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Abstract

The mechanism of spatial agglomeration of a system of cities in a long narrow

economy is elucidated through a comparative study with that in a racetrack econo-

my, which serves as an idealized homogeneous space. Agglomeration economies

are described by an analytically solvable core–periphery model, and spatial ag-

glomerations are investigated by bifurcation theory and comparative static analy-

sis with respect to transportation cost. When agglomeration forces are relatively

high, both the long narrow and racetrack economies are shown to have a common

fundamental mechanism of agglomeration: a spatial period doubling cascade, fol-

lowed by concentration to a megalopolis and re-dispersion thereafter. The value

of transport cost at the occurrence of the cascade of the long narrow economy is

shown to be analytically predictable.
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1. Introduction

Spatial concentration of economic activities has been the cradle of develop-

ment and prosperity engendering industrial clusters and megalopolises worldwide.

A mechanism of the evolution of spatial agglomeration was elucidated by the

core–periphery model of Krugman (1991) [22], which provided a new framework

to explain migration of population between places that occurs as a consequence

of factor mobility and the trade-off between increasing returns at the level of firms

and transport costs. Models of “Spatial economy” of various kinds have subse-

quently been developed in NEG (New Economic Geography).6

In the rise of NEG models, the two-city economy was extensively employed

as a spatial platform, which is endowed with analytical tractability, to observe the

core–periphery pattern of agglomeration triggered by bifurcation. Yet the space of

this economy is too degenerated and, therefore, would be insufficient as a platform

of spatial economy. In fact, a criticism has been raised that economic agglomera-

tions, in reality, would take place at more than two locations.7 In this manner, the

importance of a proper spatial platform for core–periphery models has come to be

acknowledged. More realistic spatial platforms that are common in the literature

are

• A racetrack economy on the circumference of a circle.

• A long narrow economy (city) on a one-dimensional segment or a one-

dimensional infinite space.

The racetrack economy presents a homogeneous trade space by realizing e-

qual competition between places. Krugman (1993) [23] conducted a numerical

analysis with 12 places to observe spatial agglomerations of central places rough-

ly evenly spread across the landscape. By virtue of its homogeneity, the racetrack

economy is endowed with much desired analytical tractability of the spatial ag-

glomeration mechanism. Mossay (2003) [27] and Picard and Tabuchi (2010) [32]

demonstrated the emergence of discrete agglomeration out of the uniformity. As

6For overviews of these models, see Brakman et al. (2001) [8] and Combes et al. (2008) [10].
7This criticism was stated by Behrens and Thisse (2007) [6], and was empirically evidenced

by Bosker et al., 2010 [7].
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a most characteristic and systematic course of agglomeration, the spatial period

doubling cascade has been reported.8

For a long narrow economy, the evolution of cities around a mono-center in

association with an increase of the economy’s population size was demonstrated

by Fujita and Mori (1997) [16] and Fujita, Krugman, and Mori (1999) [14]. A

highly regular central place system a la Christaller and Lösch9 was observed.

Mori (1997) [26] showed “a formation of a megalopolis which consists of large

core cities that are connected by an industrial belt, i.e., a continuum of cities

associated with lower transport costs.”

In the agglomeration patterns observed up to now in the two kinds of e-

conomies, difference10 and diversity were emphasized. Nonetheless, there is an

underlying belief that both economies would tend to display similarity for a large

number of places. In fact, a similarity can be observed in the existence of spa-

tial patterns with high spatial regularity in both economies (Mori (1997) [26] and

Footnote 8).

That said, the objective of this paper is to disclose the similarity between these

two kinds of economy that lies behind such diversify in their spatial patterns, and

to clarify the agglomeration mechanism of the long narrow economy through a

comparison with that of the racetrack economy. For this purpose, spatial agglom-

erations of these two economies are investigated theoretically, numerically, and

comparatively using an analytically solvable core–periphery model by Forslid and

Ottaviano (2003) [12]. Locations of places are discretized, and a bounded space

on a line segment is employed for the long narrow economy. This long narrow

economy is not endowed with homogeneity, as the places at a boundary are con-

8Period doubling bifurcation from the uniformly distributed population engenders a state in

which concentrating cities and extinguishing cities alternate along the circle for the racetrack e-

conomy with 2k places (k is a positive integer). A repeated occurrence of such bifurcation is called

period doubling bifurcation cascade. See, e.g., Tabuchi and Thisse (2011) [34], Ikeda, Akamatsu,

and Kono (2012) [18], and Akamatsu, Takayama, and Ikeda (2012) [2].
9For central place theory, see Christaller (1933) [9] and Lösch (1940) [24].

10Such difference was emphasized in a comparative study of the two types of economies for

Beckman’s urban model (1976) [5] with social interactions that was conducted by Mossay and

Picard (2011) [29]. It was concluded that a single city emerges in a long narrow economy, and

multiple equilibria with an odd number of cities arise in the racetrack economy.
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nected to a single neighboring place, and, hence, places near boundaries have a

disadvantage in the transportation of goods. Nonetheless, this economy is closer

to a realistic situation, and a study of agglomeration of this economy would give a

hint at an economic implication of agglomeration shadow.11 There is a trade-off

in that the racetrack economy is not realistic but analytically tractable, while the

long narrow economy is realistic but its investigation relies on numerical anal-

ysis. Theoretical and numerical information on agglomeration of the racetrack

economy is employed to gauge the agglomeration of the long narrow economy.

As an essential contribution of this paper, “spatial period doubling cascade”

is advanced as a common mechanism governing the spatial agglomerations of the

two economies. This cascade can be clearly seen in the racetrack economy, but

only for relatively high transport costs in the long narrow economy. The value

of the transport cost at the onset of the first period doubling is analytically pre-

dictable, whereas the values of the second and further doublings are empirically

deductible from the spatial agglomeration of the racetrack economy. In this sense,

the former economy serves as an idealization of the latter economy. In addition,

model dependence, as well as parameter value dependence, of spatial agglomera-

tions is advanced by pointing out differences with studies in the literature, such as

that of Mossay and Picard (2011) [29].

This paper is organized as follows. The governing equation for the analytically

solvable core–periphery model is presented in Section 2. Bifurcations of the long

narrow economy and the racetrack economy are described in Section 3. Spatial

agglomerations of these two economies are investigated in Section 4. A compar-

ative study of these behaviors is given in in Section 5. Influence of parameter

values is studied in Section 6.

11Arthur (1990) [4] stated: “Locations with large numbers of firms therefore cast an ‘agglomer-

ation shadow’ in which little or no settlement takes place. This causes separation of the industry.”

See also Fujita, Krugman, and Venables (1999) [15], Ioannides and Overman (2004) [21], and

Fujita and Mori (2005) [17].
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2. Core–Periphery Model

As a typical example of the core–periphery model, let us consider the analyti-

cally solvable core–periphery model by Forslid and Ottaviano (2003) [12] that re-

places the production function of Krugman with that of Flam and Helpman (1987)

[11]. The fundamental logic and governing equation of this model are presented

in a simplified form here, whereas they are presented formally in Appendix A.

The analytical solvability of this model plays a pivotal role in the study of break

bifurcations (Section 5.3).

2.1. Basic assumptions

The economy of this model is composed of K places (labeled i = 1, . . . ,K),

two factors of production (skilled and unskilled labor), and two sectors (manu-

facturing, M, and agriculture, A). Both H skilled and L unskilled workers con-

sume two final goods: manufacturing sector goods and agricultural sector goods.

Workers supply one unit of each type of labor inelastically. Skilled workers are

mobile among places, and the number of skilled workers in place i is denoted by

λi (
∑K

i=1 λi = H). Unskilled workers are immobile and equally distributed across

all places with unit density (i.e., L = 1 × K).

Preferences U over the M- and A-sector goods are identical across individuals.

The utility of an individual in place i is

U(CM
i ,C

A
i ) = µ ln CM

i + (1 − µ) ln CA
i (0 < µ < 1), (1)

where µ is a constant parameter expressing the expenditure share of manufacturing

sector goods, CA
i is the consumption of the A-sector product in place i, and CM

i is

the manufacturing aggregate in place i, which is defined as

CM
i ≡

∑
j

∫ n j

0
q ji(ℓ)(σ−1)/σdℓ


σ/(σ−1)

,

where q ji(ℓ) is the consumption in place i of a variety ℓ ∈ [0, n j] produced in

place j, n j is the continuum range of varieties produced in place j, often called the

number of available varieties, and σ > 1 is the constant elasticity of substitution

between any two varieties. The budget constraint is given as

pA
i CA

i +
∑

j

∫ n j

0
p ji(ℓ)q ji(ℓ)dℓ = Yi, (2)
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where pA
i is the price of A-sector goods in place i, p ji(ℓ) is the price of a variety

ℓ in place i produced in place j and Yi is the income of an individual in place i.

The incomes (wages) of skilled workers and unskilled workers are represented,

respectively, by wi and wL
i .

The A-sector is perfectly competitive and produces homogeneous goods under

constant-returns-to-scale technology, whereas the M-sector output is produced un-

der increasing-returns-to-scale technology and Dixit-Stiglitz monopolistic compe-

tition. The transportation costs for M-sector goods are assumed to take the iceberg

form. That is, for each unit of M-sector goods transported from place i to place

j (, i), only a fraction 1/ϕi j < 1 arrives. More concretely, the transport cost ϕi j

between places i and j is defined as ϕi j = exp(τDi j), where τ is the transport cost

parameter and Di j represents the shortest transportation distance between places i

and j. (We define ϕii = 1.)

The core–periphery model follows two stages of equilibria: (i) market (short-

run) equilibrium that is defined as the economic state in which workers are as-

sumed to be immobile between places, and (ii) spatial (long-run) equilibrium of

the economic state for mobile workers.

2.2. Market equilibrium

In the short run, skilled workers are immobile between places, i.e., their spatial

distribution λ = (λi) is assumed to be given. The market equilibrium conditions

consist of the M-sector goods market clearing condition and the zero-profit con-

dition because of the free entry and exit of firms.

As worked out in Appendix A.2, the market equilibrium wage wi(λ, τ) is

determined from the equation

wi(λ, τ) =
µ

σ

K∑
j=1

di j

∆ j(λ, τ)
(w j(λ, τ)λ j + 1), (3)

where di j = ϕ
1−σ
i j is a spatial discounting factor between places j and i, and

∆ j(λ, τ) =
∑K

k=1 dk jλk denotes the market size of the M-sector in place j. The

indirect utility vi(λ, τ), given the spatial distribution of the skilled workers, is ob-

tained as

vi(λ, τ) = S i(λ, τ) + ln[wi(λ, τ)], (4)

where S i(λ, τ) ≡ µ(σ − 1)−1 ln∆i(λ, τ).
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2.3. General form of spatial equilibrium conditions

Although diverse core–periphery models have been developed on the basis of

an ensemble of economic principles and assumptions, it is possible to present a

general form of spatial equilibrium.

Population λi of skilled workers at the ith place is chosen as an independent

variable, and vector λ = (λ1, . . . , λK)⊤ is defined. As is customary in comparative

static analysis, the transport cost parameter τ is chosen as the main parameter.

In the description of the spatial equilibrium in core–periphery models, the

adjustment dynamics

dλ(t)
dt
= F(λ(t), τ) (5)

is considered with some appropriate function F(λ, τ). A stationary point of this

adjustment dynamics (5) is defined as λ = λ(τ) that satisfies the spatial equilibrium

condition

F(λ, τ) = 0. (6)

The stability of a solution λ to (6) can be defined in relation to the associated

dynamical system (5), and the solution is termed linearly stable if every eigenvalue

of the Jacobian matrix J(λ, τ) = ∂F/∂λ has a negative real part, and linearly

unstable if at least one eigenvalue has a positive real part.

As a specific functional form of F(λ, τ), we employ

F(λ, τ) = HP(v(λ, τ)) − λ. (7)

Here H is the total sum of the mobile population and P(v) = (P1, . . . , PK)⊤ is the

choice function vector, which is a function of the indirect utility function vector

v = (v1, . . . , vK)⊤ and
∑K

i=1 Pi = 1.

For the equilibrium (λ, τ) of (6), the conservation law

H =
K∑

i=1

λi (8)

is satisfied. In the comparative static analysis conducted in this paper, the total

number H of skilled workers is normalized as H = 1.

We employ the logit choice function Pi = Pi(v) given by

Pi(v) =
exp[θvi]∑K

j=1 exp[θv j]
, (9)
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where θ ∈ (0,∞) is a positive parameter.12 The adjustment process described by

(5) and (7) with (9) is the logit dynamics.13

12In the spatial equilibrium, the skilled workers are assumed to be heterogeneous in their pref-

erences for location choice; see, e.g., Tabuchi and Thisse (2002) [33], Murata (2003) [30], and

Akamatsu, Takayama, and Ikeda (2012) [2]. The parameter θ in (9) denotes the inverse of vari-

ance of the idiosyncratic taste, which is assumed to follow the Gumbel distribution that is identical

across places (e.g., McFadden, 1974 [25]; Anderson, de Palma, and Thisse, 1992 [3]).
13The logit dynamics has been studied in evolutionary game theory (e.g., Fudenberg and Levine,

1998 [13]).
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3. Bifurcation of long narrow economy and racetrack economy

Bifurcation is the most characteristic phenomenon of the spatial economy, by

which a set of identical places produces non-uniformly distributed places associ-

ated with a reduction of the transport cost. The geometry and associated bifur-

cation rule for a long narrow economy and a racetrack economy are presented

as fundamentals of the study of agglomeration in the following sections. These

two economies have different geometrical configurations, and, therefore, undergo

different kinds of bifurcations.

3.1. Geometry of economic activity space

n
n-11

2

n/2

(a) Racetrack economy

1 n-1 n0

(b) Long narrow economy

Figure 1: Spatial platforms for the economy

First, as a homogeneous counterpart of the long narrow economy, the eco-

nomic space of the racetrack economy with n places (labeled i = 1, . . . , n) spread

equally on the circumference of a circle in Fig. 1(a) is considered. Neighboring

places are connected by a road of length d = 1/n, and the whole length of the road

of the economy is given by 1. The number n of places is assumed to be even. All

places are given identical economic environments and the same opportunity. In

this sense, the racetrack economy serves as a homogeneous space for economic

activities and is suitable for theoretical treatment by bifurcation theory.
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Next, the economic space of the long narrow economy in Fig. 1(b) with n + 1

places (labeled i = 0, 1, . . . , n) spread equally on a line segment is considered.14

Neighboring places are connected by a road of length d = 1/n, and the whole

length of the road of the economy is given by 1. A place at a boundary has

an unfavorable transportation environment as this place is connected only to one

place, whereas places inside are connected to two places. Nonetheless such non-

uniformity would produce characteristic spatial agglomerations closer to a real

situation.

3.2. Bifurcation and agglomeration of the racetrack economy

The racetrack economy has a larger symmetry, comprising bilateral and cyclic

symmetries, than does the long narrow economy. The spatial agglomeration of the

racetrack economy with this symmetry has been studied theoretically in the liter-

ature (Ikeda, Akamatsu, and Kono, 2012 [18]; Akamatsu, Takayama, and Ikeda,

2012 [2]; Ikeda and Murota, 2014 [20]), the theoretical result being introduced

below. Consistently with numerical examples in Sections 4 and 5, the number n

of places is assumed to be even.

The flat earth equilibrium (i.e., uniformly distributed state)

λ∗ = (1/n, . . . , 1/n)⊤ (10)

exists, for any values of the transport cost parameter τ, as a pre-bifurcation state

of equilibrium. The spatial period L is equal to L = 1/n, i.e., L/d = 1.

The agglomeration from the flat earth equilibrium proceeds only via bifurca-

tion that breaks partial symmetry of the economy. Bifurcation takes place when

one or two eigenvalues of the Jacobian matrix J = J(λ∗, τ) become zero. The

associated bifurcation point with a single zero eigenvalue is called a simple bi-

furcation point and that with two zero eigenvalues is called a double bifurcation

point (see Ikeda and Murota, 2010 [19], 2014 [20] for the double point). Spatial

agglomerations engendered by bifurcations are shown in Fig. 2, for example, for

n = 4.

14This long narrow economy has the same number n of inter-place roads as the racetrack econ-

omy in Fig. 1(a). By preliminary numerical analyses for several number of places, it was found

that long narrow and racetrack economies display similar spatial agglomerations when they have

the same number of inter-place roads.
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Figure 2: Agglomeration mechanism in racetrack economy for four places (size of the area repre-

sents population size)

3.2.1. Simple pitchfork bifurcation point

At a simple pitchfork15 bifurcation point with n even (see the left of Fig. 2), a

bifurcating equilibrium path exists in the direction of the critical eigenvector

1
√

n
(1,−1, . . . , 1,−1)⊤ (11)

associated with the single zero eigenvalue. This leads to an agglomeration to every

other place corresponding to the spatial period doubling, i.e., L/d = 1 −→ 2.

3.2.2. Spatial period doubling bifurcation cascade

The racetrack economy with n = 2k places (k is some positive integer) can

undergo a cascade of simple pitchfork bifurcations (Tabuchi and Thisse, 2011

[34]; Ikeda, Akamatsu, and Kono, 2012 [18]; Akamatsu, Takayama, and Ikeda,

2012 [2]) leading to successive doublings of the spatial period:

L
d
= 1 −→ 2 −→ 4 −→ · · · −→ n. (12)

This is called spatial period doubling bifurcation cascade. Figure 3 depicts this

cascade for four places.

15A simple bifurcation point of the racetrack economy is necessarily a pitchfork bifurcation

point, which is either subcritical or supercritical. A subcritical one corresponds to the break bi-

furcation point for the two-place economy (Fujita, Krugman, and Venables, 1999 [15]), whereas

supercritical ones are observed in the present analysis in Section 4.1.
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Figure 3: Spatial period doubling bifurcation cascade in racetrack economy for four places (size

of an area represents population size)

3.3. Bifurcation and agglomeration of the long narrow economy

A symmetric system is known to lose its symmetry due to bifurcation. As a

simple but famous example of such a phenomenon, we first refer to break bifur-

cation of the two-place economy studied by Krugman (1991) [22]. This econ-

omy serves as a special case of the long narrow economy with n = 1. A state

λ = (1/2, 1/2)⊤ of two identical places has bilateral symmetry in that the two

places are exchangeable. This state is stable when the transport cost parameter τ

is large. Such symmetry is broken by bifurcation to engender an unstable state of

λ = (1/2 + δ, 1/2 − δ)⊤, 0 < δ < 1/2,

en route to a completely agglomerated state λ = (1, 0)⊤ for a core–periphery pat-

tern.

Next, let us consider the agglomeration in the long narrow economy with n ≥
2. As we see in numerical examples, the flat earth equilibrium λ∗ = (1/n, . . . , 1/n)⊤

in (10) exists as a stable equilibrium in the limit of τ → ∞. The spatial period L

among places with the same population is L = 1/n.

There are two theoretically possible courses of agglomeration thereafter.

• Migration of population among places that retains bilateral symmetry can

proceed without undergoing bifurcation, as shown at the left of Fig. 4 for

five places (n = 4).

• Bifurcation that breaks the bilateral symmetry, as shown at the right of

Fig. 4.

In the numerical analysis in this paper, the agglomeration of population progressed

without undergoing such bifurcation; accordingly, the bifurcation played literally

12
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0 0

Agglomeration not 

undergoing bifurcation

Agglomeration  

undergoing bifurcation

1 2 3 4 1 2 3 4

Figure 4: Agglomeration mechanism for long narrow economy with 5 places (size of the area

represents population size)

16Such bifurcation, however, is theoretically possible and was observed for three places for a

core–periphery model that assumes a quadratic utility function with linear transport costs (Ago,

Isono, and Tabuchi, 2006 [1]).
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4. Spatial Agglomerations of long narrow and racetrack economies

Spatial agglomerations of the long narrow and racetrack economies are ob-

served by comparative static analysis for the core–periphery model of Forslid and

Ottaviano (2003) [12] (Section 2). This section is devoted to a detailed investiga-

tion of the agglomerations in individual economies as a prelude to the comparative

study of agglomerations of these economies in Section 5.

The agglomerations are dependent on the setting of the parameters of the core–

periphery model as explained in detail in Section 6. The standard values of con-

stant µ expressing the expenditure share of manufacturing sector goods, the con-

stant elasticity σ of substitution between any two varieties, and the inverse θ of

variance of the idiosyncratic taste in (9) are chosen to be

(µ, σ, θ) = (0.4, 10.0, 10000). (13)

These parameter values satisfy the so-called no-black-hole condition (Fujita, Krug-

man, and Venables, 1999 [15]): (σ − 1)/σ = 0.9 > µ = 0.4. Robustness analysis

for some parameter values is presented in Section 6 and Appendix D.

4.1. Spatial agglomeration of the racetrack economy

The spatial agglomeration of the racetrack economy with 16 places is here in-

vestigated.17 This economy has the flat earth equilibrium λ∗ = (1/16, . . . , 1/16)⊤

in (10) for any values of the transport cost parameter τ as a pre-bifurcation equi-

librium.

Figure 5(a) shows the curves of population λn/2 for place n/2 (= 8) plotted a-

gainst transport cost parameter τ obtained by numerical analysis. The solid curves

express stable equilibria and the dotted ones unstable ones.18 The curve OAF of

the flat earth equilibrium has several bifurcation points denoted by ( ) for simple

bifurcation and by (◦) for double bifurcation. The curves of bifurcated equilibria

AB, BC, and CD are shown in this figure and associated population distributions

are presented in Fig. 5(b).

17A comparative study of this agglomeration with that for the long narrow economy with 17

places is conducted in Section 5.
18The stability of these equilibria is classified in accordance with the eigenvalues of the Jacobian

matrix J(λ, τ) (see Section 2.3).
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Among a plethora of bifurcating equilibria, a stable progress of spatial ag-

glomeration that takes place in association with a decrease of the transport cost

parameter τ is of economic interest. The flat earth equilibrium OA (with an even-

ly distributed state) is stable when the transport cost parameter τ is sufficiently

large. At the simple pitchfork bifurcation point A on this flat earth equilibrium,

the spatial period doubling bifurcation (L/d = 1 −→ 2) takes place to engender

the stable bifurcated equilibria AB with an agglomeration to every other place.19

As τ further decreases, another spatial period doubling is encountered at the

simple bifurcation point B, which engenders the stable equilibria BC associated

with an agglomeration to four equidistant places with identical populations. These

successive bifurcations are the spatial period doubling bifurcation cascade in (12)

for n = 16 that entails stable successive elongation20 of spatial period as

L
d
= 1 → 2 → 4 → 8.

OA A AB B BC C CD

As τ is further reduced beyond the point D, no continuation of stable equilibria

exists, and a dynamical shift21 to E leading to a complete agglomeration is expect-

ed to take place. In this stable progress of agglomeration, simple bifurcations play

a pivotal role, whereas double bifurcations play literally no role.

Thus, the stable spatial period doubling bifurcation cascade,22 followed by a

dynamical shift, is observed as a course of spatial agglomeration. Such course can

be observed for other values of n (see Section 5.1 for n = 64) and, hence, can be

19It should be noted that the stability of equilibria observed above is dependent on modeling.

For the agglomeration of the racetrack economy of the Krugman model, the first bifurcation was

unstable (subcritical pitchfork or tomahawk) and the cascade did not progress stably en route to

catastrophic change of agglomeration via dynamical shifts (Ikeda, Akamatsu, and Kono, 2012

[18]). By contrast, in the agglomeration observed here for the Forslid and Ottaviano model, the

first bifurcation at point A is stable (supercritical pitchfork) and the cascade progresses stably.
20The shift to a spatial agglomeration with a lower spatial frequency associated with the trans-

port cost reduction was stated also in Proposition 2 in Mossay (2013) [28].
21When a stable equilibrium path becomes unstable at a critical point where a stable bifurcating

equilibrium does not exist, the stable path often shifts dynamically to another stable path. This is

called dynamical shift.
22Such a stable spatial period doubling bifurcation cascade was predicted by Akamatsu, Takaya-

ma, and Ikeda (2012) [2].

15



 

 

0

1

0.8

0.6

0.4

0.2

1

Transport cost parameter

0.80.60.40.20 1.2 1.4

A

B

C

F

E

D

O

P
o
p
u
la

ti
o
n
 o

f 
p
la

ce
 n
/2

n
/2

Simple bifurcation
Double bifurcation

Racetrack (stable)
Racetrack (unstable)

(a) The curves of population λn/2 for place n/2 (= 8) plotted against transport

cost parameter τ

L
d
= 1 → 2 → 4 → 8 ⇒ 16

OA A AB B BC C CD DE EF

(b) Change of population distribution

Figure 5: Spatial agglomeration of the racetrack economy with 16 places (solid curves: stable;

dotted curves: unstable;→: bifurcation;⇒: dynamical shift)
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advanced as a fundamental mechanism of spatial agglomeration. It is noteworthy

that period doubling can be seen more clearly than in the long narrow economy

dealt with in Section 4.2.

During the course of the cascade, even-numbered agglomerated places are

observed, except for the mono-center. In contrast, the existence of an odd number

of agglomerated places was declared in Lemma 4 of Mossay and Picard (2011)

[29], which was conducted for Beckman’s CBD formation model (1976) [5] for a

continuous space without investigating the stability of equilibria.

4.2. Spatial agglomeration of the long narrow economy

The spatial agglomeration of a long narrow economy with 17 places is ob-

tained by solving the nonlinear governing equation (6) of the core–periphery mod-

el. The change of the population distribution observed with a decrease of τ is

expressed in the bar charts in Fig. 6. As τ decreases, the spatial agglomeration

progresses without undergoing bifurcation as below.

• Uniformly distributed state (1.5 < τ ≤ 5.0): The population is almost evenly

distributed in all places and the spatial period among these places is L/d =

1. Thereafter (τ ≈ 1.5), the population at the boundary places 0 and 16

migrate to their neighboring places 1 and 15, respectively.

• Spatial period doubling state I (τ ≈ 0.8): The population increases at seven

places 2, 4, . . . , 14 and decreases at seven places 1, 3, . . . , 15. At τ = 0.8, the

population at places 1, 3, . . . , 15 almost disappears, and the spatial period

between the agglomerated places is doubled to L/d = 2.

• Agglomeration to five places (τ ≈ 0.6): The population is agglomerated to

five unevenly spread places.

• Spatial period doubling state II (τ ≈ 0.4): The population is agglomerated

to a triplet of places, i.e., places 4, 8, and 12 and the spatial period between

agglomerated places is doubled to L/d = 4 in comparison with that in the

period doubling state I.

• Completely agglomerated state (τ ≈ 0.3): The population is completely

agglomerated to the mono-center at place 8.
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Figure 6: Spatial agglomeration of the long narrow economy with 17 places observed in associa-

tion with the decrease of the transport cost parameter τ
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• Re-dispersion state (0.0001 ≤ τ ≤ 0.005): The peak becomes flatter by

re-dispersion and arrives at an almost uniform state at τ ≈ 0.0001.

To sum up, the number of agglomerated places decreases as 7 −→ 5 −→ 3 −→ 1

en route to complete agglomeration at a mono-center. Repeated spatial period

doublings L/d = 1 −→ 2 −→ 4 are thus observed. Such doublings are also

observed for 65 places (see Section 5.2) and, hence, are advanced as a fundamental

mechanism of spatial agglomeration.

This is in line with the study of Fujita, Krugman, and Mori (1999) [14], in

which “a highly regular hierarchical system a la Christaller” for a core–periphery

model related to the model of Krugman (1991) [22] was found. Such system was

seen clearly in a two-dimensional economic space in Ikeda and Murota (2014)

[20].

The spatial agglomeration observed above indicates the existence of multiple

cities, as well as a mono-center. This is in sharp contrast with the study of Mossay

and Picard (2011) [29], in which the existence of multiple cities was denied with-

out resort to the stability of equilibria. It is, therefore, vital in the study of the

pattern of spatial agglomeration to acknowledge its dependence on modeling.
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5. Comparative study of spatial agglomerations of two economies

By a series of preliminary numerical analyses for different numbers of places,

it was found that the spatial agglomeration of a long narrow economy with n + 1

places is comparable to that of a racetrack economy with n places; note that

these two economies have the same number n of roads connecting neighboring

places. In this section, a comparative study of these two economies is conducted

for n = 16 and 64, for which the spatial period doubling bifurcation cascade is pre-

dominant in the racetrack economy. Although these two economies have different

kinds of bifurcation mechanisms (Section 3), their geometrical configurations are

alike in that places are located equidistantly or continuously and display similar

agglomerations sufficiently away from boundaries.

5.1. Case 1: n = 16

The spatial agglomeration of the long narrow economy with 17 places is in-

vestigated in comparison with that of the racetrack economy with 16 places; recall

Section 4 for the agglomerations of individual economies. Figure 7(a) shows the

curves of population λn/2 for place n/2 (= 8) plotted against transport cost param-

eter τ.

In the first stage, the bold curve for the long narrow economy OB′C′ closely

follows thin curve OAB and point C of the racetrack economy; here, the points

A, B, and C correspond to pitchfork bifurcation points of the racetrack economy,

at which the spatial period L is doubled successively (see Section 3.2.2 for theo-

retical outline). Moreover, spatial agglomerations of both economies, which are

illustrated comparatively for several values of the transport cost parameter τ in

Fig. 7(b), display the occurrence of a spatial period doubling cascade:

L
d
= 1 → 2 → 4.

This shows a similarity to the spatial agglomerations of these economies, and,

therefore, the role of the racetrack economy as an idealization of the long narrow

economy.

Let us observe the value, which is termed break point,23 of the transport cost

parameter at the onset of the spatial period doublings. Its value at the mth b-

23For the two-place economy, a decrease of the transport cost to the break point, at which
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Figure 7: Comparison of the spatial agglomerations of the long narrow economy with 17 places

and of the racetrack economy with 16 places (thin curves: racetrack economy; bold curves: long

narrow economy)
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ifurcation in this cascade for n places is denoted by τm,n. In the present case,

τ = τ1,16 = 1.05 at the first bifurcation point A and τ = τ2,16 = 0.75 at the second

bifurcation point B in the racetrack economy can be employed as indexes for the

initiation of agglomeration behavior change in the long narrow economy. More-

over, these values are analytically predictable for the present analytically solvable

model, as explained in Section 5.3.

In the intermediate stage (C′E′E′′), these two economies display significantly

different kinds of agglomerations as evident from the quite different behaviors of

the bold and thin curves in Fig. 7(a). In the last stage (E′′F), the two economies

again display similar agglomerations associated with the formation of a mono-

center and re-dispersion thereafter.

5.2. Case 2: n = 64

The similarity between the agglomerations of the two kinds of economies can

be seen more clearly in the comparison of the long narrow economy with 65 places

and the racetrack economy with 64 places shown in Fig. 8 (n = 64).

The thin curve of the racetrack economy traces a stable course OGHIJKL of

agglomeration via a spatial period doubling bifurcation cascade occurring at pitch-

fork bifurcation points G, H, I, J, and K. This cascade is followed by a dynamical

shift to a stable state at point L to M leading to complete agglomeration thereafter

and re-dispersion at N.

The bold curve of the long narrow economy accurately traces the curve OGHII′

of the racetrack economy. Moreover, spatial distributions of both economies in

Fig. 8(a) display the occurrence of spatial period doubling cascade

L
d
= 1 → 2 → 4 → 8.

As shown in an enlarged view in Fig. 8(b), the break points τ1,64, τ2,64, and τ3,64

serve as excellent indexes for the prediction of the phase changes in the long

narrow economy.

In the intermediate stage between I′M′, the spatial agglomerations of the two

symmetric places change catastrophically into a core–periphery pattern, is highlighted as a key

concept (Fujita, Krugman, and Venables, 1999 [15]).
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economies are quite different.24 In the stage of formation of a mono-center and

re-dispersion (M′N), the two economies display similar spatial agglomerations.

Thus the similarity of the agglomerations of the two economies is enhanced as the

number of places increases.

5.3. Laws for break points

As explained in Section 5.1, the values τm,n of break bifurcations for the race-

track economy with n even serve as characteristic indexes for the progress of the

spatial agglomeration in the long narrow economy. The value τ1,n at the occur-

rence of the first period doubling is analytically predictable by the following law

(see Appendix C for derivation)

τ1,n = c1n (14)

with a constant

c1 =
1

2π(σ − 1)
log

(
1 +
√
α∗

1 −
√
α∗

)
that is expressed implicitly as a nonlinear function in µ, σ, and θ.

For the parameter values (µ, σ, θ) = (0.4, 10.0, 10000) in (13), the constant c1

becomes

c1 = 0.065.

The use of this value in (14) gives theoretically predicted values as

τ1,16 = 1.05, τ1,32 = 2.11, τ1,64 = 4.22. (15)

As the number n is doubled successively, the value of τ1,n is doubled accordingly.

For comparison, the computationally obtained values

τ1,16 = 1.05, τ1,32 = 2.09, τ1,64 = 4.18

are very close to the theoretical ones in (15). This suffices to ensure the validity

of the law (14).

24The curve between I′J′ is not shown in Fig. 8, as it forms a number of loops and is too complex

(see Appendix B).
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Table 1: Relation between τm,n and n obtained computationally

n 16 32 64

τ1,n 1.05 2.09 4.18

τ2,n 0.75 1.50 3.00

τ3,n 0.43 0.86 1.71

τ4,n Non-existent 0.44 0.89

In addition, the doublings of τm,n for n = 16, 32, and 64 are observed empiri-

cally for m ≥ 2 as listed in Table 1. Thus we can arrive at an extended law

τm,n = cmn, (16)

where cm is a constant, which is given for the present case as

c2 = 0.047, c3 = 0.027, c4 = 0.014.

The formula (16) should be of great assistance in the prediction of the spatial ag-

glomeration for a large number n of places with reference to the analysis of a small

number of places. Thus, the values of the transport cost parameter at the second

and further doublings are empirically deductible from the spatial agglomeration

of the racetrack economy.
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6. Influence of parameter values

The relative predominance of centripetal forces promoting agglomeration and

centrifugal forces engendering dispersion depends on the values of the parameters

in core–periphery models (see Section 2). Accordingly, parameter dependence of

spatial agglomerations, as well as model dependence, is a vital factor in spatial

agglomerations in core–periphery models.

The influence of the change of the expenditure share µ of manufactured goods

on spatial agglomerations is investigated, whereas that of other parameters σ and

θ is investigated in Appendix D. It is to be noted that a larger value of µ enhances

the relative influence of the role of manufactured goods, thereby increasing ag-

glomeration forces. We set (σ, θ) = (10.0, 10000) and investigate the influence

of µ by changing its value as µ = 0.1, 0.4, and 0.7 to arrive at the bar chart of

the population distributions shown in Fig. 9, where µ = 0.4 corresponds to the

standard case in Fig 6.

For µ = 0.1, population is continuously distributed among places and gradual-

ly agglomerates to the place at the center as τ decreases. Such spatial agglomera-

tion is close to the one found by Mori (1997) [26]: “a formation of a megalopolis

which consists of large core cities that are connected by an industrial belt, i.e., a

continuum of cities.”

On the other hand, for µ = 0.4 and µ = 0.7, agglomerated places are discrete,

and the number of agglomerated places decrease 7 −→ 5 −→ 3 −→ 1 en route

to a complete agglomeration as τ decreases. Increased competition among places

leads to the growth of several discretized places and the extinction of population at

neighboring places. The distance of agglomerated places increases from L/d = 4

to 5 in association with the increase of µ from 0.4 to 0.7 that enhances agglomer-

ation forces. This shows the development of an agglomeration shadow due to the

increase of agglomeration forces. Such spatial agglomeration is close to the high-

ly regular central place system a la Christaller found by Fujita and Mori (1997)

[16] and Fujita, Krugman, and Mori (1999) [14].

As we have seen in this section, the spatial agglomeration is parameter val-

ue dependent and can encompass several different kinds of spatial agglomeration

patterns in the literature. A more extensive investigation of this dependence will

be a topic in the future.
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7. Conclusion

The spatial agglomerations of the long narrow economy and the racetrack e-

conomy were studied by theoretical and numerical analyses. The racetrack econ-

omy is regarded as an idealized spatial platform of a homogeneous trade space.

By virtue of this homogeneity, an underlying mechanism of the agglomeration of

this economy can be described theoretically. On the other hand, the long narrow

economy is closer to a realistic situation, but does not possess homogeneity in the

strict sense and its theoretical analysis is difficult. Nonetheless, this economy with

a large number of places appears to be quasi-homogeneous away from boundaries.

Early spatial agglomerations of the two economies for a large transportation

cost are dominated by the common mechanism of the spatial period doubling

cascade, especially for a large number of places. Such commonality makes the

theoretical and empirical results for the racetrack economy applicable to the long

narrow economy. The value of the transport cost at the onset of the first period

doubling is analytically predictable, whereas the values of the second and further

doublings are empirically deductible from the spatial agglomeration of the race-

track economy.

The spatial agglomeration of the long narrow economy was found to be de-

pendent on the values of the parameters for the core–periphery model. When the

agglomeration force is large, the spatial agglomeration is close to the one found

by Mori (1997) [26]: “a formation of a megalopolis which consists of large core

cities that are connected by an industrial belt, i.e., a continuum of cities.” When

the agglomeration force is small, the spatial agglomeration is close to the highly

regular central place system a la Christaller found by Fujita and Mori (1997) [16]

and Fujita, Krugman, and Mori (1999) [14]. Such parameter dependence, as well

as model dependence, would be a vital factor to be considered in the future study

of spatial agglomerations. A proper consideration of such a factor would be vital

to the understanding of spatial agglomerations that display diverse aspects.
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Appendix A. Market equilibrium of core–periphery model

The core–periphery model of Forslid and Ottaviano (2003) [12] is described.

Appendix A.1. Basic assumptions

An individual in place i maximizes the utility in (1) subject to (2). This yields

the following demand functions:

CA
i = (1 − µ) Yi

pA
i

, CM
i = µ

Yi

ρi
, q ji(ℓ) = µ

ρσ−1
i Yi

p ji(ℓ)σ
, (A.1)

where ρi denotes the price index of the differentiated product in place i, which is

ρi =

∑
j

∫ n j

0
p ji(ℓ)1−σdℓ


1/(1−σ)

. (A.2)

Since the total income and population in place i are wiλi + wL
i and λi + 1, respec-

tively, we have the total demand Q ji(ℓ) in place i for a variety ℓ produced in place

j:

Q ji(ℓ) = µ
ρσ−1

i

p ji(ℓ)σ
(wiλi + wL

i ), (A.3)

The A-sector is perfectly competitive and produces homogeneous goods under

constant-returns-to-scale technology, which requires one unit of unskilled labor in

order to produce one unit of output. For simplicity, we assume that the A-sector

goods are transported between places without transportation cost and that they are

chosen as the numéraire. These assumptions mean that, in equilibrium, the wage

of an unskilled worker wL
i is equal to the price of A-sector goods in all places (i.e.,

pA
i = wL

i = 1 for each i = 1, . . . ,K).

The M-sector output is produced under increasing-returns-to-scale technology

and Dixit-Stiglitz monopolistic competition. A firm incurs a fixed input require-

ment of α units of skilled labor and a marginal input requirement of β units of

unskilled labor. That is, a linear technology in terms of unskilled labor is assumed

in the profit function. Given the fixed input requirement α, the skilled labor mar-

ket clearing implies ni = λi/α in equilibrium. An M-sector firm located in place i

chooses (pi j(ℓ) | j = 1, . . . ,K) that maximizes its profit

Πi(ℓ) =
∑

j

pi j(ℓ)Qi j(ℓ) − (αwi + βxi(ℓ)) ,
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where xi(ℓ) is the total supply.

Recall that the transportation costs for M-sector goods are assumed to take the

iceberg form. That is, for each unit of M-sector goods transported from place i to

place j (, i), only a fraction 1/ϕi j < 1 arrives (ϕii = 1). Consequently, the total

supply xi(ℓ) is given as

xi(ℓ) =
∑

j

ϕi jQi j(ℓ). (A.4)

Since we have a continuum of firms, each firm is negligible in the sense that

its action has no impact on the market (i.e., the price indices). Therefore, the

first-order condition for profit maximization yields

pi j(ℓ) =
σβ

σ − 1
ϕi j. (A.5)

This expression implies that the price of the M-sector products does not depend

on variety ℓ, so that Qi j(ℓ) and xi(ℓ) do not depend on ℓ. Therefore, the argument ℓ

is suppressed in the sequel. Substituting (A.5) into (A.2), we have the price index

ρi =
σβ

σ − 1

1
α

∑
j

λ jd ji


1/(1−σ)

, (A.6)

where d ji = ϕ
1−σ
ji is a spatial discounting factor between places j and i; from (A.3)

and (A.6), d ji is obtained as (p jiQ ji)/(piiQii), which means that d ji is the ratio of

total expenditure in place i for each M-sector product produced in place j to the

expenditure for a domestic product.

Appendix A.2. Market equilibrium

In the short run, skilled workers are immobile between places, i.e., their spatial

distribution λ = (λi) is assumed to be given. The market equilibrium conditions

consist of the M-sector goods market clearing condition and the zero-profit con-

dition because of the free entry and exit of firms. The former condition can be

written as (A.4). The latter condition requires that the operating profit of a firm be

absorbed entirely by the wage bill of its skilled workers:

wi(λ, τ) =
1
α

∑
j

pi jQi j(λ, τ) − βxi(λ, τ)

 . (A.7)
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Substituting (A.3), (A.4), (A.5), and (A.6) into (A.7), we have the market equilib-

rium wage:

wi(λ, τ) =
µ

σ

∑
j

di j

∆ j(λ, τ)
(w j(λ, τ)λ j + 1), (A.8)

where ∆ j(λ, τ) ≡
∑

k dk jλk denotes the market size of the M-sector in place j.

Consequently, di j/∆ j(λ, τ) defines the market share in place j of each M-sector

product produced in place i.

The indirect utility vi(λ, τ), given the spatial distribution of the skilled workers,

is obtained by substituting (A.1), (A.6), and (A.8) into (1) and by setting S i(λ, τ) ≡
µ(σ − 1)−1 ln∆i(λ, τ):

vi(λ, τ) = S i(λ, τ) + ln[wi(λ, τ)]. (A.9)
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Appendix B. Loop behavior of long narrow economy

An interesting complicated behavior of the long narrow economy is investigat-

ed for an increased number n of places. Figure B.1 shows equilibrium paths for

n = 21. As τ decreases from a large value, a uniformly distributed state at point

A shifts into a state of spatial period doubling at point B. During 0.2 ≤ τ ≤ 1.0,

these paths form several loops and become stable and unstable repeatedly.25 Such

loops are observed for n ≥ 19, and make the behavior increasingly complicated in

association with an increase of the place number n.
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Figure B.1: Loop behavior of the long narrow economy with n = 21 (solid curves: stable; dotted

curves: unstable)

25In these loops, a spatial period tripling mode with L/d = 3 is observed at point D.

35



Appendix C. Proof of the formula for break points in the racetrack economy

The formula (16) for break points for the pitchfork bifurcation in the racetrack

economy with n even can be derived on the basis of Akamatsu, Takayama, and

Ikeda (2012) [2], in which the value of the transport cost parameter τ at the onset

of the spatial period doubling bifurcation has been studied analytically.

Define the spatial discounting matrix D = (di j), which represents spatial dis-

counting for pairs of places, by

di j = r(τ)m(i, j),

where

r(τ) = exp
[
−(σ − 1)τ

2π
n

]
, (C.1)

m(i, j) = min{|i − j|, n − |i − j|}. (C.2)

Then consider a normalized spatial discounting matrix D/d with d denoting the

sum of the entries of the first row of D. This matrix D/d is a circulant matrix and

the eigenvalue α for the eigenvector

η =
1
√

n
(1,−1, . . . , 1,−1)⊤ (C.3)

in (11) is evaluated in Akamatsu, Takayama, and Ikeda (2012) [2] as

α =

(
1 − r(τ)
1 + r(τ)

)2

. (C.4)

From the governing equation F in (7) with H = 1, we have

∂Fi

∂λ j
=

n∑
k=1

∂Fi

∂vk

∂vk

∂λ j
− δi j

= −θ
n∑

k=1

PiPk
∂vk

∂λ j
+ θPi

∂vi

∂λ j
− δi j,

where δi j is the Kronecker delta. Then the Jacobian matrix ∂F/∂λ is expressed as

∂F
∂λ

(λ) = −θ


P1
...

Pn


[
P1 · · · Pn

]
∂v
∂λ

(λ) + θ


P1

. . .

Pn


∂v
∂λ

(λ) − I, (C.5)

where I is the identity matrix and ∂v/∂λ denotes the Jacobian matrix of v with

respect to λ.
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The differentiations of vi in (A.9) with respect to λ j and the implicit relation

(A.8) for wi with respect to λl yield respectively

∂vi

∂λ j
= κ′

d ji

∆i
+

1
wi

∂wi

∂λ j
, (C.6)

∂wi

∂λl
= κ

n∑
j=1

di j

∆ j
2

[(
∂w j

∂λl
λ j + w jδ jl

)
∆ j − (w jλ j + 1)dl j

]
(C.7)

with ∆ j =
∑n

k=1 dk jλk and

κ =
µ

σ
, κ′ =

µ

σ − 1
.

We have 0 < κ < 1 and 0 < κ′ < 1 because σ > 1, 0 < µ < 1, and (σ − 1)/σ > µ

(no-black-hole condition).

At the flat earth equilibrium λ∗ = 1
n (1, . . . , 1)⊤, (C.5) gives

∂F
∂λ

(λ∗) = − θ
n2 11⊤

∂v
∂λ

(λ∗) +
θ

n
∂v
∂λ

(λ∗) − I, (C.8)

where 1 = (1, . . . , 1)⊤. The derivative ∂v/∂λ(λ∗) in (C.8) can be evaluated as

below. At λ = λ∗, we have

∆i =

n∑
k=1

dkiλk =
d
n
,

and w j is independent of j and, therefore, can be expressed as w j = w. Then (A.8)

becomes

w = κ
n∑

j=1

n
d

di j

(w
n
+ 1

)
= κ (w + n) ,

which gives

w =
κn

1 − κ . (C.9)

At λ = λ∗, (C.7) becomes

∂wi

∂λl
= κ

n∑
j=1

n2

d2 di j

[(
1
n
∂w j

∂λl
+ wδ jl

)
d
n
−

(w
n
+ 1

)
dl j

]
,

which in a matrix form reads

W = κ
n2

d2 D
[
d
n

(
1
n

W + wI
)
− w + n

n
D
]

with W = (∂wi/∂λl). With the use of (C.9), this equation can be rewritten as(
I − κD

d

)
W = nw

D
d

(
κI − D

d

)
,
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which is further rewritten as

W = nw
(
I − κD

d

)−1

· D
d

(
κI − D

d

)
.

Then the partial derivatives in (C.6) can be evaluated in a matrix form as

∂v
∂λ

(λ∗) = n
[
κ′

D
d
+

(
I − κD

d

)−1

· D
d

(
κI − D

d

)]
. (C.10)

For the eigenvector in (C.3), we have from (D/d)η = αη and (C.10) that

∂v
∂λ

(λ∗) · η = γη

with

γ = n[κ′α + (1 − κα)−1 · α(κ − α)].

Multiplying (C.8) by the vector η in (C.3) from the right and using 1⊤∂v/∂λ(λ∗) ·
η = γ1⊤η = 0, we obtain

∂F
∂λ

(λ∗) · η =
(
θ

n
· γ − 1

)
η.

Then the eigenvalue β of the Jacobian matrix ∂F/∂λ(λ∗) for the eigenvector η is

expressed in terms of α as

β = Ψ(α)

with a function Ψ defined as

Ψ(x) = θ
(
κ′x +

x(κ − x)
1 − κx −

1
θ

)
. (C.11)

The break point τ1,n is determined from the condition that the eigenvalue β for

τ = τ1,n vanishes. The value α∗ satisfying Ψ(α∗) = 0 is a solution x = α∗ of the

quadratic equation

θ(bx − ax2) − 1 = 0, (C.12)

where

a = κκ− + 1, b = κ + κ− + θ−1κ,

which are constants independent of n. Between the two solutions of (C.12), the

larger is relevant, i.e.,

α∗ =
b +
√

b2 − 4aθ−1

2a
.
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Then by (C.4) the value τ = τ1,n for the bifurcation should satisfy

r(τ1,n) =
1 −
√
α∗

1 +
√
α∗
.

By (C.1), therefore, we obtain

τ1,n

n
=

1
2π(σ − 1)

log
(
1 +
√
α∗

1 −
√
α∗

)
,

that is

τ1,n = c1n

with

c1 =
1

2π(σ − 1)
log

(
1 +
√
α∗

1 −
√
α∗

)
.

Note that c1 is a constant independent of n. This proves τm,n = cmn in (16) for

m = 1.
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Appendix D. Robustness against parameter value variation

The robustness of agglomeration behavior against the change of parameters

is here investigated. Parameters considered are the elasticity σ of substitution

between any two varieties and the inverse θ of variance of the idiosyncratic taste

in (9).

The change of population distribution associated with a reduction of τ for

σ = 5, 10, 25 with (µ, θ) = (0.4, 10000) is shown in Fig. D.1. As can be seen, an

increase of σ leads to less agglomeration.

The change of population distribution associated with a reduction of τ for

θ = 500 and 2500 with (µ, σ) = (0.4, 10) is shown in Fig. D.2. As can be seen, an

increase of θ leads to more agglomeration.
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Figure D.1: Influence of σ on the agglomeration behavior ((µ, θ) = (0.4, 10000))
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Figure D.2: Influence of θ on the agglomeration behavior ((σ, µ) = (10.0, 0.4))
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