3) Here we investigate the periodic functions and modify the
results for that case. (4) We find optimal sampling schemes for obtaining the smallest possible
approximation error for the 1-dimensional case. (5) We show that the LB-BD function enables us
to generalize the results to many processes in practice and is a useful characteristic of the variation
of processes over time and space. The only other work that considers extension of the interpolation
of Lipschitz functions is Beliakov (2007), which considered random independent (gaussian and
exponential) noise added to a Lipschitz function. However here our approach allows us to consider
infinitely many Lipschitz Bounds up to their corresponding Bound Deviation (BD) and we do not
require any assumption on the deviations (including its distribution or independence). In fact the
key idea is in the trade-off between these two quantities. (6) For any LB-BD pair, we find the
optimal approximating curve and calculate its exact approximation error. (7) We compare the
approximation error of the methods we develop here with some well-known statistical smoothing
methods in different scenarios of data availability and magnitude of BD. (8) We develop heuristic
and exact methods for calculating the LB-BD function from data. The exact method uses convex
optimization to find the LB-BD curve. (9) We find the approximation errors for a function with a
(partially) given LB-BD curve. (10) We apply the methods developed here to air pollution (Ozone)
data observed over time in Southern California.

The remainder of the paper is organized as follows. Section 2 includes a historical background
of data fitting and interpolation methods and outlines their connection with this work. Section
3 develops a framework for approximating (fitting) slow-moving curves which are defined using
bounds on the Lipschitz Bound. We also propose several loss functions to assess the goodness
of approximation methods. We also discuss various approximation methods (some of which are
interpolation methods) and find an optimal one Lipfit. We find optimal sampling points for getting
the best possible approximation error. Section 4 extends the framework to slow-moving “wiggly”
functions: function which do not have a small bound on Lipschitz Bound but can be approximated
by such functions up to a deviation. Section 5 presents a method to generate functions with a
given Lipschitz Bound and then compares the discussed approximation methods using simulations,
showing that it does make a difference to choose an appropriate method for the problem at hand.
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Section 6 discusses the trade-off between the LB and BD for a given function; defines the LB-BD
function associated with a given function; and shows the nice properties of the LB-BD curve
such as convexity. Section 7 discusses methods for calculating the LB-BD function, including a
convex optimization method. Section 8 discusses finding appropriate parameters (LB-BD) for
applying the methods and calculating approximation errors in practice, including a “Prediction
Error Minimization Method” (PEM) and validation methods. Section 9 describes the application
of the method in measuring Ozone exposure. Finally Section 10 discusses some remaining issues
and extensions, for example extending this work to functions of multi-dimensional domains.

2 Background

Throughout this paper we use the words function “approximation”, “fitting” and “prediction”
interchangeably and to refer to any method which inputs data and outputs values for the function
at unknown points. However it is useful to clarify what is usually meant by interpolation here and
in the relevant literature because several of the methods discussed in this work are interpolation
methods. Interpolation refers to any method which inputs n values of a target function f defined
on D ⊂ Rd: (x1, f(x1)), · · · , (xn, f(xn)) and outputs a function f̂ on D which agrees with f on the
given points (and it is supposed to be close to f values outside the given points). This is in contrast
to classical fitting methods in statistics (e.g. linear regression) for which often the estimated curve
does not go through the given points. In order to include all possible methods, we use the term
approximation to refer to any method that given the input data returns a function f̂ on D. A
very simple example of approximation – which is not an interpolation method – is a method we
denote by AV G and simply takes the average of the available values of f and assign that to all the
domain: f̂(x) =

∑n
i=1 f(xi)/n. We do not think the distinction between interpolation and general

approximation is really useful since any approximation method can be slightly tweaked to become
an interpolation method by redefining the value of the approximation at the available points to
be the same as the data. Moreover there are usually infinitely many “out-of-sample” points as
compared to finitely many “in-sample” points. Therefore in practice, we often care mostly about
the out-of-sample performance anyway.

Since we consider some interpolation methods in this paper, here we discuss some historical
background on this topic. Interpolation of points surprisingly goes back to astronomy in ancient
Babylon and Greece when it was all about time keeping and predicting astronomical events
(Meijering (2002)). Later Newton and Lagrange studied the problem of interpolating a function f
defined on an interval [a, b] with given values on n points: x1, · · · , xn, by a polynomial of degree
n and arrive at the same solution (with different computational method). The Lagrange method
gives this polynomial, p, by defining li(x) =

∏n
j=1;j 6=i

x−xi

xj−xi
and letting

pn(x) =

n∑
i=1

li(x)f(xi).

Moreover it can be shown (see Cheney and Kincaid (2008)) that if f is (n+ 1) times differentiable,
then for some a < ζ < b:

f(x)− pn(x) =
1

(n+ 1)!
f (n+1)(ζ)

n∏
i=1

(x− xi). (1)
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Therefore if a bound is available on the magnitude of f (n+1), i.e. |f (n+1)| ≤ M , denoting the
interpolation error by e(x) := |f(x)− pn(x)| we have:

e(x) ≤ 1

(n+ 1)!
M

n∏
i=1

|x− xi|.

Unfortunately both the existence of f (n+1) and having a small bound are rare in practice.
While a practitioner may have an idea about the first derivative magnitude (or another

measure of variation such as Lipschitz Bound) of the process under the study, it is extremely rare to
know something about the (n+ 1)th derivative of the process or even believe it exists! To illustrate
this point consider the bounded function f(x) = (1 + x2)−1 for which derivatives of all orders are
available and suppose n equally spaced points are available for interpolation. One can show

lim
n→∞

max
x∈[−5,5]

|f(x)− pn(x)| =∞,

(Cheney and Kincaid (2008)). This means as more data become available, the accuracy of the
interpolation gets worse! The reason the Newton/Lagrange polynomial method fails dramatically
in this case is the high-order derivatives of this simple bounded function become very large for
some x ∈ [−5, 5] (or else Equation 1 would guarantee a precise bound). Apparently it was expected
that a (continuous) function f will be well-approximated by interpolating polynomials and “in the
history of numerical mathematics, a severe shock occurred when it was realized that this expectation
was ill-founded” (Cheney and Kincaid (2008)). Based on the discussion above, we seek methods
which make the least possible assumptions regarding the properties of function f . In fact we do
not require existence of any derivatives and only require the function to have a Lipschitz Bound,
which is a weaker assumption than that of the existence of the first derivative. Also we derive
the approximation errors merely based on this bound. In later sections, we relax the existence of
a (small) Lipschitz Bound by allowing the function to be well-approximated by a function with
relatively small Lipschitz Bound up to a deviation defined appropriately.

Interpolation is also considered in (medical) image processing and a good summary is given
in Lehmann et al. (1999) and Thévenaz et al. (2000). In that application, it is often assumed to
have access to the values of a 2-dimensional image on a equally spaced rectangular grid, which is
not the case we consider in this paper.

Another view of approximating functions emerged with the least squares method of Gauss
which was followed by various other regression methods. The main difference of this framework
(from the interpolation methods previously developed) is to view the function as a combination
of a true underlying function and some added “noise”. For example a version of linear regression
assumes

f(x) = β0 + β1x+ ε,

where ε is independent and identically distributed noise process, for example normally distributed:
ε ∼ N(0, σ2). This can be generalized in many ways to include more predictors or non-linear trends.
For example

f(x) = β0 + β1B1(x) + β2B2(x) + ε,

for some basis functions B1(x), B2(x). The function can now be seen as an imperfect observation of
a true function and the main objective is to infer about the true function. For example if we predict
a value at an observed x = xi for which f is observed to be f(xi), using the historical interpolation
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methods, we get back the same observed value f(xi), while from the regression, we may get back a
completely different value, which is supposed to be closer to the noise-free true value.

A more recent view of fitting functions emerged as the so-called regularization methods
(Hastie at al. (2009)). As an example, consider the “smoothing splines” method which finds the
minimizer of

argmin
f

n∑
i=1

|f(xi)− yi|2 + λ

∫
D

||f ′′(x)||dx, (2)

where f ′′(x) is a second derivative and λ ≥ 0 is a “penalty” term, which creates a trade-off
between the deviation of the fitting (approximation) function f and the variation of the function.
If we do not include the second term, λ

∫
D
||f ′′(x)||dx, we end up with a function that necessarily

interpolates them and can have chaotic behavior outside the observed points – a similar problem
to that of interpolation methods of Legendre and Newton. An appropriate λ is usually chosen by
“cross-validation”. Solving Equation 2 can be shown to be equivalent to

argmin
f

n∑
i=1

|f(xi)− yi|2 (3)

subject to

∫
D

||f ′′(x)||dx ≤ λ?, (4)

for some λ? ≥ 0, which is determined by λ. In fact the second representation comes from the dual
problem of the first one in convex optimization theory.

Conceptually the regularization methods, such as smoothing splines do not explicitly assume
and model a noise process but rather do not allow the function to vary too much (thus prevent
“over-fitting”) through

∫
D
||f ′′(x)||dx ≤ λ?. The framework we use in this paper is similar in this

sense and does that by controlling the variation through the Lipschitz Bound and the deviation
by maxni=1 |f(xi)− yi|. Of course the solution in the two cases can be dramatically different. One
thing the latter achieves is the fit always remains within the range of the data through controlling
the Lipschitz Bound and the severe deviation measure of maxni=1 |f(xi) − yi| which does not let
the approximation to deviate from the data much at any individual point. With this background
comparison it becomes clear that other solutions to the fitting problem can be considered by
choosing various variation measures and deviation measures – each of which may suit different
applications. We leave a thorough study of these various choices to future work and discuss more
about this idea in a general framework in the discussion section.

The reason for the better performance of Lipfit method over smoothing splines in
data-sparse situations can also be seen through the variation-deviation framework. The smoothing
spline method only controls the second derivative by penalizing the integral of its magnitude. For
example the penalty is zero for a curve with large slope and if the data is sparse. Hence is an
opportunity for the fit to deviate a lot from the true values as shown in Figure 2. We observe
in that figure for larger values where data are sparse, the fit travels up with high slope but has
plenty of opportunity to come back down to the last data point with rather small second derivative
(curvature). In this case the Lipfit method, does not allow this chaotic behavior by controlling the
LB.

An important idea that we introduce in this work is: for any function f , we consider the
trade-off between the variation measure and the deviation measure, which is summarized in the
LB-BD function, denoted by γf . As we discussed in the introduction, for any LB=m, we can
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always find a BD=γf (m) for which a function g exists so that g has LB m and deviates from f
(only) as much as γf (m). This is in contrast to a single penalty term usually considered in other
regularization methods such as smoothing splines where this trade-off concept is also considered as
referred to as “bias-variance” trade-off (Hastie at al. (2009)). However to best of our knowledge the
properties of this trade-off function is not explored closely, as we have done in this work for the
LB-BD trade-off.

3 A framework for approximating slow-moving functions

Making inference about an arbitrary function with sparse data is not feasible if we do not have
any extra information at our disposal. Here we show that one such useful assumption is having a
relatively small Lipschitz Bound which is defined formally below. Here we consider real functions
defined on a subset D of the d-dimensional Euclidean space, Rd:

f : D ⊂ Rd → R,

and denote the set of all such functions by RD. We also consider the supremum norm on this space

‖f‖∞ = sup
x∈D
|f(x)|,

which induces a metric (and topology) on RD. We denote the Euclidean norm for a vector v in
Rd by ||v||. In this paper we mainly restrict ourselves to the case where d = 1 and work with
functions defined on closed intervals. While many of the definitions and results laid out in this
paper are developed for the multidimensional domain case, we leave a more comprehensive study of
the general case to future work. Also one can get a good intuition from the 1-dimensional case in
order to study the higher dimensional (spatial) case in which some of the results are more difficult
to prove or do not hold.

Definition 3.1: (i) Suppose f : D ⊂ Rd → R is a function. Then f is said to have a Lipschitz
Bound (LB), m, if |f(x)− f(y)| ≤ m||x− y||, x, y ∈ D. We denote the set of all such functions by
LB(D,m) or LB(m) when the domain is clear from the context.
(ii) We denote the set of all periodic functions on [a, b] (f(a) = f(b)) and with Lipschitz Bound m
by PLB([a, b],m) or PLB(m) if the domain is clear from the context.
(iii) Infimum Lipschitz Bound:

Lip(f) = inf{m ∈ R, |f(x)− f(y)| ≤ m||x− y||, ∀x, y ∈ D}.

(iv) Denote the set of all at least one-time differentiable functions (for multi-dimensional case when
the gradient exists) on D by DIF . (Assume also D is an open set). Then let

DIF(D,m) := DIF ∩ LB(D,m), PDIF([a, b],m) := DIF ∩ PLB([a, b],m).

Lemma 3.1: (Properties of Lipschitz Bound)
(i) Suppose f : D ⊂ Rd → R is differentiable for an open subset D and |f ′(x)| ≤ m, ∀x ∈ D then

Lip(f) =: sup
x∈D
||f ′(x)||.
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In other words f ∈ DIF then f ∈ LB(m = supx∈D ||f ′(x)||).
(ii) Suppose f is continuous on a convex set D ⊂ Rd. Moreover assume D = ∪ni=1Di, for a collection
of convex subsets Di and f has Lipschitz Bound m on each of the Di. Then f is Lipschitz Bound
m on D.
(iii) LB(D,m) is a convex and closed subspace of RD.
(iv) DIF(D,m) is convex but not closed in RD and is therefore a strict subset of LB(D,m).
(v) f ∈ LB(D,Lip(f)).
(vi) Lip : RD → R is a convex function (but not continuous).
(vii) DIF(D,m) is dense in LB[D,m] and PDIF([a, b],m) is dense in PLB[(a, b),m].

Proof See Appendix.

3.1 Slow-moving pattern generation

This subsection presents a method for generating slow-moving patterns over time (1-dimensional
case). In particular, we generate patterns with a given Lipschitz Bound. We present this method
for both periodic and non-periodic functions. We start by defining classes which satisfy a given LB
and it is clear from the definition of the classes how such functions can be simulated.

Definition 3.2: Suppose an interval [a, b] and a LB, m, are given. Consider a collection of k points
a < p1 < p2 < · · · < pk < b, a collection of slopes m1, · · · ,mk+1 so that |mi| ≤ m, and an intercept
y0. Then define a function f : [a, b] → R by first defining f(a) = y0 and drawing a line segment
starting from (a, f(a)) with slope m1 until (p1, f(p1)). Then draw another line segment starting
from (p1, f(p1)) with slope m2 until the point (p2, f(p2)) and continue in the same manner for
m3, · · · ,mk+1. Then f is a piecewise linear function on [a, b] with LB m. Denote the class of all
such functions by PL([a, b],m).

Definition 3.3: Suppose an interval [a, b] and a Lipschitz Bound m are given. Consider a collection
of k points a < p1 < p2 < · · · < pk < b, a collection of slopes m1, · · · ,mk−1 so that |mi| ≤ m, and
an intercept y0. Then define a function f : [a, b]→ R by first defining f(p1) = y0 and drawing a line
segment starting from (p1, f(p1)) with slope m1 until (p2, f(p2)). Then draw another line segment
starting from (p2, f(p2)) with slope m2 until the point (p3, f(p3)) and continue in the same manner
for m3, · · · ,mk−1 to get to the point (pk, f(pk)). Then to assure periodicity, connect this point to
(b + (p1 − a), f(p1)) and calculate the slope of this last line and call it mk. If |mk| ≤ m, f is a
periodic piecewise linear function on [a, b] with LB m. Denote the class of all such functions by
PPL([a, b],m).

In the following theorem we show that the function spaces PL([a, b],m) and PPL([a, b],m)
are good approximations of LB([a, b],m) and PLB([a, b],m).

Theorem 3.1: PL([a, b],m) is dense in LB([a, b],m) and PPL([a, b],m) is dense in PLB([a, b],m)
in terms of sup norm: ||f ||∞ = sup

x∈D
||f(x)||.

Proof Suppose f ∈ PL([a, b],m) then for any ε > 0 consider a grid a = a0 < a2 < · · · < an = b
such that ai+1 − ai ≤ ε/(2m), i = 0, · · · , (n− 1). Define f̃ to be the linear interpolation of f on
the grid:

f̃ = LI[f, (a1, · · · , an), (f(a1), · · · , f(an))].
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Fig. 3: Left Panel: A simulated periodic function with 5 break points and with LB equal to 1. Right Panel:

A smoothed version of the simulated curve using a moving average filter.

Then for x ∈ [a, b], suppose aj is the closest element to x on the grid and note:

|f̃(x)− f(x)| = |f̃(x)− f(aj) + f(aj)− f(x)|
= |f̃(x)− f̃(aj) + f(aj)− f(x)|
≤ |f̃(x)− f̃(aj)|+ |f(aj)− f(x)|
≤ m|x− aj |+m|x− xj |
≤ (2m)ε/(2m) = ε,

and this proves ||f − f̃ ||∞ ≤ ε.
The same proof works for PPL by noting f̃(x) will be periodic if f is periodic.

We can modify the above methods to get more smooth functions at the break points by
using a filtering method (moving average). An example of the periodic case with 5 break points
p1, · · · , p5 is given in Figure 3 along with its more smooth version. In order to do several simulations
we need to define random procedures to find the break points and the slopes. Later we use uniform
distributions for both cases but we also make sure the break points are not too close as discussed
later.

3.2 Loss functions

We can consider various loss functions to asses the efficiency of the approximation methods. We use
the absolute value of the difference to calculate a distance between functions values at a given point,
while other measures of distance such as square of the difference can be considered depending on
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the application. As we discussed in the introduction, we can consider two general type of losses:
losses for approximating the integral of a function; and losses for approximating the point-wise
values of the function. Below we introduce various loss functions for such purposes.

• The integral approximation loss:

IL(f, f̂) := |
∫
D

f(x)dx−
∫
D

f̂(x)dx|.

In fact this loss only depends on f̂ through
∫
D
f̂(x)dx. More precisely∫

D

g1(x)dx =

∫
D

g2(x)dx⇒ IL(f, g1) = IL(f, g2).

• The point-wise approximation loss, for which two measures can be considered:

1. Supremum point-wise loss:

SPWL(f, f̂) := sup
x∈D
|f(x)− f̂(x)|,

2. Mean point-wise loss:

MPWL(f, f̂) :=

∫
D

|f(x)− f̂(x)|/v(D),

where v(D) =
∫
D

1dx. For example v([a, b]) = b − a. The error measures defined above are not
scale-free and cannot inform us how much of the variation of the function is captured using an
approximation method. In order to standardize the above error, we can divide them by the
“diameter” of f , which we define to be

diam(f) := sup
D

(f)− inf
D

(f).

Then we define the standardized supremum point-wise approximation error to be

SSPWL(f, f̂) = SPWL(f, f̂)/diam(f).

It is easy to see that if the approximation method is “scale-free”:

g = a+ bf ⇒ ĝ = a+ bf̂ ,

then SSPWL is also scale-free:

SSPWL(g, ĝ) = SSPWL(f, f̂).

Any reasonable approximation method and the ones discussed here are scale-free. Also note that
0 ≤ SSPWL ≤ 1.

Suppose we have a family of functions with LB, m, and defined on D. We define the
family-standardized approximation error to be

FSPWL(f, f̂) = SPWL(f, f̂)/v(D)m.

Again it is easy to see that if the approximation method is scale-free then FSPWL is also scale-free.
It is clear that 0 ≤ FSPWL ≤ SSPWL ≤ 1 in general. Similarly we define standardized versions
of IL, MPWL and denote them by SIL, SMPWL. We denote their family-standardized versions
by FIL, FMPWL.
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3.3 Approximations and their performance

Suppose the value of f : D ⊂ Rd → R is observed at n points x := (x1, · · · , xn), where each xi
is a column vector of length d; it takes values y := (y1, · · · , yn); a LB m is available; and we are
interested in approximating f at unobserved points x in D. We denote such an approximation by
approx[x,y], which is a function on the same domain as f . An “approximation method”, approx[., .]
is formally a function that inputs data and outputs functions:

approx : ∪nn=1Rn×d × Rn → RD,
(x,y) 7→ approx[x,y],

where n is the size of the data set. In the previous section, we introduced loss measures for assessing
the distance of a given curve to the target function. This cannot directly be used to judge the
performance of an approximation method, because the true function is not available in practice.
However SPWL and IL introduced previously are useful in simulations where the true curve is
known.

In the following definition, we introduce approximation (prediction) error measures which
are suitable for comparing approximation methods when the target function is not available. The
definition follows by introducing an “ordering” on the set of all approximations and we discuss the
connection of this ordering to the error measures.

Definition 3.4: Suppose we are interested in approximating a function f : D ⊂ Rd → R, which
belongs to a family of functions F . For example F = LB(m) or F = PLB(m). Also assume f is
observed on x = (x1, · · · , xn) and takes values y = (f(x1), · · · , f(xn)).
(i) We define the “data-informed supremum point-wise error” to be:

DSPWE(approx,x,y) = sup
f∈F,f(x)=y

SPWL(f, approx[x,y]).

(ii) We define the “supremum point-wise error” to be:

SPWE(approx,x) = sup
f∈F

SPWL(f, approx[x, f(x)]).

(iii) We define the “data-informed mean point-wise error” to be:

DMPWE(approx,x,y) = sup
f∈F,f(x)=y

MPWL(f, approx[x,y]).

(iv) We define the “mean point-wise error” to be:

MPWE(approx,x) = sup
f∈F

MPWL(f, approx[x, f(x)]).

(v) We define the “data-informed integral error” to be:

DIE(approx,x,y) = sup
f∈F,f(x)=y

IL(f, approx[x,y]).

(vi) We define the “integral error” to be:

IE(approx,x) = sup
f∈F

IL(f, approx[x, f(x)]).
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(vii) The family-standardized version of the above errors can be obtained by dividing them by v(D)m
and we denote them by adding “F” to the title, for example FDSPWE is the family-standardized
version for DSPWE and so on.

In the sequel, we obtain both DSPWE and SPWE for well-known approximation methods
and the optimal one we develop here. The difference between DSPWE and SPWE is that:
DSPWE utilizes the extra information about the actual values of the function at the observed
values to calculate the approximation error. While SPWE only uses the position of the points for
which f is observed: (x1, · · · , xn) and the approximation error is obtained without using the actual
values of the curve (f(x1), · · · , f(xn)). Therefore SPWE is useful in the sampling phase – when
we decide where to observe the values of a function – in which case we do not have access to the
values of the target function a priori. However when we do have access to the values of the function,
we should not discard that information in assessing the error in the approximation and that is
what DSPWE achieves. To our knowledge most of these types of approximation error measures
have not been considered rigorously in the literature while SPWE has been considered for the
“Linear Interpolation” method e.g. in Cheney and Kincaid (2008) and for Lipschitz functions e.g. in
Beliakov (2006). We show in the sequel that considering DSPWE not only gives us a better error
measure, it does make a difference in comparing various methods. In fact, we show that the extra
information about the data can guide us to choose among methods which yield the same SPWE
but differ in terms of DSPWE.

Point-wise error function
The error measures defined above are useful to assess the goodness of various loss functions

on their domains. Since these are defined using the whole domain, we can consider them as “overall”
measures of error. As we will see various cases of approximation methods have the same overall
error in some situations. However, we can compare these approximation methods point-wise by
considering the “point-wise error function”:

pef [approx,x,y](x) = sup
f∈F,f(x)=y

|f(x)− approx[x,y](x)|.

Note that pef is a function on D in contrast to DSPWE and in fact

DSPWE[approx,x,y] = sup
x∈D

pef [approx,x,y](x);

DMPWE[approx,x,y] =

∫
D

pef [approx,x,y](x)dx/v(D).

Ordering of approximations
When comparing two approximation methods approx1, approx2, to show the superiority

of approx1 to approx2 (in terms of point-wise error), one ideally wants to show a superiority
everywhere on the domain:

pef [approx1,x,y](x) ≤ pef [approx2,x,y](x), ∀x ∈ D, (5)

from which we can conclude:

DSPWE[approx,x,y] ≤ DSPWE[approx2,x,y];
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DMPWE[approx,x,y] ≤ DMPWE[approx2,x,y].

We denote the relation in Equation 5 by approx1 �pw approx2. If both approx1 �pw
approx2 and approx2 �pw approx1 hold, we write approx1 =pw approx2. Also note that this
relation is “transitive” i.e.

approx1 �pw approx2, and approx2 �pw approx3 ⇒ approx1 �pw approx3.

Also it is “antisymmetric”:

approx1 �pw approx2, approx2 �pw approx1 ⇒ approx1 =pw approx2.

However it is not a “total ordering” in general. And there may exist a pair approx1, approx2 for
which neither approx1 �pw approx2 nor approx2 �pw approx1 is true. In contrast, if we define an
ordering using DSPWE or DIE, then clearly we get a total ordering (since the usual ordering of
real numbers is a total ordering). Interestingly, this is one of those rare situations that although the
ordering is not a total ordering, there is a solution to the approximation problem which minimizes
the approximation error in terms of �pw.

In the following, we show that for important approximation methods, it is possible to order
them using �pw (which immediately gives the ordering for DSPWE and DMPWE). Moreover
we find a method which is superior to all the methods using �pw and it is the unique method with
this property.

In the case of integral losses, we have a similar contrast between DIE and IE as before:
DIE is a better measure of error, while IE is useful when the values of the function are not available.
However, for approximating integrals, there is no point-wise error function version similar to pef ,
since by definition we are interested in integrals. Below we formally define various approximation
methods.

Important examples of the (1-d) approximation methods are:

1. Average (AV G): AV G[f ](x) := 1
n

∑n
i=1 f(xi). In other words, this method simply calculates

the average of the value of f at the available n points and assigns that to all points. As noted
before this is not generally an interpolation method. However this method is widely used in
approximating the integral of a curve.

2. Nearest Neighbor (NN): to every point, assigns the value of f at the closest available
point.

3. Periodic Nearest Neighbor (PNN): This is a variation of NN to use the assumed
periodicity in f . We add two points to x1, · · · , xn: x∗n = xn − (b− a) and x∗1 = x1 + (b− a).
Note that by the periodicity assumption f(x∗1) = f(x1) and f(x∗n) = f(xn). Then we apply
the NN method to the points

(x∗n, f(x∗n)), (x1, f(x1)), · · · , (xn, f(xn)), (x∗1, f(x∗1)).

To our knowledge this method has not been considered before.

4. Linear Interpolation (LI): This method draws line segments between each pair of
points (xi, f(xi)), (xi+1, f(xi+1)), i = 1, · · · , (n − 1) and approximates t ∈ [xi, xi+1] by
the corresponding value on the line. For points [a, x1] and [xn, b], we assign the nearest
neighbor value.
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5. Periodic Linear Interpolation (PLI): is a variation of LI to use the assumed periodicity
in f . We add two points to x1, · · · , xn: x∗n = xn − (b− a) and x∗1 = x1 + (b− a) and use the
LI method. To our knowledge this method has not been considered before.

6. Regression: For example, using r basis functions to fit a function to the available points.
The number of basis functions can be chosen in a way that the fit interpolate the points. For
example in the 1-d case, for n points, we can use up to n basis functions. The basis functions
for the non-periodic case can be considered to be 1, t, t2, · · · , tr. If we consider a periodic
function then periodic basis functions such as Fourier series can be considered. When the
monomials 1, t, · · · , tn−1 are considered, we will get the Newton/Legendre polynomial as the
solution (since that is the unique polynomial which interpolates the n points).

7. Regularization: Examples of regularization methods are smoothing splines and LOESS.
The Lipfit method developed in this work can also be considered as a regularization method
as we discuss later.

Remark. The above approximation methods, except for the last two, are data-range faithful,
i.e. the approximated function is in the range of the data. While, regression methods and the
regularization methods in general are not data-range faithful, Lipfit which can also be viewed as a
regularization method is data-range faithful.
Remark. All the above approximation methods can be immediately extended to multidimensional
input space, except for LI and the periodic cases.

We start by the simplest case where only one point is observed at t0 ∈ [a, b] and we are
interested in approximating f on each point or its integral.

Lemma 3.2: (Approximation using one point) Suppose f : [a, b]→ R, f ∈ LB(m) and the value of
f is available at x1, f(x1) = y1. Then the constant function approx[f ](x) = y1 is uniquely the best
approximation to f at any x ∈ [a, b] in terms of pef and therefore optimal using DSPWE and
DMPWE (see Figure 4). It also minimizes the DIE. Moreover we have:
(i) pef [x1, y1](x) = |f(x)− approx[x1, y1](x)| = |f(x)− f(x1)| ≤ m|x− x1|;
(ii) SPWE[approx, x1] = DSPWE[approx, x1, y1] = max{m(x1 − a),m(b− x1)};
(iii) IE[approx, x1] = DIE[approx, x1, y1] = m

2 ((x1 − a)2 + (x1 − b)2).

Proof See Figure 4 for the idea and the Appendix for a proof.

Then we move to the case for which two points are available. Below we describe a method
(denoted by Lipfit) which we prove to be optimal in terms of pef ordering and therefore in terms of
DSPWE and DMPWE. This method was also considered and proved to be optimal in Sukharev
(1978) and Beliakov (2006). The optimal method can also be found for the multidimensional
domains and is presented in Beliakov (2006). Our contribution in this paper about the optimal
solution are: finding closed-form solutions for the approximation errors for the optimal solution and
other classical methods such as NN and LI; simulations for comparing the methods; extending the
framework and finding the optimal solution for the wiggly functions case (the ones for which the
Lipschitz Bound is too big to be useful); finding closed-form errors for the optimal solution and the
closed-form prediction error for the optimal solution and other standard methods in the wiggly
case.
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Fig. 4: One point interpolation using only one observed point (x1, y1) denoted by C in the Figure. The
constant function is given by solid line. Two broken lines on [a, b] with slopes (m,−m) and going
through C are also shown in the Figure. The function on [a, b] with trajectory A1C,CB1 takes the
highest possible values and the function with trajectory A2C,CB2 takes the lowest.

Lipfit Method (1-d) case: Suppose f : [a, b] → has Lipschitz Bound m and the value of f is
available at xA < xB , f(xA) = yA, f(xB) = yB . Let A = (xA, yA) and B = (xB , yB) to be points
in the cartesian plane as shown in Figure 5. Draw two lines starting from each of A and B with
slopes equal to m,−m. Each of the two lines starting from A is parallel with one of the lines
starting from B and will meet the other lines. Call the intersection points C,D with C denoting
the top point and D the bottom point. One of the C or D will be closer to A and the other to B
(depending on the sign of slope of AB). In Figure 5 the point closer to A is C and the point closer
to B is D (since sign of slope of AB is positive). Define the point F to be F = (xF , yF ) := (xD, yA)
and G = (xG, yG) = (xC , yB). Define Lipfit[f ] to have the trace AF,FG,GB.
Remark. Note that in this case Lipfit indeed interpolates the points and we will prove that it is
optimal. We will also see that the optimal method for “wiggly” curves (which we will still call
Lipfit) also interpolates the observed points but can have sudden discontinuity at the (and only
at the) observed points. Even in that case strictly speaking the method is still an interpolation.
However it is different from usual interpolation methods which are continuous on the domain.

Remark. The Lipfit method is data-range faithful, i.e. the approximated curve is in the range of
the data.
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Lipfit general (multidimensional) case: Suppose a function f is given at x = (x1, · · · , xn)
where each xi is a column vector of length d denoting a point in D ⊂ Rd, with values equal to
y = (y1, · · · , yn). Then suppose we are interested in approximating f at a point x ∈ D. Applying
the Lipschitz Bound to x and xi, for i = 1, · · · , n, we get

|f(x)− f(xi)| ≤ m||x− xi|| ⇒ f(xi)−m||x− xi|| ≤ f(x) ≤ f(xi) +m||x− xi||,

from which we conclude
H lower(x) ≤ f(x) ≤ Hupper(x),

where,

H lower(x) = max
i=1,··· ,n

(f(xi)−m||x− xi||),

Hupper(x) = min
i=1,··· ,n

(f(xi) +m||x− xi||).

Then optimal solution which minimizes |f(x)− f̂(x)| is given by

f̂(x) = (H lower(x) +Hupper(x))/2.

In order to see that it is sufficient to note that (1) both H lower(x), Hupper(x) interpolate the
data; (2) satisfy the Lipschitz Bound of m; (3) it is impossible for f(x) to be outside the range
[H lower(x), Hupper(x)]. The pef can also be expressed in terms of H lower(x), Hupper(x):

pef(x) = (Hupper(x)−H lower(x))/2.

For more details see Beliakov (2006), which also provides a fast computational method for obtaining

the solution, since calculating f̂(x) point wise is not computationally plausible for many values of
x. Also note that our solution in the 1-d case matches this solution and is computationally fast.
For the 1-d case here we present a simple proof of optimality using essentially the same steps but
with a geometric argument in Lemma 3.3 and Theorem 3.2.

Lemma 3.3: Suppose f : [a, b] → has Lipschitz Bound, m, and the value of f is available at
xA < xB , f(xA) = yA, f(xB) = yB . Then Lipfit uniquely minimizes the pef when approximating
the function f on [xA, xB] and therefore minimizes DSPWE. It also minimizes the integral
approximation error: DIE.

Proof See the Appendix.

Remark. Lipfit,NN,LI, all assign (yB + yA)(xB − xA)/2 to the integral of f on [xA, xB].
Therefore they all achieve the same integral error (DIE).

The method Lipfit above was introduced for two points. We can extend that to n points:
x1, · · · , xn by:
(i) considering the intervals [a, x1), [x1, x2), · · · , [xn−1, xn), [xn, b];
(ii) assigning constant values f(x1) to [a, x1] and f(xn) to [xn, b];
(iii) applying the Lipfit for two points to each of the remaining intervals.

In the above theorem, we showed the optimality of Lipfit for two points and this immediately
generalize to n points.



3 A framework for approximating slow-moving functions 20

0.0 0.5 1.0 1.5 2.0

−
2

−
1

0
1

2

t

f(
t)

●
A

●

B

●
C

●

D

●
F

●

G

−m

m

−m

−m

−m
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Theorem 3.2: (Optimal Approximation Theorem) Lipfit is uniquely optimal when n points are
available in terms of �pw and therefore DSPWE and DMPWE.

Proof Any x ∈ [a, b] belongs to one of the intervals

[a, x1), [x1, x2), · · · , [xn−1, xn), [xn, b],

and by definition Lipfit is optimal in all intervals. Therefore using Lemma 3.3 and Lemma 3.2, we
are done.

For each of the LI and NN methods, we introduced periodic versions: PLI and PNN
respectively and the same can be done for the Lipfit method which we denote by PLipfit. Again
it is true that PLipfit is uniquely optimal when n points are available for a periodic function in
terms of �pw and therefore in terms of DSPWE as well as DMPWE.

Optimal methods to approximate integrals:
For the error in approximating the integrals – as we saw for the one point case – the

constant function is optimal and for the two points and each of NN,LI, Lipfit give rise to the
same approximation. This approximation is done by taking the average of the two available values,
(yB + yA)/2, and multiplying that by the length of the interval (xB − xA). We can define an
equivalence relation on the set of the curve approximations for functions on [a, b] by

approx1 ∼ approx2 ⇐⇒
∫ b

a

approx1[x,y](t)dt =

∫ b

a

approx2[x,y](t)dt.
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Then we have NN ∼ LI ∼ Lipfit and we denote their common equivalence class by WAVG to
stand for “weighted averaging” method which we describe below for n points:

WAVG Method:
(i) consider the intervals [a, x1), [x1, x2), · · · , [xn−1, xn), [xn, b];
(ii) let s0 = y1(x1 − a) and sn = yn(b− xn);
(iii) let si = (yi+1 + yi)(xi+1 − xi)/2;
(iv) return s =

∑n
i=0 si as the approximation for the integral.

The periodic version is given by:

PWAV G Method:
(i) let xn+1 = b+ (x1 − a) and consider the intervals [x1, x2), · · · , [xn−1, xn), [xn, xn+1];
(ii) let si = (yi + yi+1)(xi+1 − xi)/2, i = 1, · · · , n;
(iii) return s =

∑n
i=1 si as the approximation for the integral.

We have the following result regarding the optimality of WAVG and PWAV G.

Theorem 3.3: (Integral Approximation Optimal Method)
(i) WAVG is the unique optimal integral approximation method.

(ii) PWAV G is the unique optimal integral approximation method for periodic functions.

Proof See Figure 6 for the idea and the Appendix for a proof.

Remark. The integral methods can be applied to the multidimensional domain case as well by
calculating the integral of the Lipfit method for the multidimensional case.

3.4 The approximation error for various methods

This subsection gives the approximation error for the 1-d case of the various methods introduced in
this work in closed form. We start by the approximation error for the integral approximation and
then move to the point-wise case.

Theorem 3.4: Suppose a function with Lipschitz Bound smaller than m is considered and the
function trajectory goes through points A = (xA, yA) and B = (xB , yB). Denote the slope of the
line from A to B by m?. Then the (sharp) data-informed integral error for WAVG on [xA, xB ] is
given by:

DIE[WAVG, (xA, xB), (yA, yB)] =
m2 −m?2

4m
(xB − xA)2.

Proof See Appendix.

Corollary 3.1: The (sharp) integral error IE for WAVG on [xA, xB ] is given by:

IE[WAVG, (xA, xB), (yA, yB)] =
m

4
(xB − xA)2.
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Proof

DIE[WAVG, (xA, xB), (yA, yB)] =
m2 −m?2

4m
(xB − xA)2,

is maximized by letting m? = 0. Figure 8 depicts the worst case.

The following theorem finds the errors for the aforementioned methods used for point-wise
approximation.

Theorem 3.5: Suppose a function with Lipschitz Bound, m, is considered and the function
trajectory goes through points A = (xA, yA) and B = (xB , yB). Denote the slope of the line from A
to B by m?. Also define ∆x = (xB − xA), ∆y = (yB − yA), and ∆ = (∆x − |∆y/m|)/2. Then the
(sharp) data-informed supremum point-wise error (DSPWE) for various methods to interpolate
the curve on [xA, xB ] are as follows:

(a) NN : DSPWE[NN, (xA, xB), (yA, yB)] = |m∆x

2 |.

(b) LI: DSPWE[LI, (xA, xB), (yA, yB)] = ∆(m+ |m?|).

(c) Lipfit: DSPWE[Lipfit, (xA, xB), (yA, yB)] = ∆m.

Moreover Lipfit �pw LI �pw NN . Also Lipfit =pw LI if and only if m = m? or m? = 0 and
LI =pw NN if and only if m? = 0.

Proof See Appendix.

Remark. Note that ∆ is half of the difference between: (1) the variation in the x axis ∆x; and
(2) the variation in the y-axis ∆y divided by the largest possible slope the curve can obtain (m).
Therefore |∆y/m| ≤ ∆x and ∆ ≥ 0. Also obviously ∆ ≤ ∆x/2 and therefore the NN method is
inferior to Lipfit in terms of DSPWE.

Remark. The result above extends to n points: x1, · · · , xn by considering the subintervals
[a, x1), [x1, x2), · · · , [xn−1, xn), [xn, b] and taking the maximum error over all the subintervals.

Corollary 3.2: Suppose a function with Lipschitz Bound m is given. Also suppose we have access
to the functions values on xA and xB and use that to interpolate the function on the interval
[xA, xB ]. Let ∆x = (xB − xA). Then the (sharp) point-wise error (SPWE) for various methods to
interpolate the curve on [xA, xB ] are as follows:

SPWE[Lipfit] = SPWE[LI] = SPWE[NN ] = |m∆x

2
|.

Remark. The worst case for all cases happens in the same situation where yA = yB and f travels
with a slope of magnitude m from A to B and the slope sign changes in the mid point (Figure 8).

Corollary 3.2 implies that if we allow the function with Lipschitz Bound m on [xA, xB ] to
vary and take the supremum over all the DSPWE errors, then all of the methods mentioned above
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Fig. 8: Worst case error for both point-wise and integral error happens when yB = yA and the curve moves
with maximum slope magnitude (m or −m) until midpoint C and with the negative of the previous
slope (−m or m) to go back to B.

achieve the same overall error SPWE. This is also true for a collection of n observed points. In
the following, we find the error in predicting a periodic or non-periodic function on an interval
when n points are observed.

Theorem 3.6: (Approximation errors on an interval)
Suppose f : [a, b] → R has Lipschitz Bound m and the value of f is available at x1 < · · · <
xn, f(xi) = yi. Also suppose approx is any of the methods NN,LI, Lipfit. Define ei :=
xi+1−xi

2 ; i = 1, · · · , n−1. Also let e0 := |a−x1|, en := |b−xn| and emax = max{e0, · · · , en} (Figure
9). We have

SPWE[approx,x] = memax.

Proof See Appendix.

Theorem 3.7: (Approximation errors on an interval: periodic case)
Suppose f : [a, b] → R is periodic, f ∈ LB(m) and the value of f is available at x1 < · · · <
xn, f(xi) = yi. Also suppose approx is any of the methods PNN,PLI, PLipfit. Then let
ei := xi+1−xi

2 ; i = 1, · · · , n − 1, e0 := |a − x1|, en =: |b − xn| and e0,n := e0+en
2 (Figure 10). Let

emax = max{e0,n, e1, · · · , en−1}, then we have:

SPWE[approx,x] = memax.
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Fig. 9: Figure illustrates the calculation of the NN error bound on an interval. The observed points at
(x1, x2, x3) are denoted by triangles.

Proof See Appendix.

3.5 Optimal sampling

This subsection finds the optimal sampling times for both the non-periodic and periodic cases for
each of the discussed methods.

Theorem 3.6 implies that the optimal sampling times for a function using any of the methods
(NN,LI, Lipfit) are the same. Similarly Theorem 3.7 implies the same for the periodic case.

Theorem 3.8: (Optimal sampling)
Suppose f : [a, b] → R, f ∈ LB(m) and the value of f is available at x1 < · · · < xn, f(xi) = yi.
Also suppose we use one of NN,LI, Lipfit methods for approximation. Let ei := xi+1−xi

2 ; i =
1, · · · , n − 1, e0 := |a − x1|, en := |b − xn|. The approximation bound is minimized be letting

e0 = en = ei = (b−a)
2(n+1) . This implies x1 = a+ (b− a)/2(n+ 1), xi+1 = xi + (b− a)/(n+ 1), i =

1, 2, · · · , n− 1.
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Fig. 10: Figure illustrates the calculation of the PNN error on an interval. The observed points at
(x1, x2, x3) are denoted by triangles and the crosses are the points added by the periodicity
assumption to apply the PNN method.

Proof Note that the maximum error in this case is max{e0, · · · , en} and moreover

e0 + en + 2
∑n−1
i=1 ei = (b − a). Therefore we conclude e0 = en = ei = (b−a)

2(n+1) minimizes

the error.

Theorem 3.9: (Optimal sampling: periodic case)
Suppose f : [a, b]→ R, f ∈ PLB(m) and the value of f is available at x1 < · · · < xn, f(xi) = yi.
Also suppose we use one of PNN,PLI, PLipfit methods for interpolating f . Let ei := xi+1−xi

2 ; i =
1, · · · , n − 1, e0 := |a − x1|, en := |b − xn| and e0,n := e0+en

2 . Then the approximation error is
minimized by letting e0,n = ei = (b− a)/(2n), i = 1, · · · , n− 1.

Proof This is because e0,n +
∑n
i=1 ei = (b− a)/2, i = 1, · · · , n− 1.
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4 Extension to wiggly functions

Many processes do not posses a reasonably small Lipschitz Bound and therefore the approximation
errors achieved by the above theory are very big. This is actually true even in the case of the
temporal Ozone process shown in Figure 1. However in this figure, we observe that despite the high
variation in the small scale, a slow-moving pattern is present in a larger scale. This section provides
a method to extend the theory developed before to this case. The idea for this extension lies in the
fact that in such cases the process can be well-approximated by a function with a reasonably small
Lipschitz Bound. To formally introduce this idea, we start by the following definitions.

Definition 4.1: Suppose f : D ⊂ Rd → R. Then f is said to have Lipschitz Bound, m, up to a
“Bound Deviation” (BD), σ, if there exist a function g such that |f(x)−g(x)| ≤ σ, ∀x ∈ D and g has
Lipschitz bound m. The class of all such functions is denoted by ALB(D,m, σ) or by ALB(m,σ)
when the domain D is clear from the context.

Remark. Note that f ∈ ALB(m,σ) does not even need to be continuous. Therefore we have
generalized this method to functions which are not continuous but well-approximated (in the sense
that σ is small) by a continuous function g.

Similar to the simple case with no deviation, we can define a periodic family for the case
with deviations and we denote that by PALB([a, b],m, σ).

Definition 4.2: Suppose f : [a, b]→ R. Then f is said to have periodic Lipschitz Bound, m, up to a
“Bound Deviation” (BD), σ, if there exist a function g such that |f(x)−g(x)| ≤ σ, x ∈ [a, b] and g is
periodic with Lipschitz Bound, m. The class of all such functions is denoted by PALB([a, b],m, σ)
or by PALB(m,σ) when the domain [a, b] is clear from the context.

Remark. Note that this definition lets us include functions which are “approximately periodic”.
In other words, it allows a function f for which 0 ≤ |f(b)− f(a)| ≤ σ.

Just in the same way that along with LB(D,m) we defined the function families DIF(D,m)
and PL([a, b],m); along with ALB([a, b],m, σ), we define the function families ADIF(D,m, σ) and
APL([a, b],m, σ) to be the version with BD.

The following theorem shows the convexity of the set ALB(D,m, σ).

Theorem 4.1: ALB(D,m, σ) is a convex set.

Proof Let f1, f2 ∈ ALB(D,m, σ) then there exist g1, g2 ∈ LB([a, b],m) such that SPWL(fi, gi) ≤
σ, i = 1, 2. Then we need to show that any function of the form f = θf1 + (1− θ)f2, for a θ ∈ (0, 1)
is in ALB(D,m, σ) as well. Let g = θf1 + (1− θ)f2 and note that g ∈ LB(D,m) by convexity of
LB(D,m). Also note that

∀x ∈ D, |f(x)− g(x)| ≤ θ|f1(x)− g1(x)|+ (1− θ)|f2(x)− g2(x)| ≤ σ,

which proves SPWL(f, g) ≤ σ and we are done.

The extension of the results obtained before for LB(m), PLB(m) to the
ALB(m,σ), PALB(m) families is not straight-forward for all the methods and deviations. This
is because: while for LB, PLB families it was impossible to have points A,B observed on the
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trace of the target function so that the slope of AB is strictly greater than m, it is possible in the
ALB, PALB case due to the existence of the BD. We start first by extending the approximation
methods we discussed before to the case with deviations. The approximation for the one point case
is trivial and all methods still assign the constant value available. Therefore we only discuss the two
point case from which the general multiple point case can be obtained by considering appropriately
defined subintervals as before.

Approximation methods for wiggly functions (1-d):

• NN,PNN,LI, PLI,WAV G,PWAV G and their periodic version extend with no change.

• Lipfit method:
If |m?| ≤ m then the method is defined as before (Figure 11, top left panel). While if |m?| > m
as shown in Figure 11 (top right and bottom left panels), then we define the approximating
curve as follows.
Define ∆′ = ∆x(|m?| −m)/2 and the points

F = (xA, yA + sign(m?))∆′;

G = (xB , yB − sign(m?))∆′.

Then the Lipfit method is given by the line segment FG.

Remark. Note that the value of BD is not needed for applying the Lipfit method.
Remark. The Lipfit method is data-range faithful, i.e. the approximated curve is in the range of
the data.
Remark. The Lipfit method is an interpolation method in the sense that on the observed points
returns the observed values. However it may have sudden discontinuity at the observed values.

The Lipfit method can also be generalized to multidimensional case easily as we discuss
below.

Lipfit general (multidimensional) case for wiggly functions: Suppose a function f is given
at x = (x1, · · · , xn) where each xi is a column vector of length d denoting a point in D ⊂ Rd, with
values equal to y = (y1, · · · , yn). Then suppose we are interested to approximate f at a point
x ∈ D. Applying the Lipschitz Bound to x and xi for i = 1, · · · , n, we get

|f(x)− f(xi)| ≤ m||x− xi||+ σ ⇒ f(xi)−m||x− xi|| − σ ≤ f(x) ≤ f(xi) +m||x− xi||+ σ,

from which we conclude
H lower(x) ≤ f(x) ≤ Hupper(x),

where

H lower(x) = max
i=1,··· ,n

(f(xi)−m||x− xi||) + σ(1− 1{x1,··· ,xn}(x)),

Hupper(x) = min
i=1,··· ,n

(f(xi) +m||x− xi||)− σ(1− 1{x1,··· ,xn}(x)),
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Fig. 11: Top Left Panel: Lipfit method with deviation, Case 1 (|m?| ≤ m). Top Right Panel: Lipfit
method with deviation, Case 2 (|m?| > m). Bottom Left Panel: Lipfit method with deviation,
Case 3 (also |m?| > m). Bottom Right Panel: The curve (grey) is generated by adding uniform
noise from the interval [−σ, σ] to a curve with given LB. The data (filled circles) are fitted with
Lipfit method (thick curve).
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where 1{x1,··· ,xn}(x) = 1 if x is an observed point and zero otherwise. Then optimal solution which

minimizes |f(x)− f̂(x)| is given by

f̂(x) = (H lower(x) +Hupper(x))/2.

Note that σ cancels out and we see that for the general solution it also does not appear in the
solution (as it was the case for the 1-d case we discussed before). In order to see the optimality, it
is sufficient to note that: (1) both H lower(x), Hupper(x) interpolate the data; (2) they belong to
ALB(m,σ); (3) it is impossible for f(x) to be outside the range [H lower(x), Hupper(x)]. Thus we
have extended the results in Sukharev (1978) and Beliakov (2006). Also note that our solution
in 1-d case match this solution and is computationally fast. The point-wise error function can be
expressed in terms of H lower(x), Hupper(x)):

pef(x) = (H lower(x)−Hupper(x))/2,

from which DSPWE and DIE can be calculated for the multidimensional case.
The prediction errors for the (1-d) case given in Theorems 3.5 and 3.4 extend as follows.

Theorem 4.2: Suppose a function with Lipschitz Bound, m, is considered and the function trajectory
goes through points A = (xA, yA) and B = (xB , yB). Denote the slope of the line from A to B by
m? and let ∆x = (xB − xA). Then the data-informed integral error for WAVG on [xA, xB ] is given
by:
(i) If |m?| ≤ m:

DIE[WAVG, (xA, xB), (yA, yB)] =
m2 −m?2

4m
(∆x)2 + σ∆x.

(ii) If |m?| > m, define ∆′ = ∆x(|m?| −m)/2:

DIE[WAVG, (xA, xB), (yA, yB)] = (σ −∆′)∆x.

Proof See proof of Theorem 4.3.

Theorem 4.3: Suppose a function belongs to ALB(m,σ) with trajectory going through points
A = (xA, yA) and B = (xB , yB). Denote the slope of the line from A to B by m?. Also
define ∆x = (xB − xA), ∆y = (yB − yA), and ∆ = (∆x − |∆y/m|)/2. Then the data-informed
point-wise error (DSPWE) for various methods to interpolate the curve on [xA, xB ] are given below.

(i) If |m?| ≤ m:

• DSPWE[NN, (xA, xB), (yA, yB)] = |m∆x

2 |+ σ.

• DSPWE[LI, (xA, xB), (yA, yB)] = ∆(m+ |m?|) + σ.

• DSPWE[Lipfit, (xA, xB), (yA, yB)] = ∆m+ σ.

(ii) If |m?| > m, define ∆′ = ∆x(|m?| −m)/2:

• DSPWE[NN, (xA, xB), (yA, yB)] = |m∆x

2 |+ σ.
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• DSPWE[LI, (xA, xB), (yA, yB)] = σ.

• DSPWE[Lipfit, (xA, xB), (yA, yB)] = σ −∆′.

Proof See Appendix.

Theorem 4.4: (Optimal Approximation Theorem for wiggly functions)
Suppose f : [a, b] → R, f ∈ ALB(m,σ) and the value of f is available at xA < xB , f(xA) =
yA, f(xB) = yB . Then Lipfit method uniquely minimizes pef when approximating the function f
on [xA, xB ] and therefore it minimizes DSPWE,DMPWE and DIE.

Proof It follows from the proof of Theorem 4.3.

Optimal sampling (1-d): Corollary 3.2 as well as Theorems 3.6 and 3.7 also extend to the wiggly
case by simply adding an σ to the corresponding errors. Therefore the optimal sampling schemes
remain the same as the case without error.

5 Simulation studies

This section uses simulations to investigate approximating functions in the framework developed
in this work for the 1-dimensional domain case. Subsection 3.1 discussed methods to generate
functions with given Lipschitz Bound for both non-periodic and periodic cases. These methods
are used here for simulating appropriate functions to compare approximation methods. First we
compare the methods for deviation-free case and then move to the wiggly function case. In the
wiggly case we consider the simulations for functions that are generated with a given Lipschitz
Bound and a deviation which is generated from uniform distribution. This is a special case, because
in general the deviations can also have some remaining patterns. However even in this special
case, we show that the performance of different approximation methods depend on the magnitude
of the deviation and the data sparsity structure. Some remaining work in this area include the
multidimensional domain case and the case with more complex deviations and we leave that for
future work.

5.1 Comparison of the methods

Here we compare these methods to interpolate curves with 3 points of data available between [0,1]:
(1) Average of 3 points: AV G; (2) Nearest neighbor: NN ; (3) Periodic nearest neighbor: PNN ; (4)
Linear Interpolation: LI; (5) Periodic Linear Interpolation: PLI; (6) Lipfit; (7) Periodic Lipfit:
PLipfit; (8) Regression with 1 basis function (cos(2πt)); (9) Regression with 2 Basis functions
(cos(2πt), sin(2πt)).

For the simulations, we generate periodic curves with 5 break points with Lipschitz Bound
of 1 for functions defined on [0,1]. We also use filtering (moving average) to make sure the change of
the derivative is at most 1 at the break points. (Note that the change in the derivative can be 2 if
we do not do any filtering because the Lipschitz Bound is 1.) The 3 data points are taken from the
interval [0,1] uniformly subject to the condition that: when we construct a circle of circumstance
1 from the interval by joining the end points 0 and 1, the distance of every pair of points is at
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least 1/(3 + 1). Note that by the optimal sampling result, Theorem 3.9, the distance for the best
sampling approach is equal to 1/3.

The result of the fits for one simulation are given in Figure 12. We repeat the simulations
105 times and calculate the family-standardized loss,

FSPWL = sup
t∈[a,b]

|f(t)− f̂(t)|/m(b− a).

Various quantiles for the prediction errors are given in Table 1 in which we observe: there is a
major gain in using the periodic version of the methods; for higher values of the quantiles of the
error, the regression using basis functions perform very poorly; for higher values of the quantiles,
the best method is PLipfit and PLI is performing very closely with PNN coming third. We have
repeated the analysis with 3,4,6,7 break points and the results were consistent with this case.

Tab. 1: Comparing methods to fit 105 periodic curves generated from 5 break points with Lipschitz Bound
of 1. The 3 data points are taken from the interval [0,1] uniformly subject to the condition that
when we construct a circle of circumference 1 from the interval by joining the end points 0 and 1,
the minimum distance of each pair is 1/(3 + 1). The smallest values in each column are denoted in
bold. Regr. in the table stands for regression with 1 or 2 basis functions.

Model median err. q(0.75) err. q(0.95) err. q(0.99) err. max err.

AV G 0.12 0.15 0.19 0.22 0.29
NN 0.12 0.14 0.2 0.24 0.4
PNN 0.11 0.13 0.17 0.19 0.24
LI 0.1 0.13 0.19 0.24 0.37
PLI 0.078 0.1 0.14 0.17 0.23
Lipfit 0.1 0.13 0.19 0.24 0.4
PLipfit 0.076 0.099 0.13 0.16 0.22
Regr. (1 basis) 0.095 0.12 0.17 0.2 0.3
Regr. (2 basis) 0.069 0.095 0.14 0.18 0.35

Table 2 repeats the same analysis for wiggly functions with a very small BD. The difference
is: we add a uniform error (min = −0.02,max = 0.02) to each of the 105 simulated functions.
(Therefore f ∈ ALB(m = 1, σ = 0.02).) The errors are increased slightly but similar results as
before are seen for this case. We discuss the case for which BD is not negligible later.

Tab. 2: Comparing the methods for wiggly functions with small deviation.

Model median err. q(0.75) err. q(0.95) err. q(0.99) err. max err.

AV G 0.13 0.16 0.2 0.23 0.29
NN 0.12 0.15 0.2 0.25 0.37
PNN 0.12 0.14 0.18 0.2 0.25
LI 0.11 0.14 0.2 0.25 0.38
PLI 0.088 0.11 0.15 0.17 0.24
Lipfit 0.11 0.14 0.2 0.25 0.37
PLipfit 0.088 0.11 0.15 0.17 0.23
Reg. (1 basis) 0.1 0.13 0.18 0.21 0.32
Regr. (2 basis) 0.08 0.1 0.15 0.19 0.31
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Fig. 12: Fitting the periodic curves with LB=1 generated by 5 break points. The 3 data points are taken
from the interval [0,1] uniformly subject to the condition that when we construct a circle of
circumstance 1 from the interval by joining the end points 0 and 1, the distance of every pair is at
least 1/(3 + 1).

Comparison of methods in terms of integral approximation

In some applications, for example in studying the long-term effects of air pollution on health, we
are more interested in the integral of the curve over a period instead of point-wise values. We
introduced the family-standardized integral approximation error:

FIL(f, f̂) = |
∫ b

a

f(t)dt−
∫ b

a

f̂(t)dt|/(m(b− a)).

We showed before that WAVG is the optimal method for non-periodic case and PWAV G is optimal
for the non-periodic case. Other methods that can be considered are AV G or using basis functions.
Table 3 compares these methods. It shows that in fact PWAV G performs the best; it is followed
by the non-periodic version; and AV G is inferior to both methods. Moreover the regression using
basis functions still perform the worst in higher values of the quantiles.
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Tab. 3: Comparing the methods for the integral approximation error.

Model median err. q(0.75) err. q(0.95) err. q(0.99) err. max err.

AV G 0.013 0.024 0.044 0.06 0.11
WAVG 0.014 0.025 0.047 0.066 0.14
PWAV G 0.012 0.021 0.038 0.053 0.093
Reg. (1 basis) 0.013 0.024 0.048 0.073 0.17
Reg. (2 basis) 0.012 0.021 0.045 0.07 0.19

5.2 The effect of BD magnitude on method performance

Here we perform some simulations to study the effect of the magnitude of the Bound Deviation
(BD) on the method performance. We compare these methods: (1) Lipfit with the same LB the
curves were simulated from; (2) Lipfit with LB larger than the one the curves were simulated
from (denoted by Lipfit.big); (3) Lipfit with LB smaller than the one the curves were simulated
from (denoted by Lipfit.sm); (4) LI; (5) regularization/regression methods such as LOESS and
smoothing splines (See Cleveland et al. (1992) and Hastie at al. (2009)).

For simulating the curves, we pick LB=10 with 5 break points. Also the distance between
each pair of the break points is taken to be at least 1/(5+2). For the sampling scheme, we consider
a sparse data case: From each of [0,1/4], (1/4,1/2], (1/2,3/4], (3/4,1], we take 2 points uniformly
at random. Therefore there are 8 points available from [0,1] and there is some assurance to cover
the whole interval due to the sampling scheme. In contrast to the previous simulations for which
we assume BD to be very small, here we consider larger BDs to study the effect of its magnitude.
Figure 13 depicts the fits of various methods to the 8 points for one out of 1000 simulations for
BD=1.

To investigate the method performance dependence on the BD magnitude, we consider
two cases: Case 1, BD=0.5; Case 2, BD=1.5. Figure 14 presents (25%, 50%, 75%) quantiles of the
MPWL for the methods (1) Lipfit; (2) Lipfit.big; (3) Lipfit.sm; (4) LI; (5) LOESS. Below we
summarize the results:

• In Case 1, where BD=0.5 and smaller than Case 2, we observe that the methods Lipfit and
LI perform almost equally well and outperform the other methods.

• In Case 2, in contrast to Case 1, we observe that Lipfit and Lipfit.sm perform almost
equally well, outperforming LI in particular.

• In both cases Lipfit.big performs poorly since assuming a too big Lipfit will make the
approximation tend to the NN method which is a poor method.

• The intuition that LI is performing better in contrast to Lipfit.sm in Case 1 and this is
reversed in Case 2 is as follows: In Case 1 the BD is relatively small and therefore joining the
available points using the LI method does not introduce a large approximation error; while
in Case 2 it could introduce a large error. In contrast Lipfit.sm works by moderating the
slope of the joining line between two available data points too aggressively – especially in
Case 1 – believing much of the slope is due to the deviation (BD) rather than a pattern (LB).
This is because Lipfit.sm is supposing a much smaller LB, (LB=1), than the one the curve
was generated from (LB=10).
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Fig. 13: The fits using various methods using 8 available points are given where the target function is given
grey and the fits are given in dark. The deviation-free generated curves are given with dashed
lines. The simulations are done by using 5 break points and LB=10, BD=1.

Remark. If we choose smaller number of data points, for example 5 points, similar results are
obtained and the LOESS method inferiority to the other methods is magnified. We do not include
those simulations here for brevity.

5.3 The effect of data sparsity on method performance

This subsection further investigates the data size and sparsity effect on the method performance.
In the previous sections, we showed that when the data are sparse over all the interval of interest,
the Lipfit method performs better in contrast to NN, LI and standard smoothing methods. We
also studied the effect of using a too big LB or too small LB in the data sparse case and for various
magnitudes of error. Here we consider two new cases: (1) The data is dense over all the interval;
(2) the data size is large however, the data is sparse in some subintervals due to non-uniformity of
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Fig. 14: The plots depict the (25%, 50%, 75%) quantile of the MPWL by various method for two cases: left
panel is for BD=0.5; right panel is for BD=1.5

the data locations. We call such data “locally sparse”. For both cases, we simulate curves with 5
break points and with LB=10, BD=0.5.

• Case 1: From each of the intervals [0,1/4],(1/4,1/2],(1/2,3/4],(3/4,1], we take 10 points
uniformly at random.

• Case 2: From each of the interval [0,1/4], we sample 50 points uniformly at random and only
one point from each of the intervals (1/4,1/2],(1/2,3/4],(3/4,1], uniformly at random.

Figure 15 depicts the error quantiles for the two cases and we summarize the results as
follows:

• In the data dense case (Case 1, left panel), the smoothing method (LOESS) has performed
optimally for the lower quantiles but still inferior to the Lipfit method with the correct or
small LB in higher quantiles.

• In the locally sparse data case (Case 2, right panel), we observe that the result is almost
identical to the data sparse case over the entire interval. In other words having a large data
set is not necessarily going to change the results if the data is still sparse in large subintervals
and the smoothing methods will continue to perform poorly.

6 Trade-off between LB and BD

For a given function f : D → R, LB and BD are not unique. In fact for any BD, σ ∈ R≥0 one can
find, LB, m ∈ R≥0 (non-negative numbers) such that f ∈ ALB(m,σ). This is the motivation for
the following definition.
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Fig. 15: The figure depicts (25%, 50%, 75%) quantiles of the MPWL for two cases. (Left Panel) BD = 0.5
and dense data of size 40. (Right Panel) BD = 0.5 with data size 53 and non-uniform data, dense in
some interval [0, 1/4] with 50 data points and one data point in each of (1/4,1/2],(1/2,3/4],(3/4,1].

Definition 6.1: Suppose f : D ⊂ Rd → R. Then the LB-BD function (curve) associated with f –
denoted by γf – is defined as follows:

γf : R≥0 → R≥0;

γf (m) = inf{σ | f ∈ ALB(D,m, σ)}.

Remark. We can also consider an “inverse” for γf :

γ−1
f : R≥0 → R≥0;

γ−1
f (σ) = inf{m | f ∈ ALB(D,m, σ)}.

We call the inverse also the LB-BD curve by slight abuse of naming. In Figure 16 (Right Panel)
the LB-BD curve for the function f(x) = sin(2πx) is given. The LB for f is equal to 2π. However
if we allow for a deviation of σ, as depicted by the grey curves (Left Panel), there is a function
inside the area defined the grey curves which has a smaller LB.

We can also define a LB-BD curve for the periodic case as follows.

Definition 6.2: Suppose f : [a, b] → R. Then the periodic LB-BD curve associated with f , γpf , is
defined as follows:

γpf : R≥0 → R≥0;

γpf (m) = inf{σ | f ∈ PALB([a, b],m, σ)}.
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In the following lemma, we give the LB-BD curve for some simple functions.

Lemma 6.1: Below we give the LB-BD curve, γ−1
f , for various functions f : [a, b]→ R.

(a) f(x) = mx:
γ−1
f (σ) = max{0,m− 2σ/(b− a)}.

(b) f(x) = m|x− (b− a)/2|:

γ−1
f (σ) = max{0,m− 4σ/(b− a)}

(c) f(x) = sin(2πx) and [a, b] = [0, 1] then γ−1
f (σ) = |2π cos(2πxB)|, where xB is the unique

solution of the following equation:

sin(2πxB)− 2π(xB − 1/2) cos(2πxB)− σ = 0, 1/4 ≤ xB ≤ 1/2. (6)

(See Figure 16.)

Proof

(a) Consider the left panel of Figure 17 for the proof. Without loss of generality we assume
the slope of AB, m, is positive. If we allow σ to be the deviation, and the y-value of B2

is larger than A1, then the line connecting A2 and B1 minimizes the LB and the slope of
that line is equal to m− 2σ/(b− a). If the y-value of B2 is less than or equal to A2, then a
horizontal line starting from A2 will minimize LB. We conclude the infimum LB is equal to
max{0,m− 2σ/(b− a).

(b) Consider the right panel of Figure 17 for the proof. An argument similar to above can be
used.

(c) Consider the left panel of Figure 16 for the proof. Let f(x) = sin(2πx), f1(x) = f(x) − σ,
f2(x) = f(x) + σ, x ∈ [0, 1]. Define

A = (xA, yA) = (1/4, f1(1/4)), C = (1/2, f(1/2) = 0), E = (3/4, f2(3/4))

Also let B = (xB , f1(xB)) be a point on the trajectory of f1(x), x ∈ [1/4, 1/2] such that BC
is tangent to f1(x) trajectory. Then let D be the symmetric image of B with respect to C.
Then DB is also tangent to f2 trajectory by symmetry.

Then consider the curve (dashed) that goes along f1(x) trajectory from A to B; then goes
along the line segment BD; then goes along the f2(x) trajectory to reach E. We claim that
this curve has the minimum possible LB while satisfying the deviation σ. First note that such
a curve satisfies the deviation, σ, and can be extended in the same manner to [0, 1] (dashed
curve). We denote this curve by g. Then note that Lip(g) is the same when applied to the
domain [xA, xE ] or when applied to [0, 1]. In fact Lip(g) equals to slope of BC line which
we denote by l. Therefore it only remains to show no other curve achieves this and obtain a
strictly smaller LB on [xA, xE ].

Suppose h is another curve defined on [xA, xE ] which satisfies the deviation σ and has a
smaller LB than g on [xA, xB ]. Without loss of generality (and by symmetry), we can assume
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Fig. 16: (Left Panel): The function f(x) = sin(2πx) is give in black with the grey curves mark the
boundaries for the curves which deviate from f at most as much as σ. A curve which is inside the
boundaries and attains the smallest possible LB is also given. (Right Panel): LB-BD curve for
f(x) = sin(2πx), x = [0, 1]. Black curve is obtained by analytic solution and the grey curve is
obtained by solving a convex optimization problem.

that h(xC) ≤ yC and we focus on the [xB , xC ] interval. (If h(xC) > yC we repeat the following
proof by focusing on [xC , xD].)

Then note that h must satisfy h(xB) ≥ f1(xB) = g(xB) since h satisfies the deviation σ. Now
the line segment from (xB , h(xB)) to (xC , h(xC)) will have a slope more than l and this is a
contradiction to h having a smaller LB. To complete the proof it remains to calculate the
magnitude of the slope of the BC line segment. This can be found by letting the derivative
of f1(xB) equal to the slope of BC for 1/4 ≤ xB ≤ 1/2 and solve that equation for xB :

2π cos(2πxB) =
0− (sin(2πxB)− σ)

1/2− xB
.

Then we calculate |2π cos(2πxB)| to get the magnitude of the slope.

6.1 Properties of LB-BD function

This subsection discusses the basic properties of LB-BD function. These properties are useful in
giving intuition about the LB-BD curve, as well as calculating it for given functions.

Lemma 6.2: (Elementary Properties of LB-BD function) Suppose f : D → R is a bounded function
and diam(f) = d. Then the LB-BD curve of f has the following properties.
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(a) γf and γ−1
f are both decreasing functions.

(b) γf (+∞) = 0 and γf (0) = d/2.

(c) γ−1
f (+∞) = 0 and γ−1

f (0) = Lip(f).

(d) Suppose f : D → R and f1 : D1 ⊂ D → R is a restriction of f from domain D to D1 ⊂ D.
Then γf1(m) ≤ γf (m), m ≥ 0.

(e) Suppose k > 0 and define f1(x) = f(kx) for x ∈ [a/k, b/k]. Then

γf1(m) = γf (m/k).

(f) γkf (m) = |k|γf (m/|k|).

Proof See Appendix.

Theorem 6.1: (Summation Bound on LB-BD Curve) Suppose f = f1 + f2.

(a) If m = m1 +m2 where m1,m2 ≥ 0 then

γf (m) ≤ γf1(m1) + γf2(m2).
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(b) If σ = σ1 + σ2 where σ1, σ2 ≥ 0 then

γ−1
f (σ) ≤ γ−1

f1
(σ1) + γ−1

f2
(σ2).

Proof See Appendix.

Theorem 6.2: Both γf and γ−1
f are convex functions.

Proof A corollary of the Summation Bound Theorem.

Corollary 6.1: Suppose SPWL(f, g) ≤ σ. Then |γf (m)− γg(m)| ≤ σ/2, ∀m ≥ 0.

Proof Let h = g−f then SPWL(h, 0) ≤ σ. Therefore diam(h) ≤ σ and we conclude γh(0) ≤ σ/2.
Now by applying the Decomposition Theorem to f = g + h and for m1 = m, m2 = 0:

γf (m) ≤ γg(m) + γh(0) ≤ γg(m) + σ/2,

⇒ γf (m)− γg(m) ≤ σ/2.

Similarly we can show that: γg(m)− γf (m) ≤ σ/2, and thus the proof is complete.

The following theorem provides a link between the LB-BD of a function and a grid
approximation of the function for the 1-dimensional case.

Theorem 6.3: (LB-BD Grid Approximation) Suppose f : [a, b] → R and consider a grid
approximation given by x = (x1, · · · , xn) and y = (f(x1), · · · , f(xn)) and denote the grid function
by g. Denote the linear interpolation of g on [a, b] by LI(g) and suppose SPWL(f, LI(g)) ≤ σ.
Then 0 ≤ γf (m)− γg(m) ≤ σ. Note that γg is calculated with respect to the domain of g which is
x = (x1, · · · , xn) and not [a, b].

Proof See Appendix.

Remark. For most functions (even simple smooth ones) obtaining the LB-BD curve analytically is
not possible. However using this theorem, we can find a grid for which the grid approximation is
arbitrarily close to the original function. Then if we are able to find the LB-BD curve for the gridded
function, we can approximate the LB-BD curve of the original function closely. This is also useful
from a computational point of view when we are working with data or gridded functions. For example
if we are working with data with x = (x1, · · · , xN ) and y = (y1, · · · , yN ) where N is large as we show
in the following the LB-BD curve calculation becomes computationally intensive. However we may be
able to find sub-grids of x and y: x′ = (xi1 , · · · , xin);y′ = (yi1 , · · · , yin), for 1 ≤ i1 < · · · < in ≤ N ,
such that n << N (n is much smaller than N) and SPWL(y, LI(x;x′,y′)) ≤ σ. We can
approximate LB-BD curve of (x,y) by calculating that of (x′,y′) and noting that γ(x,y)−γ(x′,y′) ≤ σ.
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6.2 Prediction errors given the LB-BD curve

For a function f : D ⊂ Rd → R observed at given points x = (x1, · · · , xn) and with values
equal to y = (y1, · · · , yn), we found the errors for estimating it over the entire domain D:
IE,DIE, SPWE,DSPWE,DSPWE for each of the methods (e.g. LI and Lipfit) and for
a given fixed pair of LB and BD. Now suppose instead of one single pair, a “partial LB-BD” curve

γf : U ⊂ R≥0 → R≥0,

is given. We can think of U as a subset of R≥0, where “information” is available about f . Then we
can extend the above errors of estimating f on D by taking the infimum over all the available pairs
of LB-BD. Suppose approx denote the method (for example approx = Lipfit) and E the error
measure (for example E = DSPWE), then the minimal error of estimating f given γf is defined
as follows:

Υ{E, approx, f,D, x, y | γf} = inf
m∈U

E{approx, f,D, x, y | m, γf (m)}.

Since f belongs to all (m, γf (m)), when the infimum is obtained by some m0 ∈ U , we can apply
the method approx with that (m0, γf (m0)) to get the error E = Υ, therefore minimizing the error
on D as much as possible. If the infimum is not obtained for any small ε there is m0 ∈ U so that E
is within a radius of ε of Υ.

7 Calculating LB-BD function

This section assumes we have access to gridded data and using that we develop methods to calculate
the LB-BD curve. Theorem 6.3 then can be applied to make a connection to a full curve or a curve
defined on a more fine resolution. This may seem contradictory to the sparse data situation at first
but as we discuss in more details later the LB-BD curve for many applications does not vary much
from one time period to another or we may use the LB-BD curve of a temporal process in one
location with dense data for another close location with sparse data. As an example we show that
the LB-BD curve is similar for the temporal process of several central sites for Ozone process in
Southern California.

Below we start with a heuristic moving average filtering method for calculating the LB-BD
curve for 1-d case. Then we proceed to an exact method by representing the LB-BD calculation as a
convex optimization problem. This convex optimization method also works for the multidimensional
data case. However for the 1-d case ,we also present a faster method by representing the problem
as a different convex optimization method.

7.1 Filtering method

We start with the case for which we have access to a complete curve over the period [a, b] and
would like to find pairs m,σ for which the curve belongs to ALB(m,σ). In other words we are
interested in estimating the LB-BD curve using data.

Filtering method for calculating LB-BD curve for equally-spaced grid: Here we present
a method of finding LB-BD curve for a given function by calculating “weighted moving averages”.
The idea is to “smooth” the curve and use the smoothed version as an approximation.
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Suppose the value of the function is available on an equally-spaced grid x = (x1, · · · , xN )
where x1 = a and xN = b. Note that we can approximate a LB for a function f given on a grid by

mf = max{f(xi+1)− f(xi)

xi+1 − xi
, i = 1, · · · , N − 1}.

Now let w = (1/2, 1/3) be a “weight vector” and let w? = (1/3, 1/2, 1, 1/2, 1/3) be its “extended
symmetric” form. Then we can define a new function g0 on the same grid as follows:

g0(xi) :=
1∑5

k=1 w
?
k

[f(xi) +

2∑
j=1

wj(f(xi−j) + f(xi+j))].

For this to be well-defined, we need to define values for x−1, x0, xN+1, xN+2 and we let

x−1 := x1, x0 := x1; xN+1 = xN , xN+2 := xN .

Then g0 will approximate f on [a, b] and we expect g0 to have a smaller variation (LB) due to the
averaging we performed. In other words, we expect

mg0 = max{g0(xi+1)− g0(xi)

xi+1 − xi
, i = 1, · · · , N − 1},

to be smaller than mf . The price we pay for this would be the introduced deviation

σg0 = max{|f(xi)− g0(xi)|, i = 1, · · · , N}.

By construction, we have f ∈ ALB(mg0 , σg0). Moreover we can apply this process iteratively by
applying the filtering described above to g0 and find a more smooth function g1 and obtain a smaller
mg1 for which f ∈ ALB(mg1 , σg1). Again we may pay the price that σ value becomes larger. After
repeating this process several times, we obtain a sequence of pairs

(mg0 , σg0), (mg1 , σg1), (mg2 , σg2), · · ·

for which f ∈ ALB(mgi , σgi), i = 0, 1, 2, · · · .
We can also modify this method to calculate the LB-BD curve for f ∈ PALB(m,σ). The

difference for the calculation of m and σ is we need to calculate them on an extended grid as
explained above.

We know by definition that the LB-BD curve is decreasing in BD (or LB). In most cases
that we used the above procedure, it produced a decreasing curve. However there were some
instances for which, at the start of the curve, an increasing trend was observed for the periodic
case. Therefore we use a “monotonization” method to create a decreasing curve from a given curve:
Let γ′(t) be a given curve. Then we define the decreasing monotonized curve to be

γ(t) = inf{γ′(u)|u ≥ t}.

In order to test this method, we perform a simulation study which is presented in Figure 18.
Left panel shows the true curve f0(x) = −2x2 + (4/3)x; x ∈ [0, 1] in black; the version with added
uniform deviation (min = −0.05,max = 0.05) is shown in hallow circles. We denote this function by
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Fig. 18: This figure presents the result of calculating LB-BD curve for equally-spaced grid data using the
filtering approach. The top panels correspond to the case for the ALB family and the bottom panel
for the PALB family. The right panels depict the gridded data (circles) with smoothed curves
found in the process of creating the corresponding LB-BD curve. The right panels depicts the
LB-BD curve calculated using the filtering approach (black) and the dotted depict the monotonized
versions. For each LB-BD curve two specific LB values are picked by straight lines (grey and dark
grey) and their corresponding BD. For each LB the BD is the x-value where the corresponding
line intersects the LB-BD curve.

f . The top panels correspond to finding the parameters (m,σ) such that f ∈ ALB(m,σ) and the
bottom panels correspond to finding parameters such that f ∈ PALB(m,σ). Two grey curves have
bounded derivative of at most 8/3 (dark grey) and 4/3 (light grey) and are found by smoothing
the curve sequentially. The right panel shows the results of the sequential filtering by plotting the
BD in each iteration against the LB. The lines corresponding to derivatives 8/3 and 4/3 are also
given. Note that 8/3 coincides with the bound for the derivative of the true function for which
the deviation has turned out to be approximately 0.2 for the ALB case as we expect. Also the
deviations are larger for the PALB case as we expect. For the PALB case the LB-BD curve is
not decreasing at the beginning and therefore a monotonization is applied to the curve to get the
dotted curve in the figure.

Below we present an extension of the filtering method to the case where the data grid is
not equally-spaced.
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Filtering method for calculating LB-BD curve for general grid:

(i) Get as input an ordered but possibly non-equally spaced grid x = (x1, · · · , xn) on [a, b] and
corresponding values y = (y1, · · · , yn).

(ii) Let m′ = max{ yj+1−yj
xj+1−xj

, j = 2, · · · , n} so that m′ is the maximum slope if the data is fit by

the LI method.

(iii) Apply the Lipfit method with LB = m′ to x and y. Using the resulting fit create
equally-spaced gridded data on [a, b].

(iv) Apply the filtering method for the equally-spaced data to the data obtained in the last step.

Remark. For the periodic case, we simply apply the PLipfit instead.
Remark. In Step (iii), we can also use LI to create the fit from which the equally-spaced data
grid is created.

In Figure 19 non-gridded data shown in filled points is used to find the LB-BD curve. The
curve in black is created using the complete data; the dotted and dashed curves are created using
the above method with LI and Lipfit respectively.

7.2 Exact convex optimization method

This subsection discusses exact methods for calculating the LB-BD function for gridded functions.
Suppose f : D ⊂ Rd is a given function for which we like to find the LB-BD curve. To calculate
γf (m), we need to solve:

inf
g∈LB(m)

sup
x∈D
|f(x)− g(x)|. (7)

Here we present an exact method for estimating the LB-BD function by solving Equation 7 using
convex optimization, when D is a finite subset.

Exact method (convex optimization) for calculating LB-BD function: Suppose f : D ⊂
Rd → R, is defined on a finite domain x = (x1, · · · , xn) (D is the set defined by the elements of x)
and takes the values y = f(x) = (y1, · · · , yn). Consider an approximation of y = f(x) by y?:

yi = y?i + ri,

where ri is the deviation from the true value at yi. This approximation belongs to LB(m) if and
only if

y?i − y?j ≤ m||xi − xj ||, ∀i, j ∈ {1, · · · , n},
(Beliakov (2006)). We conclude that finding the value of γf (m) is equivalent to minimizing

max
i=1,··· ,n

|ri|.
Now we pose the convex optimization method:

(a) For finding γf :

minimize max
i=1,··· ,n

|ri|,

subject to ri − rj ≤ m||xi − xj ||+ (yj − yi),
∀i, j ∈ {1, · · · , n}.
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Fig. 19: This figure presents estimating the LB-BD function for a general grid in 1-d case. Left panel
depicts the full gridded data set by hallow circles and a subset of it by filled circles. In the right
panel, the black curve depicts the LB-BD function constructed using the full data set. We have
also depicted the LB-BD curve for the subset using the filtering approach for general grid (dashed
and dotted). In Step (iii) of the LB-BD calculation, we have used both LI (dotted) and Lipfit
(dashed) for interpolation.

(b) For finding γ−1
f :

minimize max
i=1,··· ,n

|(yj − yi + (ri − rj))|/||xi − xj ||,

subject to |ri| ≤ σ, i ∈ {1, · · · , n}
∀i, j ∈ {1, · · · , n}.

We can write the above problems in matrix form by defining

• 1n := (1, · · · , 1) a vector of ones

• r = (r1, · · · , rn)T column vector of deviations
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• n× n matrix E : E(i, j) = m||xi − xj ||+ (yj − yi)

• n× n matrix Z : Z(i, j) = |(yj − yi + (ri − rj))/||xi − xj ||

Then for example we can write the restrictions in (a) in the following compact form:

r1n − 1Tn r
T ≤ E.

These problems can then be implemented in CVX package of Matlab (See Grant and Boyd (2008)
and Grant and Boyd (2013)). (a) is the minimization of a maximum of absolute values of n2 affine
functions and with n affine constraints. (b) is the minimization of a maximum of absolute values of
n affine functions and with n2 affine constraints.

Fast exact method (convex optimization) for 1-d case: Suppose we want to calculate γf (m)
where f is defined on [a, b] and is equal to the linear interpolation of a ≤ x1 < x2 < · · · < xn ≤ b
with values (y1, · · · , yn). Then

γf (m) = inf
g∈LB(m)

SPWL(f, g),

which is equal to
γf (m) = inf

g∈PL(m)
SPWL(f, g),

because PL(m) is dense in LB(m). Now suppose a g ∈ PL(m) attains SPWL(f, g) = σ. Because
g is piece-wise linear, g has breakpoints at a ≤ z1 < z2 < · · · < zk ≤ b. Clearly we can assume zis
include the xis as we do not require g to change slope at every break point. Moreover we claim that
there is always a h ∈ PL(m) which is as close to f as g, SPWL(f, h) ≤ σ, and only requires break
points at xis. We define such a h by modifying g. We define h to be the linear interpolation of
x = (x1, · · · , xn) with values at y = (g(x1), · · · , g(xn)). Then it is clear that h ∈ LB(m) (because
g is) and SPWL(f, h) = SPWL(f, g) = σ. Any such h can be written as a linear combination of

1, 1{x>x1}(x− x1), 1{x>x2}(x− x2), · · · , 1{x>xn−1}(x− xn−1);

h(x) = c0 +

n∑
i=1

mi1{x>xi}(x− xi)

where 1x>xi = 1 ⇐⇒ x > xi. Now using this definition at the breakpoints x = (x1, · · · , xn)
y1

y2

y3

...
yn

 =


1 0 0 0 · · · 0
1 x2 − x1 0 0 · · · 0
1 x3 − x1 x3 − x2 0 · · · 0
...

...
...

...
...

...
1 xn − x1 xn − x2 xn − x3 · · · xn − xn−1




c0
m1

m2

...
mn−1

+


r1

r2

r3

...
rn

 , (8)

where c0 is the value of h at y1; m1, · · · ,mn−1 are the slopes at the break points. Then f belongs
to ALB(m,σ) if and only if

max
i=1,··· ,n−1

|mi| ≤ m, max
i=1,··· ,n−1

|ri| ≤ σ. (9)
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For simplicity in exposition let us denote the key matrices used here as follows:

y :=


y1

y2

y3

...
yn

 , X =


1 0 0 0 · · · 0
1 x2 − x1 0 0 · · · 0
1 x3 − x1 x3 − x2 0 · · · 0
...

...
...

...
...

...
1 xn − x1 xn − x2 xn − x3 · · · xn − xn−1

 , r =


r1

r2

r3

...
rn

 ,

m =


m1

m2

...
mn−1

 .

Then we can write Equation 8 in the more compact form:

y = X

(
c0
m

)
+ r

Additionally if we define 1n to be a column vector of all 1s and of length n, for all natural
numbers n, we can also write the conditions in 9 in the matrix form:

−m1n−1 ≤m ≤ m1n−1, −σ1n ≤ r ≤ σ1n.

Or if we use the definition of maximum norm(infinity norm): ||(x1, · · · , xn)||∞ = max
i=1,··· ,n

|xi|, we

can write them as
||m||∞ ≤ m, ||r||∞ ≤ σ.

For the periodic case, PALB(m,σ), we need an extra condition which assures that the magnitude
of the slope of the line going from the last point (xn, h(xn)) to (b+ (x1 − a), h(x1) = c0) is also less
than m:

−m ≤
∑n
i=2(xi − xi−1)mi−1

(b− a)− (xn − x1)
≤ m

Now we pose the convex optimization method:

(a) For finding γf :

minimize ||r||∞,
subject to −m1n−1 ≤m ≤ m1n−1

(b) For finding γ−1
f :

minimize ||m||∞,
subject to −σ1n−1 ≤ r ≤ σ1n−1
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Table 4 compares the computation time for 1-d functions using both the fast (1-d) and
general method. The computational gain is very significant and grows with the data size.

Tab. 4: Comparison between the optimization methods (to calculate LB-BD curve) for 1-d and general
method. The methods are applied to an equally-spaced gridded version of the function sin(2πx), x ∈
[0, 1] with various resolutions determined by data size. In each case, the BD value is calculated for
LB in {0, 0.1, 0.2, · · · , 10}.

data size General method time(s) Fast method (1-d) time(s) Time Ratio

10 38 19 2.0
20 58 21 2.7
30 49 175 3.6
40 68 606 8.9
50 87 2139 25

8 Choosing appropriate parameters using data

In order to be able to use the prediction errors of various methods or for applying the Lipfit
method, one needs to find appropriate LB and BD. In some applications, this can come from the
expert knowledge of the practitioner. It is often unreasonable to assume that high-order derivatives
exist and also require the practitioner to know about its magnitude. On the other hand, for many
applications, using physical/chemical/biological properties of the process, the practitioner may
obtain a bound on the rate of change of the process as measured by LB and a small-scale deviation
(BD). The small-scale deviation may refer to the accuracy of the measurement device or small-scale
variations of the process. However one does not need to merely rely on the expert knowledge or
the properties of the processes. In the following we show how one can use available data to get an
estimate of these parameters m and σ.

In the above, we presented a method to calculate LB-BD curve when we have sufficient
data from the process under the study. One question is given an LB-BD curve which pair should be
used for fitting the Lipfit method and calculating the prediction errors. The main method that we
discuss here is picking the pair which minimizes the given errors. We also provide other “validation”
methods (either using multiple instances of the process or cross-validation). Also after all the goal
is to approximate curves when enough data is not available and it may look such a method is not
useful in practice. Here we discuss under what situations this method may be useful by giving
concrete situations where the methods can be applied. Also in Section 9, we apply the methods to
air pollution data.

8.1 Prediction Error Minimization Method (PEM):

As we discussed before by definition for any function, there are infinitely many pairs of LB-BD,
(m,σ), for which the given function belongs to ALB(D,m, σ). Then we face the problem of choosing
a specific pair (m,σ) for calculating the prediction errors and applying the Lipfit method. If the
estimated LB-BD curve is close to the true curve (or we have some expert knowledge to confirm
that), then for given data, we can choose the pair which minimizes the (data-informed) prediction
errors. Clearly the chosen pair will depend on the data sparsity and the values of the observed
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function if they are available. In other words PEM maps any given dataset, (x,y), to a specific
pair which minimizes the appropriate prediction error of interest:

PEM : (x,y, γf ) 7→ (m, γf (m)).

We will use and expand on this method in Section 9. Below we outline other methods to pick a
pair which are based on validation.

8.2 Validation using multiple instances

Example 1 (Multiple instances of the process): Suppose {Y (t)}, t ∈ [a, b] is a slow-moving
process (for example with m ≤ 20 and σ ≤ 1) and many, say 50, instances of this process are
observed on a grid of size 200. Also assume we have 3 observations of this process for a new instance
and the goal is to approximate this new instance.
In this case the LB-BD can be estimated from each of the available 50 instances and in fact even a
distribution for LB-BD curve can be derived and we can apply the methods discussed in this paper.

To assess this method, we simulate 50 instances for 1-d process defined on [0,1] with m ≤ 20
and σ ≤ 1. We allow 8 break points in the [0,1] interval and at each break point, a slope magnitude
from the interval [m/2,m] and a slope sign (with equal probability for positive and negative) are
sampled. Figure 20 depicts the simulation results for 50 LB-BD curves obtained from each instance
in grey and the quantile value curves at 25% and and 75% are given in black. We observe that
there is good consistency among the LB-BD curves and if we were to use the LB-BD curve from
one instance of the series for another instance for calculating the errors or applying the Lipfit
method, the results will be acceptable.

Our goal is to interpolate a new instance for which very few data points are available. Thus
standard time-series methods do not apply without making strong assumptions. Also standard
smoothing methods such as smoothing splines are susceptible to have very poor out-of-sample
performance due to data-sparsity.

Validation Method: Suppose data are available for 50 instances of a time series defined on [0, 1]
with m=10 and σ=1 for 200 data points on a grid defined on [0, 1]. In order to choose LB, consider
a grid for log10(LB) defined on the interval [l1, l2]. For every instance of the series, we can pick
a training sample of k points (for example for k = 8) and then use each of the points l from the
log10(LB) grid to fit the training sample using Lipfit. From every such fit, we approximate the
data we have set aside, the validation sample, from which MPWE can be calculated. Figure 21
depicts the (25%, 50%, 75%) quantiles of the error for the log10(LB) grid. We observe in that
figure that the quantile curves show a general convex pattern with a global minimum (after some
smoothing to reduce the noise). We also observe, for all three curves the minimum has turned out
to be close to 1 = log10(10), which is the LB from which the curves where simulated. The minimum
is generally less than 1 which may be partially due to the fact that not every generated curve will
obtain the maximum possible LB (since we sample the slope magnitudes from [m/2,m] uniformly).
Once we have an estimate of LB found in this way, we can use the LB-BD curve to also find the
corresponding BD. The choice of k is important and we discuss that in the cross-validation method
later where the same issue arises. We observed that in this case for various size of the training
sample size the LB turned out to be close to the LB from which we simulated the data. This does
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Fig. 20: LB-BD curves (grey) from 50 instances of series with: 8 break points; LB equal to 20; BD equal
to 1. Black curves are 95% quantiles of the curves. We observe despite some variation the LB-BD
curve for various simulations are close.

not have to be the case in general and the reason that this is the case here is the BD was sampled
independently over time. If the BD has some pattern – for example if it is autoregressive – then a
larger m (and smaller BD) than the simulated m may be better for prediction when sample size is
large. A full discussion of this needs a careful study and we leave that for future research.

The above example can be modified to include many other practical situations. While it
may not be the case that multiple instances of the same process are available, we may have access
to the data from processes with very similar behavior. For example we may want to approximate
the temporal air pollution data in a location with only three data points during the year, while we
have access to the complete data for other locations with different seasonal patterns but similar
physical/chemical properties so that the rate of change in the process for the two locations are
similar. We provide more details about a specific case in Example 3 of the Application Section.

8.3 Cross validation

This subsection discusses a cross-validation method in order to pick the LB value when only data
from one instance of the series is available in contrast to Example 1. First we discuss in Example 2 a
case for which this method is applicable, while standard techniques of fitting may not be applicable
due to data sparsity in some subintervals of the data.

Example 2 (Cross-validation Method):
Suppose {Y (t)}, t ∈ [a, b] is a slow-moving process for which some data are available with

possible sparsity in some intervals and no clear seasonal patterns such that the standard smoothing
methods or time series techniques cannot be applied. Despite this, the rate of the change of the
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Fig. 21: The MPWE error (y-axis) quantile curves created using complete data from many instances of a
series with log10(LB) = 1 and BD = 1. For each instance of the series, we pick 8 training points
and fit many curves using various log10(LB) values (x-axis) and calculate the error in predicting
the validation sample for each log10(LB) value.

process over time as measured by LB might be relatively small up to a reasonable BD and we can
apply the Lipfit method. We need to develop a method for finding an appropriate LB-BD pair to
apply the Lipfit method and calculate the errors associated with the prediction. Again we can
apply the Prediction Error Minimization Method (PEM), we discussed before to the estimated
LB-BD curve, calculated from data. Below we discuss a cross-validation method in order to pick an
appropriate LB-BD pair in such cases.

In order to build the cross-validation algorithm, we perform a simulation study. We simulate
a curve with 5 break points on [0,1] with the condition that the distance of each pair of break
points is at least 1/7. We let m = 10. At each break point a slope magnitude is drawn at random
from [m/2,m] and a random sign is sampled for the slope. Then we add independent deviations
sampled from [−0.5, 0.5] to each point to get a function in ALB(m = 10, σ = 0.5). Then we create
a data set by sampling n = 200 random points in [0, 1] and use this data set for developing the
cross-validation algorithm. In order to perform the cross-validation, we choose the training sample
size for example k = 5. Then for N = 1000 times: we choose sub samples of our data of size k to
fit the data using Lipfit with various l = log(m) values taken from an interval L = [l1, l2]; predict
the rest of the points and calculate the MPWE. For each l ∈ L, we calculate the mean of all N
errors and plot the CV error against the l as shown in Figure 22 for k = 2, 5, 10, 100. For each k,
we can view the cross-validation function as a function:

CV : [l1, l2]→ R≥0,

which maps a l = log(m) value to a non-negative real number. In Figure 22 and for various k –
except for some wiggly behavior – we observe two general patterns: (i) The function CV is convex
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with a global minimum. (ii) The function CV is almost constant at first and rapidly takes off
at some point (the point with maximum 2nd derivative). The point for which the CV function
attains a minimum or the point for which the CV function attains the largest 2nd derivative are
candidates for the chosen l = log(m). But first we need to omit the wiggly behavior and then find
the point for which minimum is obtained (when it exist) and the point for which the 2nd derivative
is maximized. We use the following algorithm.

Smoothing for optimal point detection:

• Receive as input a gridded function CV defined on [l1, l2]

• Calculate the number of changes in sign of the derivative of the function calculated from the
gridded data.

• While the number of the derivative changes is larger than 1, perform a filtering to smooth
the function.

• Consider the final function for which the number of the derivative sign changes is either 0 or
1.

• Calculate the 2nd derivative on the grid for the function obtained.

• If the number of the sign changes is 1 then find the point for which the minimum is obtained
and return that otherwise return “NA” to denote not available.

• Calculate the point for which the 1st derivative is non-negative and the 2nd derivative is
maximized (for both cases) and also return that.

Figure 23 shows the result of the above smoothing to the cross-validation functions for a
data set of size 200 and Table 5 presents the calculated values. We observe in the figure that for
k = 2, 5, 10 a smooth curve with a global minimum is obtained (which correspond to the 1 sign
change in the derivative) while for k = 100 an increasing curve is obtained (which corresponds
to 0 sign change). In the table we observe that both argmin(CV ) and armax(CV

′′
) are close to

the log10(LB) = 1. Note that 5 slope magnitude for the curve were sampled from [LB/2, LB] and
therefore the LB slope is not necessarily obtained by the curve. The 2nd derivative is maximized at
the global minimum when it is not “NA” (Not Available). Therefore argmin(CV ) and armax(CV

′′
)

point at the same value. When the minimum does not exist the armax(CV
′′
) for points with

non-negative derivative provide a reasonable value as well.
Figure 24 and Table 6 provide the result of the above algorithm to a data set of size 32 and

with training sizes k = 2, 5, 8, 16. We observe similar results despite a much smaller data size. Also
in this case all the curves do attain a global minimum. In general it seems that smaller training
sample size attain a global minimum while very large training sizes may end up in no change in the
derivative sign. Our general recommendation is to perform the cross-validation for a dataset of size
n for various values for example k = 2, 5, n/8, n/4, n/2 and inspect the CV curves and smoothed
CV curves. For an algorithmic solution to pick the optimal LB, here we restrict ourselves to the
curves for which a global minimum is obtained and the 2nd derivative is maximized at the minimum.
More research and comparison is needed in picking the optimal LB which is out of the scope of this
paper.
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Fig. 22: The cross validation error (y-axis) is plotted versus log(LB) (x-axis) for a data set of size 200 for
various size of training sample size k = 2, 5, 10, 100.

Once we have found an appropriate LB, the LB-BD function can be used to find BD. For
the examples above, if we choose the LB from a curve with a global minimum and with the largest
2nd derivative, we find BD=0.56 for data size 200 and 0.61 for data set of size 32.

Tab. 5: Picking a LB-BD pair by cross-validation when data size is 200.

training size smoothing num argmin(CV ) min(CV ) armax(CV
′′
) max(CV

′′
)

2 49 1 1 1.00 0.16
5 25 0.80 0.55 0.80 0.36
10 16 0.80 0.37 0.80 0.27
100 17 NA NA 0.700 0.014

Tab. 6: Picking a LB-BD pair by cross-validation when data size is 32.

training size smoothing num argmin(CV ) min(CV ) armax(CV
′′
) max(CV

′′
)

2 15 0.6 1.0 0.600 0.094
5 44 0.90 0.61 0.90 0.11
8 4 0.80 0.42 0.80 0.44
16 25 0.70 0.31 0.70 0.09
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Fig. 23: The smoothed versions of CV plots for optimal point detection for a data set of size 200 and
various training sample size k = 2, 5, 10, 100.

9 Application to air pollution data

This section applies the methods developed in this work to air pollution data.
We are interested in approximating the biweekly averaged air pollution (Ozone) process in homes
and schools in Southern California during 2005, using three biweekly measurements in the spring,
summer and winter. The moving average process refers to a process for which the value of the
process on each day is the average of the process in 15 days centered around that day. (For data
collection in the study, measurement filters are placed in the school for two-week periods to collect
aggregated air pollution levels.) We also have access to 11 central sites for which complete data are
available during 2004–2007. To be more concrete denote the biweekly averaged pollution process by
Y (s, t) at the location s for which three times during 2005 are available: Y (s, t1), Y (s, t2), Y (s, t3).
We denote the 11 central site locations by s1, s2, · · · , s11. Figure 26, bottom right panel, shows the
data for one of the central stations, Upland (UPL). The other panels show the application of the
methods we developed in this paper including estimating the LB-BD curve and the cross-validation
method for picking one LB-BD pair. The curve corresponding to this LB-BD pair for training size
(ts) equal to 3 is plotted over the data in the bottom right panel. This is just for illustration of
cross-validation method as we use PEM for our data analysis.

Figure 27 depicts the calculated LB-BD functions for the 11 communities in grey for both
ALB and PALB families as well as the 25% and 75% quantile curves. There is good consistency
among the curves across the central sites, except for Santa Maria for which the curve is visibly
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Fig. 24: The cross validation error (y-axis) is plotted versus log(LB) (x-axis) for a data set of size 32 for
various size of training sample size k = 2, 5, 8, 16.

placed below all the other curves for both families. This is because Santa Maria is a much cleaner
community with lower levels of Ozone and its variation across the year. This figure suggests that if
we use the LB-BD curve from one location for a location which is not too far or too different from
the location of interest then the results will be reliable.

Here we describe two scenarios one may be interested in for prediction: (1) We assume
that the new location s does not belong to any of the communities and therefore does not have
a very similar weather pattern to any central site with complete data. (2) We assume that the
station belongs to one of the communities and therefore there is a rather close central site but
there is no guarantee that the seasonal patterns completely match. Also assume in (1) there are
no observations in nearby locations with similar weather patterns to borrow strength across space
to build a complex statistical model; in (2) there is a nearby station with complete data across
the year, but there is no guarantee the seasonal patterns of the air pollution process in the two
locations are exactly the same. In situation (1), as discussed above, we can choose nearby locations
with complete data and then apply the methods described above to find appropriate LB-BD for
those locations in order to use for the location with incomplete data. Note that all we need is a
bound on m and σ and therefore we can use slightly larger m, σ from what we have found, if there
is more doubt about the similarity of the other locations in terms LB-BD.

In situation (2), suppose the closest central site location is si. Then we can calculate the
difference process: D(tj) = Y (s, tj) − Y (si, tj). If the seasonal patterns are the same, we must
have D(t1) ≈ D(t2) ≈ D(t3). Note that this does not guarantee that the seasonal patterns are the
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Fig. 25: The smoothed versions of CV plots for optimal point detection for a data set of size 32 and various
training sample size k = 2, 5, 8, 16.

same and we are obliged to rely also on some expert knowledge. However if such a knowledge is
available one may suggest to take the average of the differences D =

∑3
j=1D(tj)/3 and then return

Y (si, t) − D as an approximation of Y (s, t) for all t during 2005. Instead of averaging D(tj)’s:

we approximate the difference process D(t) using Lipfit to get a complete series D̂(t) and then
return Y (si, t)− D̂(t) as our approximation of Y (s, t). Thus we accommodate the possibility that
the difference between the two processes Y (s, t) and Y (si, t) varies over time and Lipfit tries to
capture that variation.

To give example for scenarios (1) and (2), we choose three central sites in Upland (UPL),
Long Beach (LGB) and Anaheim (ANA). We focus on approximating the curves for UPL and LGB.
For scenario (1) we calculate the LB-BD curve for UPL, LGB and for scenario (2) we calculate the
LB-BD curve for the difference of the two processes with ANA. Then for each scenario and for both
ALB and PALB, we use the Prediction Error Minimization method (PEM) to pick a LB-BD pair.

Table 7 presents the results of calculating the minimal error, Υ, to the Ozone process during
2005 and in the locations Long Beach (LGB) and Upland (UPL) and the difference processes of
these two locations with Anaheim (ANA). For each case the LB-BD curve is calculated using the
data and then the minimal error for each of (IE,DIE); (SPWE,DSPWE[LI], DSPWE[Lipfit])
when three data points are available are reported in the table. The pair (BD, LB) for which the
error is minimized is also reported. We have done this for both ALB and PALB families. The
results observed in the table are as follows: PALB method generally works better for these data
due to the approximate periodicity of Ozone process; the data-informed errors (DIE,DSPWE)
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Fig. 26: The application of the cross-validation method along with LB-BD plot to find LB and BD for
UPL.

are considerably smaller than their non-informed versions (IE, SPWE) in some cases, showing that
developing and using the data-informed errors is worthwhile; the Lipfit method has outperformed
LI in some cases and is never inferior to LI.

Figure 26 shows the application of the cross-validation method to finding LB and BD for
UPL.
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Fig. 27: LB-BD functions for the temporal biweekly Ozone process for 11 central stations in Southern

California.

Tab. 7: The errors (IE,DIE); (SPWE,DSPWE[LI], DSPWE[Lipfit]), when three data points are
available.

ALB PALB

Process errors (LB, BD) errors (LB, BD)

LGB (12, 10); (15, 15, 15) (36, 9) (13, 8.1); (15, 15, 13) (29, 11)
UPL (13, 9.9); (15, 15, 15) (17, 12) (13, 7.1); (14, 14, 14) (17,12)
ANA-LGB (6.6, 5.2); (8.3, 8.3, 8.3) (20, 5) (7.1, 4.2); (8.4, 7.1, 6.5) (16, 5.7)
ANA-UPL (6.4, 4.6); (6.9, 6.9, 6.9) (5.5, 6.0) (6.6, 3.9); (7, 6.1, 5.1) (5.4, 6.1)

10 Discussion and future directions

This work developed a framework for fitting functions with sparse data. At first we considered a
framework based on measuring the variation of the functions by Lipschitz Bound, also considered by
Sukharev (1978) and Beliakov (2006). The limitation in using such a framework is due to the fact
that many processes in practice, despite revealing a slow global variation, have some smaller scale
variations which cause the Lipschitz Bound to be too large to be useful in fitting or calculating the
prediction errors. Thus we extend this framework by measuring the Lipschitz Bound by allowing a
Bound Deviation in the sense that we accept a number m as Lipschitz Bound up to a deviation σ
if the function of interest can be approximated by another which accepts m as LB and does not
deviate from the original function more than σ, in terms of sup norm. Using this framework, we
can find reasonable fits and prediction errors for functions which do not admit a small enough
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Fig. 28: The variation-deviation function in a generalized framework.

Lipschitz Bound. We also provided validation and cross-validation methods to pick appropriate
LB-BD curve from data to fit the data using the Lipfit method or calculate the prediction errors.

Another key idea we introduced is the formalization of the trade-off between the variation
measure (LB here) and the deviation measure (BD as measured by sup norm here) which is
summarized in a non-increasing convex curve – LB-BD function (curve). We provided convex
optimization methods to calculate the LB-BD curve using data or gridded versions of the functions
under study and provided the connection of the LB-BD curve of a gridded function to its more
fine-resolution version. Given the LB-BD curve for a function, we develop a method to find an
appropriate LB-BD pair to apply Lipfit – a pair which depended on the data. Given the LB-BD
curve, we also calculated the minimal prediction error, e.g. DSPWE, by minimizing it across
the LB-BD curve. In the background section, we made some connection between this work and
some smoothing methods such as smoothing splines. In fact the smoothing spline method merely
used a different variation measure

∫
D
||f ′′(x)||dx and deviation measure: the sum of the square

of the difference between the observed data and fitted. This immediately leads to the idea of
generalizing this framework by choosing various variation and deviation measures and define a
variation-deviation curve (an extension of LB-BD curve) for each case. To that end suppose:

• F is a function family equipped with a metric M which is used to define deviation of one
function to another.

• ρ : F → Q is a variation measure from F to Q. In this work we used LB as the variation
measure and Q = R≥0. We no longer assume Q to be one dimensional, but we still assume it
is partially ordered, for example Q = R2.
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The diagram in Figure 28 depicts the idea to generalize this framework. We denote the
variation-deviation curve in general by γf (q) = Γρ(f, q) = σ, to emphasize the dependence on ρ.
We define Γρ(f, q) to be the smallest σ so that the image of the unit ball of radius σ, Ball(f, σ),
under ρ includes an element in Q less than q. A multidimensional Q is useful for example in:
(1) a spatial problem where we need to allow different variation bounds in different directions.
Note that in this case the variation-deviation function Γρ(f, .) : Q → R2, has multidimensional
domain. (2) When we like to control various measures of variation for example both the first
and second derivative. We leave a through investigation of this general framework to future research.

Some other important extensions and open problems are: (1) Given a curve decide if the
curve can be LB-BD curve for a function; such a curve must be non-increasing and convex as we
show in this work, but is that enough? (2) If we consider a random process {Y (t)}, t ∈ T for some
space T (time, space, spatial-temporal), for each instance of this process we can calculate an LB-BD
curve, thus LB-BD curve is a random quantity. In this work we assumed that this random quantity
does not vary much from one instance to another; or it is applicable from one time interval to
another; or if we use the LB-BD curve of a comparable data set (for example a nearby station)
the results are reliable. In fact using some simulations and real air pollution data we showed that
this can be the case. However, it is interesting to investigate the LB-BD variability for random
processes and it may be even useful to develop parametric and non-parametric models for LB-BD
curve as a random quantity. We also leave these problems for future research. (3) In this we work,
we developed the Prediction Error Minimization (PEM) to pick a LB-BD curve to minimize the
error of interest for example DSPWE over the domain of interest, given data. Then we used that
pair for applying Lipfit and calculating the prediction errors. The restriction of this method lies in
the fact that we used the same LB-BD pair to approximate all points. Alternatively we can allow
picking a different LB-BD pair for each given data point x, a method which in general can improve
the pef at any given point at a cost of more computations.

11 Appendix: Proofs

Proof (Lemma 3.1)
(i) We give a proof for the 1-d case and a similar proof can be given for the multidimensional
case. Suppose a ≤ x < y ≤ y, then by Mean Value Theorem from calculus, there exist z such that
x < z < y and

f(x)− f(y)

x− y
= f ′(z)⇒ f(x)− f(y) = (x− y)f ′(z)⇒ |f(x)− f(y)| ≤ m|x− y|.

(ii) Suppose x, y ∈ D. Consider the line segment joining x and y which is in D by the convexity
assumption. Then the line segment will intersect with a number of Dj . We can define a sequence
x = b1, · · · , y = bk where (bi, bi+1) is inside a Dij for some ij . Then

|f(x)− f(y)| ≤ |f(b2)− f(x)|+ |f(b3)− f(b2)|+ · · ·+ |f(y)− f(bk−1)|

≤ m[||b2 − x||+ ||b3 − b2||+ · · ·+ ||y − bk−1||)] = m||x− y||.

Note that we have used the continuity assumption of f in the last step to insure that even if bi or
bi+1 are on the boundary of Dij the Lipschitz property holds.
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(iii) Convexity:
Suppose f1, f2 ∈ LB(m) and 0 ≤ θ ≤ 1. Then if f = θf1 + (1− θ)f2:

∀x, y ∈ D, |f(x)− f(y)| = |θ(f1(x)− f1(y)) + (1− θ)(f2(x)− f2(y))|
≤ θ|f1(x)− f1(y)|+ (1− θ)|f2(x)− f2(y)|
≤ θm||x− y||+ (1− θ)m||x− y|| = m||x− y||.

Closed:
Suppose fn, n = 1, 2, · · · is a sequence in LB(D,m) and fn → f when n→ +∞ with respect to
the sup norm. Then we need to prove f ∈ LB(D,m) as well. Fix x0, y0 ∈ D. Then for any ε > 0
there exist N such that n > N , ‖f − fn‖ ≤ ε and we conclude:

|f(x0)− f(y0)| ≤ |f(x0)− fn(x0)|+ |fn(x0)− fn(y0)|+ |f(y0)− fn(y0)| ≤ 2ε+m||x0 − y0||.

Since above holds for any ε > 0 we have shown that |f(x0)− f(y0)| ≤ m||x0 − y0|| and the proof is
completed.
(iv) The convexity is straight-forward from the definition. To see that it is not closed, let c = (a+b)/2
be the middle point and consider a function hn :

hn(x) =

{
mx2/2 + (mδ −mδ2/2), x ∈ [a, b] ∩ [c− 1/n, c+ 1/n]

m|x|, x ∈ [a, b]− [c− 1/n, c+ 1/n],

which is in DIF [(a, b),m] because the derivative and value of h matches in the two cases at the
boundary and the derivative is bounded by m. However hn → h where h(x) = m|x− c|, which is
not differentiable.
(v) Suppose that is not true. Then ∃x, y ∈ D such that |f(x)− f(y)| > Lip(f)|x− y|. By properties
of real numbers there exists m < Lip(f) such that |f(x)− f(y)| > m|x− y| which is a contradiction
to the definition of Lip(f).
(vi) Suppose f = θf1 + (1− θ)f2 for θ ∈ (0, 1). Then for any x, y ∈ D

|f(x)− f(y)| ≤ θ|f1(x)− f1(y)|+ (1− θ)|f2(x)− f2(y)| ≤ (θL(f1) + (1− θ)L(f2))|x− y|.

Therefore f ∈ LB(m), where m = (θL(f1) + (1− θ)L(f2)) and the proof is complete since Lip(f) is
the infimum m for which f ∈ LB(m).
(vii) For the general multi-dimensional D ⊂ Rd (even more generally for separable Riemannian
manifolds), the result holds, Azagra et al. (2007). Here we present a simple proof for the
1-dimensional case as well.

We show that DIF([a, b],m) is dense in LB([a, b],m) and the periodic case is similar. Since
PL([a, b],m) is dense in LB([a, b],m), it is enough to show that any element of PL is approximated
by an element of DIF([a, b],m) with any given precision ε > 0 with respect to the sup norm.
Since any function f ∈ PL[(a, b),m] is differentiable everywhere except for the break points, we
will construct a function that agrees with f except for small neighborhoods of a finite number
of break points. For simplicity assume that f has only one break point in the middle point
c = (a+ b)/2, f(x) = m|x− c|. Then we can define hn :

hn(x) =

{
mx2/2 + (mδ −mδ2/2) x ∈ [a, b] ∩ [c− 1/n, c+ 1/n]

m|x| x ∈ [a, b]− [c− 1/n, c+ 1/n]
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which is in DIF [(a, b),m] because the derivative and value of h matches in the two cases at the
boundary of the cases and the derivative is bounded by m.

Proof (Lemma 3.2)
Consider Figure 4 and suppose the target function is observed on C = (x1, y1). From C draw two lines
with slopes m,−m and extend them until xA, xB . Now define three functions f0, f1, f2 as follows:
let f1 be the function with trajectory consisting of line segments A1C,CB1; let f2 be the function
with trajectory A2C,CB2; and finally let f0(x) = y1,∀x ∈ [a, b]. Then note that f1, f2, f0 ∈ LB(m)
and any other function f ∈ LB(m) satisfies the property that f1(x) ≤ f(x) ≤ f2(x). Moreover for
any x ∈ [a, b] and f1(x) ≤ y ≤ f2(x), there exist a function f ∈ LB(m) such that f(x) = y. We
construct one such function by considering the line that goes through (xC , yC) to (x, y). Therefore
for each x the largest possible value is attained by f1(x) and the smallest possible value is attained
by f2(x). Then the value y that minimizes this maximum is optimal:

max{|y − f1(x)|, |y − f2(x)|}.

The above is minimized uniquely by letting y = f1(x)+f2(x)
2 = f0(x) = y1. In other words we have

shown that the constant function f0(x) = y1 minimizes pef at each point and therefore it is optimal
in terms of DSPWE and DMPWE. These errors can also be obtained easily using Figure 4. Also
similar argument can be used to show that the constant function minimizes DIE as its integral, I,
is the unique value that minimizes

max{|I −
∫ b

a

f1(x)dx|, |I −
∫ b

a

f2(x)dx|}.

Proof (Lemma 3.3)
Suppose the function f1 : [xA, xB]→ R has trace along AC,CB and f2 : [xA, xB]→ R has trace
along AD,DB. Then f1, f2 ∈ LB(m). Note that BC and AD are parallel. With some elementary
algebra we can find the coordinates of C,D, F,G. In particular

xC =
a1 + b1

2
+
b2 − a2

2m
, yC =

b2 + a2

2
+m

b1 − a1

2

xD =
a1 + b1

2
− b2 − a2

2m
, yC =

b2 + a2

2
−mb1 − a1

2

Hence the length of |CG| = |FD| is given by

(yF − yD) = yA − yD = (xF − xA)m− yD =
m

2
(b1 − a1)− b2 − a2

2
.

We also know that f2 − f1 = 2|CG| = 2|FD| on (xF , xG). Hence any approx[f ] on (xF , xG) is off
from either one of f1 or f2 by a distance at least of FD. Now note that Lipfit[f ] is exactly in
the middle of f1, f2 and minimizes the max distance to either of f1, f2, a distance bounded by
e =: |FD| = m

2 (b1 − a1)− b2−a2
2 . Moreover any other function g in LB(m) that goes through A,B
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must be within ACBD and hence is off from Lipfit[f ] by at most of a distance e.

Proof (Theorem 3.3)
Figure 6 shows the situation with two observed points at A = (xA, yA) and B = (xB , yB). From
each of A and B, we draw two lines with slopes m,−m and call the intersection points C,D. Now
consider three functions on [xA, xB] f1, f2, f0 by defining f0 to be the function with trajectory
A,B; f1 the function with trajectory AC,CB; and f2 the function with trajectory AD,DB. By
Lipschitz assumption any function f ∈ LB(m) which goes through A and B must fall inside the
parallelogram ACBD. Therefore the largest integral value is taken by f1 and the smallest is
taken by f2. Also note that f1, f2 ∈ LB(m). Suppose f minimizes the integral error and let∫ xB

xA
f(t)dt = I,

∫ xB

xA
f1(t)dt = I1,

∫ xB

xA
f2(t)dt = I2. Then I minimizes the error if and only if it

minimizes
max{|I − I1|, |I − I2|}.

The solution to the above problem is I = I1+I2
2 . From Figure 6 we observe that I0 =

∫ xA

xA
f0(t)dt

satisfies this property by symmetry. Therefore the optimal integral approximation is equal to∫ xA

xA
f0(t)dt = yA+yB

2 (xB − xA).

Proof (Theorem 3.4)
Figure 6 shows the situation with two observed points at A = (xA, yA) and B = (xB , yB). Denote
the slope of the line AB by m?. Now consider three functions on [xA, xB] f1, f2, f0 by defining
f0 to be the function with trajectory A,B; f1 the function with trajectory AC,CB; and f2 the
function with trajectory AD,DB.
Since f0 is the optimal solution to minimizing the integral and due to symmetry, to calculate the
error we only need to calculate the area of the triangle ACB.
First note that the length of AB is equal to

l :=
√

(xB − xA)2 + (yB − yA)2 =
√

1 +m?2|xB − xA|.

To find the area of the triangle it remains to find the distance from C to AB – which we denote by
h – since then Area(ABC) = 1/2hl. First we find C by finding the intersection point of AC and
BC:

C = (
xA + xB

2
+
yB − yA

2m
,
yB + yA

2
+
m(xB − xA)

2
).

Since the distance of a point (x0, y0) from a line ax+ by + c = 0 is equal to ax0+by0+c√
a2+b2

, we conclude
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the distance of C from AB is equal to:

h =
1

1 +m?2 [
yB + yA

2
+m

xB − xA
2

− |m?|(xA + xB
2

+
yB − yA

2m
)]− yA − |m?|xA]

=
1

1 +m?2 [
yB − yA

2
+m

xB − xA
2

− |m?|xB − xA
2

− |m?|yB − yA
2m

]

=
1

2(1 +m?2)
[(m−m?){yB − yA

m
+ (xB − xA)}]

=
1

2(1 +m?2)
[(xB − xA)

|m?|
m

+ (xB − xA)]

=
1

2(1 +m?2)
(1 +

|m?|
m

)(xB − xA).

Therefore the area is equal to

hl

2
=

1

2(1 +m?2)
(1 +

|m?|
m

)(xB − xA)
√

1 +m?2(xB − xA) =

(m2 −m?2)

4m
(xB − xA)2.

Proof (Theorem 3.5)
Before proving (a) to (c), we calculate the length of AF which we denote by ∆. For that using
Figure 5, we write down the length of (xB − xA) as follows

(xB − xA) = |AF |+ |FG|| cos(α)|+ |GB| = 2|AF |+ |FG|| cos(α)|,

where α = arctan(m). We also have:

|yB − yA| = |FG|| sin(α)|.

Replacing |FG| in the first equation we get:

(xB − xA) = 2|AF |+ |yB − yA
m

|,

which gives

|AF | = 1/2[(xB − xA)− |yB − yA
m

|]

(a) Using Figure 5 the distance is maximized with the dashed lines in the middle of the interval
[xA, xB ] and by defining new coordinates with A as the new origin, this is between the point
(xB−xA

2 , 0) and (xB−xA

2 ,mxB−xA

2 ). Therefore the bound is |mxB−xA

2 |.

(b) Using Figure 5 the distance is maximized at xC , between the point C and point H with the
same x-value on the line AB. The line AC and AH have slopes m and m? respectively and
diverge. Therefore the distance between C and H is |AF |(|m|+ |m?|).
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(c) Using Figure 5 the maximum distance is equal to CF which is equal to |AF ||m|.

Proof (Theorem 3.6)
Let

E1 = [a, x1 + e1),

E2 = (x2 − e1, x2 + e2), · · · ,
En−1 = (xn−1 − en−2, xn−1 + en−1),

En = (xn − en−1, b].

Then interpolate f on each interval Ei using approx as prescribed by the definition.
(a) This is immediate by the assumption.
(b) We only need to show this for two points problem and the solution extends to the general case.
Suppose A = (xA, yA = f(xA)) and B = (xB , yB = f(yB)) are given and we want to interpolate
the interval (xA, xB). Without loss of generality also assume xA < xB and yA ≤ yB. Then let
e = xB−xA

2 and consider the midpoint xC = xA + e. Define yC = yA +me. SPWL is bounded by
me and we want to show this bound is sharp. Consider a function f1 : [xA, xB] → R to be the
function with trace consisting of the line segments AC,CB. Obviously f1 goes through A,B. We
claim f1 ∈ LB(m). First note that by definition, the slope of AB is m. It remains to show the
slope of CB is also bounded by m in magnitude.

mCB =
yB − yC
xB − xC

.

Now note that yB is at most yA + 2me hence

mCB =
yB − yC
xB − xC

=
2me+ yA − yC

e
=
me

e
= m.

Also from our assumption that yA ≤ yB we have

mCB ≥
yA − yC
xB − xC

=
−me
e

= −m.

We have shown mCB ≤ m.
The proof is complete by noting at xC we have

|f1(xC)− approx[f ](xC)| = |yA +me− yA| = me.

Proof (Theorem 3.7)
Define

E1 = [x1 − en,0, x1 + e1),

E2 = (x2 − e1, x2 + e2), · · · ,
En−1 = (xn−1 − en−2, xn−1 + en−1),

En = (xn − en−1, xn + en,0].
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Then interpolate f on each interval Ei using approx as prescribed by the definition. Now the result
can be deduced from Theorem 3.6.

Proof (Theorem 4.3)
Case 1:
In this case |m?| < m as shown in Figure 11 (Top Left Panel) and the proof is similar to the case
with BD = 0.
Case 2:
Consider Figure 11 (Top Right Panel) for the proof.
Define

A1 = (xA, yA − σ), A2 = (xA, yA + σ), B1 = (xB , xB − σ), B2 = (xB , xB + σ),

so that A1, A2 have the same x-value as A and off by σ in the y-axis. Similarly B1, B2 have the
same x-value as B and off by σ in the y-axis. From each of A1, A2, B1, B2 draw a line with slope
equal to m then one of the lines starting from A1, A2 (in Figure 11, the line starting from A2)
will intersect the line segment B1B2 at a point we denote by C and one of the lines starting from
B1, B2, (in Figure 11, the line starting from B1), will intersect the line segment A1A2 and we call
that point D. Then the parallelogram A2CB1D and call the midpoint of A2C, F and the midpoint
of B1C, G. The Lipfit approximation is given by FG.

For LI it is clear that the error is equal to σ since the supremum error is equal to
|AA2| = |BB2|.
For finding the error for Lipfit let δ = |AD| = |BC|. The supremum error made by Lipfit is equal
to DSPWE = |FD| = |A2D|/2 = (σ+ δ)/2. Therefore it suffice to find δ in order to find the error.
For that we measure |B3C| in two ways:

(1) |B3C| = |B3B1|+ |B1B|+ |BC| = m∆x + σ + δ;

(2) |B3C| = |AD|+m?∆x + |CB| = 2]δ +m?∆x.

By letting (1) and (2) equal, we find δ = σ −∆x(|m? −m|) and therefore

SPWE = (σ + δ)/2 = σ − ∆x

2
(|m? −m|).

Case 3:
Consider Figure 11 (Bottom Left Panel) for the proof.
For LI it is clear that the error is equal to σ since the supremum error is equal to |AA2| = |BB2|.
For finding the error for Lipfit let δ = |AD| = |BC|. The supremum error made by Lipfit is equal
to DSPWE = |FD| = |A2D|/2 = (σ− δ)/2. Therefore it suffice to find δ in order to find the error.
For that we measure |B3B| in two ways:

(1), |B3B| = |AA2|+m∆x + |CB| = σ +m∆x + δ;

(2), |B3B| = m?∆x.

By letting (1) and (2) equal, we find δ = ∆x(|m? −m|)− σ and therefore

SPWE = (σ + δ)/2 = σ − ∆x

2
(|m? −m|).
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Proof Lemma 6.2.

(a) This is straightforward by from the properties of infimum.

(b) For m = +∞, f ∈ LB(m) and therefore γf (m) = 0. Also only constant functions satisfy
m = 0 and therefore γf (m) = d/2 as the constant function g(x) = ( sup

z∈[a,b]

f(z)− inf
z∈[a,b]

f(z))/2

minimizes SPWL(f, g).

(c) For σ = +∞ any bounded function, g, satisfies SPWL(f, g) ≤ σ including any constant function
g = c for which we have Lip(g) = 0. The only function, g, which satisfies SPWL(f, g) = 0 is f
and therefore γ−1(0) = Lip(f).

(d) Obvious from the definition.

(e) Suppose γf (m) = σ which means σ = inf
g∈LB(m)

SPWL(f, g). Now let us calculate the quantity

of interest γf1(m):

γf1(m) = inf
g1∈LB(m)

SPWL(f1, g1)

= inf
g1∈LB(m)

sup
x∈[a/k,b/k]

|f1(x)− g1(x)|

= inf
g1∈LB(m)

sup
x∈[a/k,b/k]

|f(kx)− g1(kx/k)|

= inf
g1∈LB(m)

sup
y∈[a,b]

|f(y)− g1(y/k)|

= inf
g2(y)=g1(y/k); g1∈LB(m)

sup
y∈[a,b]

|f(y)− g2(y)|

= inf
g2∈LB(m/k)

sup
y∈[a,b]

|f(y)− g2(y)|

=γf (m/k).

(f) Define f1(x) = kf(x) on the same domain. Then we have

γf1(m) = inf
g1∈LB(m)

sup
x∈[a,b]

|f1(x)− g1(x)|

= inf
g1∈LB(m)

sup
x∈[a,b]

|kf(x)− g1(x)|

= inf
g2=g1/k; g1∈LB(m)

sup
x∈[a,b]

|kf(x)− kg2(x)|

= inf
g2∈LB(m/k)

sup
x∈[a,b]

|k||f(x)− g2(x)|

=|k|γf (m/k).
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Proof Theorem 6.1.

(a) Suppose γfi(mi) = σi, i = 1, 2. Then for any (small) ε > 0, there exist functions gi ∈ LB(mi)
such that SPWL(fi, gi) ≤ σi − ε, i = 1, 2. Then clearly g = g1 + g2 ∈ LB(m) and we have

γf (m) ≤SPWL(f, g) ≤ SPWL(f1, g1) + SPWL(f2, g2)

≤σ1 + σ2 − 2ε = γf1(m1) + γf2(m2)− 2ε.

Since above holds for any ε > 0, we conclude γf (m) ≤ γf1(m1) + γf2(m2).

(b) Suppose γ−1
fi

(σi) = mi, i = 1, 2 and fix bounded f1, f2 so that f = f1 + f2 and let di =
diam(f1), i = 1, 2, d = max{d1, d2}. Then for any (small) ε > 0, there exist functions
gi ∈ LB(mi + ε) such that SPWL(fi, gi) ≤ σi, i = 1, 2. Clearly g = g1 + g2 ∈ LB(m+ 2ε) and
define

c =
m

m+ 2ε
, g̃ = cg.

Then we have g̃ ∈ LB(m) and

γ−1
f (m) ≤ SPWL(f, g̃) ≤ SPWL(f1, cg1) + SPWL(f2, cg2)

≤ SPWL(f1, g1) + SPWL(g1, cg1) + SPWL(f2, cg2) + SPWL(g2, cg2)

≤ σ1 + σ2 + (1− c)diam(g1) + (1− c)diam(g2)

≤ σ1 + σ2 + (1− c)(d+ σ1) + (1− c)(d+ σ2)

≤ σ1 + σ2 + (1− c)(d+ σ1 + σ2)

= γ−1
f1

(m1) + γ−1
f2

(m2) + (1− c)(d+ σ1 + σ2)

Since the above holds for any ε > 0, (1− c) = 2ε/(m+ 2ε) can become arbitrarily small. Now
since (d+σ1+σ2) is fixed, we can omit the last term and conclude γ−1

f (m) ≤ γ−1
f1

(m1)+γ−1
f2

(m2).

Proof Theorem 6.3.
First note that, clearly γf (m)− γg(m) ≥ 0 as f is defined on a domain which includes the domain
of g. Now suppose γg(m) = σ1. Then we claim that γLI(g)(m) = σ1 also. γLI(g)(m) ≥ σ1 is
obvious because the domain of LI(g) includes that of g. To show that γLI(g)(m) ≤ σ1, for any
ε > 0 we will show γLI(g)(m) ≤ σ1 + ε. Since γg(m) = σ1, there is a grid function h, defined on x,
such that SPWL(g, h) ≤ σ1 + ε and h ∈ LB(m,x). Now consider the linear interpolation of h on
the interval [a, b] and denote it by LI(h). Then we have LI(h) ∈ LB(m, [a, b]). But we also have
SPWL(LI(g), LI(h)) ≤ σ1 + ε because the supremum distance is obtained at the break points for
piece-wise linear functions. Therefore

SPWL(f, LI(h)) ≤ SPWL(f, LI(g)) + SPWL(LI(g), LI(h)) ≤ σ + σ1 + ε, ∀ε ≥ 0.

We conclude γf (m) ≤ σ + σ1 = σ + γg(m), which completes the proof.
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