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Abstract

The common zeros of two bivariate functions can be computed by
finding the common zeros of their polynomial interpolants expressed in
a tensor Chebyshev basis. From here we develop a bivariate rootfinding
algorithm based on the hidden variable resultant method and Bézout
matrices with polynomial entries. Using techniques including domain
subdivision, Bézoutian regularization and local refinement we are able
to reliably and accurately compute the simple common zeros of two
smooth functions with polynomial interpolants of very high degree
(≥ 1000). We analyze the resultant method and its conditioning by
noting that the Bézout matrices are matrix polynomials. Our robust
algorithm is implemented in the roots command in Chebfun2, a soft-
ware package written in object-oriented Matlab for computing with
bivariate functions.

keywords: bivariate function, polynomial, rootfinding, resultant,
Bézoutian, conditioning, regularization, Chebfun2

1 Introduction

There are two operations on bivariate functions that are commonly referred
to as rootfinding : (1) Finding the zero level curves of f(x, y), and (2) Finding
the common zeros of f(x, y) and g(x, y). Despite sharing the same name
these operations are mathematically distinct; the first has solutions along
curves while the second, typically, has isolated solutions. In this paper we
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concentrate on the second, that is, computing all the real pairs (x, y) ∈
[−1, 1]× [−1, 1] such that (

f(x, y)
g(x, y)

)
= 0 (1)

under the assumption that f and g are real-valued in [−1, 1]×[−1, 1] and the
solution set is zero-dimensional, i.e., the solutions are isolated. In this typical
situation we describe a robust, accurate, and fast numerical algorithm that
can solve problems of much higher degree than in previous studies.

Our algorithm has been implemented in the roots command in Cheb-
fun2, an open source software system written in object-oriented Matlab
that extends Chebfun [50] to functions of two variables defined on rect-
angles [47]. Chebfun2 approximates a bivariate function by a polynomial
interpolant represented as a “chebfun2” object, which is accurate to relative
machine precision [47]. Our first step is to use Chebfun2 to replace f(x, y)
and g(x, y) in (1) by polynomial interpolants p(x, y) and q(x, y), respectively,
before finding the common zeros of the corresponding polynomial system.
Throughout this paper we use f and g to denote smooth bivariate functions,
and p and q for their polynomial interpolants, which approximate f and g
to relative machine precision, respectively, of the form:

p(x, y) =

mp∑
i=0

np∑
j=0

PijTi(y)Tj(x), q(x, y) =

mq∑
i=0

nq∑
j=0

QijTi(y)Tj(x), (2)

where Tj(x) = cos(j cos−1(x)) is the Chebyshev polynomial of degree j, and
P ∈ R(mp+1)×(np+1), Q ∈ R(mq+1)×(nq+1) are the matrices of coefficients,
whose (i + 1, j + 1) element is Pi,j . The polynomial interpolants p and q
satisfy

‖f − p‖∞ = O(u)‖f‖∞, ‖g − q‖∞ = O(u)‖g‖∞, (3)

where ‖f‖∞ = maxx,y∈[−1,1] |f(x, y)| denotes the infinity norm on [−1, 1]2.
The resulting polynomial system, p(x, y) = q(x, y) = 0, is solved by

an algorithm based on the hidden variable resultant method and Bézout re-
sultant matrices that have entries containing univariate polynomials. One
component of the solutions is computed by solving a polynomial eigenvalue
problem via a standard approach in the matrix polynomial literature known
as linearization [20] and a robust eigenvalue solver, such as eig in Mat-
lab. The remaining component is found by univariate rootfinding based on
the colleague matrix [12]. Usually, resultant methods have several computa-
tional drawbacks and our algorithm is motivated by attempting to overcome
them:

1. Computational complexity: The complexity of resultant methods based
on Sylvester and Bézout matrices grows like the degree of p and q to the
power of 6. Therefore, computations quickly become unfeasible when the
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degrees are larger than, say, 30, and this is one reason why the literature
concentrates on examples with degree 20, or smaller [1, 9, 18, 26, 33].
Typically, we reduce the complexity to quartic scaling, and sometimes
even further, by using domain subdivision, which is beneficial for both
accuracy and efficiency (see section 4). Subdivision can allow us to com-
pute the common zeros to (1) with polynomial interpolants of degree as
large as 1000, or more.

2. Conditioning: We analyze the conditioning of Bézout matrix polynomi-
als and derive condition numbers. The analysis reveals that recasting the
problem in terms of resultants can worsen the conditioning of the prob-
lem, and we resolve this via a local refinement process. The Bézout local
refinement process improves the accuracy significantly, and also identifies
and removes spurious zeros; a well-known difficulty for resultant-based
methods.

3. Numerical instability: The Bézout matrix polynomial is numerically close
to singular, leading to numerical difficulties, and to overcome this we
apply a regularization step. The regularization we employ crucially de-
pends on the symmetry of Bézout matrices. Then we proceed to solve the
polynomial eigenvalue problem by linearization. This means the highly
oscillatory determinants of resultant matrices are not interpolated, over-
coming further numerical difficulties.

4. Robustness: It is not essential for a bivariate rootfinding method to con-
struct an eigenvalue problem, but if it does it is convenient and can
improve robustness. For this reason we solve an eigenvalue problem to
find the first component of the solutions to p(x, y) = q(x, y) = 0, and
another one to find the second. Therefore, our algorithm inherits some
of its robustness from the QZ algorithm [21], which is implemented in
the eig command in Matlab.

5. Resultant construction: Resultant methods are more commonly based
on Sylvester resultant matrices that are preferred due to their ease of
construction, and this is especially true when dealing with polynomials
expressed in an orthogonal polynomial basis rather than the monomial
basis. However, the Bézout resultant matrices, when using the tensor
Chebyshev basis, are easily constructed by using Matlab code in [46].
We choose Bézout over Sylvester because its conditioning can be analyzed
(see section 5) so its numerical behavior is better understood, and its
symmetry can be exploited.

Figure 1 summarizes the main steps in our bivariate rootfinding algo-
rithm based on the hidden variable resultant method, domain subdivision,
Bézout regularization, and the tensor Chebyshev basis. In particular, it is
crucial that we express the polynomial interpolants of f and g in a tensor
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Chebyshev basis so that we can employ fast transforms for interpolation
based on the fast Fourier transform, overcome numerical instability associ-
ated with interpolation at equally-spaced points, and prevent the common
zeros from being sensitive to perturbations of the polynomial coefficients [51].

Our algorithm is capable of finding the common zeros of f and g when
the degrees of their polynomial interpolants are much higher than in pre-
vious studies. For example, the built-in commands in Maple and Mathe-
matica, which implement resultant-based algorithms in the monomial basis,
require about 60 seconds for degree 16 examples (with dubious accuracy) on
a Core i7 desktop machine, and cannot handle degree 30 or higher; however,
it should be noted that these algorithms also compute complex solutions,
while we focus on real solutions. Our Matlab code completes degree 16
in a fraction of a second, needs about 5 seconds for degree 40, and approx-
imately 100 seconds for degree 100. Often, the runtime scales quartically,
and sometimes much less, with the degree, and our code can solve problems
with degree 1000 (see section 8). In this paper we refer to the maximal
degree instead of the total degree, that is,

∑N
i=0

∑N
j=0 cijy

ixj is a degree N
bivariate polynomial.

For definiteness, unless stated otherwise, we consider the problem of
finding the common zeros in the domain [−1, 1]× [−1, 1], but the algorithm
and code deal with any rectangular domain.

In the next section we review previous literature related to solving p(x, y) =
q(x, y) = 0, and section 3 contains the details of the hidden variable resultant
method based on Bézout matrices. In section 4 we explain the process of do-
main subdivision in our algorithm, and section 5 analyzes the conditioning
of the Bézout resultant method. In section 6 we describe a regularization
step to improve the stability of the algorithm. In section 7 we discuss fur-
ther details of the algorithm, and in section 8 we present several numerical
examples that highlight its robustness and accuracy.

2 Existing bivariate rootfinding algorithms

A number of studies have been carried out on bivariate rootfinding [9, 26, 33],
and we mainly concentrate on approaches that require numeric, as op-
posed to symbolic, computations. These include variations on the resul-
tant method, contouring algorithms, homotopy continuation, and a two-
parameter eigenvalue approach. It is also worth mentioning the existence of
important approaches based on Gröbner bases, even though some symbolic
manipulations are usually employed [16]. Generally, Gröbner bases are fea-
sible only for small degree polynomial systems because of their complexity
and numerical instability.
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f(x, y)
g(x, y)

)
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q(x, y)

)
= 0
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Figure 1: Flowchart of our bivariate rootfinding algorithm based on the hid-
den variable resultant method and Bézout matrices. First, we approximate
the bivariate functions f and g by polynomial interpolants, using domain
subdivision until the polynomial degree on each subdomain is less than 16
(section 4). Then we construct the resultant (section 3), regularize (sec-
tion 6), and then solve for one of the components before using a univariate
rootfinding algorithm to compute the remaining component of the common
zeros. Finally, we refine the solutions and remove any spurious zeros via a
local Bézout resultant (section 7).

2.1 Resultant methods

The hidden variable resultant method is based on selecting one variable, say
y, and writing p(x, y) and q(x, y) as polynomials in x with coefficients in
R[y], that is,

p(x, y) = py(x) =

np∑
j=0

αj(y)xj , q(x, y) = qy(x) =

nq∑
j=0

βj(y)xj . (4)

Note that, although we have expressed (4) in the monomial basis, any poly-
nomial basis can be used, see for example [8]. Monomials are the standard
basis in the literature [17, 19], due to their simplicity and flexibility for al-
gebraic manipulations. On the other hand, the Chebyshev polynomial basis
is a better choice for numerical stability on the real interval [−1, 1] [49]. For
this reason, we always express polynomials in the Chebyshev basis.

The two polynomials py(x) and qy(x) in (4), thought of as univariate
in x, have a common zero if and only if a resultant matrix is singular [5].
Therefore, the y-values of the solutions to (1) can be computed by finding
the y-values such that a resultant matrix is singular.

There are many different resultant matrices such as Sylvester [17], Bézout
[7], and other matrices [5, 19, 27], and this choice can affect subsequent ef-
ficiency (see Table 1) and conditioning (see section 5). Usually, resultant
matrices are constructed from polynomials expressed in the monomial ba-
sis [9, 33], but they can be derived when using any other bases, see for
example [8].

Finding the y-values such that the resultant matrix is singular is equiva-
lent to a polynomial eigenvalue problem, and many techniques exist such as
methods based on contour integrals [2, 6], Newton-type methods, inverse it-
eration methods (see the review [35]), the Ehrlich–Aberth method [10], and
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the standard approach of solving via linearization [20]. In our implementa-
tion we use linearization, which replaces a polynomial eigenvalue problem
with a generalized eigenvalue problem with the same eigenvalues and Jordan
structure [20]. Then we apply the QZ algorithm to the linearization; for a
discussion of possible alternatives, see [35]. We leave for future research the
study of the possible incorporation in our algorithm of alternative techniques
to solve the polynomial eigenproblem.

Another related approach is the u-resultant method, which works simi-
larly and starts by introducing a dummy variable to make the polynomial
interpolants homogeneous. The hidden variable resultant method is then ap-
plied to the new polynomial system selecting the dummy variable first. This
is quite natural because it ensures that the x- and y-variables are treated
in the same way, but unfortunately, making a polynomial homogeneous in-
herently requires the monomial basis and hence, entails a corresponding
numerical instability.

Some resultant methods first apply an orthogonal transformation, such
as the BivariateRootfinding command in Maple, which is used to ensure
that two common zeros do not share the same y-value. We provide a care-
ful case-by-case study to show that our approach does not require such a
transform. Furthermore, other changes of variables can be applied, such as
x = (z+ω)/2 and y = (z−ω)/2, and the selecting variable ω, which satisfies
ω = z̄ when x and y are real. We have found that such changes of variables
give little improvement for most practical examples.

2.2 Contouring algorithms

Contouring algorithms such as marching squares and marching triangles [24]
are employed in computer graphics to generate zero level curves of bivariate
functions. These contouring algorithms can be very efficient at solving (1),
and until this paper the roots(f,g) command in Chebfun2 exclusively em-
ployed such a contouring approach [47]. In the older version of Chebfun2 the
zero level curves of f and g were computed separately using the Matlab
command contourc, and then the intersections of these zero level curves
were used as initial guesses for Newton’s iteration.

Bivariate rootfinding based on a contouring algorithm suffers from sev-
eral drawbacks:

1. The level curves of f and g may not be smooth even for very low
degree polynomials, for example, f(x, y) = y2 − x3.

2. The number of disconnected components of the level curves of f and
g can be potentially quite large [22].

3. Contours of f or g are not always grouped correctly, leading to the
potential for missed solutions.
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4. The zero level curves must be discretized and therefore, the algorithm
requires a fine tuning of parameters to balance efficiency and reliability.

For many practical applications solving (1) via a contouring algorithm may
be an adequate approach, but not always, and this paper started with seek-
ing a more robust alternative algorithm.

Remark The roots(f,g) command in Chebfun2 implements both the
algorithm based on a contouring algorithm and the approach described in
this paper. An optional parameter can be supplied to select one or the
other of these choices. We have decided to keep the contouring approach as
an option because it can sometimes run faster, but we treat its computed
solutions with suspicion, and we employ the approach described in this paper
as a robust alternative.

2.3 Other numerical methods

Homotopy continuation methods [42] have a simple underlying approach
based on solving an initial easy polynomial system that can be continuously
deformed into (1). Along the way several polynomial systems are solved
with the current solution set being used as an initial guess for the next.
These methods have received significant research attention and are a purely
numerical approach that can solve multivariate rootfinding problems [42].

The two-parameter eigenvalue approach constructs a determinantal ex-
pression for the polynomial interpolants to f and g and then rewrites p(x, y) =
q(x, y) = 0 as a two-parameter eigenvalue problem [3],

A1v = xB1v + yC1v, A2w = xB2w + yC2w.

This approach has advantages because the two-parameter eigenvalue prob-
lem can be solved with the QZ algorithm [25], or other techniques [25].
However, the construction of a determinantal expression and hence, the ma-
trices Ai, Bi, Ci for i = 1, 2 currently requires the solution of a multivariate
polynomial system [39]. Alternatively, matrices of much larger size can be
constructed using a generalized companion form, but these are too large to
be efficient [36].

3 The resultant method with Bézout matrices

We now describe in more detail the hidden variable resultant method using
Bézout matrices that forms the core of our algorithm. The initial step of
the resultant method selects a variable to solve for first, and our choice is
based on the efficiency of subsequent steps. For simplicity, throughout the
paper, we select the y-variable and write the polynomials p(x, y) and q(x, y)
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as functions of x with coefficients in R[y], using the Chebyshev basis:

py(x) =

np∑
j=0

αj(y)Tj(x), qy(x) =

nq∑
j=0

βj(y)Tj(x), x ∈ [−1, 1], (5)

where αj , βj ∈ R[y], i.e., polynomials in y with real coefficients, have the
polynomial expansions

αj(y) =

mp∑
i=0

PijTi(y), βj(y) =

mq∑
i=0

QijTi(y), y ∈ [−1, 1],

where the matrices P and Q are as in (2).
The (Chebyshev) Bézout matrix of py and qy in (5), denoted by B(py, qy),

is defined1 by B(py, qy) = (bij)0≤i,j≤N−1 [46], where N = max(np, nq) and
the entries satisfy

py(s)qy(t)− py(t)qy(s)
s− t

=
N−1∑
i,j=0

bijTi(s)Tj(t). (6)

We observe that since bij ∈ R[y], B(py, qy) can be expressed as a matrix
polynomial [20], i.e., a polynomial with matrix coefficients, that is

B(y) = B(py, qy)(y) =

M∑
i=0

AiTi(y), Ai ∈ RN×N , (7)

where M = mp +mq is the sum of the degrees of p(x, y) and q(x, y) in the
y-variable. The resultant of py and qy is defined as the determinant of B(y),
which is a scalar univariate polynomial in y. The usual resultant definition is
via the Sylvester matrix, but we use the symmetric Bézout matrix, and later
explain that these two definitions are almost the same, but subtly different
(see section 3.1).

It is well-known [17, Prop. 3.5.8 & Cor. 3.5.4] that two bivariate polyno-
mials share a common factor in R[x, y] only if their resultant is identically
zero. Throughout this paper we are assuming the solution set to (1) is zero-
dimensional and hence, that the polynomial interpolants p and q do not
share a common factor. This has two important implications:

• (Bézout’s Theorem) The number of solutions to p(x, y) = q(x, y) = 0
is finite [28, Ch. 3];

• (Non-degeneracy) The resultant, det(B(y)), is not identically zero and
therefore, B(y) is a regular matrix polynomial [20].

1Historically, this functional viewpoint of a Bézout matrix is in fact due to Cayley, who
modified the original method of Bézout, both in the monomial basis [41, Lesson IX].
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Since the resultant is not identically zero, the solutions to

det (B(y)) = det (B(py, qy)) = 0 (8)

are the finite eigenvalues of B(y), and we observe that if y∗ is a finite
eigenvalue of B(y), then the resultant of py∗(x) = p(x, y∗) and qy∗(x) =
q(x, y∗) is zero. Usually, a zero resultant means that p(x, y∗) and q(x, y∗)
share a finite common root [5], but it can also happen that they share a
“common root at infinity” (see section 3.1).

The eigenvalues of B(y) can be found via linearization of matrix polyno-
mials expressed in polynomial bases [32, 46], which constructs a generalized
eigenvalue problem Cv = λEv with the same eigenvalues as B(y). In our
implementation we choose the colleague linearization, which is a companion-
like matrix pencil for (matrix) polynomials expressed in the Chebyshev basis,
and then employ the eig command in Matlab to solve Cv = λEv. The
process of linearization converts the problem of finding the eigenvalues of
B(y), a matrix polynomial of degree M and size N , to an MN ×MN gen-
eralized eigenvalue problem. Typically, the majority of the computational
cost of our algorithm is in solving these generalized eigenvalue problems.

After filtering out the y-values that do not correspond to solutions in
[−1, 1]× [−1, 1], the x-values are computed via two independent univariate
rootfinding problems: py(x) = 0 and qy(x) = 0. These univariate problems
are solved in standard Chebfun fashion by computing the eigenvalues of a
colleague matrix [49] (see section 7).

The resultant method with Bézout matrices also works if we select the
x-value to solve for first, and this choice can change the cost of the com-
putation. Let np and mp be the degrees of p(x, y) in the x- and y-variable,
respectively, and similarly let nq and mq be the degrees for q(x, y). If
the y-values are solved for first, then the generalized eigenvalue problem
Cv = λEv formed after linearization is of size max(np, nq)(mp + mq) and
the cube of this number is the expected computational complexity. If the
x-values are solved for first, then the generalized eigenvalue problem is of
size max(mp,mq)(np + nq), which is usually roughly comparable, but in
some cases can be considerably larger (or smaller). Table 1 gives the various
sizes and degrees resulting from the choice of resultant matrix and variable
computed first. We always use Bézout resultant matrices because of their
symmetry, but select the variable to solve for first by minimizing the size of
the resulting generalized eigenvalue problem.

3.1 Algebraic subtleties

The resultant method is mathematically quite subtle [17, Ch. 3 & 9], and
we summarize some of these subtleties here. These delicate issues arise
because there are many different ways in which a common zero of p and q
can manifest itself as an eigenvalue of B(y). As always we assume that the
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Resultant Size of Ai in (7) Degree Size of Cv = λEv

Bézout (y first) max(np, nq) mp +mq max(np, nq)(mp +mq)

Bézout (x first) max(mp,mq) np + nq max(mp,mq)(np + nq)

Sylvester (y first) np + nq max(mp,mq) max(mp,mq)(np + nq)

Sylvester (x first) mp +mq max(np, nq) max(np, nq)(mp +mq)

Table 1: Sizes and degrees of matrix polynomials constructed from the
Bézout and Sylvester [5] resultant matrices. The product of the size of
the Ai in (7) and degree is the size of the resulting generalized eigenvalue
problem Cv = λEv, which depends on whether the x- or y-variable is solved
for first. We use the Bézout resultant matrix and solve for the y-values
first if max(np, nq)(mp + mq) ≤ max(mp,mq)(np + nq); the x-values first,
otherwise.

solution set to p(x, y) = q(x, y) = 0 is zero-dimensional, and here further
assume the common zeros are simple, i.e., if (x∗, y∗) is a common zero of
p and q, then the Jacobian of p and q is invertible there. There are two
mutually exclusive cases:

1. Finite common zero: There exists (x∗, y∗) ∈ C2 such that p(x, y∗) and
q(x, y∗) are nonzero and share a common finite root at x∗. In this case,
y∗ is an eigenvalue of B(y) with an eigenvector in Vandermonde form,
i.e., [T0(x∗), T1(x∗), . . . , TN−1(x∗)]

T .

2. Common zero at infinity: There exists y∗ ∈ C such that p(x, y∗) and
q(x, y∗) are nonzero and both have a zero coefficient in TN (x). We say
that they share a “common zero at infinity” and in this case, y∗ is a
finite eigenvalue of B(y) with eigenvector [0, 0, . . . , 0, 1]T .

It is worth noting that, if the degrees in x of py(x) and qy(x) differ,
then the definition of the resultant via B(y) is slightly different from the
determinant of the Sylvester matrix, as can be seen by adapting a result in
[29]. For instance, if np > nq, then the two determinants differ by a factor
C(αnp(y))np−nq , where C is a constant and αnp(y) is the leading coefficient of
py(x), but this does not alter the eigenvalues corresponding to finite common
zeros.

The mathematical subtlety continues when there are many common zeros
(possibly including “zeros at infinity”) of p and q sharing the same y-value.
In this case B(y) has an eigenvalue with multiplicity greater than 1 even
though p and q only have simple common zeros. Furthermore, there can
exist y∗ ∈ C such that either p(x, y∗) or q(x, y∗) is identically zero, in which
case y∗ is an eigenvalue of B(y) with B(y∗) = 0, a zero matrix.
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Eigenvalues of B(y) of multiplicity > 1 can be ill-conditioned and hence,
difficult to compute accurately, particularly in the presence of nontrivial
Jordan chains. However, in the generic case where all the common zeros
of p and q are simple2, the x-values for any two common zeros with the
same y-value are distinct. Moreover, the eigenvalues of B(y) have the same
geometric and algebraic multiplicity with eigenvectors spanned by Vander-
monde vectors span{[T0(xi), . . . , TN−1(xi)]

T }, where xi are the x-values of
the common zeros (xi, y∗). This means the eigenvalues of B(y) in [−1, 1] are
semisimple and hence, can be obtained accurately.

The intuitive explanation is that such solutions result only in nondefec-
tive (or semisimple) eigenvalues of B(y), and nondefective multiple eigen-
values are no more sensitive to perturbation than simple eigenvalues. The
simplest examples are symmetric matrices, whose eigenvalues are always
well-conditioned as can be seen by Weyl’s theorem and its sharpness. This
fact is often overlooked and multiple eigenvalues are sometimes unnecessarily
assumed to be ill-conditioned. Conditioning of semisimple multiple eigenval-
ues has been studied for matrices [44] and matrix pencils λX+Y [52], show-
ing they are well-conditioned provided that W TXZ is nonsingular, where
the columns of W and Z span the corresponding left and right eigenspaces,
respectively. The bottom line is that, if the original problem (1) only has
simple common zeros, then the resultant method can compute accurate so-
lutions, and the intermediate step of solving the resultant (8) is valid. This
means there is no requirement for a resultant method to do a change of
variables to reduce the chance that two well-separated common zeros share
the same y-value.

In the presence of multiple or near-multiple common zeros the situation
becomes more delicate, and in such cases the corresponding eigenvalues of
B(y) are ill-conditioned, as Theorem 5.1 below illustrates. Our focus is on
the generic case where the solutions are simple, and a reasonable requirement
for a numerical algorithm is that it detects simple common zeros that are
not too ill-conditioned, while multiple zeros are inherently ill-conditioned
and difficult to compute accurately. Our code typically computes common
zeros of multiplicity two with O(u1/2) accuracy, where u is the unit roundoff,
i.e., in a backward stable manner. However, since near-multiple solutions
are ill-conditioned a numerical scheme, like the one described here, cannot
hope to find them accurately (see section 5).

Numerically, another well-known difficulty with resultant-based methods
is the presence of spurious zeros, which are computed eigenvalues of B(y)
that do not correspond to any y-value of the common zeros (see section 7).

2This includes those at infinity. The requirement can be formalized, but the algebraic
details are beyond the scope of this paper.
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4 Subdivision of the domain

The Bézout resultant method of section 3 requires three main features to
become practical: subdivision, local Bézout refinement, and regularization.
The first of these is a 2D version of Boyd’s subdivision technique [13, 14] for
univariate rootfinding as utilized for many years in Chebfun [12, 50].

We recursively subdivide [−1, 1]× [−1, 1] into rectangles, in the x- and y-
variable independently, until the polynomial interpolants to f and g on each
subdomain are all of degree less than or equal to 16, a parameter determined
by experimentation. Specifically, we subdivide in x if max(np, nq) > 16,
and subdivide in y if max(mp,mq) > 16. Figure 2 shows how the square
[−1, 1]× [−1, 1] is recursively subdivided for sin((x−1/10)y) cos(1/(x+(y−
9/10) + 5)) = (y − 1/10) cos((x + (y + 9/10)2/4)) = 0 with a polynomial
system of degree less than or equal to 16 being solved in each subregion.

Figure 2: Subdivision of [−1, 1]×[−1, 1] used for the solution of f = sin((x−
1/10)y) cos(1/(x + (y − 9/10) + 5)) = 0 and g = (y − 1/10) cos((x + (y +
9/10)2/4)) = 0. The blue and red lines represent subdivisions used to ensure
the piecewise interpolants to f and g have degree less than 16 on each
subdomain. The green lines show subdivisions used by both interpolants.
In each subdomain we solve a polynomial system of small degree, and the
black dot is the only common zero.

We do not exactly bisect in the x- or y-direction, but instead subdivide
asymmetrically to avoid splitting exactly at a solution to f(x, y) = g(x, y) =
0. That is, in the x-direction we subdivide [−1, 1] × [−1, 1] into the two
subdomains [−1, rx] × [−1, 1] and [rx, 1] × [−1, 1], and in the y-direction
[−1, 1] × [−1, ry] and [−1, 1] × [ry, 1], where rx and ry are small arbitrary
constants3. This is to avoid accidentally subdividing at a solution since
functions arising in practice often have zeros at special points like 0 or π/6.

Usually, a piecewise polynomial interpolant can be of lower degree than

3We use rx ≈ −0.004 and ry ≈ −0.0005. There is no special significance of these
constants apart from that they are small and arbitrary.
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a global polynomial approximation, but not always. For subdivision to be
computationally worthwhile we require that, on average, each subdivision
reduces the polynomial degree (in the x or y direction) by at least 79%. The
estimate 79% is derived from the fact that 2(.79)3 ≈ 1, and each subdivision
in the x-direction splits a problem into two with the complexity of the algo-
rithm depending cubically on the degree in x. Let n = max(mp, np,mq, nq)
be the maximal degree of p and q, and let d = 16 be the terminating
degree for subdivsion. We define K to be the smallest integer such that
n(.79)K ≤ d, and we stop subdividing if either the degree becomes lower
than d, or subdivision has been done K times. After each subdivision we
perform a simple test to eliminate subdomains that do not contain solu-
tions. That is, if 2|P00| >

∑
i,j |Pij | or 2|Q00| >

∑
i,j |Qij | then there are no

solutions in that subdomain and it is dismissed.
For simplicity, suppose all the degrees of p and q are equal to n in both

x and y, and that each subdivision leads to a reduction in the degree by a
factor 0 < τ ≤ 1 in both x and y. Subdividing is done k times in both x
and y until nτk ≤ d = 16, so k ≈ (log d − log n)/ log τ . Then we have at
most 4k subdomains, each requiring O(d6) cost to solve a small generalized
eigenvalue problem. Therefore, asymptotically in n, the overall cost is

O
(

4k
)

= O
(

4
log d−logn

log τ

)
= O

(
4
− logn

log τ

)
= O

(
n
− log 4

log τ

)
.

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

τ

α

Figure 3: Subdivision complexity is O (nα), where α = − log 4
log τ and 0 < τ ≤ 1

measures the reduction in polynomial degree after subdivision. When τ <
1/2 polynomial evaluation is the significant cost rather than the solution of
generalized eigenvalue problems.

Figure 3 shows the exponent − log 4
log τ as a function of τ . When τ . 0.5,

function evaluation of the original functions f, g dominates the overall com-
plexity, which can be as low as O(n2). When τ ≈ 0.79 it is as high as O(n6),
the same as the original problem without subdivision. We note that even if
τ ≈ 0.79, it can still be useful to subdivide as long as τ < 1, as it reduces
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the storage cost from O(n4), for storing the linearization matrix pencil, to
O(n2), for storing the matrix of function evaluations.

The average degree reduction τ can take any value between 0 and 1 as
the following examples show:

1. Suppose that f(x, y) = f1(x)f2(y), where f1(x) and f2(y) are entire
oscillatory functions. Then by Nyquist’s sampling theorem [34] the
functions f1 and f2 must be sampled at, at least, 2 points per wave-
length to be resolved in the x and y direction. Since subdividing
halves the number of oscillations in the x and y direction, the number
of points required for resolution is halved in the x and y direction and
therefore, τ2 ≈ 1/4 and τ ≈ 0.5.

2. Suppose that f(x, y) = h(x− y), where h is an entire oscillatory func-
tion, then by Nyquist’s sampling theorem f must be sampled at 2
points per wavelength along the diagonal, i.e., y = x. Subdivision
in both x and y reduces the length of the diagonal by 2 and hence,
τ2 ≈ 1/2 and τ ≈ 0.707.

3. Take the very contrived function f(x, y) = |x− rx||y− ry|, which is of
very high numerical degree on [−1, 1]×[−1, 1]. However, on subdivision
the degree of f on each subdomain is just 1 and therefore, τ ≈ 0.

4. Suppose that f(x, y) = | sin(c(x − y))| with c � 1, then f is of very
high numerical degree with a discontinuous first derivative along many
diagonals. In this example, subdivision barely reduces the numerical
degree and hence, for all practical purposes τ ≈ 1.

Two dimensional subdivision is also beneficial for accuracy of the com-
puted solutions to (1) because it reduces the norms of the coefficient matrices
Ai, which has desirable consequences for the accuracy, see section 5. In ad-
dition, subdivision reduces the size of the Bézout matrix, and this decreases
the distance from singularity of the matrix polynomial B(y) as defined in
(7).

Typically, we observe that τ ≈
√

2/2 ≈ 0.707 and therefore, subdivision
leads to the complexity of O(n4). Figure 4 shows the computational time
for solving sin(ω(x + y)) = cos(ω(x − y)) = 0, for increasing ω, with and
without subdivision.

5 Conditioning of the Bézout polynomial eigen-
value problem

Suppose that (x∗, y∗) is a simple common zero of p and q, and let (x̂, ŷ) =
(x∗+δx, y∗+δy) be a common zero of the perturbed polynomials p̂ = p+δp
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Figure 4: Execution timings for computing the solutions to sin(ω(x+ y)) =
cos(ω(x − y)) = 0, where ω = 1, . . . , 50 (up to 20 without subdivision). In
this example, subdivision has reduced the complexity of our algorithm from
O(n6) to O(n4).

and q̂ = q + δp. Then we have, to first order,

0 =

[
p̂(x̂, ŷ)

q̂(x̂, ŷ)

]
=

[
∂xp(x∗, y∗) ∂yp(x∗, y∗)

∂xq(x∗, y∗) ∂yq(x∗, y∗)

][
δx

δy

]
+

[
δp(x̂, ŷ)

δq(x̂, ŷ)

]
. (9)

Our implementation initially scales p and q so that ‖p‖∞ = ‖q‖∞ = 1, where
‖p‖∞ = maxx,y∈[−1,1] |p(x, y)|. We assume this in the analysis below.

A stable numerical method computes a solution with an error of size
O(κ∗u), where κ∗ is the absolute condition number [23, Ch. 1] of (x∗, y∗),
defined as

κ∗ = lim
ε→0+

sup

{
1

ε
min

∥∥∥∥∥
[
δx

δy

]∥∥∥∥∥
2

: p̂(x̂, ŷ) = q̂(x̂, ŷ) = 0

}
, (10)

where the supremum is taken over the set {(p̂, q̂) :
∥∥[ ‖δp‖∞
‖δq‖∞

]∥∥
2
≤ ε}. Here

‖ · ‖2 denotes the matrix induced 2-norm. Thus, by (9) the condition num-
ber (10) of the rootfinding problem is κ∗ = ‖J−1‖2, where J denotes the
Jacobian matrix of p and q at (x∗, y∗).

To analyze the error in a solution obtained by our algorithm, we next
examine the conditioning of the polynomial eigenvalue problem B(y), which
we use to find the y-values of the solution. To first order in u, the error in
the computed eigenvalues of B(y) is bounded by (conditioning)·(backward
error), where the conditioning κ(y∗, B) is the conditioning of y∗ as an eigen-
value of B(y), defined by

κ(y∗, B) = lim
ε→0+

sup

{
1

ε
min |ŷ − y∗| : det B̂(ŷ) = 0

}
, (11)
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where the supremum is taken over the set of matrix polynomials B̂(y) such
that maxy∈[−1,1] ‖B̂(y)−B(y)‖2 ≤ ε. The backward error is the ∆B(y) with
the smallest value of maxy∈[−1,1] ‖∆B(y)‖2 such that the computed solution
is an exact solution of B(y) + ∆B(y).

The special structure of Bézout matrix polynomials lets us characterize
the eigenvalue condition number κ(y∗, B) with respect to p and q, as we
show in the next theorem.

Theorem 5.1 Let B(y) be the Bézout matrix polynomial in (7) with ‖p‖∞ =
‖q‖∞ = 1, and suppose (x∗, y∗) ∈ [−1, 1]× [−1, 1] is a simple common zero
of p and q. Then the absolute condition number κ(y∗, B) as defined in (11)
is

κ(y∗, B) =
‖v‖22
| det J |

, (12)

where J =
[ ∂xp ∂yp
∂xq ∂yq

]
is the Jacobian and v is in Vandermonde form v =

[T0(x∗), . . . , TN−1(x∗)]
T . The condition number κ(y∗, B) satisfies

1

2

‖J−1‖22
κ2(J)

≤ κ(y∗, B) ≤ 2N
‖J−1‖22
κ2(J)

, (13)

where κ2(J) = ‖J‖2‖J−1‖2, and

κ∗
‖adj(J)‖2

≤ κ(y∗, B) ≤ κ∗N

‖adj(J)‖2
, (14)

where κ∗ is as in (10) and adj(J) =
[ ∂yq −∂yp
−∂xq ∂xp

]
is the algebraic adjugate

matrix of J .

Proof: Since B(y) is a Bézout matrix polynomial, the eigenvector corre-
sponding to y∗ is in Vandermonde form v = [T0(x∗), . . . , TN−1(x∗)]

T (see
section 3.1). The first-order perturbation expansion of y∗ when B(y) is
perturbed to B(y) + ∆B(y) is [45, Thm. 5]

ŷ = y∗ −
vT∆B(y∗)v

vTB′(y∗)v
, (15)

where the derivative in B′(y∗) is taken with respect to y.
From (11) and (15) we can see that κ(y∗, B) ≤ ‖v‖22/|vTB′(y∗)v|, and to

show that this upper bound is attainable we take ∆B(y) = εvvT t(y), where
t(y) is a scalar polynomial such that maxy∈[−1,1] |t(y)| = |t(y∗)| = 1

‖v‖2 . This

yields (12).
To bound the numerator of ‖v‖22/|vTB′(y∗)v|, we use 1 ≤ ‖v‖2 ≤

√
N ,

which follows from the Vandermonde structure. To bound the denominator,
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we note that from (6) and (7) the term vTB(y)v can be interpreted as
evaluation at s = t = x∗ of the Bézout function

B(p, q) =
p(s, y)q(t, y)− q(s, y)p(t, y)

s− t
. (16)

A convenient way to work out vTB′(y)v is by differentiating the Bézoutian
(16) with respect to y. Then we take the limit

vTB′(y)v = lim
(s,t)→(x∗,x∗)

B(∂yp, q) + B(p, ∂yq),

which can be easily evaluated by using L’Hôspital’s rule. Using also p(x∗, y∗) =
q(x∗, y∗) = 0 we conclude that

|vTB′(y∗)v| = |∂xp∂yq − ∂yp∂xq| = |det J |

and hence, κ(y∗, B) =
‖v‖22
| det J | , yielding (12).

The Jacobian is a 2×2 matrix so 1
|det J | = ‖J−T ‖1

‖J‖1 , in which ‖ ·‖1 denotes

the standard matrix 1-norm. Moreover, 1
2
‖J−1‖2
‖J‖2 ≤

‖J−T ‖1
‖J‖1 ≤ 2‖J

−1‖2
‖J‖2 , and

since ‖J
−1‖2
‖J‖2 =

‖J−1‖22
‖J−1‖2‖J‖2 = κ2∗

κ2(J) we obtain (13). The inequalities (14)

follow from J−1 = 1
det J

[ ∂yq −∂yp
−∂xq ∂xp

]
= 1

det J adj(J).
� � The condition analysis

and estimates in Theorem 5.1 appear to be the first in the literature for the
Bézout polynomial eigenproblem B(y). Importantly, they reveal situations
where the Bézout approach can worsen the conditioning: the eigenvalues of
B(y) provide stable solutions if |det J |−1 is of size O(‖J−1‖2), but not if it
is much larger.

Specifically, (13) shows that unless J is ill-conditioned, κ(y∗, B) can be as
large as the square of the original conditioning κ∗, and the Bézout approach
may result in solutions with errors as large as O(κ2

∗u) and may miss solutions
with κ∗ > O(u−1/2). The inequalities (14) show that κ(y∗, B) � κ∗ if
‖ adj(J)‖2 � 1, i.e., if the derivatives of p and q are small at (x∗, y∗).

It is worth noting that the quantity |det J | = |∂xp∂yq − ∂yp∂xq| in (12)
does not change if we swap the roles of x and y and consider B(x) instead
of B(y). Thus the conditioning of the Bézout matrix polynomial cannot be
improved by swapping x and y, and the decision to solve for x or y first
can be based solely on the size of the generalized eigenvalue problems (see
Table 1).

5.1 Improving accuracy to O(‖J−1‖2u)

The preceding discussion suggests that the Bézout resultant approach can
worsen the conditioning of the problem and hence, may give inaccurate or
miss solutions. We overcome this by a local refinement and detecting ill-
conditioned regions.
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Local Bézoutian refinement: After the initial computation, we employ
a local Bézoutian refinement, which reruns our algorithm in a small region
containing (x∗, y∗), where the polynomials are both small.

Suppose that we work in a rectangular domain Ω = [xmin, xmax] ×
[ymin, ymax]. For simplicity assume that |Ω| = xmax−xmin ≈ ymax−ymin with
|Ω| � 1. Since p and q are polynomials, Ω can be taken to be small enough
so that ‖p‖Ω‖q‖Ω = O(|Ω|2‖∇p‖2‖∇q‖2), where ‖p‖Ω = max(x,y)∈Ω |p(x, y)|
and ‖∇p‖2 = ‖

[ ∂xp(x∗,y∗)
∂yp(x∗,y∗)

]
‖2. In our code, and for simplicity of analysis, we

map Ω to [−1, 1]× [−1, 1] via the linear transformations

x←
x− 1

2(xmax + xmin)
1
2(xmax − xmin)

, y ←
y − 1

2(ymax + ymin)
1
2(ymax − ymin)

. (17)

A normwise backward stable algorithm for the polynomial eigenvalue
problem B(y) gives solutions with backward error O(umaxi ‖Ai‖2), where
Ai are the coefficient matrices of B(y) in (7). Then ‖Ai‖2 are of size
O(‖p‖Ω‖q‖Ω) and hence, O(|Ω|2‖∇p‖2‖∇q‖2) Therefore, the backward error
resulting from solving B(y) is of size O(u|Ω|2‖∇p‖2‖∇q‖2).

The mapping (17) results in modified gradients such that ‖∇p‖Ω =
O(|Ω|‖∇p‖2) and ‖∇q‖Ω = O(|Ω|‖∇q‖2). Thus, by (12), assuming that J is
not too ill-conditioned, the conditioning is κΩ(y∗, B) = O((|Ω|2‖∇p‖2‖∇q‖2)−1).

The error in the computed solution is bounded by (conditioning)·(backward
error), so we conclude that the error resulting from solving the polynomial
eigenvalue problem B(y) is

O(κΩ(y∗, B)u|Ω|2‖∇p‖2‖∇q‖2) = O(u).

This corresponds to error of size O(u|Ω|) when we map x and y back to
[−1, 1]× [−1, 1] by the inverse transformation of (17).

In addition, approximating p and q in Ω results in backward errors
O(u‖p‖∞) andO(u‖q‖∞), respectively. So by (9) the overall error isO(u‖J−1‖2),
reflecting the conditioning of the original problem. Hence, the solutions are
computed stably.

The condition on Ω can be relaxed to the weaker requirement ‖p‖Ω‖q‖Ω =
O(|Ω|‖J−1‖2‖∇p‖2‖∇q‖2) to arrive at the same conclusion that the error is
O(u‖J−1‖2), as can be verified by the same argument as above.

The crux of the discussion is that although the conditioning of the Bézout
approach (12) can be worse than the original conditioning κ∗, by working
in a local domain we reduce ‖Ai‖2, thereby reducing the backward error to
obtain a stable solution with respect to the original problem.

Detecting ill-conditioned region and rerunning: Solutions can be
missed if κ(y∗, B) > O(u−1), and this is unacceptable if the original con-
ditioning is κ∗ � O(u−1). Since O(‖ adj(J)‖2) is equal to O(‖J‖2), the
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estimate (14) shows that κ(y∗, B) � κ∗ if and only if ‖J‖2 is small, and
since p(x∗, y∗) = q(x∗, y∗) = 0, this implies that p and q are small near
(x∗, y∗). To detect ill-conditioned regions in which solutions might have
been missed by the initial Bézoutian method, we sample p, q, and J on an
equispaced grid in [−1, 1] × [−1, 1] of size (2 max(np, nq))

2 and find loca-
tions in which |p|, |q| ≤ O(u1/2) and | det J | ≤ O(u). If such points exist,
we identify the rectangular subdomain(s) that contain the points and rerun
the Bézoutian method there. In each subdomain the polynomials are small
with |p|, |q| ≤ O(u1/2) and hence, by the argument above, solutions with
κ∗ � O(u−1) are not missed and are computed with accuracy O(‖J−1‖2u).

We note that it is easy to construct low degree polynomials p and q
so that ‖J−1‖2 � u−1 at a solution (x∗, y∗), and such an ill-conditioned
example cannot be solved accurately in double precision.

Another case that our method does not handle well is when the functions
f and g vary widely in magnitude in the domain of interest. The polynomial
interpolants will have poor relative accuracy in regions where |f | � ‖f‖∞
and |g| � ‖g‖∞, affecting the accuracy of the computed solutions. This
issue is related to the dynamic range as discussed in [13, 15] for univariate
rootfinding, and also arises in bivariate rootfinding. A common solution is
to resample the original functions f, g instead of the polynomial interpolants
p, q when working in a subdomain. Provided that f, g can always be com-
puted with relative accuracy, the accuracy in a subdomain can significantly
improve, leading to accurate solutions. The Chebfun2 roots command does
not implement this, because its primary goal is to achieve performance by
working primarily with polynomials, and its functionality is much broader
than bivariate rootfinding. Therefore, in addition to the Chebfun2 code [50]
we provide an implementation on Matlab Central File Exchange [37] that
resamples f, g after subdivision, which works independently from Chebfun2.

A typical case where the dynamic range becomes an issue is when f, g
are moderate degree polynomials represented in the monomial basis. In
such cases our scheme can give inaccurate results without resampling f
and g, which is the same as any other scheme. This is reflected in the
comparisons in [43], and the observed failures are resolved by allowing f, g
to be resampled.

Sylvester resultant matrix: The Sylvester resultant matrix could be
used to replace the Bézout resultant, and our experiments suggest that
the Sylvester resultant can be better conditioned when κ(y∗, B) � κ∗ and
J is well-conditioned. However, through experiments we observe that the
Sylvester resultant can have numerical difficulties when many solutions align
along one coordinate direction, whereas the Bézout resultant does not. Since
the Sylvester matrix polynomial is not symmetric its left eigenvector is non-
trivial and so its conditioning is more difficult to analyze. For these reasons,
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we decided to select the Bézout resultant. Moreover, the Bézout resultant
is symmetric and this can be exploited in a regularization step.

We also note that once subdivision is employed to yield systems of low-
degree polynomials, we can employ other methods to compute their common
zeros, including those discussed in section 2. We have chosen the Bézout re-
sultant because it is the only method whose conditioning is fully understood.
The conditioning of other resultants have been analyzed, but less determin-
istically: for example, Jónsson and Vavasis analyze the conditioning of the
Macaulay resultant using probabilistic arguments [26]. A comparison with
other approaches is beyond the scope of this paper.

6 Bézoutian regularization

The resultant, det(B(y)), is zero in exact arithmetic at precisely the y-values
of the common zeros of p and q, which includes those not in [−1, 1]. However,
problematically, B(y) can be numerically singular, i.e., ‖B(y)‖2‖B(y)−1‖2 ≥
1015, for many values of y. Hence, a backward stable eigensolver, such as
the QZ algorithm applied to a linearization of B(y), can give spurious eigen-
values of B(y) anywhere in the complex plane [4, Sec 8.7.4], and these are
known to also cause catastrophic ill-conditioning of the other eigenvalues [38,
Ch. 13]. As a consequence the computed solutions can be inaccurate or spu-
rious, and as a remedy we apply a regularization step to B(y).

6.1 Numerical singularity of Bézout matrices

The functions f(x, y) and g(x, y) are assumed to be smooth, and therefore,
their polynomial interpolants p and q, typically, have tensor Chebyshev ex-
pansions as in (2) with coefficient matrices P and Q that have rapidly decay-
ing entries. Hence, the polynomials py(x) and qy(x) have rapidly decaying
Chebyshev coefficients, and the Bézout matrix B(y0), for any y0 ∈ [−1, 1],
inherits a similar decay as P and Q through its definition (6). This can also
be seen from the fact that the Bézout function (6) is a bivariate polynomial
and the entries of B(y0) are the coefficients in its Chebyshev expansion. In
this section B(y) always denotes the matrix polynomial, whereas B(y0) is
its evaluation (a symmetric matrix) at y0, which is any fixed value in [−1, 1].

The decaying entries ofB(y0) mean its entries in the last column areO(u)
or smaller in magnitude, where u ≈ 1.1×10−16 is the unit roundoff, and the
last canonical vector, eN = [0, . . . , 0, 1]T , is numerically an eigenvector with
zero eigenvalue. Similar reasoning indicates that all the canonical vectors
eN , eN−1, . . . , eN−k+1 for some 1 ≤ k < N are also numerically nearly an
eigenvector with zero eigenvalue. Hence, an approximate null space of B(y)
is approximately S, where

S = [eN−k+1|eN−k+2| . . . |eN ] , 1 ≤ k < N.

20



This argument makes no reference to y0, and so we have ‖B(y0)S‖2 �
‖B(y0)‖2 for any y0 ∈ [−1, 1]. Thus the matrix polynomial B(y) is close to
singular. Note that such eigenpairs of B(y0) have nothing to do with the
eigenpairs of the matrix polynomial B(y). By contrast, at the eigenvalues
y∗ ∈ [−1, 1] of B(y), B(y∗) has a nontrivial null space with a null vector in
Vandermonde form [T0(x∗), . . . , TN−1(x∗)]

T , which coincides with the eigen-
vector of the matrix polynomial B(y) at the eigenvalue y∗. Consequently,
B(y∗) has a null vector numerically far from span(S), which the numerical
null space of B(y0) does not contain for other values of y0.

6.2 Regularization details

First we partition B(y) into four parts,

B(y) =

[
B1(y) E(y)T

E(y) B0(y)

]
, (18)

where B0(y) and E(y) are k × k and k × (N − k), respectively, and choose
k so that the (N − k) × (N − k) matrix polynomial B1(y) is numerically
nonsingular. We choose k to be the largest integer so that the following
conditions are satisfied for any y0 ∈ [−1, 1]:

• ‖B0(y0)‖2 = O(u);

• ‖E(y0)‖2 = O(u1/2).

Note that although the bottom-right part of B(y) is of norm O(u), E(y)
is typically not of that size; but we can still justify working with B1(y) by
showing the eigenvalues of B1(y) in y ∈ [−1, 1] are numerically close to the
eigenvalues of B(y). For our analysis the symmetry of B(y) is crucial, and
this is another reason we use Bézoutians instead of the Sylvester matrix.

Recall that the eigenvalues of a regular matrix polynomial B(y) are the
values y∗ for which the matrix B(y∗) has a zero eigenvalue. We show that
for any eigenvalue y∗ ∈ [−1, 1] of B(y), the matrix B1(y∗) with k chosen as
above is nearly singular, that is, B1(y∗) has an eigenvalueO(u). Numerically,
this means that y∗ can be computed stably via the regularized polynomial
eigenvalue problem B1(y).

First, we argue that for any given y0 ∈ [−1, 1], the matrix B(y0) has at
least k eigenvalues of size O(u). One way to see this is to introduce

B̃(y) =

[
B1(y) ET (y)

E(y) 0

]
,

and note that by Weyl’s theorem, the matrix B̃(y0) has eigenvalues within
‖B0(y0)‖2 = O(u) of those of B(y0). Moreover, by [31, Thm. 3.1], B̃(y)
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has at least k eigenvalues that match those of −E(y0)TB1(y0)−1E(y0) up to
O(‖E(y0)‖42) = O(u2). Hence, it suffices to show that ‖E(y0)TB1(y0)−1E(y0)‖2 =
O(u). Unfortunately, the bound ‖ET (y0)B1(y0)−1E(y0)‖2 ≤ ‖E(y0)‖22‖B1(y0)−1‖2
is insufficient because ‖B1(y0)−1‖2 can be large.

To see why we might expect ‖E(y0)TB1(y0)−1E(y0)‖2 = O(u), consider
the LDLT factorization B1(y0) = LDLT , where L is unit lower triangular.
For notational simplicity, we write L and D instead of L(y0) and D(y0).
We expect that the L factor has decaying off-diagonal elements, and D
has decaying diagonals4. To see why, consider the first step in performing
the LDLT factorization. The first column of L is parallel to that of B1(y0),
which has decaying coefficients. The Schur complement is the (n−1)×(n−1)
matrix B1,1(y0) − `d1`

T , where B1,1(y0) is the lower-right part of B1(y0),
and ` ∈ Rn−1 is the bottom part of L’s first column. Now since ` has
decaying coefficients, so does the matrix `d1`

T and hence, the decay property
is inherited by B1,1(y0)−`d1`

T . The rest of the LDLT factorization performs
the same operation on B1,1(y0) − `d1`

T , so the claim follows by repeating
the argument, observing that the diagonals of D become smaller as the
factorization proceeds.

We have B−1
1 = L−TD−1L−1 so ETB−1

1 E = ETL−TD−1L−1E, and
since the elements of E decay towards the bottom-right corner, so do those
of L−1E. On the other hand, the diagonals of D−1 grow towards the bottom-
right, and the large elements of D−1 are multiplied by the small elements of
E, so that ‖ETB−1

1 E‖2 � ‖E‖2‖B−1
1 ‖2. Indeed, in practice, we generally

observe that ‖ETB−1
1 E‖2 = O(‖E‖22) = O(u).

The remaining task is to show that B1(y∗) has an eigenvalue of size O(u)
if the numerical null space of B(y∗) has dimension k + 1. One observation
is that the eigenvalues of Hermitian matrices partitioned into 2 × 2 blocks
as in (18) match those of the diagonal blocks to within the norm of the
off-diagonal squared, divided by the gap between the spectra [30]. However,
this is not sufficient to show that the small eigenvalues of B1 do not get
perturbed by E since the gap is small for such eigenvalues.

To show that B1(y∗) has an eigenvalue of sizeO(u), we invoke the Cauchy
interlacing theorem [38, Ch. 10]: arranging the eigenvalues of B1(y0) and
B(y0) in nondecreasing order,

λi(B1(y0)) ≤ λi(B(y0)).

The reverse identity also holds: the ith largest eigenvalue of B(y0) is at
least as large as that of B1(y0). Consequently, an eigenvalue λi of B1(y0)
with |λi| > ‖B0(y0)‖2 can only increase in absolute value by E. Since

4Strictly speaking, D needs to be allowed to have 2 × 2 blocks, since an LDLT fac-
torization with D diagonal may not exist, as the example

[
0 1
1 0

]
illustrates. It is possible

to extend the argument to such cases, but most symmetric matrices do permit D to be
diagonal, and our purpose is to explain the behavior observed in practice.
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‖B0(y0)‖2 = O(u), this means that if B(y∗) has an additional null space
relative to B(y0) at other values of y0 ∈ [−1, 1], then B1(y∗) must have an
eigenvalue O(u). This shows that the y-values for which B has an extra
null space can be reliably detected via solving a polynomial eigenvalue with
respect to the smaller matrix polynomial B1(y).

The above argument holds only if the coefficients of B(y) have the decay-
ing property inherited from that of p and q. When the coefficients of p and
q do not decay the two conditions ‖B0(y)‖2 = O(u) and ‖E(y)‖2 = O(u1/2)
are not satisfied, and we proceed to solve the polynomial eigenvalue prob-
lem for B(y) without regularization. This does not cause difficulties because
then B(y) is not numerically singular.

Note that our regularization is not equivalent to cutting off the high-
degree terms in p(x, y) and q(x, y); instead, it corresponds to cutting off
high-degree terms in the Bézoutian (6). We also note that although the
initial motivation for regularizing B(y) was for improved stability, it also
results in improved efficiency because the polynomial eigenvalue problem
becomes smaller in size and lower in degree.

7 Further implementation details

Some implementation details remain and we discuss them in this section.

Construction of Bézout matrices

Our construction of (Chebyshev) Bézout matrices is based on the Matlab
code given in [46], which exploits a connection between Bézout matrices and
the block symmetric linearization of scalar and matrix polynomials. We
have improved the efficiency of the code by restricting it to only construct
Chebyshev Bézout matrices. More specifically, in [46] it was shown that
if u(x) is of degree d and v(x) is of degree at most d − 1, then the d × d
symmetric pencil introduced in [32] of the form λX + Y is such that X is
the Bézout matrix of u and v. Therefore, the Bézout matrix B(y0) can be
obtained from py0(x) and qy0(x) in (5), attaching zero leading coefficients if
necessary, by forming the matrix X in the symmetric pencil λX + Y . This
provides the ability to compute B(y0) for any y0 ∈ [−1, 1].

The coefficient matrices Ai in B(y) =
∑mps+mqs

i=0 AiTi(y) are obtained by
first sampling B(y) at mps +mqs + 1 Chebyshev points in the subdivided y-
interval, then converting to coefficient space via the fast Fourier transform,
applying the transform entrywise. Here mps and mqs are the degrees of p
and q in y in the subdivided domain.

23



Finding the eigenvalues of B(y) via linearization

Once the Chebyshev coefficients are obtained, we solve the polynomial eigen-
value problem via the standard approach of linearization. As in Chebfun,
we use the colleague matrix pencil [49, Ch. 18] for matrix polynomials,
the standard companion-like linearization for polynomials expressed in the
Chebyshev basis.

After forming the coefficient matrices of B(y), for efficiency we remove
the leading coefficients with Frobenius norms smaller than umaxi ‖Ai‖F ,
where Ai are as in (7). An analogous technique is used in the 1D Chebfun,
and since this can be regarded as a small normwise perturbation in the
problem, this can be done without affecting the backward stability of the
computed solution. The size of the pencil is (dimension of B1(y))·(degree
of B1(y)) as summarized in Table 1, but regularization and truncation can
reduce the size.

The colleague matrix pencil for a matrix polynomial
∑M

i=0AiTi(λ), Ai ∈
RN×N is [49]

λX+Y = λ


AM

IN
. . .

IN

−
1

2



−AM−1 IN −AM−2 −AM−3 · · · −A0

IN 0 IN
. . .

. . .
. . .

IN 0 IN

2IN 0


.

The eigenvalues of the matrix polynomial P (λ) match those of the matrix
pencil λX + Y , which can be computed by the QZ algorithm [21, Ch. 7].

Univariate rootfinding

Once we have found the y-values of the solutions, then we find the x-values
by a univariate rootfinding algorithm based on computing the eigenvalues of
the colleague matrix [49], and using the eig command in Matlab. Due to
subdivision, the polynomials are of degree less than 16 on each subregion,
and computing their roots is negligible in cost.

We compute the roots of both p(x, y∗) and q(x, y∗) on the subdivided x-
interval separately, and test if both functions are small enough at the roots
and discard those that fail this test. The function value tolerance depends
on the localization level of the algorithm, as we explain shortly. Then we
merge the x-values that are less than O(u) apart, as common roots can be
double-counted by this process.

Local Bézoutian refinement

This component is crucial to the success of the algorithm. After comput-
ing the approximate solutions via the initial Bézoutians we further employ
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highly localized Bézoutians near the solutions for improved stability and
accuracy. Specifically, we do the following:

1. Group the computed zeros into clusters, each of whose members are
within O(u1/4) in Hausdorff distance; and

2. For each cluster, execute another Bézout-based rootfinder in a small
domain of width O(u1/4) that contains the cluster.

The distance u1/4 was chosen so as to be small enough not to contain too
many solutions, and large enough to accommodate the errors in the initially
computed solutions. The local Bézoutian refinement is beneficial to pre-
vent worsening of the conditioning (see section 5), and here we argue that
the local refinement is also needed because the initial solution may contain
spurious, multiply-counted, or inaccurate solutions. The task of the initial
global Bézoutian is to obtain an estimate of the solutions that are allowed to
have error larger than O(u), but must not be missed. Hence, at first we ac-
cept x-values with |f(x̂∗, ŷ∗)|, |g(x̂∗, ŷ∗)| ≤ O(u1/2), which does not remove
those corresponding to near-multiple or ill-conditioned solutions, and then
during the local refinement we do a more stringent test requiring |f | and |g|
to be O(u).

Since at the local level the domain is much smaller than the original, the
polynomial interpolants of f and g are of very low degree and hence, the
overhead in cost is marginal.

Sometimes the local domain is so small that one of the polynomials, say
p, is numerically constant in one (or both) variable, say x. In such cases we
trivially find the roots y∗ of p(y) and compute the roots of q(x, y∗) on the
local interval.

Local refinement usually results in a significant improvement in accu-
racy as discussed in section 5. Moreover, the low-degree polynomials result
in a Bézout matrix polynomial B(y) that is far from singular, and so its
numerical solution can be carried out stably.

The refinement is vital when many solutions exist with nearly the same
value in the first coordinate y. Specifically, suppose that (xi, y0 + δi) for i =
1, . . . , k are simple zeros of f and g, where |δi| are small. Then the computed
eigenvalues of the Bézout matrix polynomial take many (at least k) values
close to y0. The algorithm then finds the corresponding x-values via a
univariate rootfinder, but this process faces difficulty, as for each computed
y0 +δi, the two functions f(x, y0 +δi) and g(x, y0 +δi) have k nearly multiple
zeros, and this can result in counting the same zero multiple times. The local
Bézout refinement resolves this by regarding such multiply counted zeros as
a cluster and working in a subdomain that contains very few common zeros.
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Solutions off the domain, but numerically close

Some care is required to avoid missing solutions that lie on or near the
boundary of the domain [−1, 1]× [−1, 1], as a small backward perturbation
can move them outside. This is the same reason we do not exactly bisect
in the subdivision (see section 4). We must also be careful not to miss real
solutions that are numerically perturbed to complex ones with negligible
imaginary parts.

To ensure that we do not miss the solutions near the boundary, we
initially look for solutions in the slightly enlarged domain [−1 − δ, 1 + δ] ×
[−1−δ, 1+δ] where δ = 10−10. Then we disregard solutions outside [−1, 1]×
[−1, 1]. Solutions off the domain within a distance of 10−15 are regarded as
solutions on the boundary by perturbing them.

To capture solutions that have been numerically perturbed to have neg-
ligible imaginary parts we check for the eigenvalues of B(y) with real parts
in [−1, 1]× [−1, 1] and the imaginary parts of size O(u1/2), or smaller. The
tolerance of size O(u1/2) is reasonable since near-multiple common zeros of
multiplicity two can be perturbed into the complex plane by this amount.

Spurious zeros and their removal

One difficulty with resultant-based bivariate rootfinders is spurious zeros,
which are y-values for which the resultant is numerically singular, but p and
q do not have a common zero. There are several ways spurious zeros can
arise: (i) A shared zero at infinity: for example, if deg p > deg q in x then
there is a spurious zero at values of y for which the leading coefficient of p
is zero; (ii) An exact nonreal common zero, or an exact real common zero
lying outside the domain; and (iii) Numerical artifacts that arise due to the
ill-conditioning of B(y).

Fortunately, a computed spurious root arising before local refinement
will reveal itself when we refine. There are two reasons why refinement re-
moves spurious roots. First, refinement reduces the degree of the polynomial
approximants, meaning it is less likely to encounter shared zeros at infinity.
Second, the matrix polynomial B(y) is smaller in both size and degree and
typically has a greatly improved condition number. In the unlikely event
that a spurious root is present in the final stage, univariate rootfinding per-
forms an additional control to check that we have the actual common zeros
of the original bivariate functions.

The above qualitative arguments suggest, and experiments corroborate,
that local refinement is an effective approach for the removal of spurious
solutions, a well-known challenge for resultant-based methods. Although in
theory spurious solutions can still arise, we are not aware of an example
where local refinement fails to remove them.
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8 Numerical examples

In this section we present six examples to illustrate the accuracy and robust-
ness of our algorithm and its ability to solve problems with very high poly-
nomial degree. Throughout, the zero contours of f and g in (1) are drawn
as blue and red curves, respectively, computed by the command roots(f)

in Chebfun2 [47]. The black dots are the solutions computed by our algo-
rithm described in this paper as realized by the command roots(f,g) in
Chebfun2.

Example 1 (Coordinate alignment)

This example is of small degree, with the functions f and g being approxi-
mated by polynomial interpolants of degrees (mp, np,mq, nq) = (20, 20, 24, 30):(

T7(x)T7(y) cos(xy)

T10(x)T10(y) cos(x2y)

)
= 0, (x, y) ∈ [−1, 1]× [−1, 1]. (19)

The common simple zeros align along both coordinate directions, but this
does not reduce the accuracy of the resultant method, despite B(y) having
multiple eigenvalues (see section 3). The solutions to (19) are known exactly
and the maximum absolute error in the computed solutions is 8.88× 10−16.
In Figure 5 we show the zero contours and common zeros for (19). The zero
contour lines quadratically cluster near the edge of the domain following the
distribution of the roots of Chebyshev polynomials.

Example 2 (Face and apple)

Here we select functions f and g that are exactly polynomials, i.e., f = p
and g = q, with zero contours suggesting a face and an apple, respec-
tively. These bivariate polynomials were taken from [40], and the degrees
are (mp, np,mq, nq) = (10, 18, 8, 8). Note that in this example we have taken
the domain [−2, 2]× [−1.5, 4].

This example is of mathematical interest because both polynomials are
relatively small ≤ 10−5 near the origin where the Bézout resultant can
severely worsen the condition number of the solutions. Such solutions can
be initially missed, and to recover them the code detects ill-conditioned
subdomains and reruns the Bézoutian there (see section 5.1).

Example 3 (Hadamard)

Chebfun2 allows us to construct polynomials from interpolation data at a
tensor Chebyshev grid [47], and for this example we take the interpola-
tion data to be the Hadamard matrices H32 and H64 of size 32 × 32 and
64× 64, i.e., we solve (1), where f(xi, xj) = H32(i, j), g(xi, xj) = H64(i, j),
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Figure 5: The zero contours of f (red) and g (blue), and the common zeros
(black dots) computed with our algorithm. Left: Coordinate alignment (19).
Simple common zeros are aligned with the coordinate directions, but this
causes no numerical difficulties (see section 3). Right: Face and apple. Even
though the polynomials are small near the origin we can detect this and use
a local Bézout refinement to obtain accurate solutions (see section 7).

and xi are Chebyshev points. The Hadamard matrices contain ±1 entries
and therefore, the constructed polynomials p = f and q = g (of degrees
(mp, np,mq, nq) = (31, 31, 63, 63)) have many zero contours and common
zeros. Our algorithm requires 89 seconds and the maximum of |f(x∗, y∗)|
and |g(x∗, y∗)| over all computed solutions (x∗, y∗) is 3.98× 10−13.

In this example subdivision does not lead to an efficient reduction in
the degree, and τ , as defined in section 4, is estimated to be 0.82 for f and
0.75 for g. We obtained the estimates for τ by subdividing the domain into
25 × 25 subdomains and taking the average degree reduction.

Example 4 (Travelling waves)

Here we choose functions in (1) so that f and g oscillate in x and y, respec-
tively:(

sin(ωx− y/ω) + y

sin(x/ω − ωy)− x

)
= 0, (x, y) ∈ [−1, 1]× [−1, 1], ω ∈ R, (20)

where increasing ω makes the problem of higher degree, and for Figure 6 we
have selected ω = 30. The degrees of the polynomial interpolants p and q
are (mp, np,mq, nq) = (7, 63, 62, 6). Note that f requires many subdivisions
in x, and g requires many in y to reduce the degree. However, since f and g
must be subdivided on the same grids we actually subdivide f and g many
times in both directions. Figure 6 shows the zero contours and solutions for
(20) for ω = 30. Our algorithm required 11.0 seconds and the maximum of
|f(x∗, y∗)| and |g(x∗, y∗)| over all computed solutions (x∗, y∗) is 1.38×10−13.
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Figure 6: Left: Hadamard example. For this example significant subdivision
is required as subdividing does not reduce the degree very effectively. Right:
Travelling waves (20). For large ω this example is difficult for contouring
algorithms as the zero curves become oscillatory.

In this example the τ estimates are both about 0.72 in f and g and
hence, the estimated exponent of the complexity is − log 4

log τ = 4.2.

Example 5 (Airy and Bessel functions)

In this example we choose the following problem:(
Ai(−13(x2y + y2))))

J0(500x)y + xJ1(500y)

)
= 0, (21)

where Ai is the Airy function and J0 and J1 are Bessel functions of the
first kind. We have selected these functions because they require very high
degree polynomial interpolants, (mp, np,mq, nq) = (171, 120, 569, 568), to be
approximated to machine precision. Our code computed the 5932 common
zeros in 501 seconds, and we independently verified that our algorithm found
all the solutions to (21) by using a method based on a contouring algorithm
with significant domain subdivision.

In this example the τ estimates are both 0.59 in f and g and hence, the
estimated exponent is − log 4

log τ = 2.6.

Example 6 (SIAM 100-Digit Challenge problem)

An article in SIAM News in 2002 set a challenge to solve ten problems,
each to ten digits (the solution to each problem was a single real number)
[48]. One of these problems was to find the global minimum of the following

29



complicated and highly oscillatory function:

f(x, y) =

(
x2

4
+ esin(50x) + sin(70 sin(x))

)
+

(
y2

4
+ sin(60ey) + sin(sin(80y))

)
− cos(10x) sin(10y)− sin(10x) cos(10y).

(22)
Since all the local extrema of (22) satisfy ∂f

∂x = ∂f
∂y = 0 we can solve this

problem by finding all the local extrema before selecting the global minimum
from them. A simple argument shows that the global minimum occurs in
the domain [−1, 1] × [−1, 1] [11]. We approximate f on [−1, 1] × [−1, 1]
and note that the partial derivatives of f are of numerical degrees 625 and
901 in x and y, respectively, i.e., (mp, np,mq, nq) = (901, 625, 901, 625), and
we currently consider this of very high degree. Nevertheless, our algorithm
computes all 2720 local extrema of (22) in 257 seconds and obtains the
global minimum to an accuracy of 1.12 × 10−15. The function (22) does
have some structure because it is a low rank function [47], but this structure
is not directly exploited in the rootfinding algorithm. In Figure 7 we show
the location of the 2720 local extrema and plot the one corresponding to the
location of the global minimum as a red dot. In this example the τ estimates
are both about 0.53 in f and g and hence, the estimated exponent of the
complexity is − log 4

log τ = 2.2.
Finally, to test the code with examples of even higher degree, we dou-

bled all the coefficients inside the trigonometric functions in (22), e.g.,
esin(50x) ← esin(100x), sin(70 sin(x))← sin(140 sin(x)) etc., and ran the same
experiment. The partial derivatives of this f are now of numerical degrees
(mp, np,mq, nq) = (1781, 1204, 1781, 1204). Our code computed 9318 local
extrema in 1300 seconds, and the estimated complexity exponent is 2.1. For
this problem, the dominant part of the runtime is taken by the subdivision
step.
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