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Abstract

When structures and microstructures consisting of two or more materials with positive ther-

mal expansion have specific configurations, they are able to have negative thermal expansion co-

efficients, i.e., they contract when heated. This paper proposes a topology optimization method-

ology of frame structures for designing a planar periodic structure that exhibits negative thermal

expansion property. Provided that beam section of each existing member is chosen from a set of

finitely many predetermined candidates, we show that this topology optimization problem with

multiple material phases can be formulated as a mixed-integer linear programming problem. A

global optimal solution can hence be found with a readily available software package. Since the

proposed method treats frame structures and addresses local stress constraints, the optimal so-

lution contains neither thin members nor hinge-like regions. To avoid too complicated structural

designs realized as assemblage of many small pieces, this paper develops the constraints that

separate distributions of two different materials. Numerical experiments are performed to show

that structures with negative or near zero thermal expansion can be obtained by the proposed

method.

Keywords

Negative thermal expansion; thermal contraction; topology optimization; mixed integer

optimization; design-dependent loads.

1 Introduction

There exist many engineering structures that undergo large thermal stresses due to large temper-

ature changes. For instance, the surface of a hypersonic cruise vehicle may be above 1000 ◦C due

to viscous heating, which makes crucial thermal expansion mismatch between the vehicle interior;

see Steeves and Evans [61] and the references therein. Ducted exhaust systems of engines of low-

observable aircrafts are also subjected to very large thermal stresses [11]. Other examples include

aerospace structures subjected to non-uniform heating, such as satellite telescope structures [29]

and lattice structures for supporting satellite antennae and photovoltaic arrays [45]. These struc-

tures undergo large temperature differences between sunny and shady sides. In such a situation,

materials and/or structures with (nearly) zero thermal expansion properties are attractive.
†Corresponding author. Address: Department of Mathematical Informatics, Graduate School of Information

Science and Technology, University of Tokyo, Tokyo 113-8656, Japan. E-mail: kanno@mist.i.u-tokyo.ac.jp. Phone:

+81-3-5841-6906. Fax: +81-3-5841-6886.
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The majority of materials have positive thermal expansion coefficients. Materials with negative

thermal expansion coefficients will contract when they are heated. Some materials, e.g., zirconium

tungstate family [15, 42, 50, 59] and a number of zeolites [37], have negative thermal expansion

coefficients. Such materials might be used, together with conventional materials, to make composites

have any desired thermal expansion properties. As another application, Sleight [59] mentioned

that sensitive temperature sensors can be made by combining thin films of materials with large

positive and large negative thermal expansion properties. Thermal contraction property also has

an application to thermal fasteners, which can be inserted into a hole at high temperature and fits

tightly into the hole when it cools down [57]. See [4, 14, 40, 44, 59] for extensive surveys on negative

thermal expansion solids.

Using two constituents with different positive thermal expansion coefficients, one can design

three-phase materials, i.e., composites of two constituents combined with empty spaces, so as to

have overall negative thermal expansion coefficients [19, 35, 58]. Sigmund and Torquato [57, 58]

actually found such designs of three-phase composites by solving three-phase topology optimization

problems. Chen et al. [9] also showed that microstructures with unusual thermoelastic properties

can be found by using topology optimization. Subsequently, various types of negative thermal

expansion composites, consisting of positive thermal expansion materials, have been proposed; e.g.,

sandwich composite structures [23], composites with needle-like inclusions [20], and the ones with

disc and cylindrical shaped inclusions [21]. Also, periodic lattice structures consisting of two positive

thermal expansion materials have been attracted much attention. Lakes [35] and Jefferson et al.

[30] presented bi-material lattices that can exhibit negative thermal expansion properties. Grima

et al. [22] showed that a simple periodic truss structure consisting of three different materials can

have wide range of, positive and negative, thermal expansion properties. Lim [38, 39] presented

two-material periodic hinged structures that can exhibit negative thermal expansion. Steeves et al.

[60] designed two-material periodic lattice structures that has near-zero thermal expansion together

with high stiffness. Miller et al. [43] performed tailoring thermal expansion property of a three-bar

truss, one member of which consists of a material different from the other two members. This unit

triangle truss can be tessellated into more complex structures.

Many studies have been done concerning structural optimization under thermal loads. Thermal

stress is a typical design-dependent load. As early works, Rodrigues and Fernandes [53] developed

homogenization method for topology optimization of thermoelastic structures and Jog [31] treated

material and geometrical nonlinearity. Topology optimization has been used to design thermally

actuated compliant mechanisms [36, 55]. Recent studies on optimization of thermoelastic structures

include Deaton and Grandhi [11], Deng et al. [12], Gao and Zhang [17], Pedersen and Pedersen

[46, 47], Wang et al. [70], and Xia and Wang [71]. Among them, Pedersen and Pedersen [46]

discussed that, for maximizing strength of thermoelastic structures, minimization of compliance is

questionable and attempted to find a design with uniform energy density. Deng et al. [12] optimized

an overall thermoelastic structure and its material microstructure simultaneously.

There might exist some links between negative thermal expansion and negative Poisson’s ratio

properties; see, e.g., [5, 20, 38, 43]. Recently Kureta and Kanno [33] proposed a topology opti-

mization method of frame structures to design a periodic planar structure that exhibits negative

Poisson’s ratio property. In this method, the optimization problem is recast as a mixed-integer lin-
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ear programming (MILP) problem and is solved globally. The optimal solution has neither hinges

nor thin members and local stress constraints were fully addressed in optimization. The computed

optimal solution was actually fabricated by applying a photo-etching technique to a steel plate.

It was confirmed that the fabricated model actually exhibits negative Poisson’s ratio property. In

continuation of this previous work, the present paper develops an MILP approach to designing a

planar periodic frame structure that exhibits negative thermal expansion property. We suppose that

a periodic frame structure is constructed by connecting a unique base cell, i.e., the smallest unit,

and that each member of the frame structure consists of either one of given two different positive

thermal expansion materials or void. Based upon the conventional ground structure method, topol-

ogy of the base cell is optimized to minimize its thermal expansion coefficient. Material selection for

each member, from among the two materials and void, is handled directly by using discrete design

variables. Local stress constraints are imposed on existing members. Small deformation is assumed

throughout the paper and issues of material and geometrical nonlinearity are nod addressed. A

global optimal solution is then found with an existing algorithm for MILP; several software pack-

ages, e.g., CPLEX [28], are available for this purpose. The MILP formulation presented in this

paper is viewed as a natural extension of the one for frame optimization proposed in [33]. Similar

MILP formulations for structural optimization were developed for continua with binary design vari-

ables [64, 66], trusses with discrete member cross-sectional areas [51], and tensegrity structures [32].

Continuum topology optimization for achieving negative thermal expansion property sometimes

results in very complicated structural designs. Also, the obtained structures often have hinge-like

regions. Such designs may in practice require manual post-processing before actual fabrication pro-

cess. For instance, Qi and Halloran [49] used a microfabrication by an oxide co-extrusion technique

to fabricate the optimal design obtained by Chen et al. [9] and mentioned that “an engineering inter-

pretation of the theoretical design” was necessary for strengthening some weak parts and smoothing

material distribution. It is actually often that optimal solutions, obtained by continuum topology

optimization, have hinge-like regions, because hinges help thermal contraction deformation to attain

extremum. Thickness of hinges of an optimal solution should be adjusted carefully before fabrication

process, because a structure with thin hinges can sustain only small forces while by thickening hinges

the structure may lose basic feature from which negative thermal expansion accrues. One possible

remedy for this issue might be to use a special technique to avoid hinge-like regions; hinge-free

optimization is a current active research topic in continuum topology optimization [48, 56, 72, 74].

Alternatively, this paper proposes to use topology optimization of frame structures. In our approach,

local stress constraints are fully addressed in the optimization process. Also, the section of each

member is chosen from predetermined candidates. Consequently, the optimal solution has neither

hinges nor thin members and, hence, may be able to be fabricated without manual post-processing,

like the one with negative Poisson’s ratio obtained in the previous work [33]. It should be mentioned

that topology optimization of continuum structures with local stress constraints have been a chal-

lenging problem and various approaches have still been examined; see, e.g., [3, 6, 10, 13, 24, 26] and

the references therein. Most of existing studies on local stress constraints consider single-material

phase topology optimization problems.

The paper is organized as follows. Section 2 presents a concept of design problem of a periodic

frame structure exhibiting negative thermal expansion behavior. Section 3 recasts this design prob-
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Figure 1: Two types of repeated frame structures obtained by connecting unit base cells. (a) Con-

nection pattern (A); and (b) connection pattern (B).
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Figure 2: Problem setting. (a) A unit base cell and symmetry axes; and (b) an example of ground

structure.

lem as an MILP problem. Section 4 develops an alternative formulation to obtain a base cell such

that the distributions of the two different materials are clearly separated. Section 5 demonstrates

numerical experiments. We conclude in section 6.

2 Design problem of structures with negative thermal expansion

Section 2.1 presents a concept of design problem of a planar periodic frame structure with negative

thermal expansion coefficient property. Section 2.2 formulates an optimization problem of a base cell

frame structure, where structural topology and material distribution are simultaneously optimized.

2.1 Periodic frame structure

We consider a planar frame structure realized by arranging a basic frame unit repeatedly. The

properties of this frame structure are described as follows.

(i) The structure has periodicity such that a unique base cell, i.e., the smallest square unit,
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is connected repeatedly in a regular way.

(ii) As for connection pattern of base cells, we consider two cases in Figure 1. In the case of

pattern (A), we add four short beams to a base cell as shown in Figure 1(a), in order to

connect the cell to adjacent ones. In the case of pattern (B) in Figure 1(b), the nodes at

the four corners of the base cell serve as interfaces for connection.

(iii) Thermal deformation of the base cell is supposed to have square symmetry.

(iv) The whole periodic structure consisting of the base cells will contract when temperature

is elevated from the ordinary value.

The design domain of our design problem is the base cell shown in Figure 2(a), due to the

periodicity property in (i). To realize the symmetry property in (iii), we suppose that configuration

of the unit cell is symmetric with respect to reflection across the thin lines in Figure 2(a). Figure 2(b)

shows an example of ground structure, which corresponds to a quarter of the base cell in Figure 2(a).

The dashed line in Figure 2(b) is an axis of symmetry of the structural design. Also, from property

(iii), deformation of the whole periodic structure depends solely upon the displacements of the four

nodes described in property (ii). We call these four nodes interface nodes. Property (iv) defines the

negative thermal expansion property considered in this paper. This property can be related to the

displacement of the interface node as follows. Suppose that base cells are connected according to

pattern (A) in Figure 1(a). Let u1 and u2 denote the displacements of two interface nodes of the

unit cell, as shown in Figure 2(b), when temperature increases by the specified degrees, ∆T (> 0).

The side length of a unit cell is lcell. From property (iii), thermoelastic deformation is symmetric,

and hence u1 = u2. Hence, the side length of the cell becomes lcell + 2u1 due to temperature

elevation ∆T . The volumetric coefficient of thermal expansion, which is given by the ratio of the

area occupied by the deformed cell to the undeformed area, is written as

(lcell + 2u1)
2

lcell
2 ≃ 1 +

4u1
lcell

.

Therefore, the structure shows thermal contraction if the interface nodes of the base cell move

inward from their positions at the ordinary temperature. This motivates us to minimize u1 (= u2)

at the equilibrium state under temperature elevation ∆T . Similarly, for connection pattern (B), we

can also consider a minimization problem of a displacement of a corner node of the base cell.

In designing a base cell, we explore the structure with a minimum thermal expansion coefficient

by making use of some different materials with positive thermal expansion coefficients. More pre-

cisely, we determine the material that constitutes each member of the ground structure. Members

will be removed if the null material is assigned. Thus we simultaneously optimize topology and ma-

terial distribution of the base cell. In the course of optimization we shall make use of the following

assumptions.

• Small deformations and linear elasticity are assumed.

• The base cell is supposed to consist of two different materials with positive thermal exposition

coefficients.1 Each member is thereby to be assigned either material 1, material 2, or void.

Material parameters of these two materials are specified a priori.
1Extension of the proposed formulation to a case with more than two materials is straightforward; see Remark 3.2.
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f̃

f̃

Figure 3: The fictitious forces for the compliance constraint in the case of connection pattern (A).

• At nodes of the frame structure, members constituted different materials are assumed to be

bonded perfectly.

• Temperature is assumed to distribute uniformly in the frame structure.

• In the thermal deformation of each beam element, the axial extension is dominant and expan-

sions in the other directions are assumed to be negligible.

Thus the problem dealt with in this paper is viewed as a three-phase (i.e., two materials and void)

material distribution optimization on a given ground structure. For continuum structures, three-

phase topology optimization has been studied extensively; see, e.g., [8, 9, 58].

As observed in [58], it is often that structures with negative thermal expansion coefficients have

low global stiffness. An example is, as discussed in [60], a bi-material lattice due to Lakes [35]. For

practical applications, we therefore introduce the constraint on the global stiffness in the course

of optimization. Specifically, we suppose that fictitious external forces are applied to the interface

nodes at the ordinary temperature as shown in Figure 3 and impose the upper bound constraint

for the compliance, together with the local stress constraints. Pedersen and Pedersen [46] pointed

out that, for thermoelastic structures, minimization of compliance does not necessarily result in

a design with maximum strength. In this paper we consider local stress constraints, both at the

elevated and ordinary temperatures, for securing structural strength directly.

Descriptive summary of the optimization problem considered in this paper is given as follows.

• Topology optimization problem of a planar frame structure is solved to obtain a base cell.

Selection of materials, including the null material, for each beam element is considered a

design variable. The material parameters of the constituent materials are specified.

• The displacement of the interface node induced by the temperature increase is minimized.

• The section of each existing beam element is specified.2

• Compliance constraint is considered for the external forces applied to the interface nodes.

• Stress constraints of existing beam elements are fully addressed.

2Extension of the proposed formulation to a case with more than one available beam sections is straightforward;

see Remark 2.1.
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• Existence of mutually intersecting beam elements is not allowed.

In the optimization process, selection of constituent materials is handled by using some discrete

design variables. We solve the optimization problem within the framework of mixed integer pro-

gramming. Usually, in topology optimization of continua, material selection is handled with an

interpolation and penalization scheme of material constants. As an extension of the standard SIMP

(solid isotropic material with penalization) scheme for interpolation, Sigmund and Torquato [58]

and Gibiansky and Sigmund [18] presented a three-phase (i.e., two materials and void) topology op-

timization method. In this method, two variables are used for each finite element, where one of them

determines whether the element is void or not and the other interpolates the material constants

of the two constituent materials. This interpolation scheme was further extended to optimization

with arbitrary many materials by Stegmann and Lund [63]. An extension of the RAMP (rational

approximation of material properties) scheme to multiple material phases is due to Hvejsel and

Lund [27]. Bruyneel [7] proposed to use shape functions of finite element method to represent the

weights in material interpolation. Multi-material topology optimization was also treated within the

frameworks of level-set methods [69] and phase field methods [73]. For instance, in the multi-phase

level set method due to Wang and Wang [69], one material domain is represented as a union of

level sets of some different implicit functions. In contrast to the literature cited above, the approach

presented in this paper does not resort to any interpolation or penalization techniques but directly

solves an optimization problem with discrete design variables. Since the optimization problem is

recast as an MILP problem, a global optimal solution can be found by using, e.g., a branch-and-cut

method. This guaranteed global optimality might be considered a major advantage of the proposed

method to the existing methods using interpolation and penalization. Instead, a potential disad-

vantage of the proposed method is that computational cost to solve the optimization problem might

increase drastically as the number of discrete design variables increases. This is because algorithms

for MILP are essentially based on enumeration of solutions.

Remark 2.1. Suppose that section of each member of the base cell is chosen from a set of some

(i.e., finitely many) predetermined candidates. Then the design optimization problem can still be

formulated as an MILP problem. For simple presentation, however, this paper discusses only the

case where single candidate is given for each member. Extension to the case with more than one

candidate sections can be done in a manner similar to [33]. ■

2.2 Definition of optimization problem

This section presents an explicit form of optimization problem for the design problem sketched in

section 2.1.

Consider a planar frame structure that serves as a ground structure. Figure 2(b) shows an

example. The ground structure consists of many candidate members. Each member is modeled

as a Timoshenko beam element. Locations of nodes are specified. Let E and V denote the set

of members and the set of nodes, respectively. For example, the ground structure in Figure 2(b)

consists of |E| = 28 members and |V| = 9 nodes.

Suppose that the material of each member is chosen among “material 1” and “material 2.” Let

M1 and M2 denote the sets of members constituted by material 1 and material 2, respectively. We
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use N to denote the set of members removed as a result of optimization. Then the design problem

is regarded as a problem finding a partition

E = M1 ∪M2 ∪N (1)

of E , where M1, M2, and N are disjoint sets. Material parameters of the constituent materials,

listed in Table 1, are specified.

As discussed in section 2.1, we attempt to minimize the target displacement induced by the

thermal increase to find the structure with the minimum thermal expansion behavior. Consider

the equilibrium state of the frame structure when increase in temperature of ∆T degrees is given.

Let u ∈ Rd denote the vector of nodal displacements, where d is the number of degree of freedom

of displacements. It should be clear that u = 0 when no external load is applied at the ordinary

temperature. For member e ∈ E , let Ee, Ge, and αe denote the Young modulus, shear modulus, and

thermal expansion coefficient, respectively. For notational convenience, we use vectors E = (Ee |
e ∈ E), G = (Ge | e ∈ E), and α = (αe | e ∈ E). We use K(E,G) ∈ Rd×d to denote the stiffness

matrix. The equation of thermoelastic equilibrium may be written as

K(E,G)u− t(α,∆T ) = 0, (2)

where t(α,∆T ) ∈ Rd is the vector of thermal forces. Explicit expression of (2) will be presented in

section 3.1. Thus we attempt to minimize u1 in Figure 2(b) under constraint (2). Here, it should be

clear that Ee, Ge, and αe depend on selection of the material that constitutes member e. Precisely,

we have that Ee = Ē1 if e ∈ M1, Ee = Ē2 if e ∈ M2, and Ee = 0 if e ∈ N . In the same manner,

Ge and αe are treated as discrete design variables.

The sections of existing members (e ̸∈ N ) are specified a priori. Let Ā, Ī, and Z̄ denote the

specified cross-sectional area, moment of inertia, and elastic section modulus, respectively. We use κ

to denote the shear correction factor in the Timoshenko beam theory. These parameters are treated

as constants in the optimization problem.

We next consider the compliance constraint. Without taking into account the global stiffness

of the structure, the topology optimization problem that minimizes the target displacement has

meaningless optimal solutions. As an extreme example, if all the members of the ground structure

vanish, then the target node can move freely. Such a solution is optimal and, hence, the optimal

value is not bounded below. To make the optimization problem meaningful and, more practically,

to find solutions with enough global stiffness, we use the upper bound constraint of the compliance.

Suppose that, at the ordinary temperature, external forces are applied to the interface nodes as

Table 1: The material parameters of the constituent materials.

Material parameter M1 M2 N

Young’s modulus Ē1 Ē2 0

Shear modulus Ḡ1 Ḡ2 0

Thermal expansion coefficient ᾱ1 ᾱ2 0

Yield stress σ̄y
1 σ̄y

2 0
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shown in Figure 3. We use f̃ ∈ Rd to denote this external load. The displacement vector, ũ ∈ Rd,

at the equilibrium state in the presence of f̃ is obtained from

K(E,G)ũ = f̃ . (3)

It should be clear that ũ is different from the solution, u, of (2); the latter is the displacement

induced by the thermal change when no external force is applied. The compliance constraint is then

written as

f̃
⊤
ũ ≤ cu, (4)

where cu > 0 is the specified upper bound.

Stress constraints are formulated as follows. Consider member e = (i, j) ∈ E , which connects

node i and node j (i, j ∈ V). Let m
(i)
e and m

(j)
e denote the two end moments. We use qe to

denote the axial force. Since members are subjected to nodal loads only, the stress constraints are

considered only at the two ends of member e. Based upon a simple piecewise-linear model of yield

condition, stress constraint can be written as

|qe|
Ā

+
max

{
|m(i)

e |, |m(j)
e |

}
Z̄

≤ σu
e . (5)

The upper bound for stress, σu
e , depends on the material constituting member e as

σu
e =


σ̄u
1 if e ∈ M1,

σ̄u
2 if e ∈ M2,

0 if e ∈ N ,

(6)

where σ̄u
1 and σ̄u

2 are positive constants.3 For notational convenience, define φ : R3 → R by

φ(qe,m
(i)
e ,m(j)

e ) =
|qe|
Ā

+
max

{
|m(i)

e |, |m(j)
e |

}
Z̄

=
|qe|
Ā

+
1

2

|m(i)
e +m

(j)
e |

Z̄
+

1

2

|m(i)
e −m

(j)
e |

Z̄
. (7)

Then (5) is written as

φ(qe,m
(i)
e ,m(j)

e ) ≤ σu
e . (8)

Presence of mutually intersecting members should be avoided. Let Ecross denote the set of pairs

of members that mutually intersect in the ground structure. Namely, we write (e, e′) ∈ Ecross if

member e and member e′ intersect. Then at least one of these two members should belong to N .

This condition is further equivalent to

{e, e′} ̸⊆ M1 ∪M2, ∀(e, e′) ∈ Ecross.

3For example, we may determine σ̄u
1 and σ̄u

2 from the yield stresses of the materials and a safety factor; see

Remark 2.2.
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By summing up the results in this section, the optimization problem to be solved is formulated

as follows.

min u1 (9a)

s. t. K(E,G)u− t(α,∆T ) = 0, (9b)

φ(qe(u),m
(i)
e (u),m(j)

e (u)) ≤ σu
e , ∀e = (i, j) ∈ E , (9c)

K(E,G)ũ = f̃ , (9d)

f̃
⊤
ũ ≤ cu, (9e)

φ(qe(ũ),m
(i)
e (ũ),m(j)

e (ũ)) ≤ σu
e , ∀e = (i, j) ∈ E , (9f)

{e, e′} ̸⊆ M1 ∪M2, ∀(e, e′) ∈ Ecross, (9g)

(αe, Ee, Ge, σ
u
e ) =


(ᾱ1, Ē1, Ḡ1, σ̄

u
1 ) if e ∈ M1,

(ᾱ2, Ē2, Ḡ2, σ̄
u
2 ) if e ∈ M2,

(0, 0, 0, 0) if e ∈ N ,

∀e ∈ E . (9h)

In this problem, we select the constituent material of each member according to (9h), where

{M1,M2,N} is a partition of E . Constraints (9b) and (9c) are concerned with the equilibrium

state at the high temperature, and thence the minimal thermal expansion property is achieved by

minimizing u1. Constraints (9d), (9e), and (9f) are concerned with the equilibrium state at the

ordinary temperature, where the fictitious external load, f̃ , is applied. Constraints on the compli-

ance and member stresses are considered. Presence of mutually intersecting members is forbidden

by (9g).

Remark 2.2. Stress constraint (5) has been derived as follows. Let σ̄y
p denote the yield stress of

material p (p = 1, 2), which is a given constant. The upper bound stress, σ̄u
p , may be determined as

σ̄u
p = σ̄y

p/γ,

where γ ≥ 1 is a specified safety factor. Then the upper bound stress of member e = (i, j) is defined

by (6). The upper bounds for absolute values of the axial force and the end moment, denoted que
and mu

e , are given by

que = σu
e Ā, mu

e = σu
e Z̄. (10)

The stress constraints are written at both ends of the member as

|qe|
que

+
|m(i)

e |
mu

e

≤ 1,
|qe|
que

+
|m(j)

e |
mu

e

≤ 1. (11)

By substituting (10) into (11) and putting together the two inequalities, we obtain (5). ■

Remark 2.3. Generally speaking, in topology optimization the stress constraint should be imposed

only on existing members. In other words, if member e vanishes in the course of optimization,

i.e., if e ∈ N , then the stress constraint on member e should be removed from the optimization

problem [2, 10, 54]. It should be clear that in this section the stress constraints, i.e., (9c) and

(9f), have been formulated in terms of the axial force and the two end moments. In the course

optimization, all the members have a specified common section, i.e., Ā, Ī, and Z̄ are considered

10



constants, while the material parameters for e ∈ N are αe = Ee = Ge = 0. Therefore, if e = (i, j) ∈
N , then we obtain

qe(u) = m(i)
e (u) = m(j)

e (u) = 0.

This implies that adding the condition

φ(qe,m
(i)
e ,m(j)

e ) ≤ 0, ∀e ∈ N (12)

to the optimization problem as the constraints does not change the feasible set. Condition (12) has

been actually incorporated in (9c) and (9f). ■

Remark 2.4. As explained in section 2.1, the configuration of the unit cell is set to be symmetric

with respect to the dashed line in Figure 2(b). This constraint is formally written as follows. Let

Esym denote the set of pairs of members that are located at symmetric positions. Namely, we write

(e, e′) ∈ Esym if member e is swapped with member e′ by reflection depicted in Figure 2(b). Then

these two members should have the same material selection, i.e., each (e, e′) ∈ Esym should satisfy

e ∈ M1 ⇔ e′ ∈ M1, (13a)

e ∈ M2 ⇔ e′ ∈ M2, (13b)

e ∈ N ⇔ e′ ∈ N . (13c)

In practice, this condition is added to problem (9) as a constraint. ■

3 Mixed-integer linear programming approach

In this section we present an MILP approach to the design optimization problem for finding frame

structures with negative thermal expansion properties. As mentioned in section 2.2, in this design

problem each member belongs either M1, M2, or N . We express this choice by making use of

two 0–1 design variables. Section 3.1 presents explicit forms of the constraints of problem (9).

Section 3.2 reformulates problem (9) as an MILP problem.

3.1 Thermoelastic equilibrium equations with material selection

In this section we write the constraints of problem (9) explicitly as preparation for the MILP for-

mulation presented in section 3.2. Particular attention is focused on the thermoelastic equilibrium

equation, (9b), in conjunction with the material selection constraint, (9h). A key is the decomposi-

tion of the stiffness matrix of a frame structure, which was used also in [33]. Two differences from

the previous formulation in [33] are that we now consider thermal effect and material selection.

According to section 3.2 of [33], the equilibrium equation,

K(E,G)u = f , (14)

is decomposed into the force-balance equation written as

∑
e∈E

3∑
t=1

setbet = f (15)

11



and the relations between the generalized stresses and the displacement vector written as

set = ketb
⊤
etu. t = 1, 2, 3; ∀e ∈ E . (16)

Here, be1, be2, be3 ∈ Rd (∀e ∈ E) are constant vectors. Constants ke1, ke2, ke3 ∈ R (∀e ∈ E) are

defined by

ke1 =
EeAe

le
, (17a)

ke2 =
1

le

( l2e
12EeIe

+
1

κGeAe

)−1
, (17b)

ke3 =
EeIe
le

, (17c)

where Ae is the cross-sectional area, Ie is the moment of inertia, and le is the undeformed length of

beam element e. In (17b), we define ke2 = 0 if Ee = Ge = 0 for convention. By eliminating set’s,

we see that (15) and (16) revert to (14). Expression in (15) and (16) serves as basis of our MILP

formulation. Details of the decomposition above appear in appendix A.

The equation of thermoelastic equilibrium, (2), can be written explicitly as follows. Let le

denote the undeformed length of member e (e ∈ E). Due to temperature change ∆T , the length

of the member becomes le(1 + αe∆T ). Therefore, the relation between the axial force and the

displacements, i.e., t = 1 in (16), is now given by

se1 = ke1(b
⊤
e1ue − leαe∆T ).

Since we assume that thermal expansions in directions other than the axial direction are negligible,

se2 and se3 are given by (16). Recall that, in the course of optimization, coefficients ke1, ke2, ke3,

and αe are determined by the material selected for member e. By incorporating this selection, we

see that the equation of thermoelastic equilibrium can be written explicitly as

∑
e∈E

3∑
t=1

setbet = 0, (18a)

se1 =


k̄e11(b

⊤
e1u− leᾱ1∆T ), if e ∈ M1,

k̄e12(b
⊤
e1u− leᾱ2∆T ), if e ∈ M2,

0 if e ∈ N ,

(18b)

set =


k̄et1b

⊤
etu, if e ∈ M1,

k̄et2b
⊤
etu, if e ∈ M2,

0 if e ∈ N ,

t = 2, 3, (18c)

where constants k̄etp (t = 1, 2, 3; p = 1, 2) are defined by

k̄e1p =
ĒpĀ

le
, (19a)

k̄e2p =
1

le

( l2e
12ĒpĪ

+
1

ḠpκĀ

)−1
, (19b)

k̄e3p =
ĒpĪ

le
. (19c)

12



The displacement in the compliance constraint, (9e), is defined by the equilibrium equation at

the ordinary temperature, (9d). By using expression in (15) and (16), (9d) can be rewritten as

m∑
e∈E

3∑
t=1

s̃etbet = f̃ , (20a)

s̃et = ketb
⊤
etũ, t = 1, 2, 3; e ∈ E , (20b)

where ket = k̄etp if e ∈ Mp, otherwise ket = 0, as explicitly written in (18).

It is useful to rewrite the stress constraints, i.e., (9c) and (9f), in terms of the generalized stresses,

set (t = 1, 2, 3). It follows from (7) and (45) (in appendix A) that (9c) can be rewritten as

|se1|
Ā

+
1

2

le|se2|
Z̄

+
|se3|
Z̄

≤ σu
e . (21)

Similarly, (9f) can be rewritten as

|s̃e1|
Ā

+
1

2

le|s̃e2|
Z̄

+
|s̃e3|
Z̄

≤ σu
e . (22)

It should be clear that σu
e in (21) and (22) depends on material selection for member e; see (6).

As the upshot of this section, it is worth noting that constraints (18b), (18c), (20b), (21),

and (22) involve terms depending on material selections. This reflects intrinsically combinatorial

property of our design problem. In section 3.2 we shall introduce some binary variables to treat

these constraints within the framework of MILP.

3.2 Reformulation to mixed-integer linear programming problem

In this section, optimization problem (9) presented in section 2.2 is reduced to an MILP problem.

We make use of the formulations developed in section 3.1 for thermoelastic equilibrium equations.

As mentioned earlier, the design problem is interpreted as finding a partition of a set of members,

(1), such that the objective function is minimized. A key idea to deal with this partition in our

optimization problem is making use of integer variables that serve as labels of members. Specifically,

we use two 0–1 variables,

(xe1, xe2) ∈ {0, 1}2, (23)

to express the label of member e ∈ E as

(xe1, xe2) = (1, 0) ⇔ e ∈ M1, (24a)

(xe1, xe2) = (0, 1) ⇔ e ∈ M2, (24b)

(xe1, xe2) = (0, 0) ⇔ e ∈ N . (24c)

These variables are subjected to the constraint

xe1 + xe2 ≤ 1. (25)

We begin by reformulating constraint (18), i.e., the equilibrium equation at the high temperature.

Since (18a) is a linear constraint, attention is focused on (18b) and (18c). By making use of xe1

13



and xe2 in (24), (18b) can be rewritten as

|se1 − k̄e1p(b
⊤
e1u− leᾱp∆T )| ≤ L(1− xep), p = 1, 2, (26a)

|se1| ≤ L(xe1 + xe2), (26b)

where L ≫ 0 is a sufficiently large constant. Similarly, (18c) is equivalent to

|set − k̄etp(b
⊤
etu)| ≤ L(1− xep), p = 1, 2; t = 2, 3, (27a)

|set| ≤ L(xe1 + xe2), t = 2, 3. (27b)

We next consider the stress constraint, (21). Note that σu
e in (21) is defined by (6), i.e.,

σu
e = σ̄u

1xe1 + σ̄u
2xe2.

Hence, (21) is equivalent to

|se1|
Ā

+
le|se2|
2Z̄

+
|se3|
Z̄

≤ σ̄u
1xe1 + σ̄u

2xe2. (28)

Constraint (22) can be rewritten by using xe1 and xe2 similarly. By imposing (28) on the opti-

mization problem as a constraint, constraints (26b) and (27b) become redundant and, thence, are

omitted.

Constraint (9g), which avoids existence of mutually intersecting members, can also be written

in terms of xe1 and xe2. Observe that xe1 + xe2 = 1 holds if and only if e ∈ M1 ∪M2. Therefore,

(9g) is equivalent to

xe1 + xe2 + xe′1 + xe′2 ≤ 1, ∀(e, e′) ∈ Ecross. (29)

By summing up the results above, problem (9) is reduced to the following MILP problem:

min u1 (30a)

s. t.
∑
e∈E

3∑
t=1

setbet = f , (30b)

|se1 − k̄e1p(b
⊤
e1u− leᾱp∆T )| ≤ L(1− xep), p = 1, 2; ∀e, (30c)

|set − k̄etpb
⊤
etu| ≤ L(1− xep), t = 2, 3; p = 1, 2; ∀e, (30d)

|se1|
Ā

+
le|se2|
2Z̄

+
|se3|
Z̄

≤
2∑

p=1

σ̄u
pxep, ∀e, (30e)

∑
e∈E

3∑
t=1

s̃etbet = f̃ , (30f)

|s̃et − k̄etpb
⊤
etũ| ≤ L(1− xep), t = 1, 2, 3; p = 1, 2; ∀e, (30g)

f̃
⊤
ũ ≤ cu, (30h)

|s̃e1|
Ā

+
le|s̃e2|
2Z̄

+
|s̃e3|
Z̄

≤
2∑

p=1

σ̄u
pxep, ∀e, (30i)

xe1 + xe2 + xe′1 + xe′2 ≤ 1, ∀(e, e′) ∈ Ecross, (30j)

xe1 + xe2 ≤ 1, ∀e, (30k)

xe1, xe2 ∈ {0, 1}, ∀e. (30l)

14



Here, continuous variables are u ∈ Rd, ũ ∈ Rd, set ∈ R, and s̃et ∈ R (∀e ∈ E ; t = 1, 2, 3), while

0–1 variables are xe1 and xe2 (∀e ∈ E). All the constraints other than the integrality constraints,

(30l), are linear constraints. Thus, problem (30) is an MILP problem, and hence it can be solved

globally with, e.g., a branch-and-cut method. Several software packages, e.g., CPLEX [28], Gurobi

Optimizer [25], and SCIP [1], are available for this purpose.

Remark 3.1. In Remark 2.4, the constraint on symmetry in configuration of the base cell was

formulated as (13). This constraint can also be rewritten in terms of 0–1 variables, xe1 and xe2

(e ∈ E). Recall that (e, e′) ∈ Esym means that member e and member e′ are located at symmetric

positions. Then the symmetry constraint, (13), is equivalently rewritten as

(xe1, xe2) = (xe′1, xe′2), ∀(e, e′) ∈ Esym.

In practice, this condition is added to problem (30) as linear equality constraints. ■

Remark 3.2. The approach developed above can be extended to a case in which more than two

constituent materials are available to design a structure. For instance, suppose that three materials,

i.e., M1, M2, and M3, are available. Contrary to (24), in this case we use three 0–1 variables to

express selection of material for member e as

(xe1, xe2, xe3) = (1, 0, 0) ⇔ e ∈ M1,

(xe1, xe2, xe3) = (0, 1, 0) ⇔ e ∈ M2,

(xe1, xe2, xe3) = (0, 0, 1) ⇔ e ∈ M3,

(xe1, xe2, xe3) = (0, 0, 0) ⇔ e ∈ N .

Constraint (25) is then replaced with

xe1 + xe2 + xe3 ≤ 1.

The other constraints can also be rewritten by using xe1, xe2, and xe3 (∀e ∈ E) in a straightforward

manner. ■

4 Separation of material distribution domains

A base cell consists of two materials. Distributions of the materials at the optimal solution can

possibly become complicated. Then the base cell becomes assemblage of many small pieces, each

of which consists of single material. Such complex material distributions in a base cell may cause

difficulty in manufacture of the periodic structure. This motivates us in this section to develop a

formulation of the design problem that can avoid mixture of material distributions. Section 4.1

introduces binary variables used for representing the material domains on a given ground structure.

Section 4.2 shows that the design optimization problem with the separation constraint on material

distributions can be recast as an MILP problem.

4.1 Notion of material domains

In the formulation developed in section 3, no constraint has been considered concerning distribution

pattern of the two materials. It may possibly happen that, at the optimal solution, small pieces

15
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Figure 4: An example of values of zi (∀i ∈ V) and the corresponding material domains, D1 and D2.

consisting of different materials are connected to each other and domains of the two materials are

arranged in a complicated manner; see Figure 9(d) in section 5.1 for a typical example. Such

complicated material distributions in a base cell can be a source of difficulty in actual fabrication

process.4 In the following, for an obtained base cell, we call the set of members consisting of single

material a material domain. We say that two material domains are separated if there exists a

(closed) curve that separates two domains.

Steeves et al. [60] used base cells with separated material domains to create planar periodic

lattices exhibiting negative thermal expansion properties; subsequently, these lattices were studied

further in [61, 62]. In these base cells, the material with low thermal expansion is placed outside

of the material with high thermal expansion. Hence, when temperature is elevated, compression

forces will act on interfaces between two different materials. Due to these compression forces,

bonding between two materials will be strengthened automatically. Thus, placing the material with

low thermal expansion outside of the material with high thermal expansion might have a practical

advantage. In the following, we suppose ᾱ1 > ᾱ2 without loss of generality and attempt to place

M2 outside of M1. Note that we do not consider explicit constraints that prohibit tension forces at

interfaces between two different materials. Therefore, at the optimal solution it is not guaranteed

that forces acting at those interfaces are compressive.

To separate distributions of the two materials on a ground structure, we introduce the notion of

material domains as follows. Recall that E is the set of members of the ground structure. Consider

partition E = D1 ∪ D2 of E , where D1 and D2 are the sets of members that can be constituted by

4By using a modern sophisticated processing technique, we can probably fabricate periodic structures with com-

plicated configurations. For instance, Chen et al. [9] used a direct metal deposition, which melts powdered metals

by laser, to fabricate a periodic structure with negative thermal expansion, which was found by three-phase topology

optimization. Also, Qi and Halloran [49] fabricated the structure in [9] with microfabrication by co-extrusion, which

is a powder based thermoplastic processing technique. Therefore, with such a processing technique, it is probably

possible to fabricate the optimal solutions obtained by using the formulation in section 3. In section 4 we attempt to

find a design which can be fabricated even with a more naive technique.
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material 1 and material 2, respectively. Namely, M1 and M2 should satisfy

M1 ⊆ D1, M2 ⊆ D2.

For node i ∈ V, let zi ∈ {0, 1} be a binary variable. We represent D1 and D2 by using zi (∀i ∈ V)
as

zi + zj ≤ 1 ⇔ e = (i, j) ∈ D1, (31a)

zi + zj = 2 ⇔ e = (i, j) ∈ D2; (31b)

see Figure 4 for an example. To place M2 outside of M1, we introduce the constraints such that

nodes near the center of the base cell satisfy zi = 0 and nodes exterior of the base cell satisfy zi = 1.

Roughly speaking, if node i is farther than node j from the origin, O, in Figure 4, then we impose

the constraint

zi ≥ zj ; (32)

see, for details, (39), (40), and (41) in section 4.2.

Besides zi (∀i ∈ V), we use variable xe ∈ {0, 1} which serves as an indicator of existence of

member e ∈ E . Namely, existence of member e is represented as

xe = 1 ⇔ e ∈ M1 ∪M2, (33a)

xe = 0 ⇔ e ∈ N . (33b)

It follows from (31) and (33) that selection of the material for member e is expressed as

xe = 1, zi + zj ≤ 1 ⇔ e ∈ M1, (34a)

xe = 1, zi + zj = 2 ⇔ e ∈ M2, (34b)

xe = 0, zi + zj ≤ 2 ⇔ e ∈ N . (34c)

In the optimization process we shall determine xe (∀e ∈ E) and zi (∀i ∈ V).

4.2 MILP formulation with domain separation constraint

This section demonstrates that, under the setting introduced in section 4.1, the design optimization

problem can be formulated as an MILP problem. To see this, we show that the constraints in

section 3.2, which have been formulated with variables (xe1, xe2) ∈ {0, 1}2 (∀e ∈ E), can now be

rewritten with xe ∈ {0, 1} (∀e ∈ E) and zi ∈ {0, 1} (∀i ∈ V). The equilibrium equations together

with the stress constraints, the compliance constraint, the constraint prohibiting intersection of

members, and the constraint on symmetry in the configuration are considered. Also, we handle the

constraint separating the material domains, D1 and D2. All these constraints shall be formulated

as linear constraints in terms of xe’s, zi’s, and some continuous variables.

We begin by rewriting (18), i.e., the equilibrium equation at the high temperature, with binary

variables xe and zi. Since (18a) is independent of material selection, attention is focused on (18b)
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Figure 5: Notation for the domain separation constraints. (a) The set of nodes depicted by filled

circles is Vupper; and (b) the set of nodes depicted by filled circles is Vdiag.

and (18c). Referring to (34), we can rewrite (18b) for each e = (i, j) ∈ E as

|se1 − k̄e11(b
⊤
e1u− leᾱ1∆T )| ≤ L(1− xe + zi), (35a)

|se1 − k̄e11(b
⊤
e1u− leᾱ1∆T )| ≤ L(1− xe + zj), (35b)

|se1 − k̄e12(b
⊤
e1u− leᾱ2∆T )| ≤ L(3− xe − zi − zj), (35c)

|se1| ≤ Lxe, (35d)

where L ≫ 0 is a sufficiently large constant. In the same manner, (18c) can be reduced to linear

inequality constraints by using xe, zi, and zj .

We next consider the stress constraints in (21), where σu
e is defined by (6). Referring to (34),

we see that (21) with (6) can be rewritten by using xe and zi as

|se1|
Ā

+
le|se2|
2Z̄

+
|se3|
Z̄

≤σ̄u
1 (2− zi − zj) + σ̄u

2zi, (36a)

|se1|
Ā

+
le|se2|
2Z̄

+
|se3|
Z̄

≤σ̄u
1 (2− zi − zj) + σ̄u

2zj , (36b)

|se1|
Ā

+
le|se2|
2Z̄

+
|se3|
Z̄

≤σ̄u
1 (1 + zi + zj) + σ̄u

2 (zi + zj). (36c)

The equilibrium equations at the ordinary temperature are given by (20). Here, (20a) is a

system of linear equality constraints. On the other hand, (20b) can be rewritten as linear inequality

constraints by using xe and zi in the same manner as (35). Also, the stress constraints, (22), can

be reformulated in the same manner as (36).

The constraint prohibiting existence of mutually intersecting member is given by (9g). By using

(33), this constraint can be rewritten in terms of xe’s as

xe + xe′ ≤ 1, ∀(e, e′) ∈ Ecross. (37)

The constraint on symmetry of the base cell is formulated as follows. Unlike Remark 3.1, we

now have to use variables xe and zi to write this constraint. Recall that (e, e′) ∈ Esym means that
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Figure 6: Enumeration of (zi, zr−1
1 (i), zr2(i)) satisfying (39) and (40) for i ∈ Vdiag and the correspond-

ing material distributions. The values of zr−1
1 (i) − (zr2(i) + zi) are listed in the bottom row.

member e and member e′ are located at symmetric positions. Similarly, we write (i, j) ∈ Vsym if

node i is swapped with node j by reflection depicted in Figure 2(b). Then the symmetry constraint

is given by

xe = xe′ , ∀(e, e′) ∈ Esym, (38a)

zi = zj , ∀(i, j) ∈ Vsym. (38b)

Finally we consider the constraint for separating material domains, D1 and D2. An essential

idea for this constraint has been sketched in section 4.1; see (32). Explicit forms of this constraint

dependent on the shape of a ground structure. In this paper we restrict ourselves to ground struc-

tures with grid shapes such as the one in Figure 4. Due to symmetry, we consider only the upper

triangular portion. Firstly, let Vupper ⊂ V denote the set of nodes that are located above the diago-

nal line; see Figure 5(a). For i ∈ Vupper, the node located just below node i is called node r1(i). The

X-coordinates of node i and node r1(i) are the same. Hence, node i is farther than node r1(i) from

the origin, O, of the coordinate system illustrated in Figure 5. Recall that member e = (i, j) ∈ E
can satisfy (i, j) ∈ M2 only if zi = zj = 1; see (31). Since we attempt to place M2 outside of M1,

we require zr1(i) = 0 if the outside node, i ∈ Vupper, satisfies zi = 0. For this reason we consider

the following constraint:

zi ≥ zr1(i), ∀i ∈ Vupper. (39)

Secondly, consider the nodes on the diagonal of the base cell. We denote by Vdiag ⊂ V the set of

these nodes as shown in Figure 5(b). Note that we exclude the top rightmost node from Vdiag for

notational convenience. For i ∈ Vdiag, the diagonal node just outside of node i is called node r2(i).

Node r2(i) is farther than node i from the origin, O. Hence, if zr2(i)x = 0, then the inside node, i,

should satisfy zi = 0. This motivates us to consider the following constraint:

zr2(i) ≥ zi, ∀i ∈ Vdiag. (40)

For i ∈ Vdiag, consider nodes r−1
1 (i) and r2(i), where r−1

1 (i) is defined by r1(r
−1
1 (i)) = i. As listed

in Figure 6, there exist five cases of (zi, zr−1
1 (i), zr2(i)) satisfying (39) and (40). Among these five

patterns, only the rightmost one is not acceptable, because a member of M2 is surrounded by

members of M1. It is observed from the bottom row of Figure 6 that this unacceptable pattern can

be excluded by adding the following constraint:

zr−1
1 (i) ≤ zr2(i) + zi, ∀i ∈ Vdiag. (41)
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Thus all the constraints are written as linear constraints in terms of u ∈ Rd, ũ ∈ Rd, set ∈ R,
s̃et ∈ R, xe ∈ {0, 1}, and si ∈ {0, 1} (∀e ∈ E ; ∀i ∈ V; t = 1, 2, 3). Therefore, the optimization

problem considered in this section can be recast as an MILP problem. The full description of this

MILP problem appears in appendix B.

5 Numerical experiments

In this section we perform numerical experiments by solving the proposed MILP problems. Sec-

tion 5.1 collects design examples of the formulation presented in section 3, i.e., problem (30), while

section 5.2 collects the ones of the formulation developed in section 4. Computation was carried

out on 2.66GHz 6-Core Intel Xeon Westmere processors with 64GB RAM. MILP problems were

solved by using CPLEX ver. 12.2 [28]. As for parameters of CPLEX, the integrality tolerance and

feasibility tolerance were set to = 10−8. The other parameters of CPLEX were set to the default

values.

Each existing member has a rectangular cross-section with width w̄ = 1mm and thickness

t̄ = 1mm. The cross-sectional area, the elastic section modulus, and the moment of inertia are

given by

Ā = t̄w̄ = 1mm2, Z̄ =
1

6
t̄w̄2 =

1

6
mm3, Ī =

1

12
t̄w̄3 =

1

12
mm4.

The shear correction factor of Timoshenko elements is κ = 5/6.

The material parameters of two constituent materials, approximating an aluminium alloy (7075-

T6) and a titanium alloy (Ti-6Al-4V), are listed in Table 2. The temperature change is ∆T = 200K.

The side length of a unit cell is lcell = 24mm. Concerning the compliance constraint in (30h), the

upper bound for the compliance is cu = 10−2 J (= 10−2N ·m) and a force of 1N is applied as

fictitious external load f̃ .

5.1 Example (I)

This section presents the results obtained by solving problem (30) in section 3.2. Hence, the sep-

aration constraint on material distributions is not considered. As for connection pattern of base

cells, the two cases shown in Figure 1 are considered. We consider the two ground structures shown

in Figure 7. The frame structure in Figure 7(a) consists of |V| = 3 × 3 = 9 nodes and |E| = 28

members, while the one in Figure 7(b) consists of |V| = 4× 4 = 16 nodes and |E| = 66 members.

Table 2: Material properties of the constituent materials used in the numerical examples.

Material 1 (M1) Material 2 (M2)

Young’s modulus Ē1 = 70GPa Ē2 = 110GPa

Shear modulus Ḡ1 = 25GPa Ḡ2 = 45GPa

Thermal expansion coefficient ᾱ1 = 25× 10−6K−1 ᾱ2 = 10× 10−6K−1

Upper bound for stress σ̄u
1 = 340MPa σ̄u

2 = 860MPa
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Figure 7: The ground structures for example (I). (a) The frame structure with |V| = 3 × 3 nodes;

and (b) the frame structure with |V| = 4× 4 nodes.

5.1.1 Connection pattern (A) of example (I)

We begin with the results for connection pattern (A). The optimal solutions obtained for the two

ground structures are shown in Figure 8(a) and Figure 8(c). In these figures, black lines and

gray lines show members that consist of material 1 (M1) and material 2 (M2), respectively. The

computational results are listed in Table 3. Here, “Time” shows the computational time spent

by CPLEX [28], and the optimal value means the displacement of the interface node. Since the

optimal values are negative in both cases, structures possessing thermal contraction properties are

successfully obtained. CPLEX requires more than 66 hours to solve the optimization problem with

the larger ground structure in Figure 7(b).

Figure 8(b) and Figure 8(d) show the optimized base cells. Deformations due to the thermal

increase, ∆T = 200K, are also depicted in these figures, where displacements are magnified 20 times.

It is observed in Figure 8(b) thatM1, i.e., the material with the higher thermal expansion coefficient,

forms star-shaped octagons, i.e., octagons with four reentrant corners. Also, in Figure 8(d) we can

find a reentrant polygon consisting of M1. Similar shapes can be found in structures with negative

Poisson’s ratio [58]; see, e.g., [33, 34, 67] for star-shaped structures with negative Poisson’s ratio.

5.1.2 Connection pattern (B) of example (I)

We next consider connection pattern (B). The two ground structures in Figure 7 are used. For

connection pattern (B), we minimize the vertical displacement of the top-right node.

Table 3: Computational results of example (I).

|V| Pattern Time (s) Optimal value (mm)

3× 3 (A) 14.22 −6.8785× 10−2

4× 4 (A) 237712.69 −10.0626× 10−2

3× 3 (B) 23.31 −0.8437× 10−2

4× 4 (B) 490286.82 −4.6005× 10−2

21



(a) (b)

(c) (d)

Figure 8: The optimal solutions of example (I) with connection pattern (A). (a) The optimal

topology obtained from the ground structure in Figure 7(a); and (b) its deformed configuration at

the high temperature. (c) The optimal topology obtained from the ground structure in Figure 7(b);

and (d) its deformed configuration at the high temperature. Black lines show M1 (material 1) and

gray lines show M2 (material 2). Displacements in (b) and (d) are magnified 20 times.

The optimal solutions are shown in Figure 9(a) and Figure 9(c). The computational results are

listed in Table 3. Figure 9(b) and Figure 9(d) show the thermal deformations of the optimized base

cells. Material 1 (M1) in Figure 9(b) forms a dodecagon with four reentrant corners. In Figure 9(d),

we can find a star-shaped octagon consists of material 1. In this base cell, distributions of the two

materials are intricately mixed. In contrast, distributions in Figure 9(b) are separated quite clearly.

Indeed, in this solution, the four exterior members consisting of material 2 are used for connection

with adjacent cells can be replaced by material 1, although this makes the objective value worse a

little. The negative thermal expansion property stems mainly from the reentrant dodecagon and

its interior members.

The optimized base cells obtained in section 5.1.1 and section 5.1.2 have the following character-

istics; see Figures 8(b), 8(d), 9(b), and 9(d). The material with high thermal expansion (M1) forms

a polygon with some reentrant corners. A structure consisting of the material with low thermal

expansion (M2) is placed inside of the polygon. When temperature is elevated, expansion of the

polygon is partially blocked by the interior structure and, as a result, the reentrant corners of the

polygon move towards interior of the base cell. This explains the negative thermal expansion prop-

erties of the obtained solutions. Also, from this observation we see that the interfaces between the

two different materials, i.e., the interfaces of the reentrant polygon (M1) and its interior structure
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(a) (b)

(c) (d)

Figure 9: The optimal solutions of example (I) with connection pattern (B). (a) The optimal

topology obtained from the ground structure in Figure 7(a); and (b) its deformed configuration at

the high temperature (displacements are magnified 50 times). (c) The optimal topology obtained

from the ground structure in Figure 7(b); and (d) its deformed configuration at the high temperature

(displacements are magnified 20 times). Black lines show M1 (material 1) and gray lines show M2

(material 2).

(M2), primarily undergo tension forces. In contrast, in section 5.2 we explore base cells such that

M1 is surrounded by M2 by using the formulation developed in section 4. In such a solution we

expect that the interfaces between the two different materials undergo compression forces.

5.2 Example (II)

This section performs the numerical experiments that incorporates the separation constraint on

material distribution, which has been presented in section 4. We consider the two ground structures

shown in Figure 10. The frame structure in Figure 10(a) consists of |V| = 3× 3 nodes and |E| = 20

members, while the one in Figure 10(b) consists of |V| = 4× 4 nodes and |E| = 42 members. As for

connection pattern of base cells, the two cases shown in Figure 1 are considered.

5.2.1 Connection pattern (A) of example (II)

We first consider connection pattern (A). The optimal solutions obtained for the two ground struc-

tures in Figure 10 are shown in Figure 11(a) and Figure 11(c). Figure 11(b) and Figure 11(d)

show the thermal deformations of the optimal base cells. It is observed in these figures that M2,
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Figure 10: The ground structures for example (II). (a) The frame structure with |V| = 3× 3 nodes;

and (b) the frame structure with |V| = 4× 4nodes.

(a) (b)

(c) (d)

Figure 11: The optimal solutions of example (II) with connection pattern (A). (a) The optimal

topology obtained from the ground structure in Figure 10(a); and (b) its deformed configuration at

the high temperature (displacements are magnified 50 times). (c) The optimal topology obtained

from the ground structure in Figure 10(b); and (d) its deformed configuration at the high tempera-

ture (displacements are magnified 20 times). Black lines show M1 (material 1) and gray lines show

M2 (material 2).
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i.e., the material with lower thermal expansion coefficient, is distributed on the outer side of M1,

i.e., the one with the higher thermal expansion coefficient. Moreover, in Figure 11(d), M1 forms a

hexadecagon with four reentrant corners.

The computational time and the optimal values are listed in Table 4. It is observed that in both

cases the optimal solutions realize thermal contraction. CPLEX requires about 2.6 hours to solve

the larger problem.

5.2.2 Connection pattern (B) of example (II)

We next consider connection pattern (B) in example (II). The obtained optimal solutions are shown

in Figure 12(a) and Figure 12(c). The thermal deformations of the optimal base cells are depicted

in Figure 12(b) and Figure 12(d). The computational costs and the optimal values are listed in

Table 4. In this examples, both solutions do not exhibit negative thermal expansion.

Finally we discuss properties of the optimal solutions obtained in section 5.2.1 and section 5.2.2;

see Figures 11(b), 11(d), 12(b), and 12(d). The low thermal expansion material (M2) is placed

outside of the high thermal expansion material (M1), as expected. Particularly, it is observed in

Figure 12(d) that, when temperature is elevated, the four interfaces between M1 and M2 undergo

compression forces. Therefore, bonding between two materials is automatically strengthened by ele-

vation of temperature. From a practical point of view, this might be an advantage over the solutions

obtained in section 5.1. However, the solution in Figure 12(d) has a, very small but, nonnegative

thermal expansion coefficient. Essential mechanism from which near zero thermal expansion stems

is similar to the ones studied by Steeves et al. [60]. In the solutions shown in Figures 11(b), 11(d),

and 12(b), the interior structures consisting of material 1 (M1) are disconnected. Further study is

required to obtain a base cell with negative thermal expansion property and a connected interior

structure consisting of M1.

6 Conclusions

Materials and structures that exhibit negative thermal expansion have been received significant

interest because of their potential applications. This paper has addressed an optimization problem

of a planar periodic frame structure, where the displacement induced by temperature increase is

minimized. Numerical experiments showed that periodic frame structures demonstrating thermal

contraction can be designed by using two materials with positive thermal expansion coefficients.

The problem dealt with in this paper is considered a three-phase material distribution problem

Table 4: Computational results of example (II).

|V| Pattern Time (s) Optimal value (mm)

3× 3 (A) 7.02 −0.2597× 10−2

4× 4 (A) 9499.49 −5.1059× 10−2

3× 3 (B) 5.77 2.3919× 10−2

4× 4 (B) 11269.00 0.1864× 10−2
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(c) (d)

Figure 12: The optimal solutions of example (II) with connection pattern (B). (a) The optimal

topology obtained from the ground structure in Figure 10(a); and (b) its deformed configuration at

the high temperature (displacements are magnified 50 times). (c) The optimal topology obtained

from the ground structure in Figure 10(b); and (d) its deformed configuration at the high tempera-

ture (displacements are magnified 20 times). Black lines show M1 (material 1) and gray lines show

M2 (material 2).

for a given frame structure. Namely, we solve an optimization problem to select the material for each

member among from two specified materials and void. In the course of optimization, this material

selection is handled by making use of two binary design variables. Also, local stress constraints

are fully addressed and existing members have predetermined sections. As a result, the optimal

structure obtained by the proposed method has neither hinges nor thin members. In this respect

the proposed approach may have an advantage in ease of manufacture of the optimal solution. It is

worth noting that solutions with hinge-like regions and/or too thin members often require that, in

advance of manufacturing process, thickness of hinges should be adjusted carefully to avoid stress

concentration without losing thermal contraction properties.

In this paper the optimization problem has been recast as a mixed-integer linear programming

(MILP) problem and solved globally with a commercial software package for MILP. It seems to be

difficult to solve large-scale problems by this approach from a viewpoint of computational cost. Some

heuristic methods, which can find a local optimal solution of a large-scale problem within reasonable

computational time, remain to be explored. Particularly, the local search with MILP, that was

initiated for topology optimization by Stolpe and Stidsen [65] and applied to frame structures by

Kureta and Kanno [33], could be applied. In this paper we restrict ourselves to finding a structure
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with the minimum thermal expansion coefficient, where the displacement of the interface node for

cell connection, u1, is minimized. The presented formulation can be extended straightforwardly to

a problem finding a structure with a nearly zero thermal expansion coefficient. Namely, we can

replace the objective function, u1, by |u1|. The optimization problem can still be recast as an MILP

problem.

In the optimal solution distributions of the two materials can be complicated. With an intricate

mixture pattern, a large number of interfaces between two different materials exist in a base cell

and many small parts may be required in real manufacturing process. This may cause difficulty in

fabrication of a base cell. Section 4 has explored a formulation for avoiding mixture of materials. In

this formulation, binary variables are allocated to nodes to determine a material that can be used

for each member. Then we consider linear inequality constraints to guarantee that one material is

placed only outside of the other one. This formulation, however, limits the solution space excessively.

In other words, the formulation excludes several designs with two disjoint material distributions.

Also, explicit forms of the linear inequality constraints depend on topology of a ground structure.

Hence, for the separation constraints on material distributions, more sophisticated formulations

that can express any acceptable solutions remain to be explored.

Concerning negative thermal expansion coefficient behavior, this paper has addressed minimiza-

tion of the displacement of a node that serves as an interface for periodic connection of base unit

cells. Two connection patterns have been considered, where the shape of base cell is supposed to

be square. Other shapes of base cell, as well as other connection patterns, remain to be studied.

It might be preferable that the connection pattern and the base cell topology are optimized si-

multaneously. From a practical point of view, issues of geometrical nonlinearity and out-of-plane

deformations may possibly have to be considered. Extensions to three-dimensional structures also

remain to be explored.
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A Decomposition of equilibrium equations

According to [33], we decompose the stiffness matrix, K(E,G), in (9b) and (9d). The results

obtained below have been used in section 3.1; see (15) and (16).

Consider the local coordinate system for member e = (i, j) ∈ E as shown in Figure 13. The

element displacement vector is written as ûe = (u
(i)
x , u

(i)
y , θ(i), u

(j)
x , u

(j)
y , θ(j))⊤ ∈ R6. The displace-

ment vector of the whole ground structure, u ∈ Rd, is defined with respect to the global coordinate

system. For each e ∈ E , transformation of u to ûe is written as

ûe = Teu,
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Figure 13: Local coordinate system for a beam element.

where Te ∈ R6×d is a constant transformation matrix. We employ the Timoshenko beam theory to

model the members of the ground structure. Let K̂e(Ee, Ge) ∈ R6×6 denote the member stiffness

matrix defined with respect to the local coordinate system. As explained in [33], K̂e is given by

K̂e(Ee, Ge) =

3∑
t=1

ket(Ee, Ge)b̂etb̂
⊤
et, (42)

where b̂e1, b̂e2, b̂e3 ∈ R3 are defined by

b̂e1 =


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0

0

1

0

0
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−le/2
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0
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
(43)

and ke1, ke2, ke3 ∈ R are defined by

ke1 =
EeAe

le
, (44a)

ke2 =
1

le

( l2e
12EeIe

+
1

κGeAe

)−1
, (44b)

ke3 =
EeIe
le

. (44c)

Here, Ee and Ge are Young’s modulus and the shear modulus of the beam material, Ae and Ie are

the cross-sectional area and the moment of inertia, le is length of the beam element, and κ is the

shear correction factor in the Timoshenko beam theory. In (44b), we define ke2 = 0 if Ee = Ge = 0

for convention. Note that (43) and (44) correspond to the MacNeal element in the Timoshenko

beam theory [41]. In our problem, beams are subjected to nodal loads only. In this case, the

MacNeal element coincides with the interdependent interpolation element in [52], and hence the

nodal displacement of a beam can be predicted exactly with single element [16, 52].

For member e = (i, j) ∈ E , let se = (se1, se2, se3)
⊤ ∈ R3 denote the generalized stress vector,

which is defined by

se1 = qe, (45a)

se2 = τe = −m
(i)
e +m

(j)
e

le
, (45b)

se3 =
−m

(i)
e +m

(j)
e

2
. (45c)
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Here, qe is the axial force, τe is the transverse shear force, and m
(i)
e and m

(j)
e are the two end

moments. The force-balance equation in the global coordinate system is then given by

∑
e∈E

3∑
t=1

setbet = f , (46)

where constant vectors be1, be2, be3 ∈ Rd are defined by

bet = T⊤
e b̂et, t = 1, 2, 3. (47)

The generalized stress, set, is related to the displacement, u, as

set = ketb
⊤
etu, t = 1, 2, 3; ∀e ∈ E , (48)

Since the global stiffness matrix, K(E,G), is given by

K(E,G) =
∑
e∈E

T⊤
e K̂(Ee, Ge)Te,

we can see that elimination of set’s from (46) and (48) results in the global equilibrium equation

K(E,G)u = f .

Expression in (46) and (48) has served as basis of our MILP formulation.

B Whole perspective of MILP problem with domain separation

constraint

In section 4, we have explained that the design optimization problem with the separation constraint

on material domains can be recast as an MILP problem. The explicit description of this MILP

problem is shown below.

We elaborate the MILP formulation in section 4.2 with comparing with MILP problem (30) in

section 3.2, i.e., the one without the separation constraint. Firstly, the objective function is same

as the one of problem (30). Namely, we minimize the displacement of the interface node, u1.

Secondly, the constraints are given as follows.

• Constraints (30b), (30f), and (30h) are retained without change, i.e.,

∑
e∈E

3∑
t=1

setbet = f , (49)

∑
e∈E

3∑
t=1

s̃etbet = f̃ , (50)

f̃
⊤
ũ ≤ cu. (51)
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• Corresponding to constraints (30c) and (30d), relations between the generalized stresses and

the displacements caused by the elevation of temperature are given as

|se1 − k̄e11(b
⊤
e1u− leᾱ1∆T )| ≤ L(1− xe + zi), ∀e = (i, j),

|se1 − k̄e11(b
⊤
e1u− leᾱ1∆T )| ≤ L(1− xe + zj), ∀e = (i, j),

|se1 − k̄e12(b
⊤
e1u− leᾱ2∆T )| ≤ L(3− xe − zi − zj), ∀e = (i, j),

|se1| ≤ Lxe, ∀e

and

|set − k̄et1b
⊤
etu| ≤ L(1− xe + zi), t = 2, 3; ∀e = (i, j),

|set − k̄et1b
⊤
etu| ≤ L(1− xe + zj), t = 2, 3; ∀e = (i, j),

|set − k̄et2b
⊤
etu| ≤ L(3− xe − zi − zj), t = 2, 3; ∀e = (i, j),

|set| ≤ Lxe, t = 2, 3; ∀e.

• Instead of (30e), the stress constraints at the elevated temperature are written as

|se1|
Ā

+
le|se2|
2Z̄

+
|se3|
Z̄

≤ σ̄u
1 (2− zi − zj) + σ̄u

2zi, ∀e = (i, j),

|se1|
Ā

+
le|se2|
2Z̄

+
|se3|
Z̄

≤ σ̄u
1 (2− zi − zj) + σ̄u

2zj , ∀e = (i, j),

|se1|
Ā

+
le|se2|
2Z̄

+
|se3|
Z̄

≤ σ̄u
1 (1 + zi + zj) + σ̄u

2 (zi + zj), ∀e = (i, j).

• Corresponding to constraint (30g), relations between the generalized stresses and the displace-

ments caused by the fictitious external load are given as

|s̃et − k̄et1b
⊤
etũ| ≤ L(1− xe + zi) t = 1, 2, 3; ∀e = (i, j),

|s̃et − k̄et1b
⊤
etũ| ≤ L(1− xe + zj) t = 1, 2, 3; ∀e = (i, j),

|s̃et − k̄et2b
⊤
etũ| ≤ L(3− xe − zi − zj) t = 1, 2, 3; ∀e = (i, j),

|s̃et| ≤ Lxe t = 1, 2, 3; ∀e.

• Instead of constraint (30i), the stress constraints at the ordinary temperature are given as

|s̃e1|
Ā

+
le|s̃e2|
2Z̄

+
|s̃e3|
Z̄

≤ σ̄u
1 (2− zi − zj) + σ̄u

2zi, ∀e = (i, j),

|s̃e1|
Ā

+
le|s̃e2|
2Z̄

+
|s̃e3|
Z̄

≤ σ̄u
1 (2− zi − zj) + σ̄u

2zj , ∀e = (i, j),

|s̃e1|
Ā

+
le|s̃e2|
2Z̄

+
|s̃e3|
Z̄

≤ σ̄u
1 (1 + zi + zj) + σ̄u

2 (zi + zj), ∀e = (i, j).

• Instead of constraint (30j), the constraint prohibiting intersection of members is given as

xe + xe′ ≤ 1, ∀(e, e′) ∈ Ecross.

• Concerning symmetry of the base cell, we have the following constraints:

xe = xe′ , ∀(e, e′) ∈ Esym,

zi = zj , ∀(i, j) ∈ Vsym.
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• Concerning separation of material distributions, we have the following constraints:

zr1(i) ≤ zi, ∀i ∈ Vupper,

zi ≤ zr2(i), ∀i ∈ Vdiag,

zr−1
1 (i) ≤ zi + zr2(i), ∀i ∈ Vdiag.

• Finally, binary constraints are

xe ∈ {0, 1}, ∀e ∈ E ,

zi ∈ {0, 1}, ∀i ∈ V.

Thus the optimization problem is an MILP problem, where u ∈ Rd, ũ ∈ Rd, set ∈ R, s̃et ∈ R,
xe ∈ {0, 1}, and si ∈ {0, 1} (∀e ∈ E ; ∀i ∈ V; t = 1, 2, 3) are variables to be optimized.
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