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Abstract

We provide a deterministic polynomial time algorithm for multicas-
ting in a linear deterministic relay network proposed by Avestimehr,
Diggavi and Tse (2011). The running time of our algorithm matches
the complexity of unicast computations for each sinks, i.e., our algo-
rithm is optimal in this sense. Our approach is based on the polylinking
flow model of Goemans, Iwata and Zenklusen (2012), and the mixed
matrix completion technique of Harvey, Karger and Murota (2005).

1 Introduction

Determining the capacity of a wireless information channel is a longstand-
ing open problem. The difficulty comes from the two essential features
of a wireless information channel: broadcast and superposition. In wireless
communication, signals are sent to multiple users in the network, and super-
position makes it hard to recover original signals. By these obstacles, even a
simple wireless channel, such as network with a single source, a single relay,
and a single sink, has not been fully characterized. This is in contrast to
classic wired information channels, whose capacity can be characterized by
the Ford-Fulkerson max-flow min-cut theorem.

A linear deterministic relay network (LDRN) has been introduced by
Avestimehr, Diggavi and Tse [3], to study the capacity of a wireless informa-
tion channel. It captures the two main features of wireless communication,
and they have shown that a linear deterministic relay network approximates
a wireless information channel in additive constant factor. Furthermore,
the capacity of a linear deterministic relay network can be characterized in
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terms of “source-destination cuts”, which generalize the concept of cuts in
a wired network. Although the original proof in [3] employed the probabilis-
tic method and therefore algorithmic aspects were not studied, deterministic
algorithms to compute the capacity has been developed subsequently [2, 10].

Multicast algorithms in a linear deterministic relay network also have
been developed. Ebrahimi and Fragouli [5, 6] have presented the first de-
terministic multicast algorithm working on an arbitrary linear deterministic
relay network. The fastest known algorithm has been proposed by Yazdi
and Savari [18]. The running time1 is O(dq((nr)3 log(nr) + n2r4)), where d
is the number of sinks, q is the number of layers in the network, n is the max-
imum number of nodes in each layer and r is the capacity of a node. Their
method uses an efficient algorithm of Goemans, Iwata and Zenklusen [10] to
compute a unicast flow for each sink, and then determines a linear coding
scheme with the unicast flow information. All of these multicast algorithm
assume that the field size is larger than the number of sinks.

1.1 Our Contribution

In this paper, we develop a faster deterministic algorithm for constructing a
multicast scheme in a linear deterministic relay network. Using the unicast
algorithm of Goemans, Iwata and Zenklusen [10], our algorithm runs in
O(dq(nr)3 log(nr)) time, while the running time of Yazdi and Savari [18]
is O(dq((nr)3 log(nr) + n2r4)). Our algorithm is optimal in the sense that
unicast computations for d sinks already take O(dq(nr)3 log(nr)) time, as
long as we use the unicast algorithm of Goemans, Iwata and Zenklusen [10].
Note that by the multicast theorem shown by Avestimehr, Diggavi and
Tse [3], the unicast capacity for each sink can be obtained immediately once
we solve the multicast problem.

We also compare the running time excluding the complexity of unicast
flow computations. Our algorithm requires O(dqn3r3) time, while the algo-
rithm of [18] requires O(dqn2r4) time. In this comparison, our algorithm
is faster than that of Yazdi and Savari when n = o(r). Practically, r is
the number of bits exchanged between two nodes and therefore it can be
considerably greater than n, the maximum number of nodes in each layer.

While both Yazdi and Savari’s algorithm and ours use the same uni-
cast algorithm of Goemans, Iwata and Zenklusen [10], we achieve several
technical improvements. The main differences of the present work are as
follows:

• After finding a unicast flow for each sink, Yazdi and Savari’s algorithm
determines a linear coding scheme in a node-by-node manner, which

1Although the running time stated in [18] is O(dq((nr)3 log(nr) + n2r3 + nr4)), there
is a mistake that bounds the time for a multiplication of an r × n matrix and an n × r
matrix by O(nr).
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increases the number of matrix operations that have to be carried out.
To reduce this complexity, we introduce a matrix completion technique
which enables us to determine a linear coding scheme of a layer at once.

• The method of Ebrahimi and Fragouli [5, 6] reduces multicasting in a
linear deterministic relay network to a modified network coding prob-
lem and then applies the matrix completion technique to the modi-
fied problem. However, their approach does not consider the layered
structure of linear deterministic relay networks, and therefore needs to
handle a relatively large matrix. Having considered the layered nature,
we designed an algorithm that only needs to handle smaller matrices.

1.2 Related Works

Combinatorial properties of linear deterministic relay networks have been
studied in the literature. Goemans, Iwata and Zenklusen [10] have studied
more general flow model called a polylinking network, and have shown that
a unicast flow in a polylinking network can be found by solving the sub-
modular flow problem [7]. Subsequently, Fujishige [9] has slightly extended
the polylinking network model and shown that the extended flow model is
equivalent to the neoflow problems [8], which include the submodular flow
problem and other variants. Note that a similar result has been obtained
independently by Yazdi and Savari [17].

Similarities between linear deterministic relay networks and network cod-
ing [1] have been pointed out by several authors. In the original paper of
Avestimehr, Diggavi and Tse [3], it is shown that the multicast capacity of a
linear deterministic relay network equals the minimum unicast capacity for
each sink. This result can be compared to the famous result for the multi-
cast capacity achievable with network coding [1]. Ebrahimi and Fragouli [6]
have devised a multicast algorithm for a linear deterministic relay network
based on reduction to the modified network coding problem, in which a net-
work has nodes performing predetermined linear operation. Such extended
network coding problems have been studied by Király and Kovács [12, 13].

The matrix completion problem, more specially, the maximum rank ma-
trix completion problem has been studied in the area of combinatorial opti-
mization, and has rich applications to network coding [11]. In the problem,
we are given a matrix with indeterminates, a matrix whose entries may con-
tain indeterminates. The objective is to find a value assignment for the
indeterminates maximizing the rank of the matrix obtained by substitution.
The outstanding work in matrix completion algorithms has been achieved
by Harvey, Karger and Murota [11]. They have devised an efficient comple-
tion algorithm for mixed matrices, matrices with indeterminates such that
each indeterminate appears only once. Their algorithm is based on clever
use of the combinatorial structure of mixed matrices [14]. Their mixed ma-
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trix completion algorithm has been generalized to more complicated matrix
completion problems in [15].

1.3 Organization of this paper

The rest of this paper is organized as follows. Section 2 provides a summary
of results of the mixed matrix theory and mixed matrix completion. The flow
model for a linear deterministic relay network is described in Section 3. The
main section of this paper is Section 4, which presents our new algorithm for
multicasting in a linear deterministic network and analyzes its complexity.
In Section 5, we refine the analysis of Section 4 and estimate the complexity
of our algorithm excluding the complexity for unicast computations. Finally,
we conclude this paper in Section 6.

2 Preliminaries

This section provides a brief summary of the mixed matrix theory and mixed
matrix completion. For further details of the mixed matrix theory, the reader
is referred to a monograph of Murota [14]. We also provide a useful formula
from linear algebra. For the sake of simplicity, we introduce some notations.
For a matrix A, we denote by Row(A) the set of row indices of A. Similarly,
we define Col(A) as the set of column indices of A.

2.1 Mixed Matrix

Let F be a field. A matrix with indeterminate is a matrix whose entry may
contain indeterminates. A matrix is said to be generic if the set of its nonzero
entries is algebraically independent over F. A matrix with indeterminate is
called a mixed matrix if each indeterminate appears only once. Equivalently,
a matrix A is a mixed matrix if A = Q+T , where Q is a “constant” matrix
over F and T is a generic matrix. A mixed matrix A = Q + T is called a
layered mixed matrix, or, an LM-matrix for short, if the set of nonzero rows
in Q and that in T are disjoint. In other words, an LM-matrix is a mixed
matrix in the form of A =

[
Q
T

]
. The following is basic in the mixed matrix

theory.

Lemma 2.1 (Murota [14]). For a square LM-matrix A =
[
Q
T

]
, let C :=

Col(A), RQ := Row(Q) and RT := Row(T ). Then A is nonsingular if and
only if there exists a column subset J ⊆ C such that both Q[RQ, C \ J ] and
T [RT , J ] are nonsingular.

In fact, the set J described in the lemma can be found by solving the
independent matching problem [16], a generalization of bipartite matching.
Formally, the independent matching problem is defined as follows. Let G =
(V +, V −;E) be a bipartite graph with vertex set V +∪̇V − and edge set E.
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Let M+ and M− be matroids on V + and V −, respectively. A matching M
in G is said to be independent if the sets of vertices in V + and V − incident
to M are independent in M+ and in M−, respectively. The independent
matching problem is to find an independent matching of maximum size.

In the mixed matrix theory, the independent matching problem is often
used in the following form. Define a bipartite graph G = (V +, V −;E) with
V + := CQ ∪̇RT and V − := C, where CQ is a copy of C = Col(A). Let
E be the set {ij : i ∈ RT , j ∈ C and Tij 6= 0} ∪ {jQj : jQ is the copy of j}.
Define M+ to be the direct sum of the vector matroid of Q and the free
matroid on RT . Let M− be the free matroid on V −. Then, a matching M
is independent if and only if ∂+M ∩CQ is an independent set in the vector
matroid of Q, where ∂+M is the set of vertices in V + incident to M . Then
the set J described in Lemma 2.1 coincides with the set of vertices matched
to RT by a maximum independent matching.

Example 2.2. The bipartite graph G corresponding to the LM-matrix

A =


1 0 1 0
0 1 −1 0
x y z 0
w 0 0 t

 (1)

is shown in Figure 1. An independent matching is shown in thick edges, and
the corresponding subset J ⊆ C is shown in a shaded box.

Figure 1: The corresponding bipartite graph of the LM-matrix A in Example
2.2.

Conversely, if we have a column subset J ⊆ C such that both Q[RQ, C\J ]
and T [RT , J ] are nonsingular, the corresponding independent matching can
be found as follows. Since T [RT , J ] is nonsingular, G[RT ∪̇ J ] has a bipartite
matching N such that J ⊆ ∂N , where G[RT ∪̇ J ] is the subgraph of G
induced by RT ∪̇ J . Then M := N ∪̇{jQj : j ∈ C \ J} is a maximum
matching in G and the set of vertices matched to RT by M coincides with
J .

2.2 Mixed Matrix Completion

In the mixed matrix completion problem, we are given a mixed matrix and
the objective is to find values for the indeterminates that maximize the
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rank of the resulting matrix obtained by substitution. Harvey, Karger and
Murota [11] have shown that a solution of a mixed matrix completion can
be found in O(n2.77) time, where n is the size of an input mixed matrix.

We need a more general matrix completion problem in this paper: si-
multaneous mixed matrix completion, in which we are given a collection of
mixed matrices and some indeterminates may appear in more than one of
these matrices. The objective is to find a value assignment of the inde-
terminates that maximizes the rank of every resulting matrix obtained by
substitution. Again, Harvey, Karger and Murota [11] have devised an effi-
cient algorithm to find a solution of this problem under a certain condition
on the field size. Here we present an overview of their approach.

For each mixed matrix A = Q+ T in the collection, we define the corre-
sponding LM-matrix Ã by

Ã =

[
I Q
Z ZT

]
, (2)

where Z is a nonsingular diagonal generic matrix. Note that rank Ã =
n + rankA, where we assume that A is an n × n matrix. Let M be a
maximum independent matching in the bipartite graph G corresponding to
the LM-matrix Ã. Roughly speaking, the independent matching M cap-
tures a combinatorial structure of the LM-matrix Ã. Harvey, Karger and
Murota [11] have shown that we can determine a value of each indetermi-
nate with clever use of the combinatorial structure. The complexity of their
algorithm is O(|A| · (IM(n) + kn2)) time, where IM(n) is the complexity of
solving the independent matching problem for a single mixed matrix and
k is the number of indeterminates in A. For example, in a standard aug-
menting path algorithm for the independent matching problem, we have
IM(n) = O(n3 log n) [4].

Furthermore, this running time can be improved if the collection admits
a certain structure. A collection of mixed matrices is said to be column-
compatible if the following condition holds: for arbitrary two indeterminates,
if some matrix contains them in the same column, then no matrix in the
collection contains them in distinct columns.

Theorem 2.3 (Harvey, Karger and Murota [11]). Let F be a field and let
A be a column-compatible collection of n × n mixed matrices. If |F| > |A|,
then there exists a solution of the simultaneous matrix completion for A and
it can be found in O(|A| · (IM(n) + kn + n3)) time, where k is the number
of indeterminates in A. Using a standard independent matching algorithm,
the algorithm can be implemented to run in O(|A| · n3 log n) time.

2.3 Cauchy-Binet Formula

The Cauchy-Binet formula describes the terms in the determinant of the
product of two rectangular matrices.
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Lemma 2.4 (Cauchy-Binet Formula). For an n× r matrix A and an r×n
matrix B with n ≤ r, we have

detAB =
∑

J :|J |=n

detA[R, J ] · detB[J,C], (3)

where R := Row(A), C := Col(B) and the sum is taken over all subsets J
of Col(A) = Row(B) such that |J | = n.

3 Flow Model

This section provides the flow model for multicast in a linear deterministic
relay network. The model is based on the linking network model of Goemans,
Iwata and Zenklusen [10].

Figure 2: An example of a linear deterministic relay network

A linear deterministic relay network is a layered network with node set
V = V1 ∪̇ . . . ∪̇Vq, where Vi is the set of nodes in the ith layer for i = 1, . . . , q.
Each node consists of r input vertices and r output vertices, for some global
constant r ∈ Z+. For each i, let Ii and Oi be the set of all inputs and the
set of all outputs in the layer Vi, respectively. We may assume that the first
layer V1 consists of a single node s called the source node.

Signals are modeled as elements of a finite field F and are sent as follows.
For each i, let zi denotes the vector consisting of signals at the inputs in the
layer Vi and let yi+1 denotes the vector of signals received in the outputs of
the next layer Vi+1. Then yi+1 is equal to Mizi, where Mi is a given Oi+1×Ii
matrix over F representing a “connection” between Vi and Vi+1. In the
original paper [3] of a linear deterministic relay network, Mi is represented
as a block matrix of shift matrices. That is, for u ∈ Vi and v ∈ Vi+1,
Mi[u, v] = Sr−nuv for some integer nuv, where S is the following r × r
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matrix:

S =


0
1 0

1 0
. . .

. . .

1 0

 . (4)

However, we consider more general settings in this paper, i.e., we assume
that Mi can be an arbitrary matrix.

Let t be a node in the layer Vk. An s-t flow F in the linear deterministic
network is a subset of V such that:

1. For each node N , |F ∩N ∩O| = |F ∩N ∩ I|, i.e., F contains outputs
as many as inputs contained in F .

2. For each i = 1, . . . , k − 1, Mi[F ∩Oi+1, F ∩ Ii] is nonsingular.

3. The outputs of sink t contains F ∩Ok.

The rate of an s-t flow F is the value |F ∩O1|.
The unicast problem in a linear deterministic relay network is a problem

to find an s-t flow for a single s-t pair. Goemans, Iwata and Zenklusen [10]
have shown that the unicast problem can be solved with matroid partition.

Theorem 3.1 (Goemans, Iwata and Zenklusen [10]). An s-t flow in a linear
deterministic relay network can be found in O(d(nr)3 log(nr)) time, where
d is the number of layers and n is the maximum number of nodes in each
layer.

In the paper of Goemans, Iwata and Zenklusen [10], a node can only
send its receiving signals. However it is natural to introduce linear coding
operation in nodes, i.e., we assume that a node can send a linear combination
of its receiving signals. Formally, for each i, the input vector zi ∈ FIi is
determined as

zi = Xiyi, (5)

where yi is the output vector of layer Vi and Xi is a block diagonal matrix
each of whose block size is r. We can easily see that the output vector yi+1

of the next layer Vi+1 is determined by

yi+1 = MiXiyi. (6)

The multicast problem in a linear deterministic relay network is defined
as follows. Givens are a linear deterministic relay network N and a set T of
sink nodes in N . We consider the source node s as an information source
generating a message w ∈ Fr. The objective is to design coding matrices
X1, . . . , Xq−1 so that each sink t in T can decode w from its receiving signals
for an arbitrary w.
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4 Algorithm

In this section, we describe a new algorithm for finding a multicast scheme
in a linear deterministic relay network. For simplicity of description, we
assume that there exists an s-t flow with rate r for each sink t. Let w ∈ Fr

denote the message vector, T denote the set of sinks and let d denote the
number of sinks.

Our algorithm splits into two parts. In the first part, we compute an s-t
flow Ft in the linear deterministic relay network for each sink t in T . This
part can be done efficiently using the unicast algorithm of Goemans, Iwata
and Zenklusen [10]. In the second part, we determine linear coding coeffi-
cients from the first layer to the last layer. More precisely, we determine the
entries of linear coding coefficients matrix Xi so that the following condition
is satisfied: the original message vector w can be recovered from subvector
yi+1[Ft ∩Oi+1] for each sink t.

Suppose that sink t is in layer Vk for some k. Then t can recover the
original message w because the set of outputs of s contains Ft ∩ Ok. The
following lemma summarizes the above arguments.

Lemma 4.1. If |F| > d, there exist matrices X1, . . . , Xq−1 such that w can
be recovered from yi[Ft ∩Oi] for i = 1, . . . , q and for each t ∈ T .

We will prove the lemma by induction on i. For i = 1, w can be trivially
recovered from y1[Ft ∩O1] = y1 because we have y1 = w and Ft ∩O1 = O1.
Suppose that i > 1. Let Pi be the matrix satisfying that yi = Piw. By the
induction hypothesis, Pi[Ft∩Oi, O1] is nonsingular. Then, we can easily see
that the original message w can be recovered from subvector yi+1[Ft∩Oi+1]
if and only if Mi[Ft ∩Oi+1, Ii]XiPi is nonsingular.

Let At be the matrix defined as follows:

At :=

 I O Pi

Xi I O
O Mi[Ft ∩Oi+1, Ii] O

 . (7)

The matrix At is nonsingular if and only if Mi[Ft ∩Oi+1, Ii]XiPi is non-
singular. Therefore, if there exists a constant matrix Xi such that At is
nonsingular for each sink t, then the lemma is proved. Considering each
nonzero entry of Xi as an indeterminate, the problem is equivalent to si-
multaneous mixed matrix completion. In order to prove that there exists a
solution for the simultaneous matrix completion, we have to check that Ai

is nonsingular (as a mixed matrix). This can be verified by the following.

Lemma 4.2. If Xi is a generic matrix, then Mi[Ft ∩ Oi+1, Ii]XiPi is non-
singular.
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Proof. By the Cauchy-Binet formula, we have

detMi[Ft ∩Oi+1, Ii]XiPi

=
∑

I⊆Ii:|I|=r

∑
J⊆Oi:|Oi|=r

detMi[Ft ∩Oi+1, I] detXi[I, J ] detPi[J,O1]. (8)

No cancellation occurs among nonzero terms in the right-hand side because
of the genericity of Xi. On the other hand, Mi[Ft∩Oi+1, Ft∩Ii] and Xi[Ft∩
Ii, Ft∩Oi] are nonsingular because Ft is a flow. Furthermore, Pi[Ft∩Oi, O1]
is nonsingular by the inductive hypothesis. Thus if we take I = Ft ∩ Ii
and J = Ft ∩ Oi, the corresponding term is nonzero, and this implies that
detMi[Ft ∩Oi+1, Ii]XiPi is nonzero.

We are now ready to prove Lemma 4.1. Let Ai be the collection of mixed
matrix At for each sink t such that t is in Vj with j > i. Since |F| > d and
each mixed matrix At is nonsingular, there exists a value assignment for
Xi such that every resulting matrix is nonsingular. Therefore, w can be
recovered from yi+1[Ft ∩Oi+1] for each t, which proves the lemma.

The above arguments provides an algorithm for finding a multicast en-
coding scheme. A pseudocode description is presented in Algorithm 1. Let
us analyze the running time of the algorithm. A unicast flow can be found
in O(q(nr)3 log(nr)) time for each sink, by the algorithm of Goemans, Iwata
and Zenklusen [10]. Using the simultaneous mixed matrix completion algo-
rithm of Harvey, Karger and Murota [11], linear encoding matrix Xi can be
found in O(d(nr)3 log(nr)) time, for each layer i. Note that the collection
of At’s is column compatible.

Theorem 4.3. If |F| > d, a multicast linear encoding scheme over F for a
linear deterministic relay network can be found in O(dq(nr)3 log(nr)) time,
where d is the number of sinks, q is the number of layers, n is the maximum
number of nodes in each layer and r is the capacity of a node.

5 Complexity Excluding Unicast Computation

In this section, we estimate the complexity of our multicast algorithm ex-
cluding the complexity of unicast computations. Of course, as we have
argued in the previous section, we can find a multicast encoding scheme
by solving the simultaneous matrix completion repeatedly. However, this
straightforward algorithm requires O(dq(nr)3 log(nr)) time. In fact, using
the unicast flow information, we do not need to solve the independent match-
ing problems in the simultaneous matrix completion. More precisely, an
independent matching associated with the matrix At can be found in O(1)
time. Therefore, if we know a unicast flow for each sink, we can skip the
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Algorithm 1 An algorithm for multicasting in a linear deterministic relay
network
1: for each sink t in T do
2: Compute an s-t flow Ft.
3: end for
4: Set U := T and P1 := I.
5: for i = 1 to q do
6: Let Ai := {At : t ∈ U}.
7: Compute a solution of simultaneous mixed matrix completion for Ai.
8: Let Pi+1 := GiX̃iPi, where X̃i is the substituted matrix according

to the solution of simultaneous matrix completion.
9: Remove each sink t from U if t is in the ith layer.

10: end for

computation of independent matching in the simultaneous matrix comple-
tion algorithm.

Let us transform the mixed matrix At into the following LM-matrix:

Ãt :=

 I O Pi

O Mi[Ft ∩Oi+1, Ii] O
ZXi Z O

 , (9)

where Z is a nonsingular diagonal generic matrix. Then At is nonsingular
if and only if Ãt is nonsingular. We denote Ãt =

[
Q
S

]
as usual. Let us

denote RQ := Row(Q), RS := Row(S) and C := Col(Ãt). The proof of the
following lemma is almost same as that of Lemma 4.2.

Lemma 5.1. For an s-t flow Ft, put J := (Ft∩Oi)∪̇(Ii\Ft). Then Q[RQ, C\
J ] and S[RS , J ] are both nonsingular.

Let G be the bipartite graph G = (V +, V −;E) corresponding to the
LM-matrix Ãt as defined in Section 2.1. The subset J described in Lemma
2.1 corresponds to the set of vertices in V + incident to some maximum
independent matching, say M . Furthermore, we can find the maximum
independent matching M as follows. Observe that it is sufficient to find
a maximum matching in G[RT ∪̇ J ], where G[RT ∪̇ J ] is the subgraph of G
induced by RT ∪̇ J . Since ZXi is block diagonal and each block has no zero
entries, G[RT ∪̇ J ] is the direct sum of complete bipartite graphs. Thus we
can find a maximum matching in G[RT ∪̇ J ] immediately.

Let us analyze the running time of our algorithm. For each i, the simul-
taneous matrix completion can be done in O(dn3r3) time by the algorithm
of Harvey, Karger and Murota [11] because the collection of At’s is column-
compatible and we can consider that IM(n) = O(1). Computing Pi+1 can
be done in O(n2r3) time. In total, a linear coding scheme in the ith layer
can be found in O(dn3r3) time. Summing up i = 1 to q − 1, we can find
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an entire linear coding scheme in O(qdn3r3) time. Summarizing the above
arguments, we have the following refinement of Theorem 4.3.

Theorem 5.2. If |F| > d, a multicast encoding scheme in a linear deter-
ministic relay network can be found in O(d · UF(n, q, r) + qdn3r3) time if,
where UF(n, q, r) is the complexity of unicast computation for a single sink,
d is the number of sinks, q is the number of layers and n is the maximum
number of nodes in each layer.

6 Concluding Remarks

We study multicasting in a linear deterministic relay network. Using the
simultaneous matrix completion, we devise the new algorithm whose com-
plexity matches to that of unicast computations for each sinks. We also
estimate the complexity of our algorithm excluding the complexity of uni-
cast computations.

The mixed matrix At used in our algorithm has certain structures; in
particular, At is a sparse matrix. In fact, the number of nonzero entries of
At is O(nr2), while At has O(n2r2) entries in total. However, our algorithm
does not use the sparsity because Harvey, Karger and Murota’s simultaneous
mixed matrix completion algorithm is incompatible with sparsity. A possible
direction for future studies is to design an algorithm compatible with the
sparsity of the mixed matrix At. For example, can one design a faster
algorithm which runs in O(d ·UF(n, q, r) + qdn2r3) time?
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