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Abstract

We analyze the relationship between the Jordan canonical form of
products, in different orders, of k square matrices Ap,..., Ag. Our
results extend some classical results by H. Flanders. Motivated by
a generalization of Fiedler matrices, we study permuted products of
Ay, ..., A under the assumption that the graph of non-commutativity
relations of Ajp,..., A is a forest. Under such condition, we show
that the Jordan structure of all nonzero eigenvalues is the same for
all permuted products. For the eigenvalue zero, we obtain an upper
bound on the difference between the sizes of Jordan blocks for any two
permuted products, and we show that this bound is attainable. For
k = 3 we show that, moreover, the bound is exhaustive.

1 Introduction

The Jordan canonical form (JCF) is a familiar canonical form under similar-
ity of square matrices. It consists of a direct sum of Jordan blocks associated
with eigenvalues, and it is unique up to permutation of these blocks [8, §3.1].
We assume throughout the paper that, for a given eigenvalue A, the Jordan
blocks at A in the JCF are given in non-increasing order of their sizes. In
1951 Flanders published the following result [4, Theorem 2]:

Theorem 1.1. If A € C™*"™ and B € C™™™, then the JCFs of AB and
BA may differ only in the sizes of the Jordan blocks at 0. Moreover, the
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difference between two corresponding sizes is at most one. Conversely, if the
JCFs of M € C"™™ and N € C™ " satisfy these properties, then M = AB
and N = BA, for some A, B.

Theorem 1.1 has been revisited several times and re-proved using dif-
ferent techniques [1, 10, 11, 12, 14, 16]. In this paper, we investigate
what happens if, instead of two matrices, we have products of k£ matrices,
Ay, Ag, ... A € C™*™. We refer to products of Aq,..., Ag, in any order
and with no repetitions of the factors, as permuted products.

We assume Aq,..., A are all n x n to ensure all permuted products
are well defined. An important difference between £ = 2 and & > 2 is
that, without any assumption on Ai,...,Ag, the products of Ai,...,Ag
have, in general, completely different eigenvalues for different permutations.
One exception is the eigenvalue 0, as if 0 is an eigenvalue of some prod-
uct of Ai,..., Ag, then it must be an eigenvalue of any other product of
Aq, ..., Ai. Indeed, in Theorem 1.1 the eigenvalue 0 is treated exception-
ally, with nontrivial results on the sizes of the Jordan blocks at 0. However,
the following simple example with k& = 3 shows that the sizes of the Jordan
blocks at A = 0 can be arbitrarily different.

Example 1.2. Let A = diag(1,1/2,...,1/n), B = —J,(-1)T, and C =
(AB)71J,(0), where J,(\) is the n x n Jordan block at the eigenvalue X [8,
Def. 3.1.1]. Then ABC = J,(0) by construction, whereas C BA has just one
etgenvalue at 0 and n — 1 nonzero eigenvalues.

To verify the last statement, observe that B™" is lower triangular with all
elements on and below the main diagonal equal to 1. Therefore, the last two
rows of B~YA™! are equal, up to the last-but-one entry. Hence, the last two
rows of C = B~1A71J,(0) are equal. Since CBA is a product of J,,(0) with
some nonsingular matrices, we have rank CBA = n—1. Moreover, the vector
vo = [1,2,...,n]T belongs to its kernel because CBAvy = CB[1,1,...,1]T =
Ce1 = 0. Now suppose that there is a Jordan chain, so let v1 be such
that CBAvy = vg. Then, since BA is invertible, there exists w such that
Cw = vg, but this is impossible as the elements of vg are all different while
the last two rows of C' are identical. So by contradiction O must be a simple
eigenvalue of CBA.

Example 1.2 shows that a general statement on the eigenvalues or the
sizes of their Jordan blocks for k£ > 3 matrices appears to be impossible.

In [3], Fiedler introduced a decomposition of an n x n companion matrix
into a product of k = n matrices, C' = II'*_; M;, and showed that the product
of the matrices M; in any order is similar to C', hence all permuted products
have the same JCF. For the nonzero eigenvalues, this is precisely what hap-
pens when k£ = 2, by Theorem 1.1. This motivates us to examine general
conditions that allow an extension of Theorem 1.1 for nonzero eigenvalues
to the case k > 2. The Fiedler factors M; have the following properties:



(F1) Commutativity: M;M; = M;M;, if |i — j| > 1.
(F2) M, are all nonsingular, possibly except for M,,.

Fiedler’s results suggest that Theorem 1.1 might be naturally extended
to three or more matrices when appropriate commutativity conditions hold.
Indeed, we will show that if the graph of non-commutativity relations is a
forest (see Section 4), then all permuted products have the same Jordan
blocks for nonzero eigenvalues. This commutativity assumption generalizes
condition (F1) above, and imposes no requirement when k£ = 2, i.e., the
two matrices can be arbitrary, thus recovering Theorem 1.1. We impose no
nonsingularity condition such as (F2) above because this imposes similarity,
i.e., also the Jordan blocks at zero must be the same: an undesirable restric-
tion given our goal of generalizing Flanders’ theorem. Indeed, Theorem 1.1
shows that the difference in the sizes of Jordan blocks at zero is at most 1
when k& = 2. One key result of this paper is that, for general k, under our
commutativity conditions the difference is bounded by k£ — 1, and that this
bound is attainable.

For k£ = 3 matrices, our condition reduces to the requirement that one
pair commutes, and we prove that the allowable sizes are exhaustive. More
precisely, we prove that given two lists of these allowable sizes, there are
matrices A, B, C such that the JCFs of ABC and CBA consist of Jordan
blocks at A = 0 whose sizes match those in the respective lists.

Several previous papers have addressed extensions of Flanders’ result
to many matrices. For example, [7] examines cyclic permutations and [5]
derives conditions for the products to have the same trace, the same charac-
teristic polynomial or the same JCF, with focus on k£ = 3 or 2 X 2 matrices.
Unlike in previous studies, we deal more thoroughly with any permutation
and arbitrary n and k£ > 3, and work with commutativity conditions guar-
anteeing that the Jordan structures for nonzero eigenvalues coincide for all
permutations.

The paper is organized as follows. Section 2 reviews basic notions and
previous results. In Section 3 we analyze permuted products of £k = 3
matrices. Section 4 discusses the case k > 3, which requires the use of
permutations and graphs. We conclude in Section 5 with a summary and
some open problems related to this work.

2 Notation, definitions and some consequences of
Flanders’ theorem

We follow the standard notation I, and 0, to denote, respectively, the
n X n identity and null matrices. Given a square matrix M € C"*™,
A (M) denotes the spectrum (set of eigenvalues counting multiplicity) of
M; diag(Ay, ..., Ag) is the block-diagonal matrix whose diagonal blocks are



Aq,..., Ag, in this order (that is, the direct sum of Ay,..., Ag). Two ma-
trices M, N € C™*™ are similar if there is an invertible matrix P such that
PMP~'=N.

The Jordan block of size k € N at zero is the k X k matrix

0 1

Ji(0) == - (5. 1]
0

and the Jordan block of size k at A\ € C is the k x k matrix Ji(\) =
Je(0) + M.

For a given A € C, the Segré characteristic of M at X\, denoted by
S)\(M), is the list of the sizes of the Jordan blocks at A in the JCF of M. In
this paper we regard it as an infinite nonincreasing sequence of nonnegative
integers, by attaching an infinite sequence of zeros at the end. Note that the
Segré characteristic at any A is uniquely determined, and that this definition
includes also those complex numbers that are not eigenvalues of M, though
in this case all entries in the Segré characteristic are zeros.

We use boldface for lists of nonnegative integers. Given two (possibly
infinite) sequences of integers p = (u1, po, . ..) and p' = (u}, b, .. .), we will
often refer to the standard ¢>° and ¢! norms, which we denote by || - ||c and
- .

Given k matrices A1, ..., A € C™*" by a permuted product of Ay, ..., Ay
we mean any of the products of Ay,..., A in all possible orders, with-
out repetitions. The set of permuted products of Ay, ..., A is denoted by
P(A1,...,Ag). For instance, for three matrices A, B, C, we have

P(A,B,C) = {ABC, ACB, BAC, BCA,CAB,CBA}.

We will generally use the II symbol to denote elements of P(A1, ..., Ax).
The following definition relates matrices M, N in Theorem 1.1, and plays
a central role in this paper.

Definition 2.1. A pair of matrices (M,N), with M € C™*™ and N €
C™*™ is a Flanders pair if there are two matrices A € C™*™ and B € C"*™
such that M = AB and N = BA. In this case, we say that there is a Flanders
bridge between M and N.

We have the following elementary result:
Lemma 2.2. If M, N € C™*"™ are similar, then (M, N) is a Flanders pair.

Proof. If PMP~' = N, with P nonsingular, then we may take B = PM,
A = P~!, which satisfy AB = M and BA = N. O



The converse of Lemma 2.2 is not true in general. This is an immediate
consequence of Theorem 1.1, since two matrices in a Flanders pair may have
different Segré characteristic at zero and, as a consequence, different JCF.
However, if M, N are nonsingular, then (M, N) is a Flanders pair if and only
if M and N are similar. This is also an immediate consequence of Theorem
1.1.

The relation R on C"*" xC"*"™ defined by “MRN if (M, N) is a Flanders
pair” is not an equivalence relation, since R is not transitive. Moreover,
Flanders pairs connecting three matrices M, N, @ in the form (M, N), (N, Q)
are closely related to our problem. The following direct consequence of
Theorem 1.1 establishes some elementary features of these pairs.

Corollary 2.3. If M € C™*™ N € C™" and Q € CI*? are such that
(M,N) and (N, Q) are Flanders pairs, then

(i) Sx(M) = 8x\(Q), for all X # 0, and
(if) [1So(M) = So(@Q)llse < 2.

In Corollary 3.6 we give a characterization of pairs of matrices M, Q
as in the statement of Corolary 2.3 and with the same size. We will see, in
particular, that, when M and @ have the same size, the converse of Corollary
2.3 also holds. Corollary 2.3 can be extended directly to more than three
matrices.

Another feature of Theorem 1.1 we are interested in is its exhaustivity.
The meaning of exhaustivity is exhibited in the following result.

Theorem 2.4. Let p = (u1,po,...), and p' = (uy, 1h,...) be two lists of
integers with py > pg > ... >0, and py > ph > ... >0, such that

(i) lle— plloo <1, and
(i) |ully =m, [l =n.

Then, there exist two matrices A € C™*™ and B € C™*™, such that So(AB) =
u and So(BA) = .

Theorem 2.4 follows immediately from Theorem 1.1 just by noticing that
it is always possible to construct two matrices M € C™*™ and N € C"*"
such that So(M) = p and So(N) = p/, with m, n, p, p as in the statement of
Theorem 2.4. It can be proved also in a direct way by explicitly constructing
A and B. This is the approach followed in [12, Th. 3.3]. We present an
extension of Theorem 2.4 to three matrices in Theorem 4.15. Our approach
owes very much to the one in [12].



3 The case of three matrices

Unlike what happens for two matrices, given three matrices, A, B, C' € C"*"™,
the spectra of two different permuted products of A, B, C' may be completely
different. To verify this, one may just take three random matrices A, B, C
and compute the eigenvalues of ABC and ACB. This is related to the fact
that two similar matrices, as BC and C'B are if one of B, C is nonsingular,
may give two matrices with completely different spectra when multiplied on
the left by a third matrix A. To what extent may the spectra of different
permutation products of three given matrices differ? One restriction is that
the determinants must all be the same, which implies that if 0 is an eigen-
value of some permuted product then it must be shared by all permuted
products. However, as we have seen in Example 1.2, the Jordan structure of
the eigenvalue 0 may differ from one product to another. Let us first consider
the case of nonsingular matrices. The following result shows that, without
any additional assumptions, the only restriction on the spectra of permuted
products of three nonsingular matrices A, B,C is that they all have the
same determinant. It is a restatement, with a more straightforward proof,
of Theorem 4 in [6].

Theorem 3.1. Let Ay = {A\1,..., 1} and Ay = {A12,..., An2} be two
sets of n monzero complex numbers, eventually repeated. If Ai1--- A1 =
A12 -+ Ana, then there are three matrices A, B,C € C"*", such that A (ABC)
A1 and A (ACB) = As.

Proof. By Lemma 2.2, it suffices to find two similar matrices M, N € C"*",
and a third matrix A € C™*", such that A (AM) = Ay and A (AN) = As.
This can be done using only diagonal matrices. More precisely, set r1 # 0
(arbitrary), a; := A11/r1 and, recursively for ¢ = 2,...,n , r; == \i2/a;—1,
a; := Aj1/r;. Note that, with these definitions, we have

_(arr1)(agre) - (anrn)  AtdorcccAnn
anT1 = = = A\n2.
(a1re)(agrs) -« (an—1mn)  A12A22- - Ap—12
Hence, if we set M = diag(ri,r2,...,1mn), N = diag(re,rs,...,m,71), and
A = diag(ay, ..., ay), then M is similar to N, and AM = diag(Ai1,...,An1),
AN = diag(A12, - . ., A\n2), as required. O

Under the conditions of the statement of Theorem 3.1, by Theorem
1.1 we have A(ABC) = A(CAB) = A(BCA) = A;, and A(ACB) =
A(BAC) = A(CBA) = Ay. Moreover, as a consequence of Theorem 1.1,
the set of permuted products is partitioned into two classes, namely: C; =
{ABC,BCA,CAB}, and Cy = {ACB,BAC,CBA}. Any two products in
each class are related by a “cyclic permutation”, so they form a Flanders
pair. Hence, we can relate the JCFs of these permuted products. The re-
maining question is to relate the JCFs of permuted products in C; with the



ones in Cy. Theorem 3.1 shows that, if A, B, C are nonsingular, there may
be no relationship at all between the spectra of products in different classes.

Motivated by the work of Fiedler, here we require that at least two of
A, B,C commute. As we see in Section 4, if we consider formal products
of an arbitrary number of matrices, commutativity conditions allow us to
characterize those cases where any two arbitrary permutations are linked by
a sequence of Flanders bridges. In this case, all permuted products have the
same Segré characteristic at an arbitrary nonzero complex number.

Proposition 3.2. Let A, B,C € C™*™ be such that at least two of A, B,C
commute. Let I11,1ls € P(A, B,C). Then

(i) Sa(Iy) = S\(Ila), for all X # 0, and
(i) [|So(1), So(Ilz)([oe < 2.

Proof. By Corollary 2.3, it suffices to show that, in the conditions of the
statement, one of the following situations occurs:

1. (IT;,II2) is a Flanders pair.

2. There exists IT € P(A, B, C) such that (II;,II) and (II,IIy) are Flan-
ders pairs.

In the conditions of the statement there are at most 4 distinct elements
in P(A,B,C), which give at most 6 distinct (non-ordered) pairs of per-
muted products. Let us assume, without loss of generality, that AC =
CA. In this case, the elements in P(A, B,C) (including II; and II) are
ABC,ACB,BAC,CBA, and (ABC,ACB), (ABC,BAC), (ACB,BAC)
and (BAC,CBA) are Flanders pairs. Hence, one of the situations described
above holds for II; and Il. O]

The following technical Lemma 3.3 is used to prove Theorem 4.15:

Lemma 3.3. Let p = (p1,pa,...), ' = (i, ih,...) € £+ be two sequences
of momnegative integers. Suppose that

(1) lln = wlloc =2, and

(i) [lplly = llw'llx = n.
Then we may rearrange p and p' in such a way that

= (Miy s fhigs Migs Higs Pigs Pigs -+ +)s B = (s Wiy Higs ey Mgy g5+ )
with

Hi]‘ + Mij+1 + Mij+2 = H;,J + /‘ng-',-l + M;j+27 fOT all j =1 (mOd 3) (31)



Proof. Let m = max(||po, [|£'||0) be the maximum of the number of nonzero
elements in g and g/. We may assume that they both have the same length,
by adding zeros to one of them if necessary. The proof is carried out by
induction on m. For m < 3 the result is trivial. Suppose the result holds for
lengths up to m — 1, and let us prove it for length equal to m. By condition
() in the statement, there is some ¢ > 0 such that |u; — p}| = 2. Without
loss of generality we may assume that p; = p) +2. Now, condition (i¢) in the
statement implies that at least one of the following situations must occur:

(A1) There is some j > 0 such that ,u; = p; + 2, or

A2) There are some k, £ > 0, with k # ¢, such that p) = u + 1 and
k
wy = e+ 1.

In case (A1), we may rearrange g and p', by adding one extra zero in
each list, in the form:
p= (i g Os o),
Bo= (i, 15,051,
where g and fi’ are obtained from p and p', respectively, by removing the
ith and jth elements. Now, the result follows by the induction hypothesis
on f and fi'.
In case (A2) we may rearrange:
M= (:U’u MKy Les EI)7
W= (15 My s 1),
where @1 and fi’ are obtained from g and p', respectively, by removing the
ith, kth and ¢th elements. Again, the result follows by induction on g and
~/
. 0

The main result of this section is an extension of [12, Th. 3.3] to three
matrices A, B, C under the commutativity condition AC = C A.

Theorem 3.4. Let p = (p1,p2,...,0,...), ' = (py, pth,...,0,...) € £+ be
two monincreasing sequences of nonnegative integers such that

(i) lp — w'llo <2, and

(i) [lplly = llw'l|x = n.
Then, there exist three matrices A, B,C € C™"*", such that AC = CA and

So(ABC) = p, and So(CBA) = y'.

A,B € C"" such that So(AB) = p and Sy(BA) = p'. In this case, we
may take C' = I, and we are done. Hence it remains to consider the case
lp — 1 ||oc = 2. The proof reduces to showing that the statement is true in
the following two cases:

Proof. First, notice that if || — p'[|cc < 1, then by Theorem 1.1 there exist



(A1) p=(m,n,0,...), 0 =(m—2,n+2,0,...)
(A2) p=(m,n,q0,...), p' ' =(m—-2,n+1,¢+1,0,...),

with m,n,q > 0 and m > 2. Indeed, let us assume that the result is true for
both (A1) and (A2), and let g and g’ be as in the statement. By Lemma
3.3, we can rearrange p and g’ in such a way that they are partitioned as

I‘L:(N:l?""l‘l'a?()?"‘)? and ll'/:(“/17"'7#:)¢’0"")7

where the pairs (p;, p}) fori = 1,..., o are such that ||p,;||1 = ||#}][1 =: n; and
they either satisfy ||p; —;]|cc < 1 or are of one of the forms (A1), (A2). Now,
since the result is true for both (A1) and (A2), and also for tuples of distance
at most 1, there are matrices A1, By,Cq € C™1*™ . A,, By, Cy € CleXta
such that AZCZ == CZAZ, and So(AZBZCl) = ([LZ, 0, .. .), SQ(ClBZAZ) = (/.L;, O, .. .),
for i =1,...,a. Then the matrices

A = diag(Ay,...,Ay), B = diag(Bxy, ..., Ba), C = diag(Cy,...,Cy)

satisfy AC = CA and So(ABC) = p,So(CBA) = .

It remains to prove that the result is true in cases (A1) and (A2). Con-
sider (A1) first. Denote by E;; the matrix, of the appropriate size, whose
(i,7) entry is equal to 1 and the remaining entries are zero. Set

A= diag(Im—lu 07 In)) B = Jm+n(0)+Em+n71, C= dlag(ov Im—i—n—l)-

Clearly we have AC = C'A. Direct computation gives ABC' = diag(J»(0), J,(0)),

and CBA = diag(0, J,—2(0), Jn11(0)) + Epin1. Now, diag(0, J,4+1(0)) +

E, 12,1 is similar to Jy,42(0), because its only eigenvalue is 0 and its rank de-

ficiency is one. Consequently, the JCF of CBA is diag(J,,—2(0), J,+2(0)), so

So(ABC) = (m,n,0,...) and So(CBA) = (m —2,n+2,0,...), as required.
Next consider (A2). Set

A = diag(0, Im+ntq-1), C = diag(lnt4+1,0, Im—2),
for which AC' = C A, and set also
B = diag(J4+1(0), Jm4n-1(0)) + Entnigi-
Direct computation gives
ABC = diag(0, J4(0), Jn(0), Jm-1(0)) + Emtntq,

and
CBA = diag(Jg+1(0), Jnt1(0), Jm—2(0)).

Note that diag(0, J4(0), Jn(0), Jm+1(0))+ Epmtntq1 is permutation similar to
diag(Jy(0), J,,(0), diag(0, Jp—1(0))+Ep, 1). Since, as before, diag(0, J,—1(0))+
Epn 1 is similar to Jp,(0), we conclude that So(ABC) = (m,n,q,0,...) and
So(CBA) = (m —2,n+1,q+1,0,...), as required. O



Remark 3.5. If ||p — p'[|cc = 2, then the matrices A, B,C constructed in
the proof of Theorem 4.15 have the property that none of the pairs (A, B)
and (B, C) commute, so there is exactly one commutativity relation in this
case. In graph theoretical terminology (see Section 4), the graph of non-
commutativity relations is a tree.

Our last result in this section concerns the “non-transitivity” of Flanders
pairs.

Corollary 3.6. Let M,Q € C™" ™. Then, the following conditions are equiv-
alent:

(a) There exists N € C"™ such that (M,N) and (N,Q) are Flanders

pairs.

(b) Sx(M) = 8x(Q), for all X # 0, and [|So(M) — So(Q)l|o0 < 2.

(¢) There are three matrices A, B,C € C™™ such that AC = CA, M is
similar to ABC, and Q is similar to CBA.

Proof. The implication (a) = (b) is Corollary 2.3. Suppose that (b) holds.
Without loss of generality, we may assume that M and @ are given in JCF,
so that M = diag(M,, M), and @ = diag(Q,,Qs) where M, Q, contain
Jordan blocks associated with nonzero eigenvalues, and M, Qs are Jor-
dan blocks for A = 0. By hypothesis, we have M, = @, and ||So(Ms) —
S0(Qs)|lo < 2. Using Theorem 4.15 with p = So(M;) and p' = Sp(Qs),
we see that there exist Ay, By, Cs such that A;Cy = CsA,, AsBsCs = M,
and CsBsAs = Qs. The block diagonal matrices A = diag(l,,, As), B =
diag(M,, Bs),C = diag(l,,Cs), where m is the size of both M, and @,
fulfill the conditions in (c).

Finally, suppose that (c) holds. Let N = BCA. Then (M, N) is clearly
a Flanders pair and, by the condition AC' = C'A, so is the pair (N,Q). O

We want to emphasize the difference between Corollary 3.6 and Theorem
1.1. The natural extension of Theorem 1.1 to three matrices would be that
(M, N) and (N, Q) are Flanders pairs if and only if there are three matrices
A, B,C such that AC = CA and M = ABC, Q = CBA. However, we have
not been able to prove that this is true nor to find a counterexample. This
issue remains an open problem (see Open Problem 3 in Section 5).

4 More than three matrices

For permutations in X, the symmetric group of {1,...,k}, we use the cyclic
notation o = (iyiz...is) to mean that o(i;) = ij41, for j = 1,...,5 — 1,
o(is) =11, and o (i) =4, for @ # i1,...,1s.
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An element in P(Ay,...,Ag) is related to a permutation ¢ € ¥, in the
form A, —1(1yAg-1(2) - - Ag—1(), that is, o(4) is the position of the factor 4; in
the permuted product. In this case, we write I, := Ag—1(1)Ag-1(2) - Ag—1()-

Definition 4.1. Given a permutation o € ¥, a cyclic permutation of o is
a permutation of the form (12 ... k)‘o, for some £ > 0. We say that o, T
are cyclically related if 7 is a cyclic permutation of o.

Accordingly, given a permuted product 11, € P(Aq,..., Ak), a cyclic per-
mutation of Il, is a permuted product of the form Il € P(A4,..., Ag), with
=012 ... ko, for some £ € N. IfIl, is a cyclic permutation of I1,,
then 11, and I1; are cyclically equivalent, and we write 11, ~¢ IL;.

We note that ~¢ is, indeed, an equivalence relation. Moreover, if I1,, ~¢
I1,,, then (Il,,,Il,,) is a Flanders pair. Conversely, if (Il,,,Il,,) is a Flan-
ders pair for all Ai,..., Ay (that is, as a “formal product”), then II,, is a
cyclic permutation of Il,,.

Definition 4.2. Given two permutations 01,02 € X, we say that i1, ..., 14,
with 1 < iy,...,iy < k, have the same order in oy and o2 up to cyclic
permutations if i1,...,i, appear in the same order in o1 := (12 ... k)%

and oy for some a > 0.

Accordingly, given Iy, ,1l,, € P(A1,...,Ar), we say that Ay, ..., A;,
have the same cyclic order in both Il;, and Il,, if i1,...,i4 have the same
order in o1 and oo up to cyclic permutations.

4.1 Inverse eigenvalue problem

We start with an observation that characterizes ¥ up to cyclic permuta-
tions.

Lemma 4.3. Let o, 7 € Y be two permutations. Then o and T are cyclically
related if and only if all triples i1,12,13, with 1 < iy,149,i3 < k have the same
order in o and T up to cyclic permutations.

Proof. If 0 = (1 2 ... k)'r, for some £ > 0, then it is clear that each triple
i1, 12,13 has the same order up to cyclic permutations in both ¢ and 7.
Conversely, assume that every triple i1, 9,43 has the same order up to
cyclic permutations in o and 7. Let a,, 8 > 0 be such that 6 := (12 ... k)%
and 7 := (1 2 ... k)P7 satisfy 5(1) = 1 = 7(1). Suppose & # 7 and let
v = min{i : 5(i) # 7(i)}. Then 1,5(v),7(r) do not have the same order
up to cyclic permutations in ¢ and 7, a contradiction. Hence, o and 7 are
cyclically related. O

We next show that it is possible that any two permuted products 111, Iy
have different spectra unless II; ~¢ Ils.
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Proposition 4.4. For each k > 3, there exist matrices, Ay, ..., Ay € C"*"
such that for any two permuted products Il and Ils belonging to differ-

ent equivalence classes of P(Ax1,...,Ax) under ~c, A(II;) and A (Il2) are
different.

Proof. First, let us order all the (g) triples (i1,1i9,43), with 1 < iy < iy <
i3 < k using, for instance, the lexicographic order. This order induces
an ordered list of length 3 - (’;) = w, denoted by L, after ad-
joining all triples in the given order. For instance, for £ = 4 we get the

list: £ =(1,2,3:1,2,4:1,3,4:2,3,4). Now, let ~ : {1 2, . M} -
{1,2,.. k} be the map defined by (i) = £; (the ith number in £). For each
j=1,... ( ) by Theorem 3.1, there are three matrices Agj 2, Azj_1, A3]

(C2><2 such that A(A3J 2A3J 1A3J) 7& A(Anggj 1A3] 2) For 7 = 1 k‘,

define . .
Ai = diag <Ai1, Aig, . ’Ai (k)) (= C2(3)X2(3),

\3

where

A — Zg(j71)+r, if there is some 1 < r < 3 such that v(3(j — 1) +r) =1,
e Is, otherwise.

For instance, for k = 4 we have A1 = dlag(Al, A4, A7, 1), Ay = diag(gg, 115, I, f~110),
Az = diag(As, I, As, A11), Ay = diag(I3, Ag, Ag, A12).
Let II,, and II,, be two permuted products in P(Ay,..., Ai) that are
not cyclically equivalent. By Lemma 4.3, there is a triple (i1, 2, i3), with 1 <
i1,19,t3 < k, such that ¢1,49,73 appear in this order in o1, and they appear
in the order 3,142,741 in o9, up to cyclic permutations. The triple (i1, i2,13)
corresponds to a triple (35 — 2 3j -1 3j) in £ for some j =1,..., (’;), such
that A (A3] 2A3] 1A3]) 75 A (A3]A3] 1A3] 2) The result follows from the
inclusions A (Agj 2A3J 1A3J) C A(Il,,) and A (Anggj 1A3J 9) € A (I1,,).
]

It is worth noting that, in the construction of the proof of Proposition
4.4, the spectra of Il,, and II,, are not necessarily disjoint. Note also that
the size of the matrices, namely n = w, depends on k.

All permuted products in P(Aq,...,Ar) have the same determinant.
Equivalently, the product of their eigenvalues is the same for all permuted
products. One may wonder whether or not this is the only restriction on
the eigenvalues of permuted products belonging to different classes under
cyclic permutations, as is for three matrices. More generally, we may pose
the following problem. Here and hereafter, for a given set A of complex

numbers, we use the notation JJyc, A to denote the product of all numbers
in A.

12



Inverse eigenvalue problem for permuted products of &
matrices: Given (k — 1)! sets of n nonzero complex numbers,
Av,y oo Ay, such that TTyep, A = H/\eAj A foralll <i,5<
(k — 1)\, find matrices Ay,..., A, with A; € C"™" for i =
1,...,k, such that A(Il;) = A;, for j = 1,...,(k —1)!, where
II; € P(A1,...,Ax) belongs to the jth equivalence class under
~C.

In Section 3 we have seen that the “Inverse eigenvalue problem for per-
muted products of k& = 3 matrices” is always solvable. The following result
states that, for k large enough, this is no longer true.

Theorem 4.5. Let n, k be two integers such that (k—1)!(n — 1) +1 > kn?.
Then, there exist (k —1)! sets of nonzero complex numbers Aq,. .., Ag_1y,
with [Ai| = n and [[ycp, A = H/\eAj A, foralll < id,5 < (k—1)!, such
that there are no matrices A1, ..., A, € C™" satisfying A (Il;) = A;, for
j=1,...,(k=1)!, whereIl; € P(Ax,..., Ay) belongs to the jth equivalence
class under ~¢.

Proof. We first note that prescribing the eigenvalues of a matrix A is equiva-
lent to prescribing the coefficients of the characteristic polynomial p4(A) :=
det(Al — A). Let Ay,...,Ar € C™*" be arbitrary matrices and let X =
vec([A1, ..., A]) € C* X1 be the vectorization of the block matrix [A; ... A
[9, Def. 4.2.9]. Let us denote by IIy,...,I(;_1y the representatives of each
of the equivalence classes of P(A1, ..., Ax) under ~¢. Define the map

p. cM — ¢V

where P(X) is the vector containing the coefficients of the characteristic
polynomials of IIy, ..., Il _1), in a certain pre-fixed order. P is a polyno-
mial map, since the coefficients of the characteristic polynomial of a matrix
are polynomial functions of the entries of the matrix. Moreover, we have
M = kn? and N = (k — 1)!(n — 1) + 1. Indeed, the necessary condi-
tion [[hep, A = HAeAj A, for 1 < i,5 < (k— 1), is equivalent to the fact
that the zero-degree coefficient of all characteristic polynomials of II;, for
j=1,...,(k=1)!, coincide. We may just slightly modify the definition
of P, in such a way that, instead of n coefficients for each characteristic
polynomial, we just have (n — 1) coefficients. Together with the choice of
the determinant, this gives the (k — 1)!(n — 1) 4+ 1 coordinates in P(X).
Now, the “Inverse eigenvalue problem for permuted products of k£ ma-
trices with size n x n” is solvable, for k and n, if and only if P is surjective
for these k and n. As is well known, a polynomial map from CM to CV is
not surjective when N > M [15, Th. 7, Ch. I, §6], so the result follows. [J
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4.2 Graph theoretical description of P(Ay,..., Ay)

We will see in Section 4.3 (see Theorem 4.16) how to characterize the maxi-
mum distance between the Segré characteristics of the zero eigenvalue in any
two given products in P(A41,..., A,) using the graph of non-commutativity
relations of pairs of matrices in {A41,..., Ax}. From this graph, there arises
an interesting combinatorial theory connected to this problem. In particu-
lar, the main result in this section is Theorem 4.13, which allows us to derive
the main part of Theorem 4.16 as a direct consequence.

For the basic notions in graph theory we essentially follow [2]. A graph
is a pair of sets G = (V, E), where V = {1,...,k} is the set of vertices, and
E is the set of edges, where an edge is a two element subset of V. Here
{i,j} € E means that there is an edge joining ¢ with j. By this definition,
multiple edges between the same pair of vertices and edges joining a vertex
to itself are disallowed.

A sequence of edges {ig, i1}, {i1,i2}, ..., {tm—1,1m}, with distinct ver-
tices {i;} is called a path of length m. The sequence is called a cycle of
length m if m > 3 and has the one repeated vertex i,, = ig. We say that a
graph has a cycle if a subset of its edges is a cycle. A graph G = (V| E) is
connected if, for any pair of vertices in V, there is at least one path contain-
ing them. A forest is a graph that has no cycles, and a tree is a connected
forest. The degree of a vertex i € V in the graph G = (V, E) is the number
of vertices joined to i. A leaf is a vertex of degree one, and the parent of
a leaf is the only vertex joined to it. A cut of G = (V, E) is a partition of
V =V1uVy (ViNVa = 0). Given a cut V1, Vs, we say that an edge {i,j} € E
crosses the cut if ¢ and j each lie in different V3, b =1, 2.

An oriented graph is a pair G = (V| E) where V is again a set of vertices
and F is a set of ordered pairs of elements of V', that is, £ C V x V. Here
(i,7) € E means that there is an edge joining i with j from i to j. A path (or
cycle) of length m in a oriented graph is likewise a sequence of m elements
of E of the form (ig,1), (41,%2), .., (¢m—1,%m), with distinct {i;} (except
im = 1o for cycles). An acyclic oriented graph is an oriented graph with no
cycles.

An orientation of G = (V, E) is a function w : E — V x V assigning to
each vertex {i,j} € E one of the ordered pairs (i, ) or (j,7). Note that the
set-wise image of E under w, denoted w(E) = {w(e) : e € E}, associates a
graph G with an oriented graph (V,w(F)). The orientation w is said to be
acyclic if (V,w(E)) has no cycles. The set of acyclic orientations of G will be
denoted by A(G). Any total order < of V' determines an acyclic orientation
w e A(G) by w({i,j}) = (i,7) if and only if ¢ < j and {i,5} € E. The
converse is also true, as the following result shows.

Proposition 4.6. Let G = (V, E) be a graph, and w € A(G). Then, there is
a total order = of V such that w is the acyclic orientation of G determined
by < (a topological sort of w).
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For a proof of Proposition 4.6 we refer the reader to [13, p. 137].

To motivate the following definition, the graph which will be our primary
concern is G = (V, E') where E encodes the non-commutativity relations on
k matrices (see Definition 4.14). An edge {i,j} € E will represent the fact
that matrices A; and A; do not commute. Meanwhile, we will continue to
associate elements of ¥j with elements of P(Ay,..., Ax) via Il,.

Definition 4.7. Given a graph G = (V,E) with V = {1,2,...,k}, we say
that Too is an allowed swap of o € X, when 7 = (i i+1) is a transposition
with {o~1(i),071(i+ 1)} € E, for some 1 <i <k —1.

The proof of the following result is straightforward.

Proposition 4.8. Let G = (V, E) be a graph with V.= {1,2,...,k}. Let
~g be the relation on Xy defined by:

01 ~G 024> 02 =Ts0--0T20T] 007,

where, for each i =1,...,s, 7; is an allowed swap of T;_10---o1001. Then
~g 1s an equivalence relation.

For o € ¥, we denote its equivalence class under ~¢ by [o]g = {0 € X} :
o ~g o} and the quotient space (set of all equivalence classes) by X/ ~g.
This set, as we will see in Section 4.3, is closely related to the “generically”
distinct elements in P(Aq,..., Ag) required by the non-commutativity re-
lations encoded in G. From the combinatorial point of view, this set is
interesting by itself because it is in one-to-one correspondence with the set
of acyclic orientations of G, as the following result shows.

Theorem 4.9. Let G = (V, E) be a graph with V- = {1,2,...,k}. Let us
define the map
Qg : Ek/ ~g — A(g)
[olg = Qg(o),

where, for each {i,j} € E, Q¢g(0) is the orientation given by

Qg(0)({i,5}) == (i,5), i o(i) <a(j). (4.1)

Then Qg is well-defined (i.e., o ~g o implies Qg(c) = Qg (o)), and it is a
bijection.

Proof. Let us first show that g is well defined. It suffices to show that it
is well defined for a single allowed swap ¢ = 7 oo where 7 = (i i+ 1) and
{o71(i),07 i+ 1)} ¢ E. Since 7 = (i i+ 1), i1 < iz implies either 7(i1) <
7(i2) or i1 = i3 — 1 = i. Hence, o(i1) < o(i2) implies 7 0 o(i1) < 70 o(iz)
for all {i1,i2} € E since {o71(i), 0 (i + 1)} € E.

Now, let us show that g is surjective. Let w € A(G) be an orientation
of G. According to Proposition 4.6, there is a topological sort that produces
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a total order < on V, which we write as i1 < io < --- < 7. Then we take
o € Xy, defined by o(j) =ij, for j =1,...,k, so that w = Qg(0).

To prove that g is injective, let 0 and & be two permutations in ¥, such
that Qg(o) = Qg (o). Without loss of generality, and relabeling the vertices
of V if necessary, we assume that ¢ = id is the identity permutation. We
construct a sequence of permutations, o1 = 7,09, ..., 0%, by the recurrence

Oir1 = (Z 1+1 ... Ui(i))oai, (4.2)

for 1 <7 < k (note that this recurrence implicitly requires showing o;(i) >
i). The proof reduces to the following two claims:

(i) o;(j) = 4, for j < i (in particular oy = id), and
(11) Oi+1 ~g 04 .

Note that the first claim also implies both o;(5) > i and o; *(j) > i when
j > i, which justifies the requirement that o;(i) > i.

We proceed by induction on i. For ¢ = 1, both claims are trivial. We
now assume both (i) and (ii) are true up to some ¢ < k. If it happens that
0;(i) = i, then both claims are trivially satified at i + 1 with 0,11 = o5.
Otherwise, for o;41 as in (4.2), we have, for the first claim:

For j<i: o7 4() = o7 'o(oi(i) ... 4)(j)
= 0, ') =1
For j=i: o;5() = o7 o(oi(i) ... 1)(3)
= o, (0i(i)) = 1.
For the second claim, let o;; = (j ... 03(i)) ooy, for i < j < o(i).
Note that o; ', (j) = o;'(j) and 0, ,;(j + 1) = 0; '(0i(i)) = i. Then,

oij=( j+1)o00j4+1is an allowed swap unless {o; '(4),i} € E. But we
have that o;(c; '(j)) = j < 0;(i) and, on the other hand, by claim (i), we
have o; !(j) > i. Hence {0, '(j),i} ¢ E, since Qg(0;) = Q5(5) = Qg(id),
by the induction and the initial hypotheses. O

According to Definition 4.1, we introduce the following notion.

Definition 4.10. Given two classes C1 and Cy in X/ ~g, we say that Cq
and Cy are cyclically related if there are some o1 € C1 and oo € Co such that
o1 and oo are cyclically related.

We note that, unlike the relation for permutations in ¥, introduced in
Definition 4.1, the relation on equivalence classes in Definition 4.10 is not
necessarily transitive.

We will see in Theorem 4.12 that the cyclic relation of a pair of elements
of ¥/ ~g corresponds to the following relation between the corresponding
elements of A(G).
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Definition 4.11. Let G = (V, E) be a graph and A(G) be the set of acyclic
orientations of G. Given wi,ws € A(G), we say that wy is a cut-flip of wy if
there is a cut V.= V1 U Vy such that, for each edge {i,j} € E, we have

(a) wi({i,7}) = wa({i,j}) ifi,5 € Vi orifi,j € Va.
(b) wi({i,5}) = (i,4) and wa({i,5}) = (4,7) if i € V1 and j € Vs.

We say that w,&0 € A(G) are connected by d cut-flips if there exists a
sequence wy = wW,w1, ... ,wg = w0 € A(G), such that w;—1 is a cut-flip of wj,
fori=1,....,d.

We say that A(G) is connected by d cut-flips if any two orientations are
connected by d cut-flips. For d = 1 we just say that A(G) is connected by
cut-flips.

We note that, by swapping V; and Vs, the relations in Definition 4.11
are symmetric. In plain language, a cut-flip is a cut where the edges of G
that cross the cut are oriented from Vi to V5 in w; and from V5 to Vi in
wo, while the non-crossing edges of G have the same orientation in both w;
and we. Theorem 4.12 shows that, as mentioned above, cut-flips graphically
represent the cyclic relations of quotient space X/ ~g.

Theorem 4.12. Let G = (V, E) be a graph, with V- = {1,2,...,k}, and let
Qg be the map defined in Theorem 4.9. Then [o1]g and [02]g are cyclically
related if and only if Qg(o2) is a cut-flip of Qg(o1).

Proof. For brevity, throughout the proof weset 7 := (12... k)*. Foro € %y,
we have

~ o) +¢, if o(i)<k—¢
Tooli) = { oli)+0—k, if o(i)>k—¢,
and hence
o) = o), it o(i),o() <kt
<0, if o(i)<k—{<o(j)
>0, if o(j)<k—-t0<o(i)
o(j)—o(i), if o(i),o(j) >k—1¢

(4.3)

roa(j)~roali) =

Now, let us prove the “only if” part of the statement. Let o € [o1]g
and 0 € [o2]g be such that & = 7 o o, for some ¢. Recall that, by The-
orem 4.9, Qg(o) = Qg(o1) and Qg(c) = Qg(o2). Let us consider V; =
{o71(1),...,07 k= 0} and Vo = {o Y (k — £+ 1),...,071(k)}.

We now verify that Qg() is a cut-flip of Qg(o). We analyze all possible
situations for an edge {i,j} € E:

e i,j € Vi: Then, 0(i),0(j) < k — ¥, by the definition of V;. Hence, by
(4.3), 0(j) — (i) = o (j) — o(i), so Qg(o)({,j}) = Qg (o) ({7, j}).
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e i,j € Va: Then, o(i),0(j) > k — ¢, by the definition of V;. Again, by
(4.3), 3(j) — (i) = o(j) — o(i), so Qg(@)({i,5}) = Qg(0)({i,j}) as

well.

o icVi,jeVa: Theno(i) < k—{ < o(j), by the definition of V; and V3,
soo(i) < o(j). Also, by (4.3),5(j)—a(i) < 0,s0 Qg(a)({i,7}) = (4,1),
whereas Qg (o) ({7, 5}) = (¢, 4)-

e i € Vo,7 € Vi: In this case, 0(j) < k— € < o(i), so o(j) < o(i).
Again, by (4.3), o(j) —a(i) > 0, so Qg(d)({7,5}) = (i,7), whereas
Qg(0)({7,5}) = (4,7)-

Let us now prove the “if” part. Suppose 2g(o1) is a cut-flip of Qg(0o2)
via the cut V3 U V5. Set £ := k — |V4|. Let < be the total order of V' defined
by: i < j if and only if 01(i) < 01(j). Define a permutation m € ¥j by
having 771(1),...,7~(k — ¢) be the elements of V; sorted according to =
and 71 (k — £+ 1),...,7 (k) be the elements of V5 also sorted according
to <. Note that 7(i) <k — ¢ < x(j) for all i € V1, j € Va.

From Theorem 4.9, the problem now reduces to showing

Qg(ﬂ') = Qg(dl) and Qg('row) = Qg(dg),

or equivalently, for all {i,j} € E, w(i) < m(j) if and only if o1(i) < o1(j),
and 7o m(i) < 7om(j) if and only if o2(i) < 02(j). As before, we consider
the separate cases:

e i,j € Vi: Then n(i),m(j) < k — ¢, and, by the definition of 7, ()

7(7) if and only if ¢ < j, which in turn holds if and only if 01 (i) < o1(j)

by the definition of <. Also, by (4.3), Ton(j) —Tom(i) = 7(j) — m(i).

Note that, by the definition of cut-flip, the sign of this difference is in
turn equal to o2(j) — o2(7).

<

)

e i,j € Va: Similar arguments lead to (i) < 7(j) if and only if oy (i) <
o1(7) and 7o w(i) < 7 om(j) if and only if o2(i) < o2(j) also in this
case.

e i € Vi,j € Va: In this case, we have 7(i) < m(j) by construction and
o1(i) < o1(j) by hypothesis. Also, 7om(i) > 7on(j) by (4.3) and, by
the definition of cut-flip, o2(i) > o2(j).

o i € Vh,j € Vi: With similar arguments, we have (i) > 7(j), o1(i) >
01(j), and Tom(i) < Tom(j), o2(i) < o2(j).

O]

The main result in this section is Theorem 4.13, which gives us a simple
characterization of those graphs G such that ¥/ ~¢g is connected by cut-
flips, and, when this is the case, it establishes the maximum number of
cut-flips needed to connect any two classes.
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Theorem 4.13. Let G = (V, E) be a graph with k vertices. Then A(G) is
connected by cut-flips if and only if G is a forest. Furthermore, if G is a
forest, and d < k is the length of the longest path in G then any two classes
in A(G) can be connected by no more than d cut-flips.

Proof. Proceeding by contradiction, we assume that A(G) is connected by
cut-flips and that there is a cycle in G, given by {ig, i1}, {1,492}, .., {im-1,90}
E. Let w; and w9 be two acyclic orientations of G related by a cut-flip. Every
cut must be crossed by an even number of edges in the cycle, so the number
of edges of the cycle on which w; and wy disagree (that is, the number of
J for which wi({ij—1,%;}) # wa({ij—1,7;})) must be even. Hence, any two
acyclic orientations with an odd number of disagreeing edges on the cycle
cannot be connected by a sequence of cut-flips. Since there always exist two
such acyclic orientations, we get a contradiction.

To prove the converse implication, let us assume that G is a forest. We
will prove, by induction on d (the length of the longest path in G), that G
is connected by, at most, d cut-flips.

For d = 0, A(G) has only one element, since no edges means that there
is only one (vacuous) orientation. For d = 1, given two different acyclic
orientations w,® of G, we take Vj to be the set of all i where {i,j} € E
for some j and w({i,j}) = (4,4) # @({i,5}) = (j,i) with Vo =V — Vj. By
this construction, all edges in E where w and & agree join vertices which are
both in V5 and each edge where they disagree is oriented from V; to Vs by
w and from V5 to Vi by @.

We now assume jhe result foNr d. Let L be the set of leaf nodes of G.
Consider the graph G = (V — L, E) obtained from G by removing L from V'
with a subset of the edges £ = {{i,j} € E:i,j € V —L}. G is a forest with
longest path length d—2 (since any maximal path in G must start and end on
leaf nodes). Let w and & be two (Niifferent acyclic orienpvations of G. Then w
and &, as functions restricted to E, are orientations of G. By induction, w|z
and &| 5 are connected by at most d—2 cut-flips, Wo = w|z,w1,...,0, = O]z
for ¢ < d — 2. For each w, in the sequence, we define an orientation w, of G
by extending w; to a function on E taking wy|, z = w|;_z (in other words,
wp agrees with w on the edges of the leaf nodes). As w;_1,w; are related by
a cut-flip with cut 171, ‘72 (where ViU ‘:/2 =V — L), wi_1,w; are related by a
cut-flip with cut V4 = V43 U L1,V = Vo U Ly where Ly is the set of all leaf
nodes whose parents are in V; and Lo = L — L.

Hence, w, is connected to w by ¢ < d — 2 cut-flips, and w,|z = Oz,
Welp_ 7 = w|p_g- What remains is to connect w, to @ with 2 cut-flips. We
identify two disjoint subsets of L corresponding to whether w, orients the
leaf first or second in its edge:

z\zl = {ieL:{i,j} € B,w,({i,j}) = (i,4) # &({i,j}) = (j. i)}

My = {ieL:{i,j} € E,w({i,j}) = (4,7) # @({i,5}) = (i,4)}-
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The cut-flip given by Z\/Il, V- ]\/4\1 followed by the one given by ]\/4\2, V- ]\72,
connects wy to W. O

By Theorem 4.9, via the map (g we may identify the quotient space
Yk/ ~¢g with the set of acyclic orientations of G. Theorem 4.12 tells us that
A(G) is connected by cut-flips if and only if any two equivalence classes in
Y/ ~g are cyclically related. As a consequence, Theorem 4.13 says that
any two classes in X/ ~g are cyclically related if and only if G is a forest.

4.3 Commutativity conditions and distance of Segré charac-
teristics

As we saw in Proposition 4.4, when there is more than one equivalence class
in P(Ay,...,A) under ~¢, it is pointless to ask about the change in the
JCF of different permuted products, since the spectrum can be completely
different. On the other hand, when there is only one equivalence class, all
permuted products have the same nonzero eigenvalues with the same Segré
characteristic.

Motivated by Fiedler matrices, we will impose certain commutativity
conditions such that any two elements of P(Aj,..., Ag) are connected by
a sequence of Flanders bridges, as we did in Section 3 for three matrices.
Under these conditions, we will also analyze the change in the Segré char-
acteristic of the eigenvalue zero for different permuted products. We say
that two products II and II in P(A1,...,Ar) are related by a sequence of
Flanders bridges if there are some IIy,... 11311 € P(Aq,..., Ax) such that
I, =10, Ty, = II and (I1;, IT;+1) is a Flanders pair, for i = 1,...,d.

Our commutativity conditions will be encapsulated in the associated
graph. More precisely, we are interested in the graph comprising the non-
commutativity relations.

Definition 4.14. Given k matrices Aq,..., A € C"*", the graph of non-
commutativity relations of Ai,..., Ay is the graph G = (V, E) with V =
{1,2,...,k}, such that {i,j} € E if and only if A;A; # AjA;, for all 1 <
6,5 <k withi# 7.

Given k matrices Ay,...,Ar € C"", the set of permuted products
P(Ai,...,Ay) can be analyzed in the light of the combinatorial approach of
Section 4.2. In particular, if G = (V, E) is the graph of non-commutativity
relations of Ay, ..., Ag, and o € X, then an allowed swap of o exchanges two
consecutive factors in 11,
Ag-1()Ag=13i+1) = Ap-1(i11)Ag—1(;)- This is allowed because {o (i), 0! (i+
1)} ¢ E, which means that the matrices A,-1(;) and A,-1(;41) commute.
Hence, the equivalence classes in the quotient space ¥/ ~¢g correspond to
the generically distinct elements of P(Ay,..., Ay) obtained by the commu-
tativity relations of the complementary graph of G. Here the word “generic”

20



means that, for some particular Ay, ..., Ag, it may happen that some per-
muted products in P(Aq,...,A) coincide even if they belong to differ-
ent equivalence classes. For instance, ABC = ACB is possible even if
BC # CB, though this is not generically the case.

Hence, if we consider the elements of P(Ay,...,Ax) as “formal prod-
ucts”, that is, like words of k letters, Ay,..., Ag, then [o1]g and [o3]g are
cyclically related if and only if there is a Flanders bridge between I, and
I1,,. Then, using Theorem 4.12, the first part of Theorem 4.13 can be stated
as follows.

Theorem 4.15. Let A1, ..., A € C"™™ and G be the graph of non-commutativity
relations of A1, ..., Ak. Let permuted products in P(A1, ..., A) be consid-
ered as formal products (that is, as words of k letters, A1,...,Ax). Then
any two products in P(Ai,...,Ag) are related by a sequence of Flanders
bridges if an only if G is a forest.

Now, from Theorem 4.15 and part (i) of Corollary 2.3, we conclude that
when G is a forest, all permuted products in P(Aj,..., Ax) have the same
nonzero eigenvalues together with their corresponding Segré characteristics.
The remaining question is to analyze what happens to the zero eigenvalue in
this case. Theorem 4.16, which is the main result in this section, establishes
an upper bound for the distance of the Segré characteristic at zero of two
permuted products, and shows that the bound is attainable. This bound
comes from the number of Flanders bridges in the sequence that relates two
arbitrary permuted products II,, and Il,,. In other words, the number of
cut-flips connecting Qg (o) and Qg(o2).

Theorem 4.16. Let A1, ..., A € C"™ and G be the graph of non-commutativity
relations of A1, ..., Ax. Assume that G is a forest and let d be the length of
the longest path in G. Then, given 11,1y € P(Ay,..., Ax), we have

1S0(TT1) — So(T2)]le < d. (4.4)

Moreover, this bound is attainable in the following sense: Let G be any
forest with k wvertices, and let d < k be the length of the longest path in
G. Then there exist k matrices A1,..., A such that G is the graph of non-
commutativity relations of Ay, ..., Ay, and there are I11,1ls € P(Ay, ..., Ag)
with

[So(I11) — So(I2)]|ec = d. (4.5)

Proof. The first part of the statement is an immediate consequence of The-
orem 4.13. More precisely, let II; and Il be as in the statement. If G is
a forest in the conditions of the statement then, by Theorem 4.13, A(G) is
connected by, at most, d cut-flips. This implies, using Theorem 4.12, that

there are o1,09,...,0441 € ¥y such that II; = Il,,, Il,,,, = Ilz, and such
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that (IL,,,IL,,,,) are Flanders pairs, for ¢ = 1,...,d. Now, Theorem 1.1
gives

1S0(Iy,) = So(yy, Moo <1, fori=1,....d,

so we have

d
IS0 (1) = So(TM2) oo <D 1S0(Ts;) = So(Ts,,,)lloo < d.

i=1

For the second part of the statement, regarding the attainability of the
bound (4.4), we first consider the case where G is a path of length d, and
define the (d 4+ 1) x (d + 1) matrices

A—dlag(Id iy J2(0), I;—1), fori=1,...,d, (4.6)
Agr = diag(0, 1). ‘
The graph of non-commutativity relations of Al, e ,deH is a single path
of length d from A1 to Ad+1 Moreover we have II; = AVlAVQ . "Avd_l’_l =
Jd+1(0) and HQ Ad+1 A2A1 = 0d+1, SO HSO(Hl) - So(Hz)Hoo =d.

If G = (V,E) is a tree with V' = {1,...,k}, let us assume, without
loss of generality, that {1,2},{2,3},...,{d,d + 1} is a path of length d in
G. Now, let gl,...,ﬁd_H be as in (4.6), and gd+2 == A = Tigq.
Let us number the edges in G different from {1,2},{2,3},...,{d,d + 1}, as
e1,...,eq. For each of these edges we build up the following & matrices: for
the edge es = {i,j}, with 1 < s < g, let D() . D(S) be k nonsingular
matrices of size 2 x 2 such that D 7& D i , and D( ) = I for £ #
i,j. Now, set A; = dlag(Ai,Dl( ), ce l(g)), for i =1,...,k. The graph of
non-commutativity relations of A1, ..., A is G, by construction. Moreover,
since DES) is nonsingular, forall s =1,...,gand i = 1,...,k, we have II; :=
ArAg - - Ay = diag(Jg41(0), My) and Ilp := Ay --- Az Ay = diag(0g41, Ma),
with Mj, My nonsingular, so Sy(Il;) = (d + 1), and Sp(Il2) = (1,...,1)
(containing d + 1 ones), hence ||So(Il;) — Sp(Ilz)||c = d.

Finally, let G be a forest with ¢ trees. Let ki,...,k; be the num-
ber of vertices in each tree, with k1 + --- + k, = k, and let dy,...,d;
be the lengths of the longest path in each tree. By hypothesis, we have
max{d; : j = 1,...,t} = d. For each tree, say the jth one, we define matrices

AV ), cee A e erixng ag before, such that the graph of non-commutativity
1 k;

of Agj), . ,A(J'_) is precisely this tree, and such that ||So(A ])A(]) : A,(jj)) —

SO(AI(Cj) - A(J )||oo = d;. Now, we set A; = dlag(A( R ,Egi)) for

i=1,.. k:whereA() Ag),le—kH— ~+kj_1+h, for some 1 < h < k;

(where we set ko := O), and Ag. D= I,; otherwise. For these matrices, we have

[So(A1 Az Ax) = So(Ag -+ As A1) oo = maxjmy ¢ [|So(AP A AP)) -
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S()(Ag) A(j A(] )Hoo = d ||80(A1A2 Ak)—So(Ak cee AQAl)”OO = maszl,m,t dj =
d, and the graph of non-commutativity relations of Ay,..., A is G, by con-
struction. ]

The construction in the proof of Theorem 4.16 does not necessarily give
the minimum size of A1, ..., Ag that satisfy the second part of the statement.
Also note that d < k — 1, and equality holds if and only if G is a path of
length k£ — 1.

We want to mention that, in the case in the Fiedler matrices My, ..., M, [3]
the graph of non-commutativity relations is a forest, as mentioned in the
Introduction. Moreover, it is just a path from M; to M,.

Example 4.17. Let G = (V, E), with V. = {1,2,...,9}, be the following

graph:

The length of the longest path in G is d = 4, which corresponds, for
instance, to the path {9,1},{1,3},{3,8},{8,7}.

Now, let us follow the construction in the second part of the proof of The-
orem 4.16 to get 9 particular matrices A1, ..., Ag such that G is the graph of
non-commutativity relations of Ay, ..., Ag (by identifying the jth vertex of G
with the matriz A; ) and so that the products 111 = (AgA1 A3 Ag A7) Ag Ay As Ay
and ]._.[2 = (A7A8A3A1A9)A6A2A5A4 satzsfy ||80(H1) So(HQ)HOO =4. .

Set Ag = diag(I3, J2(0)), A1 = diag([2, J2(0), 1), A3 = diag(1, J2(0), [2), As =
diag(J2(0), I3), A7 = diag(0, I4), and A; = I5, fori #1,3,7,8,9. Now, let us
number (and label) the edges which are not in the path {9,1},{1,3},{3,8},{8,7}
as follows: ey = {3,6},ea = {2,3},e3 = {3,5},e4 = {4,5}, and set:

A1 = diag(A1,Is), A = diag(ly, DY), L),
= diag(As, D", DY) D¥ | 1,), A4 = diag(I1;, DY),
= diag(Iy, D), D), Ag = diag(I5, DV, I),
A7 = diag(A7, DY, I), As = diag(As, Is), Ag = (Ay, 18)7

with D() bemg nonsmgular 2 x2 matrzces such that D(I)D(1 #* D pit ),
2) (2 3 4) (4
g>Dg> + D DY D' p¥ + ¥ DY, and DD #Dé)Di). Un-
der these conditions, the graph of non-commutativity relations of Ay, ..., Ag
18 G, and we have

H1 = (A9A1A3A8A7)A6A2A5A4 = dlag(J5(0), J),

and
Iy = (A7AgA3A1 Ag) Ag A2 A5 Ay = diag(0s, J),
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with J = diag (Dél)Dél), Déz)Déz), DéS)Dég), DéA‘)Df)). Since the matrices

D;i) are nonsingular, we have that Sp(I11) = (5) and Sp(Ile) = (1,1,1,1,1),
50 [|So(Il1) — So(I12) o0 = 4.

As mentioned before, Theorem 4.13 implies that if the graph of non-
commutativity relations of A1, ..., Ag has no cycles, then all permuted prod-
ucts in P(A1,...,Ax) have the same eigenvalues with their corresponding
Segré characteristics. The reverse implication, however, is not true. For
example, take Aq,..., A € C™*" to be upper triangular such that no pair
commutes and the products of the (7,i) diagonal entries of all matrices,
i = A1(i,4)Aa(i,9) - - - Ap(i, 1), satisfy m; # mj for i # j. Then, all permuted
products have the same eigenvalues, with the same Segré characteristic (they
are all simple eigenvalues). However, the graph of non-commutativity rela-
tions is the complete graph with k vertices, which is far from a forest.

5 Conclusions and open problems

In this paper we have analyzed the change in the JCF of products of k square
matrices under permutations of the factors. As an immediate consequence
of a classical result by Flanders, the products are classified into equivalence
classes under cyclic permutations of the factors, in such a way that the
structure in the JCF for nonzero eigenvalues coincide in any two products
belonging to the same class. We have first shown that, if no assumptions
are imposed to the factors, then any two products belonging to different
classes under cyclic permutations may have different nonzero eigenvalues.
Moreover, for three matrices, we have seen that it is always possible to
prescribe the nonzero eigenvalues of ABC and AC B, with the only condition
that the product of all eigenvalues coincide for both products. However, we
have seen that this prescription is not always possible for more than three
matrices.

We have further shown that, by imposing certain commutativity con-
ditions on the factors, the structure in the JCF corresponding to nonzero
eigenvalues coincide for all products. In particular, we have seen that this
is always the case if the graph of non-commutativity relations of the factors
is a forest. We proved that, when considering formal products, there is only
one equivalence class, up to cyclic permutations of the factors, if and only
if the graph of non-commutativity relations of the factors is a forest. When
this graph is a forest, we obtained an upper bound on the difference between
the structure (sizes of Jordan blocks) of the JCF associated with the eigen-
value zero in any pair of products, and we saw that this bound is attainable.
Moreover, in the case of three matrices, we proved that it is always possible
to prescribe the sizes of the blocks associated with zero in the JCF of ABC
and ACB as long as the difference between the corresponding sizes is at
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most 2.
We conclude with some open problems that arise as a natural continua-
tion of the problems addressed in this paper.

e Open problem 1: Is it always possible to prescribe the n eigenvalues
of the (k — 1)! classes under cyclic permutations, provided that the
product of all eigenvalues is the same, for k,n satisfying (k — 1)!(n —
1)+ 1< kn? and k > 4?7

e Open problem 2: Given d > 4 and two nondecreasing sequences
w, ¢’ of nonnegative integers such that ||p — p'||0 < d—1, is it always
possible to find d matrices, Aq,..., Ag, such that their graph of non-
commutativity relations is a path, and such that So(A1---Ay) = p
and Sp(Aq--- A1) = p'? (The extension of Theorem 4.15 to d > 4).

e Open problem 3: If M,Q € C" " are such that Sy(M) = S\(Q),
for all A # 0, and [|So(M) — So(@)||ec < 2, are there three matrices
A, B,C € C""™ with AC = CA, such that M = ABC and Q = CBA?

e Open problem 4: Obtain necessary and sufficient conditions for
all products of a given set of k matrices to have the same nonzero
eigenvalues with their corresponding Segré characteristic (in the no-
tation of the paper: Sy(II;) = Sx(Ilz), for all A # 0, and for all
11,11, € P(Al, e ,Ak))
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