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Abstract

We present a special variant of the local discontinuous Galerkin
(LDG) method for time-dependent partial differential equations with
certain variational structures and associated conservation or dissipa-
tion properties. The method provides a way to construct fully-discrete
LDG schemes that retain discrete counterparts of the conservation or
dissipation properties. Numerical results confirm the accuracy and ef-
fectiveness of the method.

1 Introduction

Recently it has been widely accepted that when solving partial differen-
tial equations (PDEs) certain specialized numerical methods which maintain
characteristic features of the original PDEs are more efficient than general-
purpose methods, and enthusiastic attention has been paid to the develop-
ment of such methods. The so-called “structure-preserving methods” are
one strong branch of them (see, for example, Hairer–Lubich–Wanner [9]).

In this paper, along the line of these studies, we are particularly interested
in certain variational structures of PDEs and their associated conservation
and dissipation properties. One successful method for them is the discrete
variational derivative method (DVDM) [7, 8] and its variants [11, 12], which
for example targets the following PDEs. One is the conservative PDEs of
the form

ut =

(
∂

∂x

)2s−1 δG

δu
, s = 1, 2, 3, . . . , x ∈ Ω := [0, L], t > 0, (1)
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where δG/δu is the variational derivative of G(u, ux) with respect to u(t, x).
The subscript ( · )t (and ( · )x) denotes the time (and space, resp.) derivatives.
Under appropriate boundary conditions they become conservative:

d

dt

∫
Ω
G(u, ux) dx = 0.

The Korteweg–de Vries (KdV) equation:

ut = 6uux + uxxx (2)

is an example of them with s = 1 and G(u, ux) = u3 − u2x/2. The second
class is the dissipative PDEs of the form

ut = (−1)s+1

(
∂

∂x

)2s δG

δu
, s = 0, 1, 2, . . . , x ∈ Ω, t > 0, (3)

which is, again under appropriate boundary conditions, dissipative:

d

dt

∫
Ω
G(u, ux) dx ≤ 0.

The Cahn–Hilliard equation:

ut = (αu+ γu3 + βuxx)xx (4)

is an example with s = 1 and G(u, ux) = αu2/2 + γu4/4− βu2x/2.
DVDM was first proposed in the seminal paper by Furihata [7], where he

tried to preserve certain variational structures of PDEs in fully-discretized
scheme, so that the desired conservative or dissipative properties are kept
even after the discretization. It was then extended in various ways and
proved that it actually works beautifully in many practical applications
(see [8] and the references therein). But as the method had matured, one
drawback became more and more apparent; since the method was con-
structed in the framework of finite difference method, it was difficult to
consider non-uniform meshes or complex domains in 2D or 3D applica-
tions. In order to overcome this difficulty some trials were done; for example
Yaguchi–Matsuo–Sugihara [19] tried a mapping technique to allow the use of
non-uniform meshes. Matsuo [11] took a completely different approach; he
considered a Galerkin (i.e. finite element) version of DVDM, which should
more naturally allow flexible meshes and complex domains. Then the idea
was furnished with a complete framework in Miyatake–Matsuo [12], where by
introducing the concept of L2 projection, a method for constructing conser-
vative/dissipative Galerkin schemes, which at the same time automatically
finds underlying conservative/dissipative weak forms, was given for almost
all PDEs with the targeted variational structure.

2



Our goal in this paper is to construct a local discontinuous Galerkin ver-
sion of the Galerkin DVDM. The discontinuous Galerkin (DG) method is
a variant of finite element method that uses discontinuous piecewise poly-
nomial spaces for test and trial functions. It can be regarded as something
between finite element and finite volume methods, and thanks to the dis-
continuity of functions, it has favorable features that it is easy to increase
the order of accuracy, and also that the resulting schemes are highly paral-
lelizable when the schemes are explicit. DG was first introduced by Reed–
Hill [14] for solving hyperbolic equations. It was then extended by Bassi–
Rebay [1] for an elliptic problem, i.e., such that higher-order derivatives can
be also handled. Encouraged by this success Cockburn–Shu [5] developed
a generalization called local discontinuous Galerkin (LDG) method. The
basic idea of the LDG method is to rewrite higher-order derivatives into
first-order derivatives by employing intermediate variables. Above history
of DG can be found in the book by Cockburn–Karniadakis–Shu [4] with
further detailed information. DG has various applications. Below we list
some examples. Yan–Shu [20] applied LDG to KdV equation. Other DG
studies on nonlinear waves include those for Camassa–Holm equation [18]
and nonlinear Schrödinger equation [17]. Xia–Xu–Shu [15] applied LDG to
Cahn–Hilliard equation. There are also some structure-preserving DG stud-
ies. Xing–Chou–Shu [16] introduced an energy-conservative LDG scheme for
linear wave equations and gave an error estimate. Bona–Chen–Karakashian–
Xing [2] proposed a DG scheme for generalized KdV equation which pre-
serves the L2 invariant. A similar work can be found in Yi–Huang–Liu [21],
where they employed a variant of the DG method, called the direct DG
method.

In viewing such history of DG, it is natural to raise a question that if
it is possible to construct a generic DG version of the Galerkin DVDM, by
which we can automatically construct energy-preserving or -dissipative DG
schemes for wide variety of variational PDEs. If such a method exists, it
should give a flexible and parallelizable structure-preserving method for 2D
or 3D PDEs. This is our goal as mentioned above, and we will show that it
actually exists.

This paper is organized as follows. In Section 2, we introduce target
PDEs with variational structure and show their weak forms which preserve
the variational structures (and accordingly the associated energy-preservation
or -dissipation properties). In Section 3, we describe brief introduction of
DG, and show the proposed method. To confirm the effectiveness and ac-
curacy of proposed scheme, we demonstrate the method by some numerical
results in section 4. Finally we conclude this paper and give some future
plans of this work.

As mentioned above, there are several variants in the DG methods. In
this paper, we consider only the standard LDG method for simplicity.
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2 Target PDEs and their energy-
preserving/dissipative H1 weak forms

In this section, we introduce target PDEs with variational structure and show
their weak forms and associated properties. Just for simplicity, we restrict
our consideration to a conservative PDE (1) with s = 1 and a dissipative
PDE (3) with s = 1. We also make an assumption that G(u, ux) is separa-
ble: G(u, ux) = G1(u) +G2(ux) for some functions G1, G2, and G2(ux) is a
quadratic function. This greatly simplifies the following discussion, and still
covers many practical PDEs such as KdV (2) and Cahn–Hilliard (4) equa-
tions. For more general cases, see Remark 1. Below, we show weak forms of
the above PDEs, which are based on first-order systems with appropriate in-
termediate variables, and explicitly express energy-preservation/dissipation
properties.

First, we consider the conservative case.

Weak form 1. Find u(t, ·), p, q ∈ H1(Ω) such that, for any v1, v2, v3 ∈
H1(Ω),

(ut, v1)Ω = (px, v1)Ω , (5)

(p, v2)Ω =

(
∂G

∂u
, v2

)
Ω

−
(
∂x

∂G

∂q
, v2

)
Ω

, (6)

(q, v3)Ω = (ux, v3)Ω , (7)

where the inner product is defined by (f, g)Ω =
∫
Ω fg dx.

We usually restrict function spaces to appropriate subspaces of H1(Ω)
corresponding to boundary conditions. Nevertheless to make the discussion
in Section 3 clear and avoid confusing notation, we leave this issue to later
consideration, and simply assume the existence of the solution.

Theorem 2.1. Assume that ut ∈ H1(Ω), and the boundary conditions
satisfy [

∂G

∂q
ut

]
Ω

= 0,
[
p2
]
Ω
= 0 (8)

([f ]Ω = f |x=L − f |x=0). Then the solution of Weak form 1 satisfies

d

dt

∫
Ω
G(u, q) dx = 0.

Proof.

d

dt

∫
Ω
G(u, q) dx =

(
∂G

∂u
, ut

)
Ω

+

(
∂G

∂q
, qt

)
Ω

=

(
∂G

∂u
, ut

)
Ω

+

(
∂G

∂q
, uxt

)
Ω

=

(
∂G

∂u
, ut

)
Ω

−
(
∂x

∂G

∂q
, ut

)
Ω

+

[
∂G

∂q
ut

]
Ω

= (p, ut)Ω

= (p, px)Ω = − (px, p)Ω +
[
p2
]
Ω
= 0.
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The first equality is a simple application of the chain rule. Temporally dif-
ferentiating (7) and substituting v3 = ∂G/∂q, we obtain the second equality.
This procedure is allowed by the assumption that ∂G/∂q ∝ q belongs to the
same space as q. The third equality is obtained by integration-by-parts. The
fourth and fifth equalities follow from (6) with v2 = ut and (5) with v1 = p,
respectively. In the calculation, the boundary terms are eliminated due to
the boundary conditions (8).

Remark 1. It is also possible to consider more general PDEs based on
the fact that the method [12] automatically finds appropriate weak forms.
For example, if we drop the restriction on G(u, ux) (i.e. G(u, ux) is not
necessarily separable and quadratic with respect to ux), we find the following
weak form: Find u(t, ·), p, q, w ∈ H1(Ω) such that, for any v1, v2, v3, v4 ∈
H1(Ω),

(ut, v1)Ω = (px, v1)Ω ,

(p, v2)Ω =

(
∂G

∂u
, v2

)
Ω

− (wx, v2)Ω ,

(w, v3)Ω =

(
∂G

∂q
, v3

)
Ω

,

(q, v4)Ω = (ux, v4)Ω .

Then we can carry out the same procedure below, but the discussion would
become slightly cumbersome due to the additional intermediate variable w.

Remark 2. For the conservative case, the periodic boundary condition is
most typical among those satisfying (8). There are, however, other possibil-
ities; for example, the Dirichlet (and Neumann) conditions satisfy (8) when
G(u, ux) = u3 (and G(u, ux) = ux

2, resp.).

Second, we consider the dissipative case.

Weak form 2. Find u(t, ·), p, q, r ∈ H1(Ω) such that, for any v1, v2, v3, v4 ∈
H1(Ω),

(ut, v1)Ω = (rx, v1)Ω , (9)

(r, v2)Ω = (px, v2)Ω , (10)

(p, v3)Ω =

(
∂G

∂u
, v3

)
Ω

−
(
∂x

∂G

∂q
, v3

)
Ω

, (11)

(q, v4)Ω = (ux, v4)Ω . (12)

Theorem 2.2. Assume that ut ∈ H1(Ω), and the boundary conditions
satisfy [

∂G

∂q
ut

]
Ω

= 0, [rp]Ω = 0. (13)
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Then the solution of Weak form 2 satisfies

d

dt

∫
Ω
G(u, q) dx ≤ 0.

Proof.

d

dt

∫
Ω
G(u, q) dx =

(
∂G

∂u
, ut

)
Ω

+

(
∂G

∂q
, qt

)
Ω

=

(
∂G

∂u
, ut

)
Ω

+

(
∂G

∂q
, uxt

)
Ω

=

(
∂G

∂u
, ut

)
Ω

−
(
∂x

∂G

∂q
, ut

)
Ω

+

[
∂G

∂q
ut

]
Ω

= (p, ut)Ω = (rx, p)Ω

= − (r, px)Ω + [rp]Ω = − (r, r)Ω = −∥r∥2L2(Ω) ≤ 0.

The second equality is obtained by (12) with v4 = ∂G/∂q. The Forth, fifth
and seventh equalities follow from (11) with v3 = ut, (9) with v1 = p and
(10) with v2 = r, respectively.

3 Proposed method: Deriving energy-
preserving/dissipative LDG schemes

In this section, we propose a new method to derive energy-preserving/dissipative
LDG schemes. Although we demonstrate the procedure for simple problems
(1) and (3) with s = 1, the procedure embraces a variety of PDEs with
variational structure.

We divide the computational domain Ω = [0, L] into N intervals

0 = x1/2 < · · · < xj−1/2 < xj+1/2 < · · · < xN+1/2 = L.

We denote the computational cell by Ij = (xj−1/2, xj+1/2) for j = 1, . . . , N .

We denote by u+j+1/2 and u−j+1/2 the values of u at xj+1/2, from the right
cell Ij+1 and from the left cell Ij . This rule applies also to other variables
and functions. We define the piecewise polynomial space Vh as the space of
polynomials of degree up to k in each cell Ij , i.e.,

Vh = {v : v ∈ P k(Ij) for x ∈ Ij , j = 1, . . . , N}.

3.1 Conservative cases

In this subsection, we shall derive an energy-preserving LDG scheme. We
first show a semi-discrete scheme, and then summarize the essential idea
of our method. Finally, we derive a fully-discrete scheme. We start the
derivation with the following abstract form of a semi-discrete LDG scheme,
which is obtained from Weak form 1.
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Semi-discrete scheme 1.

Find u(t, ·), p, q ∈ Vh such that, for any v1, v2, v3 ∈ Vh and for j = 1, . . . , N,

(ut, v1)Ij = − (p, (v1)x)Ij + [p̂v1]Ij , (14)

(p, v2)Ij =

(
∂G

∂u
, v2

)
Ij

+

(
∂G

∂q
, (v2)x

)
Ij

−

[
∂̂G

∂q
v2

]
Ij

, (15)

(q, v3)Ij = − (u, (v3)x)Ij + [ûv3]Ij , (16)

where
[
f̂v
]
Ij

= f̂j+1/2vj+1/2 − f̂j−1/2vj−1/2.

The “hat” terms, called numerical fluxes, result from integration-by-parts
in each cell, and are single valued functions defined on the edges. In the
standard LDG theory, these terms are introduced to ensure the numerical
stability and reflect boundary conditions. Here we show that there is another
choice such that the semi-discrete scheme become energy-preserving. In
what follows, we call fluxes at x = x1/2, xN+1/2 boundary fluxes, and others
internal fluxes.

We assume that internal fluxes are given by, for j = 1, . . . , N − 1,

p̂j+1/2 =
1

2
(p+j+1/2 + p−j+1/2), (17)

∂̂G

∂q j+1/2

= λ
∂G

∂q

+

j+1/2

+ (1− λ)
∂G

∂q

−

j+1/2

, (18)

ûj+1/2 = (1− λ)u+j+1/2 + λu−j+1/2, (19)

with a real parameter λ, and boundary fluxes are set to satisfy(
1

2
p−N+1/2 − p̂N+1/2

)
p−N+1/2 −

(
1

2
p+1/2 − p̂1/2

)
p+1/2 = 0. (20)

(
u−N+1/2

)
t

∂G

∂q

−

N+1/2

−
(
ûN+1/2

)
t

∂G

∂q

−

N+1/2

−
(
u−N+1/2

)
t

∂̂G

∂q N+1/2

−
(
u+1/2

)
t

∂G

∂q

+

1/2

+
(
û1/2

)
t

∂G

∂q

+

1/2

+
(
u+1/2

)
t

∂̂G

∂q 1/2

= 0. (21)

Obviously, the conditions (20) and (21) corresponds to [p2]L0 = 0 and
[∂G∂q ut]

L
0 = 0, respectively. We will discuss the derivation of the above energy-

preserving fluxes after seeing the following theorem and its proof.

Theorem 3.1. If the fluxes are set to (17), (18), (19), and set such that
(20), (21) hold, the solution of Semi-discrete scheme 1 satisfies

d

dt

∫
Ω
G(u, q) dx = 0.
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Proof. First, we note that for Semi-discrete scheme 1 the following holds.

d

dt

∫
Ω
G(u, q) dx = −Θp2 −Θuq,

where Θp2 =
N∑
j=1

[
1

2
p2 − p̂p

]
Ij

, Θuq =
N∑
j=1

[
ut

∂G

∂q
− ût

∂G

∂q
− ut

∂̂G

∂q

]
Ij

,

(22)

independently of the choice of fluxes. This can be checked as follows.

d

dt

∫
Ω
G(u, q) dx

=
N∑
j=1

{(
∂G

∂u
, ut

)
Ij

+

(
∂G

∂q
, qt

)
Ij

}

=

N∑
j=1

{(
∂G

∂u
, ut

)
Ij

−
((

∂G

∂q

)
x

, ut

)
Ij

+

[
∂G

∂q
ût

]
Ij

}

=

N∑
j=1

(p, ut)Ij −
(
∂G

∂q
, uxt

)
Ij

−
((

∂G

∂q

)
x

, ut

)
Ij

+

[
∂G

∂q
ût +

∂̂G

∂q
ut

]
Ij


=

N∑
j=1

− (p, px)Ij + [p̂p]Ij −

[
∂G

∂q
ut −

∂G

∂q
ût −

∂̂G

∂q
ut

]
Ij


=

N∑
j=1

−
[
1

2
p2 − p̂p

]
Ij

−

[
∂G

∂q
ut −

∂G

∂q
ût −

∂̂G

∂q
ut

]
Ij


= −Θp2 −Θuq. (23)

This calculation is quite similar to that in the proof of Theorem 2.1. The
first equality is a simple application of the chain rule. The second follows
from (16) with v3 = ∂G/∂q. The third and fourth are obtained from (15)
with v2 = ut and (14) with v1 = p, respectively.
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Next, we show that Θp2 = Θuq = 0. Since Θp2 is rewritten as

Θp2 =

N∑
j=1

{
1

2

(
p−j+1/2

)2
− 1

2

(
p+j−1/2

)2
− p̂j+1/2p

−
j+1/2 + p̂j−1/2p

+
j−1/2

}

=

N−1∑
j=1

{
1

2

((
p−j+1/2

)2
−
(
p+j+1/2

)2)
− p̂j+1/2

(
p−j+1/2 − p+j+1/2

)}
+

1

2

(
p−N+1/2

)2
− p̂N+1/2p

−
N+1/2 −

1

2

(
p+1/2

)2
+ p̂1/2p

+
1/2

=

N−1∑
j=1

{
1

2

(
p−j+1/2 + p+j+1/2

)
− p̂j+1/2

}(
p−j+1/2 − p+j+1/2

)
+

(
1

2
p−N+1/2 − p̂N+1/2

)
p−N+1/2 −

(
1

2
p+1/2 − p̂1/2

)
p+1/2,

Θp2 = 0 holds under the assumptions (17) and (20). Similarly, since Θuq is
rewritten as

Θuq =

N∑
j=1

{(
u−j+1/2

)
t

∂G

∂q

−

j+1/2

−
(
ûj+1/2

)
t

∂G

∂q

−

j+1/2

−
(
u−j+1/2

)
t

∂̂G

∂q j+1/2

−
(
u+j−1/2

)
t

∂G

∂q

+

j−1/2

+
(
ûj−1/2

)
t

∂G

∂q

+

j−1/2

+
(
u+j−1/2

)
t

∂̂G

∂q j−1/2

}

=

N−1∑
j=1

{((
u−j+1/2

)
t

∂G

∂q

−

j+1/2

−
(
u+j+1/2

)
t

∂G

∂q

+

j+1/2

)

−
(
ûj+1/2

)
t

(
∂G

∂q

−

j+1/2

− ∂G

∂q

+

j+1/2

)
−
((

u−j+1/2

)
t
−
(
u+j+1/2

)
t

) ∂̂G

∂q j+1/2

}

+
(
u−N+1/2

)
t

∂G

∂q

−

N+1/2

−
(
ûN+1/2

)
t

∂G

∂q

−

N+1/2

−
(
u−N+1/2

)
t

∂̂G

∂q N+1/2

−
(
u+1/2

)
t

∂G

∂q

+

1/2

+
(
û1/2

)
t

∂G

∂q

+

1/2

+
(
u+1/2

)
t

∂̂G

∂q 1/2

,

Θuq = 0 holds under the assumptions (18), (19) and (21). This completes
the proof.

Here we summarize the procedure to find energy-preserving fluxes. Note
that the calculation (23) is standard in the LDG context, whereas the terms
Θp2 and Θuq are intrinsic to the discontinuous case—i.e., they essentially
do not appear in the standard continuous Galerkin context. Thus, it is
natural to demand that these terms vanish Θp2 = Θuq = 0 by choosing
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special fluxes. In order to find such fluxes, we separate Θp2 and Θuq into the
internal and boundary terms, and first choose internal fluxes such that the
terms Θp2 and Θuq are cancelled out in internal edges. Then we confirm the
remaining terms successfully correspond to the original boundary conditions,
so that we can set appropriate discrete boundary conditions. Note also that,
in the standard DG, the strategy is different in that they are set such that
Θp2 ,Θuq ≥ 0 hold, which often implies “energy stability.”

Remark 3. In this and some of the following remarks, we mention the
treatment of boundary conditions (which as described before we basically
ignore in the main text). First, let us consider the periodic boundary
conditions. In this case, obviously the internal fluxes (17), (18) and (19)
can be used throughout the domain, only with the small modification for
periodicity: u1/2 = uN+1/2, p1/2 = pN+1/2, q1/2 = qN+1/2. Then the
boundary conditions (20) and (21) are automatically satisfied. Next, let
us consider the Dirichlet boundary condition u|x=0 = u|x=L = 0. In this
case, we just take û1/2 = ûN+1/2 = 0, p̂1/2 = 1

2p
+
1/2, p̂N+1/2 = 1

2p
−
N+1/2,

q̂1/2 = q+1/2, q̂N+1/2 = q−N+1/2. The first one corresponds to the Dirichlet

condition, and the rest are set such that (20) and (21) are satisfied.

Now we are in a position to consider fully-discrete scheme. Since the
temporal discretization is exactly the same as the (Galerkin version of the)
DVDM, which is also equivalent to the discrete gradient method (see [10, 13]
for example), we omit the detailed discussion, and show only the result. With
the discrete version of partial derivatives, called discrete partial derivatives
(for the definition and examples, see [11, 12]), satisfying the discrete chain
rule

1

∆t

∫
Ω
(G(u(n+1), q(n+1))−G(u(n), q(n))) dx

=

(
∂Gd

∂(u(n+1), u(n))
,
u(n+1) − u(n)

∆t

)
Ω

+

(
∂Gd

∂(q(n+1), q(n))
,
q(n+1) − q(n)

∆t

)
Ω

,

one obtain the following fully-discrete scheme. We denote that temporal
discrete function as u(n)(x) ≈ u(n∆t, x).

10



Fully-discrete scheme 1.

Find u(n+1), p(n+1/2), q(n+1/2),∈ Vh such that, for any v1, v2, v3 ∈ Vh,

and for j = 1, . . . , N,

1

∆t

(
u(n+1) − u(n), v1

)
Ij

= −
(
p(n+1/2), (v1)x

)
Ij
+
[
p̂(n+1/2)v1

]
Ij
,(

p(n+1/2), v2

)
Ij

=

(
∂Gd

∂(u(n+1), u(n))
, v2

)
Ij

+

(
∂Gd

∂(q(n+1), q(n))
, (v2)x

)
Ij

−

[
∂̂Gd

∂(q(n+1), q(n))
v2

]
Ij

,

(
q(n+1/2), v3

)
Ij

= −

(
u(n+1) + u(n)

2
, (v3)x

)
Ij

+

[
û(n+1) + û(n)

2
v3

]
Ij

.

Here p(n+1/2) is the abbreviation for (p(n+1) + p(n))/2 (similar notation is
used for other variables and in other places).

Theorem 3.2. If the fluxes are set to (17), (18), (19), and set such that
(20), (21) hold, the solution of Fully-discrete scheme 1 satisfies

1

∆t

∫
Ω
(G(u(n+1), q(n+1))−G(u(n), q(n))) dx = 0.

3.2 Dissipative cases

As was done in the previous section, we start the derivation of an energy-
dissipative LDG scheme with the following abstract semi-discrete scheme.

Semi-discrete scheme 2.

Find u(t, ·), p, q, r ∈ Vh such that, for any v1, v2, v3, v4 ∈ Vh and for j = 1, . . . , N,

(ut, v1)Ij = − (r, (v1)x)Ij + [r̂v1]Ij , (24)

(r, v2)Ij = − (p, (v2)x)Ij + [p̂v2]Ij , (25)

(p, v3)Ij =

(
∂G

∂u
, v3

)
Ij

+

(
∂G

∂q
, (v3)x

)
Ij

−

[
∂̂G

∂q
v3

]
Ij

, (26)

(q, v4)Ij = − (u, (v4)x)Ij + [ûv4]Ij . (27)

11



We then assume that the internal fluxes are given by, for j = 1, . . . , N−1,

r̂j+1/2 = ηr+j+1/2 + (1− η)r−j+1/2, (28)

p̂j+1/2 = (1− η)p+j+1/2 + ηp−j+1/2, (29)

∂̂G

∂q j+1/2

= λ
∂G

∂q

+

j+1/2

+ (1− λ)
∂G

∂q

−

j+1/2

, (30)

ûj+1/2 = (1− λ)u+j+1/2 + λu−j+1/2, (31)

with real parameters η, γ, and boundary fluxes are set to satisfy

r−N+1/2p
−
N+1/2 − r̂N+1/2p

−
N+1/2 − r−N+1/2p̂N+1/2

− r+1/2p
+
1/2 + r̂1/2p

+
1/2 + r+1/2p̂1/2 = 0, (32)

and again (21). Obviously (32) corresponds to [rp]Ω = 0.

Theorem 3.3. If the fluxes are set to (28), (29), (30), (31), and are set such
that (32), (21) hold, the solution of Semi-discrete scheme 2 satisfies

d

dt

∫
Ω
G(u, q) dx ≤ 0.

Proof. First, we note that for Semi-discrete scheme 2 satisfies

d

dt

∫
Ω
G(u, q) dx = −∥r∥2L2(Ω) −Θrp −Θuq,

where Θrp =

N∑
j=1

[rp− r̂p− rp̂]Ij , Θuq =

N∑
j=1

[
ut

∂G

∂q
− ût

∂G

∂q
− ut

∂̂G

∂q

]
Ij

,

(33)

12



independently of the choice of fluxes. This can be checked as follows.

d

dt

∫
Ω
G(u, q) dx

=

N∑
j=1

{(
∂G

∂u
, ut

)
Ij

+

(
∂G

∂q
, qt

)
Ij

}

=
N∑
j=1

{(
∂G

∂u
, ut

)
Ij

−
((

∂G

∂q

)
x

, ut

)
Ij

+

[
∂G

∂q
ût

]
Ij

}

=

N∑
j=1

(p, ut)Ij −
(
∂G

∂q
, uxt

)
Ij

−
((

∂G

∂q

)
x

, ut

)
Ij

+

[
∂G

∂q
ût +

∂̂G

∂q
ut

]
Ij


=

N∑
j=1

− (r, px)Ij + [r̂p]Ij −

[
∂G

∂q
ut −

∂G

∂q
ût −

∂̂G

∂q
ut

]
Ij


=

N∑
j=1

− (r, r)Ij − [rp− r̂p− rp̂]Ij −

[
∂G

∂q
ut −

∂G

∂q
ût −

∂̂G

∂q
ut

]
Ij


= −∥r∥2L2(Ω) −Θrp −Θuq.

The first equality is a simple application of the chain rule. The second follows
from (27) with v4 = ∂G/∂q. Substituting v3 = ut in (26) leads to the third
equality. Integrating the second term by parts and substituting v1 = p in
(24), we obtain the fourth equality. Integrating the first term by-parts and
substituting v2 = r in (25), we obtain the fourth equality.

Next, we show that Θrp = Θuq = 0. Since Θuq = 0 under the assumptions
(30), (31), and (21) was already proved previously, we here show only Θrp =
0. Since

Θrp =
N∑
j=1

{
r−j+1/2p

−
j+1/2 − r̂j+1/2p

−
j+1/2 − r−j+1/2p̂j+1/2

−r+j−1/2p
+
j−1/2 + r̂j−1/2p

+
j−1/2 + r+j−1/2p̂j−1/2

}
=

N−1∑
j=1

{(
r−j+1/2p

− − r+j+1/2p
+
j+1/2

)
−r̂j+1/2

(
p−j+1/2 − p+j+1/2

)
−
(
r−j+1/2 − r+j+1/2

)
p̂j+1/2

}
+ r−N+1/2p

−
N+1/2 − r̂N+1/2p

−
N+1/2 − r−N+1/2p̂N+1/2

− r+1/2p
+
1/2 + r̂1/2p

+
1/2 + r+1/2p̂1/2,

Θrp = 0 holds under the assumptions (28), (29) and (32). This completes
the proof.
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Remark 4. Corresponding to Remark 3, and also in view of the Cahn–
Hilliard example shown later, here we mention the choices of numerical fluxes
when Neumann boundary conditions are imposed. In this case we set fluxes
as follows: r̂1/2 = r̂N+1/2 = 0 and p̂1/2 = p+1/2, p̂N+1/2 = p−N+1/2. û1/2 =

u+1/2, ûN+1/2 = u−N+1/2 and q̂1/2 = q̂N+1/2 = 0. We used the assumption on

G: ∂G/∂q = −q, which in particular holds in the Cahn–Hilliard equation.
It is obvious that the above choices satisfy the conditions (32) and (21).

Once one obtain numerical fluxes such that the semi-discrete scheme
is energy dissipative, one can immediately derive energy dissipative fully-
discrete scheme with the discrete partial derivatives.

Fully-discrete scheme 2.

Find u(n+1), p(n+1/2), q(n+1/2), r(n+1/2) ∈ Vh such that, for any v1, v2, v3, v4 ∈ Vh

and for j = 1, . . . , N,

1

∆t

(
u(n+1) − u(n), v1

)
Ij

= −
(
r(n+1/2), (v1)x

)
Ij
+
[
r̂(n+1/2)v1

]
Ij
,(

r(n+1/2), v2

)
Ij

= −
(
p(n+1/2), (v2)x

)
Ij
+
[
p̂(n+1/2)v2

]
Ij
,(

p(n+1/2), v3

)
Ij

=

(
∂Gd

∂(u(n+1), u(n))
, v3

)
Ij

+

(
∂Gd

∂(q(n+1), q(n))
, (v3)x

)
Ij

−

[
∂̂Gd

∂(q(n+1), q(n))
v3

]
Ij

,

(
q(n+1/2), v4

)
Ij

= −

(
u(n+1) + u(n)

2
, (v4)x

)
Ij

+

[
û(n+1) + û(n)

2
v4

]
Ij

.

Theorem 3.4. If the fluxes are set to (28), (29), (30), (31), and are set such
that (32), (21) hold, the solution of Semi-discrete scheme 2 satisfies

1

∆t

∫
Ω
(G(u(n+1), q(n+1))−G(u(n), q(n))) dx ≤ 0.

4 Application examples

In this section, we apply the proposed method to the KdV and Cahn–Hilliard
equations, and show numerical results.

4.1 KdV equation

As an example of a conservative PDE, we consider the KdV equation (2)
under the periodic boundary conditions. For the KdV equation, the discrete
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partial derivatives in Fully-discrete scheme 1 read

∂Gd

∂(u(n+1), u(n))
=
(
u(n+1)

)2
+ u(n+1)u(n) +

(
u(n)

)2
,

∂Gd

∂(q(n+1), q(n))
= −q(n+1) + q(n)

2
= −q(n+1/2).

The energy-preserving fluxes are given by (17), (18), (19) (j = 1, . . . , N).

Before proceeding to its numerical example, we here mention on an-
other integral-preserving LDG scheme. As is well known, the KdV equation
is completely-integrable, and has infinitely many invariants. In particular,∫
Ω

1
2u

2 dx is an invariant, often refereed to as norm, and it gives another
Hamiltonian representation of the KdV equation:

ut =
(
(u∂x + ∂xu) + ∂x

3
) δG
δu

, G(u) =
u2

2
, (34)

where ∂x = ∂/∂x. This variational form does not belong to (1), but the
proposed method can be generalized to cover this case once a conservative
(i.e., norm-preserving) weak form is found. Such a weak form can be found
by [12], and a norm-preserving semi-discrete LDG scheme is given as follows:
Find u, r, q ∈ Vh such that, for any v1, v2, v3 ∈ Vh and for j = 1, . . . , N ,

(ut, v1)Ij = −
(
3u2, (v1)x

)
Ij
+
[
û2v1

]
Ij
− (r, (v1)x)Ij + [r̂v1]Ij ,

(r, v2)Ij = − (q, (v2)x)Ij + [q̂v2]Ij ,

(q, v3)Ij = − (u, (v3)x)Ij + [ûv3]Ij .

Here û2 is a flux arising from the nonlinear term u2, which is not equivalent
to (û)2. Based on this scheme, one can obtain norm-preserving fluxes as
follows: for j = 1, . . . , N ,

û2j+1/2 =
(
u+j+1/2

)2
+ u+j+1/2u

−
j+1/2 +

(
u−j+1/2

)2
,

r̂j+1/2 =
1

2

(
r+j+1/2 + r−j+1/2

)
,

q̂j+1/2 = λq+j+1/2 + (1− λ)q−j+1/2,

ûj+1/2 = (1− λ)u+j+1/2 + λu−j+1/2,

with a real number λ. The latter three fluxes are more or less similar to those
in the previous discussions, but the first one is less obvious, which essentially
comes from the complex differential operator in (34). This illustrates the fol-
lowing two facts: (i) the proposed method can be, in principle, generalized
to more generic variational PDEs, and (ii) the more the PDEs become com-
plicated, the more the conservative (or dissipative) fluxes become nontrivial,

15



and hard to be found without some sophisticated and automatic strategy as
the proposed method.

Remark 5. Some norm-preserving DG schemes have been already proposed
in [2, 21], but they are not LDG. Also, it should be mentioned that the norm-
preserving H1 weak form is not new; for example, see [3, 6]. However, here
we like to emphasize that in order to establish a practical and applicable
method, it is necessary to automate the process of finding such weak forms,
and that can be done by the technique found in [12]. The same weak form
was used to derive a LDG scheme in [20], but there the strict preservation
was not considered.

We check the qualitative behaviour of the numerical solutions by the
energy-preserving and norm-preserving schemes. We consider the evolution
of single soliton and interaction of two solitons. The parameters were set to
x ∈ [0, 10] (L = 10), ∆x = 10/40 (N = 40), ∆t = 0.01 and λ = 0. We set
the initial values to u(0, x) = 2.5 sech2(

√
5(x− 10)/2) for single soliton and

u(0, x) = 4 sech2(
√
2(x − 5)) + 2 sech2(x − 2.5) for two solitons. Figures 1

and 2 plot the numerical solutions obtained by the energy-preserving and
norm-preserving schemes, respectively, both of which seem accurate and are
qualitatively good. We also check the convergence order in terms of spatial
discretizations, by utilizing P1, P2, and P3 elements. The initial value was
set to u(0, x) = 0.5 sech2((x − 5)/2) with the domain Ω = [0, 10]. We used
the time step size ∆t = 0.01. Table 1 shows the results, where the order is
calculated by

order =
log(err(N)/err(2N))

log(2)
.

We observe that high order elements actually give more accurate numerical
solutions.
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Figure 1: The numerical solutions by the energy-preserving scheme with
P2-elements: (left) single soliton, (right) two solitons.
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Figure 2: The numerical solutions by the norm-preserving scheme with P2-
elements: (left) single soliton, (right) two solitons.

Table 1: L2 errors of the numerical solutions at the end time T = 0.1 by
the energy-preserving scheme with polynomial degree k = 1, 2, 3, on uniform
mesh.
k N = 10 N = 20 40 80

error error order error order error order

1 4.558e-03 1.663e-03 1.455 5.265e-04 1.659 1.225e-04 2.104

2 1.199e-03 9.981e-05 3.587 1.707e-05 2.548 2.771e-06 2.623

3 1.242e-03 1.882e-04 2.723 1.574e-05 3.580 1.746e-06 3.172

4.2 Cahn–Hilliard equation

As an example of a dissipative PDE, we consider the Cahn–Hilliard equation
(4) with the Neumann boundary conditions ux|x=0,L = 0, uxxx|x=0,L = 0. In
this case, the discrete partial derivatives read

∂Gd

∂(u(n+1), u(n))
= α

u(n+1) + u(n)

2

+ γ

(
u(n+1)

)3
+
(
u(n+1)

)2
u(n) + u(n+1)

(
u(n)

)2
+
(
u(n)

)3
4

,

∂Gd

∂(q(n+1), q(n))
= −β

q(n+1) + q(n)

2
= −βq(n+1/2).

The internal fluxes are set to (28), (29), (30), (31), and the boundary fluxes
are set to q̂1/2 = q̂N+1/2 = 0, r̂1/2 = r̂N+1/2 = 0 (recall that r is a variable

corresponding to uxxx), p̂1/2 = p+1/2, p̂N+1/2 = p−N+1/2, û1/2 = u+1/2, ûN+1/2 =

u−N+1/2. See also Remark 4.

The computational parameters were set to x ∈ [0, 10], ∆x = 10/40, ∆t =
0.01 and λ = η = 0. The initial value was set to u(0, x) = 0.2 sin(2πx/L)
with the parameters of the equation α = −1, β = −0.1, γ = 1. Figure 3
plots the numerical solution and the evolution of the energy, both of which
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are fine.
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Figure 3: The numerical solution and the evolution of the energy for the
Cahn–Hilliard equation obtained by the energy-dissipative scheme with P2-
elements.

Remark 6. The semi-discrete LDG scheme for the Cahn–Hilliard equation
coincides with the one already proposed in Xia–Xu–Shu [15]. In this sense,
the above example demonstrates that the existing scheme can be automati-
cally derived by the proposed method. Also, we like to note that Xia et al.
then used a generic integrator for time-stepping, which generally destroys
strict energy dissipation. In contrast, our fully-discrete scheme keeps the
strict dissipation by construction.

5 Conclusion

In this paper we proposed a local discontinuous Galerkin method by which
we can automatically derive LDG schemes inheriting energy-preservation or
-dissipation properties. The keys of the derivation are:

• the use of first-order weak forms explicitly keeping the desired energy-
preservation or -dissipation properties;

• the construction of energy-preserving or -dissipative numerical fluxes.

As seen in the previous sections, these steps are automatic. We also note
that, as repeatedly noted above, in the first step the desired weak forms can
be automatically found based on the technique devised in [12], and thus the
overall procedure is actually automatic.

The proposed method is also applicable to a variety of PDEs, such as the
Camassa–Holm and phase-field-crystal equations, and is easy to implement
in 2D or 3D settings. Numerical and theoretical studies of them will be
reported elsewhere in the near future.
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