
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

On the Minimization Property of the Unitary
Polar Factor in the Geodesic Distance

Patrizio NEFF, Yuji NAKATSUKASA, and Andreas
FISCHLE

METR 2014–05 January 2014

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.
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Abstract

The unitary polar factor Q = Up in the polar decomposition of Z =
UpH is the minimizer over unitary matrices Q for both ‖Log(Q∗Z)‖2
and its Hermitian part ‖ sym

*
(Log(Q∗Z))‖2 over both R and C for any

given invertible matrix Z ∈ Cn×n and any matrix logarithm Log, not
necessarily the principal logarithm log. We prove this for the spectral
matrix norm for any n and for the Frobenius matrix norm in two and
three dimensions. The result shows that the unitary polar factor is
the nearest orthogonal matrix to Z not only in the normwise sense,
but also in a geodesic distance. The derivation is based on Bhatia’s
generalization of Bernstein’s trace inequality for the matrix exponential
and a new sum of squared logarithms inequality. Our result generalizes
the fact for scalars that for any complex logarithm and for all z ∈ C\{0}

min
ϑ∈(−π,π]

|LogC(e−iϑz)|2 = | log |z||2 , min
ϑ∈(−π,π]

|ReLogC(e−iϑz)|2 = | log |z||2 .

1 Introduction

Every matrix Z ∈ Cm×n admits a polar decomposition

Z = UpH ,

where the unitary polar factor Up has orthonormal columns and H is Her-
mitian positive semidefinite [3], [16, Ch. 8]. The decomposition is unique if
Z has full column rank. In the following we assume that Z is an invertible
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matrix, in which case H is positive definite. The polar decomposition is the
matrix analog of the polar form of a complex number

z = ei arg(z) · r, r = |z| ≥ 0, −π < arg(z) ≤ π .

The polar decomposition has a wide variety of applications: the solution
to the Euclidean orthogonal Procrustes problem minQ∈U(n) ‖Z − BQ‖2F is
given by the unitary polar factor of B∗Z [14, Ch. 12], and the polar de-
composition can be used as the crucial tool for computing the eigenvalue
decomposition of symmetric matrices and the singular value decomposition
(SVD) [29]. Practical methods for computing the polar decomposition are
the scaled Newton iteration [11] and the QR-based dynamically weighted
Halley iteration [27], and their backward stability is established in [28].

The unitary polar factor Up has the important property [6, Thm. IX.7.2],
[13], [16, p. 197], [19, p.454] that it is the nearest unitary matrix to Z ∈
Cn×n, that is,

min
Q∈U(n)

‖Z −Q‖2 = min
Q∈U(n)

‖Q∗Z − I‖2 = ‖U∗pZ − I‖2 = ‖
√
Z∗Z − I‖2 ,

(1.1)

where ‖ · ‖ denotes any unitarily invariant norm. For the Frobenius matrix
norm this optimality implies for real Z ∈ Rn×n and the orthogonal polar
factor [23]

∀ Q ∈ O(n) : tr
(
QTZ

)
= 〈Q,Z〉 ≤ 〈Up, Z〉 = tr

(
UTp Z

)
. (1.2)

In the complex case we similarly have [19, Thm. 7.4.9, p.432]

∀ Q ∈ U(n) : Re tr (Q∗Z) ≤ Re tr
(
U∗pZ

)
. (1.3)

For invertible Z ∈ GL+(n,R) and the Frobenius matrix norm ‖ · ‖F it can
be shown that [9, 23]

min
Q∈O(n)

(
µ ‖ sym

*
(QTZ − I)‖2F + µc ‖ skew∗(Q

TZ − I)‖2F
)

= µ ‖UTp Z − I‖2F ,

(1.4)

for µc ≥ µ > 0. Here, sym
*
(X) = 1

2(X∗ + X) is the Hermitian part and
skew∗(X) = 1

2(X −X∗) is the skew-Hermitian part of X. The family (1.4)
appears as the strain energy expression in geometrically exact Cosserat ex-
tended continuum models [22, 31, 32, 33, 37].

Surprisingly, the optimality (1.4) of the orthogonal polar factor ceases
to be true for 0 ≤ µc < µ. Indeed, for µc = 0 there exist Z ∈ R3×3 such
that [35]

min
Q∈SO(3)

‖ sym
*
(QTZ − I)‖2F < ‖UTp Z − I‖2F . (1.5)
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By compactness of SO(n) and continuity of Q 7→ ‖ sym
*
QTZ−I‖2F it is clear

that the minimum in (1.5) exists. Here, the polar factor Up of Z ∈ GL+(3,R)
is always a critical point, but is not necessarily (even locally) minimal. In
contrast to ‖X‖2F the term ‖ sym

*
X‖2F is not invariant w.r.t. left-action of

SO(3) on X, which does explain the appearance of nonclassical solutions in
(1.5) since now

‖ sym
*
QTZ − I‖2F = ‖ sym

*
QTZ‖2F − 2 tr

(
QTZ

)
+ 3 (1.6)

and optimality does not reduce to optimality of the trace term (1.2). The
reason there is no nonclassical solution in (1.4) is that for µc ≥ µ > 0 we
have

min
Q∈O(n)

µ ‖ sym
*
(QTZ − I)‖2F + µc ‖ skew∗(Q

TZ − I)‖2F (1.7)

≥ min
Q∈O(n)

µ ‖ sym
*
(QTZ − I)‖2F + µ ‖ skew∗(Q

TZ − I)‖2F = min
Q∈O(n)

µ ‖QTZ − I‖2F .

1.1 The matrix logarithm minimization problem and results

Formally, we obtain our minimization problems minQ∈SO(n) ‖Log(QTZ)‖2F
and minQ∈SO(n) ‖ sym

*
Log(QTZ)‖2F by replacing the matrix QTZ − I by

the matrix Log(QTZ) in (1.4). Then, introducing the weights µ, µc ≥ 0 we
embed the problem in a more general family of minimization problems at a
given Z ∈ GL+(n,R)

min
Q∈SO(n)

µ ‖ sym
*
Log(QTZ)‖2F + µc ‖ skew∗Log(QTZ)‖2F , µ > 0, µc ≥ 0 .

(1.8)

For the solution of (1.8) we consider separately the minimization of

min
Q∈U(n)

‖Log(Q∗Z)‖2 , min
Q∈U(n)

‖ sym
*
Log(Q∗Z)‖2 , (1.9)

on the group of unitary matrices Q ∈ U(n) and with respect to any matrix
logarithm Log.

We show that the unitary polar factor Up is a minimizer of both terms
in (1.9) for both the Frobenius norm (dimension n = 2, 3) and the spectral
matrix norm for arbitrary n ∈ N, and the minimum is attained when the
principal logarithm is taken.

Finally, we show that the minimizer of the real problem (1.8) for all
µ > 0, µc ≥ 0 is also given by the polar factor Up. Note that sym

*
(QTZ−I)

is the leading order approximation to the Hermitian part of the logarithm
sym

*
LogQTZ in the neighborhood of the identity I, and recall the non-

optimality of the polar factor in (1.5) for µc = 0. The optimality of the polar
factor in (1.9) is therefore rather unexpected. Our result implies also that
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different members of the family of Riemannian metrics gX on the tangent
space (1.24) lead to the same Riemannian distance to the compact subgroup
SO(3), see [34].

Since we prove that the unitary polar factor Up is the unique minimizer
for (1.8) and (1.9)1 in the Frobenius matrix norm for n ≤ 3, it follows that
these new optimality properties of Up provide another characterization of
the polar decomposition.

In our optimality proof we do not use differential calculus on the nonlin-
ear manifold SO(n) for the real case because the derivative of the matrix log-
arithm is analytically not tractable. However, if we assume a priori that the
minimizer Q] ∈ SO(n) can be found in the set {Q ∈ SO(n) | ‖QTZ − I‖F ≤
q < 1 }, we can use the power series expansion of the principal logarithm
and differential calculus to show that the polar factor is indeed the unique
minimizer (we hope to report this elsewhere).

Instead, motivated by insight gained in the simple complex case, we
first consider the Hermitian minimization problem, which has the advan-
tage of allowing us to work with the positive definite Hermitian matrix
exp sym

*
LogQ∗Z. A subtlety that we encounter several times is the possi-

ble non-uniqueness of the matrix logarithm Log. The overall goal is to find
the unitary Q ∈ U(n) that minimizes ‖Log(Q∗Z)‖2 and ‖ sym

*
Log(Q∗Z)‖2

over all possible logarithms. Due to the non-uniqueness of the logarithm,
we give the following as the formal statement of the minimization problem:

min
Q∈U(n)

‖Log(Q∗Z)‖2 := min
Q∈U(n)

{‖X‖2 ∈ R | expX = Q∗Z} , (1.10)

min
Q∈U(n)

‖ sym
*
Log(Q∗Z)‖2 := min

Q∈U(n)
{‖ sym

*
X‖2 ∈ R | expX = Q∗Z} .

(1.11)

Our main result is the following.

Theorem 1.1 Let Z ∈ Cn×n be a nonsingular matrix and let Z = UpH be
its polar decomposition. Then

min
Q∈U(n)

‖LogQ∗Z‖ = min
Q∈U(n)

‖ sym
*
LogQ∗Z‖ = ‖ logU∗pZ‖ = ‖ logH‖,

for any n when the norm is taken to be the spectral norm, and for n ≤ 3 in
the Frobenius norm.

Our optimality result relies crucially on unitary invariance and a Bernstein-
type trace inequality [5]

tr (expX expX∗) ≤ tr (exp (X +X∗)) , (1.12)

for the matrix exponential. Together, these imply some algebraic conditions
on the eigenvalues in case of the Frobenius matrix norm, which we exploit
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using a new sum of squared logarithms inequality [8]. For the spectral norm
the analysis is considerably easier.

This paper is organized as follows. In the remainder of this section we
describe an application that motivated this work. In Section 2 we present
two-dimensional analogues to our minimization problems in both, complex
and real matrix representations, to illustrate the general approach and no-
tation. In Section 3 we collect properties of the matrix logarithm and its
Hermitian part. Section 4 contains the main results where we discuss the
unitary minimization (1.9). From the complex case we then infer the real
case in Section 5 and finally discuss uniqueness in Section 6.

Notation. σi(X) =
√
λi(X∗X) denotes the i-th largest singular value of

X. ‖X‖2 = σ1(X) is the spectral matrix norm, ‖X‖F =
√∑n

i,j=1 |Xij |2 is

the Frobenius matrix norm with associated inner product 〈X,Y 〉 = tr (X∗Y ).
The symbol I denotes the identity matrix. An identity involving ‖·‖ without
subscripts holds for any unitarily invariant norm. To avoid confusion be-
tween the unitary polar factor and the singular value decomposition (SVD)
of Z = UΣV ∗, Up with the subscript p always denotes the unitary polar fac-
tor, while U denotes the matrix of left singular vectors. Hence for example
Z = UpH = UΣV ∗. U(n), O(n), GL(n,C), GL+(n,R), SL(n) and SO(n)
denote the group of complex unitary matrices, real orthogonal matrices,
invertible complex matrices, invertible real matrices with positive determi-
nant, the special linear group and the special orthogonal group, respectively.
The set so(n) is the Lie-algebra of all n × n skew-symmetric matrices and
sl(n) denotes the Lie-algebra of all n × n traceless matrices. The set of all
n × n Hermitian matrices is H(n) and positive definite Hermitian matrices
are denoted by P(n). We let sym

*
X = 1

2(X∗ + X) denote the Hermitian
part of X and skew∗X = 1

2(X − X∗) the skew-Hermitian part of X such
that X = sym

*
X + skew∗X. In general, LogZ with capital letter denotes

any solution to expX = Z, while logZ denotes the principal logarithm.

1.2 Application and practical motivation for the matrix log-
arithm

In this subsection we describe how our minimization problem concerning
the matrix logarithm arises from new concepts in nonlinear elasticity the-
ory and may find applications in generalized Procrustes problems. Readers
interested only in the result may continue reading Section 2.

1.2.1 Strain measures in linear and nonlinear elasticity

Define the Euclidean distance dist2
euclid(X,Y ) := ‖X − Y ‖2F , which is the

length of the line segment joining X and Y in Rn2
. We consider an elastic

body which in a reference configuration occupies the bounded domain Ω ⊂
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R3. Deformations of the body are prescribed by mappings

ϕ : Ω 7→ R3 , (1.13)

where ϕ(x) denotes the deformed position of the material point x ∈ Ω.
Central to elasticity theory is the notion of strain. Strain is a measure of
deformation such that no strain means that the body Ω has been moved
rigidly in space. In linearized elasticity, one considers ϕ(x) = x + u(x),
where u : Ω ⊂ R3 7→ R3 is the displacement. The classical linearized strain
measure is ε := sym

*
∇u. It appears through a matrix nearness problem

dist2
euclid(∇u, so(3)) := min

W∈so(3)
‖∇u−W‖2F = ‖ sym

*
∇u‖2F . (1.14)

Indeed, sym
*
∇u qualifies as a linearized strain measure: if dist2

euclid(∇u, so(3)) =

0 then u(x) = Ŵ .x+ b̂ is a linearized rigid movement. This is the case since

dist2
euclid(∇u(x), so(3)) = 0 ⇒ ∇u(x) = W (x) ∈ so(3) (1.15)

and 0 = Curl∇u(x) = CurlW (x) implies that W (x) is constant, see [36].
In nonlinear elasticity theory one assumes that ∇ϕ ∈ GL+(3,R) (no

self-interpenetration of matter) and considers the matrix nearness problem

dist2
euclid(∇ϕ,SO(3)) := min

Q∈SO(3)
‖∇ϕ−Q‖2F = min

Q∈SO(3)
‖QT∇ϕ− I‖2F .

(1.16)

From (1.1) it immediately follows that

dist2
euclid(∇ϕ,SO(3)) = ‖

√
∇ϕT∇ϕ− I‖2F . (1.17)

The term
√
∇ϕT∇ϕ is called the right stretch tensor and

√
∇ϕT∇ϕ− I is

called the Biot strain tensor. Indeed, the quantity
√
∇ϕT∇ϕ−I qualifies as

a nonlinear strain measure: if dist2
euclid(∇ϕ,SO(3)) = 0 then ϕ(x) = Q̂.x+ b̂

is a rigid movement. This is the case since

dist2
euclid(∇ϕ,SO(3)) = 0 ⇒ ∇ϕ(x) = Q(x) ∈ SO(3) (1.18)

and 0 = Curl∇ϕ(x) = CurlQ(x) implies that Q(x) is constant, see [36].
Many other expressions can serve as strain measures. One classical example
is the Hill-family [17, 18, 38] of strain measures

am(∇ϕ) :=

{
1
m

(√
∇ϕT∇ϕ

m
− I
)
, m 6= 0

log
√
∇ϕT∇ϕ , m = 0 .

(1.19)

The case m = 0 is known as Hencky’s strain measure [15]. Note that the
Taylor expansion am(I +∇u) = sym

*
∇u+O(u2) coincide in the first-order

approximation for all m ∈ R.
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In case of isotropic elasticity the formulation of a boundary value problem
of place may be based on postulating an elastic energy by integrating an
SO(3)-bi-invariant (isotropic and frame-indifferent) function W : R3×3 7→ R
of the strain measure am over Ω

E(ϕ) :=

∫
Ω
W (am(∇ϕ)) dx , ϕ(x)ΓD = ϕ0(x) (1.20)

and prescribing the boundary deformation ϕ0 on the Dirichlet part ΓD ⊂ ∂Ω.
The goal is to minimize E(ϕ) in a class of admissible functions. For example,
choosing m = 1 and W (am) = µ ‖am‖2F + λ

2 (tr (am))2 leads to the isotropic
Biot strain energy [35]∫

Ω
µ ‖
√
∇ϕT∇ϕ− I‖2F +

λ

2

(
tr
(√
∇ϕT∇ϕ− I

))2
dx (1.21)

with Lamé constants µ, λ. The corresponding Euler-Lagrange equations
constitute a nonlinear, second order system of partial differential equations.
For reasonable physical response of an elastic material Hill [17, 18, 38] has
argued that W should be a convex function of the logarithmic strain measure
a0(∇ϕ) = log

√
∇ϕT∇ϕ. This is the content of Hill’s inequality. Direct

calculation shows that a0 is the only strain measure among the family (1.19)
that has the tension-compression symmetry, i.e., for all unitarily invariant
norms

‖a0(∇ϕ(x)−1)‖ = ‖a0(∇ϕ(x))‖ . (1.22)

In his Ph.D thesis [30] the first author was the first to observe that
energies convex in the logarithmic strain measure a0(∇ϕ) are not rank-one
convex. However, rank-one convexity is true in a large neighborhood of the
identity [10].

Assume for simplicity that we deal with an elastic material that can only
sustain volume preserving deformations. Locally, we must have det∇ϕ(x) =
1. Thus, for the deformation gradient ∇ϕ(x) ∈ SL(3). On SL(3) the straight
line X+t(Y −X) joining X,Y ∈ SL(3) leaves the group. Thus, the Euclidean
distance dist2

euclid(∇ϕ,SO(3)) does not respect the group structure of SL(3).
Since the Euclidean distance (1.17) is an arbitrary choice, novel ap-

proaches in nonlinear elasticity theory aim at putting more geometry (i.e.
respecting the group structure of the deformation mappings) into the de-
scription of the strain a material endures. In this context, it is natural
to consider the strain measures induced by the geodesic distances stem-
ming from choices for the Riemannian structure respecting also the algebraic
group structure, which we introduce next.
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1.2.2 Geodesic distances

In a connected Riemannian manifold M with Riemannian metric g, the
length of a continuously differentiable curve γ : [a, b] 7→ M is defined by

L(γ) : =

∫ b

a

√
gγ(t)(γ̇(s), γ̇(s)) ds . (1.23)

At every X ∈ M the metric gX : TXM× TXM 7→ R is a positive def-
inite, symmetric bilinear form on the tangent space TXM. The distance
distgeod,M(X,Y ) between two pointsX and Y ofM is defined as the infimum
of the length taken over all continuous, piecewise continuously differentiable
curves γ : [a, b] 7→ M such that γ(a) = X and γ(b) = Y . See [1] for more dis-
cussion on the geodesics distance. With this definition of distance, geodesics
in a Riemannian manifold are the locally distance-minimizing paths, in the
above sense. Regarding M = SL(3) as a Riemannian manifold equipped
with the metric associated to one of the positive definite quadratic forms of
the family

gX(ξ, ξ) : = µ ‖sym(X−1ξ)‖2F + µc ‖skew(X−1ξ)‖2F , ξ ∈ TX SL(3) (1.24)

for all µ, µc > 0, where we drop the subscript ∗ in sym∗ when the matrix
is real, we have γ−1(t)γ̇(t) ∈ TI SL(3) = sl(3) (by direct calculation, sl(3)
denotes the trace free R3×3-matrices) and

gγ(t)(γ̇(t), γ̇(t)) = µ ‖sym(γ−1(t)γ̇(t))‖2F + µc ‖skew(γ−1(t)γ̇(t))‖2F . (1.25)

It is clear that

∀ µ, µc > 0 : µ ‖symY ‖2F + µc ‖skew Y ‖2F (1.26)

is a norm on sl(3). For such a choice of metric we then obtain an associated
Riemannian distance metric

distgeod,SL(3)(X,Y ) = inf{L(γ), γ(a) = X , γ(b) = Y } . (1.27)

This construction ensures the validity of the triangle inequality [21, p.14].
The geodesics on SL(3) for the family of metrics (1.24) have been computed
in [24] in the context of dissipation distances in elasto-plasticity.

With this preparation, it is now natural to consider the strain measure
induced by the geodesic distance. For a given deformation gradient ∇ϕ ∈
SL(3) we thus compute the distance to the nearest orthogonal matrix in the
geodesic distance (1.27) on the Riemanian manifold and matrix Lie-group
SL(3), i.e.,

dist2
geod,SL(3)(∇ϕ,SO(3)) := min

Q∈SO(3)
dist2

geod,SL(3)(∇ϕ,Q) . (1.28)
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It is clear that this defines a strain measure, since dist2
geod,SL(3)(∇ϕ(x), SO(3)) =

0 implies ∇ϕ(x) ∈ SO(3), whence ϕ(x) = Q̂x + b̂. Fortunately, the mini-
mization on the right hand side in (1.28) can be carried out although the
explicit distances dist2

geod,SL(3)(∇ϕ,Q) for Q ∈ SO(3) remain unknown to
us. In [34] it is shown that

min
Q∈SO(3)

dist2
geod,SL(3)(∇ϕ,Q) = min

Q∈SO(3)
‖Log(QT∇ϕ)‖2F . (1.29)

Recall that LogZ denotes any matrix logarithm, one of the many solutions
X to expX = Z. By contrast, logZ denotes the principal logarithm, see
Section 3.3. The last equality constitutes the basic motivation for this work,
where we solve the minimization problem on the right hand side of (1.29)
and determine thus the precise form of the geodesic strain measure. As a
result of this paper it turns out that

dist2
geod,SL(3)(∇ϕ,SO(3)) = ‖ log

√
∇ϕT∇ϕ‖2F , (1.30)

which is nothing else but a quadratic expression in Hencky’s strain measure
(1.19) and therefore satisfying Hill’s inequality.

Geodesic distance measures have appeared recently in many other appli-
cations: for example, one considers a geodesic distance on the Riemannian
manifold of the cone of positive definite matrices P(n) (which is a Lie-group
but not w.r.t. the usual matrix multiplication) [7, 26] given by

dist2
geod,P(n)(P1, P2) := ‖ log(P

−1/2
1 P2P

−1/2
1 )‖2F . (1.31)

Another distance, the so-called log-Euclidean metric on P(n)

dist2
log,euclid,P(n)(P1, P2) := ‖ logP2 − logP1‖2F(

in general 6= ‖ log(P−1
1 P2)‖2F = dist2

log,euclid,P(n)(P
−1
1 P2, I)

)
(1.32)

is proposed in [2]. Both formulas find application in diffusion tensor imaging
or in fitting of positive definite elasticity tensors. The geodesic distance on
the compact matrix Lie-group SO(n) is also well known, and it has important
applications in the interpolation and filtering of experimental data given on
SO(3), see e.g. [25]

dist2
geod,SO(n)(Q1, Q2) := ‖ log(Q−1

1 Q2)‖2F , −1 6∈ spec(Q−1
1 Q2) . (1.33)

Here spec(X) denotes the set of eigenvalues of the matrix X. In cases
(1.31), (1.32), (1.33) it is, contrary to (1.29), the principal matrix logarithm
that appears naturally. A common and desirable feature of all distance
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measures involving the logarithm presented above, setting them apart from
the Euclidean distance, is invariance under inversion: d(X, I) = d(X−1, I)
and d(X, 0) = +∞. We note in passing that

d2
log,GL+(n,R)

(X,Y ) := ‖Log(X−1Y )‖2F (1.34)

does not satisfy the triangle inequality and thus it cannot be a Riemannian
distance metric on GL+(n,R). Further, X−1Y is in general not in the
domain of definition of the principal matrix logarithm. If applicable, the
expression (1.34) measures in fact the length of curves γ : [0, 1] 7→ M, γ(0) =
X, γ(1) = Y defining one-parameter groups γ(s) = X exp(s Log(X−1Y )) on
the matrix Lie-groupM. Note that it is only if the manifoldM is a compact
matrix Lie-group (like e.g. SO(n)) equipped with a bi-invariant Riemannian
metric that the geodesics are precisely one-parameter subgroups [39, Prop.9].
This point is sometimes overlooked in the literature.

1.2.3 A geodesic orthogonal Procrustes problem on SL(3)

The Euclidean orthogonal Procrustes problem for Z,B ∈ SL(3)

min
Q∈O(3)

dist2
euclid(Z,BQ) = min

Q∈O(3)
‖Z −BQ‖2F (1.35)

has as solution the unitary polar factor of B∗Z [14, Ch. 12]. However, any
linear transformation of Z and B will yield another optimal unitary matrix.
This deficiency can be circumvented by considering the straightforward ex-
tension to the geodesic case

min
Q∈O(3)

dist2
geod,SL(3)(Z,BQ) . (1.36)

In contrast to the Euclidean distance, the geodesic distance is by construc-
tion SL(3)-left-invariant:

dist2
geod,SL(3)(X,Y ) = dist2

geod,SL(3)(BX,BY ) for all B ∈ SL(3), (1.37)

and therefore we have

min
Q∈O(3)

dist2
geod,SL(3)(Z,BQ) = min

Q∈O(3)
dist2

geod,SL(3)(B
−1Z,Q) (1.38)

with “another” geodesic optimal solution: the unitary polar factor of B−1Z,
according to the results of this paper.

2 Prelude on optimal rotations in the complex
plane

Let us turn to the optimal rotation problem, the first term of (1.9):

min
Q∈U(n)

‖Log(Q∗Z)‖2 . (2.1)
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In order to get hands on this problem we first consider the scalar case. It
serves as a useful preparation for the matrix case, as we follow the same
logical sequence in the next section. We may always identify the punctured
complex plane C\{0} =: C× = GL(1,C) with the two-dimensional conformal
special orthogonal group CSO(2) ⊂ GL+(2,R) through the mapping

z = a+ i b 7→ Z ∈ CSO(2) := {
[
a b
−b a

]
, a2 + b2 6= 0} . (2.2)

Let us define a norm ‖ · ‖CSO on CSO(2). We set ‖X‖2CSO := 1
2‖X‖

2
F =

1
2tr
(
XTX

)
.

Next we introduce the logarithm. For every invertible z ∈ C\{0} =: C×
there always exists a solution to eη = z and we call η ∈ C the natu-
ral complex logarithm LogC(z) of z. However, this logarithm may not
be unique, depending on the unwinding number [16, p.269]. The defini-
tion of the natural logarithm has some well known deficiencies: the for-
mula LogC(wz) = z LogC(w) does not hold, since, e.g. i π = LogC(−1) =
LogC((−i)2) 6= 2 LogC(−i) = 2(−i π2 ) = −i π. Therefore the principal com-
plex logarithm [4, p.79]

log : C× 7→ { z ∈ C | − π < Im z ≤ π } (2.3)

is defined as the unique solution η ∈ C of

eη = z ⇔ η = log(z) := log |z|+ i arg(z) , (2.4)

such that the argument arg(z) ∈ (−π, π].1 The principal complex logarithm
is continuous (indeed holomorphic) only on the smaller set C \ (−∞, 0]. Let
us define the set D := {z ∈ C | |z − 1| < 1 }. In order to avoid unnecessary
complications at this point, we introduce a further open set, the “near iden-
tity subset” D] ⊂ D, containing 1 and with the property that z1, z2 ∈ D]
implies z1z2 ∈ D and z−1

1 ∈ D. On D] ⊂ C× all the usual rules for the
logarithm apply. On R+ \{0} all the logarithmic distance measures encoun-
tered in the introduction coincide with the logarithmic metric [40, p.109]
(the ”hyperbolic distance” [26, p.735])

dist2
log,R+(x, y) := | log(x−1y)|2 = | log y − log x|2, dist2

log,R+(x, 1) := | log |x||2.
(2.5)

1For example log(−1) = i π since eiπ = −1. Otherwise, the complex logarithm always
exists but may not be unique, e.g. e−iπ = 1

ei π
= −1. Hence LogC(−1) = {i π,−i π, . . .}.

For scalars, our definition of the principal complex logarithm can be applied to negative
real arguments. However, in the matrix setting the principal matrix logarithm is defined
only for invertible matrices which do not have negative real eigenvalues.

11



This metric can still be extended to a metric on D] through

dist2
log,D](z1, z2) : = | log(z−1

1 z2)|2 , z1, z2 ∈ D] ,

dist2
log,D](r1e

iϑ1 , r2e
iϑ2) = | log(r−1

1 r2)|2 + |ϑ1 − ϑ2|2 , r1e
iϑ1 , r2e

iϑ2 ∈ D] .
(2.6)

Further, for z ∈ D] we formally recover a version of (2.5)2: mineiϑ∈D] dist2
log,D](e

iϑ, z) =

| log |z||2 . We remark, however, that dist2
log,D] does not define a metric on

C× due to the periodicity of the complex exponential. Let us also define
a log-Euclidean distance metric on C×, continuous only on C \ (−∞, 0], in
analogy with (1.32)

dist2
log,euclid,C×(z1, z2) : = | log z2 − log z1|2,=

∣∣∣∣log
|z2|
|z1|

∣∣∣∣2 + | arg(z2)− arg(z1)|2.

(2.7)

The identity

dist2
log,D](z1, z2) = dist2

log,euclid,C×(z1, z2) (2.8)

on D] is obvious but fails on C×. With this preparation, we now approach
our minimization problem in terms of CSO(2) versus C×. For given Z ∈
CSO(2) we find that the following minimization problems are equivalent:

min
Q∈SO(2)

‖Log(QTZ)‖2CSO ⇔ min
ϑ∈(−π,π]

|LogC(e−iϑz)|2 ⇔ min
ϑ∈(−π,π]

(
distlog,C×(eiϑ, z)

)2
.

(2.9)

Here LogC is as defined below in (2.10). It is important to avoid the ad-
ditive representation dist2

log,euclid,C×(z1, z2), because in the general matrix
setting Q and Z will in general not commute and the equivalence (2.9) is
then lost. If, however, Q ∈ SO(n) and Z ∈ P(n) do commute, the opti-
mality result is a trivial consequence of the Campbell-Baker-Hausdorff for-
mula [16, p.270,Thm. 11.3], since in that case minQ∈SO(n) ‖LogQTZ‖2F =

minQ∈SO(n) ‖ logZ − logQ‖2F = ‖ sym
*
logZ‖2F = ‖ log

√
ZTZ‖2F .

The restrictions implied by working on D] are unduly hard, so we have
also extended the distance function distlog,D] defined on D] to a function
distlog,C× by sacrificing the metric properties and by using any complex
logarithm LogC. 2 In order to give this minimization problem a precise
sense, we define

min
ϑ∈(−π,π]

|LogC(e−iϑz)|2 := min
ϑ∈(−π,π]

{|w|2 | ew = e−iϑz } = min
ϑ∈(−π,π]

{|w|2 | ew = e−iϑei arg(z)|z| }

= min
ϑ̃∈(−π,π]

{|w|2 | ew = e−iϑ̃|z| } = min
ϑ∈(−π,π]

|LogC(e−iϑ|z|)|2 .

(2.10)

2Note that writing minϑ∈(−π,π] | log(e−iϑz)|2 poses problems, since evaluating the prin-

cipal complex logarithm log ei(arg(z)−ϑ)|z| would restrict ϑ such that arg(z)−ϑ ∈ (−π, π].
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The solution of this minimization problem is again | log |z||2, since minϑ∈(−π,π] |LogC(e−iϑ|z|)|2 =
minϑ∈(−π,π] | log |z|+i(−ϑ)|2 = minϑ∈(−π,π] | log |z||2+|ϑ|2 = | log |z||2. How-
ever, our goal is to introduce an argument that can be generalized to the
non-commutative matrix setting. From |z| ≥ |Re(z)| it follows that

min
ϑ∈(−π,π]

|LogC(e−iϑz)|2 ≥ min
ϑ∈(−π,π]

|Re(LogC(e−iϑz))|2 = | log |z||2 , (2.11)

where we used the result (2.15) below for the last equality. The minimum
for ϑ ∈ (−π, π] is achieved if and only if ϑ = arg(z) since arg(z) ∈ (−π, π]
and we are looking only for ϑ ∈ (−π, π]. Thus

min
ϑ∈(−π,π]

|LogC(e−iϑz)|2 = | log |z||2 . (2.12)

The unique optimal rotation Q(ϑ) ∈ SO(2) is given by the polar factor Up
through ϑ = arg(z) and the minimum is | log |z||2, which corresponds to
minQ∈SO(2) ‖Log(QTZ)‖2CSO = ‖ log

√
ZTZ‖2CSO.

Next, consider the symmetric minimization problem (1.9)2 for given Z ∈
CSO(2) and its equivalent representation in C×:

min
Q∈SO(2)

‖ sym
*
Log(QTZ)‖2CSO ⇔ min

ϑ∈(−π,π]
|Re(LogC(e−iϑz))|2 . (2.13)

Note that the expression distlog,Re,C×(z1, z2) := |ReLogC(z−1
1 z2)| does not

define a metric, even when restricted to D]. As before, we define

min
ϑ∈(−π,π]

|Re(LogC(e−iϑz))|2 := min
ϑ∈(−π,π]

{|Rew|2 | ew = e−iϑz } (2.14)

and obtain

min
ϑ∈(−π,π]

|Re(LogC(e−iϑz))|2 = min
ϑ∈(−π,π]

|Re(LogC(e−iϑ|z|ei arg(z)))|2

= min
ϑ∈(−π,π]

|Re(LogC(|z|ei (arg(z)−ϑ)))|2 (2.15)

= min
ϑ∈(−π,π]

{|Re(log |z|+ i(arg(z)− ϑ+ 2π k))|2 , k ∈ N}

= | log |z||2 .

Thus the minimum is again realized by the polar factor Up, but note that
the optimal rotation is completely undetermined, since ϑ is not constrained
in the problem. Despite the logarithm LogC being multivalued, this formu-
lation of the minimization problem circumvents the problem of the branch
points of the natural complex logarithm. This observation suggests that
considering the generalization of (2.15), i.e. minQ∈U(n) ‖ sym

*
LogQ∗Z‖2 in

the first place is helpful also for the general matrix problem. This is indeed
the case.

With this preparation we now turn to the general, non-commutative
matrix setting.
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3 Preparation for the general complex matrix set-
ting

3.1 Multivalued formulation

For every nonsingular Z ∈ GL(n,C) there exists a solution X ∈ Cn×n to
expX = Z which we call a logarithm X = Log(Z) of Z. As for scalars, the
matrix logarithm is multivalued depending on the unwinding number [16,
p. 270] since in general, a nonsingular real or complex matrix may have an in-
finite number of real or complex logarithms. The goal, nevertheless, is to find
the unitary Q ∈ U(n) that minimizes ‖Log(Q∗Z)‖2 and ‖ sym

*
Log(Q∗Z)‖2

over all possible logarithms.
Since ‖Log(Q∗Z)‖, ‖ sym

*
Log(Q∗Z)‖2 ≥ 0, it is clear that both infima

exist. Moreover, U(n) is compact and connected. One problematic aspect
is that U(n) is a non-convex set and the function X 7→ ‖LogX‖2 is non-
convex. Since, in addition, the multivalued matrix logarithm may fail to be
continuous, at this point we cannot even claim the existence of minimizers.

We first observe that without loss of generality we may assume that
Z ∈ GL(n,C) is real, diagonal and positive definite. To see this, consider
the unique polar decomposition Z = UpH and the eigenvalue decomposi-
tion H = V DV ∗ for real diagonal positive D = diag(d1, . . . , dn). Then, in
analogy to (2.10)2,

min
Q∈U(n)

‖ sym
*
Log(Q∗Z)‖2 = min

Q∈U(n)
{‖ sym

*
X‖2 | expX = Q∗Z}

= min
Q∈U(n)

{‖ sym
*
X‖2 | expX = Q∗UpH}

= min
Q∈U(n)

{‖ sym
*
X‖2 | expX = Q∗UpV DV

∗}

= min
Q∈U(n)

{‖ sym
*
X‖2 |V ∗(expX)V = V ∗Q∗UpV D}

= min
Q∈U(n)

{‖ sym
*
X‖2 | exp(V ∗XV ) = V ∗Q∗UpV D}

= min
Q̃∈U(n)

{‖ sym
*
X‖2 | exp(V ∗XV ) = Q̃∗D}

= min
Q̃∈U(n)

{‖V ∗(sym
*
X)V ‖2 | exp(V ∗XV ) = Q̃∗D}

= min
Q̃∈U(n)

{‖ sym
*
(V ∗XV )‖2 | exp(V ∗XV ) = Q̃∗D}

= min
Q̃∈U(n)

{‖ sym
*
(X̃)‖2 | exp(X̃) = Q̃∗D}

= min
Q∈U(n)

{‖ sym
*
X‖2 | expX = Q∗D}

= min
Q∈U(n)

‖ sym
*
LogQ∗D‖2 ,

where we used the unitary invariance for any unitarily invariant matrix norm
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and the fact that X 7→ sym
*
X and X 7→ expX are isotropic functions,

i.e. invariant under congruence with orthogonal/unitary transformations
f(V ∗XV ) = V ∗f(X)V for all unitary V . If the minimum is achieved for
Q = I in minQ∈U(n) ‖ sym

*
Log(Q∗D)‖2 then this corresponds to Q = Up

in minQ∈U(n) ‖ sym
*
LogQ∗Z‖2. Therefore, in the following we assume that

D = diag(d1, . . . dn) with d1 ≥ d2 ≥ . . . ≥ dn > 0.

3.2 Some properties of the matrix exponential exp and ma-
trix logarithm Log

Let Q ∈ U(n). Then the following equalities hold for all X ∈ Cn×n.

exp(Q∗XQ) = Q∗ exp(X)Q , definition of exp, [4, p.715], (3.1)

Q∗ Log(X)Q is a logarithm of Q∗XQ , (3.2)

det(Q∗XQ) = det(X) , (3.3)

exp(−X) = exp(X)−1 , series definition of exp, [4, p.713] ,

exp LogX = X , for any matrix logarithm , (3.4)

det(expX) = etr(X) , [4, p.712] , (3.5)

∀Y ∈ Cn×n,det(Y ) 6= 0 : det(Y ) = etr(Log Y ) for any matrix logarithm [16] .

A major difficulty in the multivalued matrix logarithm case arises from

∀X ∈ Cn×n : Log expX 6= X in general, without further assumptions .
(3.6)

3.3 Properties of the principal matrix-logarithm log

Let X ∈ Cn×n, and assume that X has no real eigenvalues in (−∞, 0]. The
principal matrix logarithm of X is the unique logarithm of X (the unique
solution Y ∈ Cn×n of expY = X) whose eigenvalues are elements of the
strip {z ∈ C : −π < Im(z) < π}. If X ∈ Rn×n and X has no eigenvalues
on the closed negative real axis R− = (−∞, 0], then the principal matrix
logarithm is real. Recall that logX is the principal logarithm and LogX
denotes one of the many solutions to expY = X.

The following statements apply strictly only to the principal matrix log-
arithm [4, p.721]:

log expX = X if and only if | Imλ| < π for all λ ∈ spec(X) ,

log(Xα) = α logX , α ∈ [−1, 1] , (3.7)

log(Q∗XQ) = Q∗ log(X)Q , ∀Q ∈ U(n) .

Let us define the set of Hermitian matrices H(n) := {X ∈ Cn×n |X∗ = X }
and the set P(n) of positive definite Hermitian matrices consisting of all
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Hermitian matrices with only positive eigenvalues. The mapping

exp : H(n) 7→ P(n) (3.8)

is bijective [4, p.719]. In particular, Log exp sym
*
X is uniquely defined for

any X ∈ Cn×n up to additions by multiples of 2πi to each eigenvalue and
any matrix logarithm and therefore we have

∀H ∈ H(n) : sym
*
LogH = logH ,

∀X ∈ Cn×n : log exp sym
*
X = sym

*
X , (3.9)

∀X ∈ Cn×n : sym
*
Log exp sym

*
X = sym

*
X .

Since exp sym
*
X is positive definite, it follows from (3.7)3 also that

∀X ∈ Cn×n : Q∗(log exp sym
*
X)Q = log(Q∗(exp sym

*
X)Q) . (3.10)

4 Minimizing ‖Log(Q∗Z))‖2

Our starting point is, in analogy with the complex case, the problem of
minimizing

min
Q∈U(n)

‖ sym
*
(Log(Q∗Z))‖2 ,

where sym
*
(X) = (X∗ + X)/2 is the Hermitian part of X. As we will see,

a solution of this problem will already imply the full statement, similar to
the complex case, see (2.11). For every complex number z, we have

|ez| = eRe z = |eRe z| ≤ |eRe z| . (4.1)

While the last inequality in (4.1) is superfluous it is in fact the “inequality”
|ez| ≤ |eRe z| that can be generalized to the matrix case. The key result is
an inequality of Bhatia [6, Thm. IX.3.1],

∀X ∈ Cn×n : ‖ expX‖2 ≤ ‖ exp sym
*
X‖2 (4.2)

for any unitarily invariant norm, cf. [16, Thm. 10.11]. The result (4.2) is a
generalization of Bernstein’s trace inequality for the matrix exponential: in
terms of the Frobenius matrix norm it holds

‖ expX‖2F = tr (expX expX∗) ≤ tr (exp (X +X∗)) = ‖ exp sym
*
X‖2F ,

with equality if and only if X is normal [4, p.756], [20, p.515]. For the
case of the spectral norm the inequality (4.2) is already given by Dahlquist
[12, (1.3.8)]. We note that the Golden-Thompson inequalities [4, p.761],[20,
Cor.6.5.22(3)]:

∀ X,Y ∈ H(n) : tr (exp(X + Y )) ≤ tr (exp(X) exp(Y ))
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seem (misleadingly) to suggest the reverse inequality.

Consider for the moment any unitarily invariant norm, any Q ∈ U(n),
the positive real diagonal matrix D as before and any matrix logarithm Log.
Then it holds

‖ exp(sym
*
LogQ∗D)‖2 ≥ ‖ exp(LogQ∗D)‖2 = ‖Q∗D‖2 = ‖D‖2 , (4.3)

due to inequality (4.2) and

‖ exp(− sym
*
LogQ∗D)‖2 = ‖ exp(sym

*
(−LogQ∗D))‖2

≥ ‖ exp((−LogQ∗D))‖2 = ‖(exp(LogQ∗D))−1‖2

= ‖(Q∗D)−1‖2 = ‖D−1(Q∗)−1‖2 = ‖D−1‖2 ,
(4.4)

where we used (4.2) again. Note that we did not use −LogX = Log(X−1)
(which may be wrong, depending on the unwinding number).

Moreover, we note that for any Q ∈ U(n) we have

0 < det(exp(sym
*
LogQ∗D)) = etr(sym

*
LogQ∗D) = eRe tr(LogQ∗D)

= |eRe tr(LogQ∗D)| = |etr(LogQ∗D)| (4.5)

= |det(Q∗D)| = |det(Q∗)det(D)|
= |det(Q∗)| |det(D)| = |det(D)| = det(D) ,

where we used the fact that

etr(X) = det(expX) , X = LogQ∗D ⇒
etr(LogQ∗D) = det(exp LogQ∗D) = det(Q∗D) , (4.6)

is valid for any solutionX ∈ Cn×n of expX = Q∗D and that tr
(
sym

*
LogQ∗D

)
is real.

For anyQ ∈ U(n) the Hermitian positive definite matrices exp(sym
*
LogQ∗D)

and exp(− sym
*
LogQ∗D) can be simultanuously unitarily diagonalized with

positive eigenvalues, i.e., for some Q1 ∈ U(n)

Q∗1 exp(sym
*
LogQ∗D)Q1 = exp(Q∗1(sym

*
LogQ∗D)Q1) = diag(x1, . . . , xn) ,

Q∗1 exp(− sym
*
LogQ∗D)Q1 = exp(−Q∗1(sym

*
LogQ∗D)Q1)

=
(
exp(Q∗1(sym

*
LogQ∗D)Q1

)−1
= diag(

1

x1
, . . . ,

1

xn
) ,

(4.7)

since X 7→ expX is an isotropic function. We arrange the positive real
eigenvalues in decreasing order x1 ≥ x2 ≥ . . . ≥ xn > 0. For any unitarily
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invariant norm it follows therefore from (4.3), (4.4) and (4.5) together with
(4.7) that

‖ diag(x1, . . . , xn)‖2 =‖Q∗1 exp(sym
*
LogQ∗D)Q1‖2 =‖ exp(sym

*
LogQ∗D)‖2≥‖D‖2

(4.8)

‖ diag(
1

x1
, . . . ,

1

xn
)‖2 = ‖Q∗1 exp(− sym

*
LogQ∗D)Q1‖2 = ‖ exp(− sym

*
LogQ∗D)‖2 ≥ ‖D−1‖2

det diag(x1, . . . , xn) = det(Q∗1 exp(sym
*
LogQ∗D)Q1) = det(exp(sym

*
LogQ∗D)) = det(D) .

Below we combine these inequalities and new inequalities on the sum of
squared logarithms to give a proof of Theorem .

4.1 Frobenius matrix norm for n = 2, 3

Now consider the Frobenius matrix norm for dimension n = 3. The three
conditions in (4.8) can be expressed as

x2
1 + x2

2 + x2
3 ≥ d2

1 + d2
2 + d2

3

1

x2
1

+
1

x2
2

+
1

x2
3

≥ 1

d2
1

+
1

d2
2

+
1

d2
3

(4.9)

x1 x2 x3 = d1 d2 d3.

By a new result: the “sum of squared logarithms inequality” [8], conditions
(4.9) imply

(log x1)2 + (log x2)2 + (log x3)2 ≥ (log d1)2 + (log d2)2 + (log d3)2 , (4.10)

with equality if and only if (x1, x2, x3) = (d1, d2, d3). This is true, despite
the map t 7→ (log t)2 being non-convex. Similarly, for the two-dimensional
case with a much simpler proof [8]

x2
1 + x2

2 ≥ d2
1 + d2

2
1

x2
1

+
1

x2
2

≥ 1

d2
1

+
1

d2
2

x1 x2 = d1 d2

 ⇒ (log x1)2 + (log x2)2 ≥ (log d1)2 + (log d2)2 .

(4.11)

Since on the one hand (3.9) and (3.10) imply

(log x1)2 + (log x2)2 + (log x3)2 = ‖ log diag(x1, x2, x3)‖2F
= ‖ log(Q∗1 exp(sym

*
LogQ∗D)Q1)‖2F

(4.12)

= ‖Q∗1 log exp(sym
*
LogQ∗D)Q1‖2F

= ‖ log exp(sym
*
LogQ∗D)‖2F = ‖ sym

*
LogQ∗D‖2F
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and clearly

(log d1)2 + (log d2)2 + (log d3)2 = ‖ logD‖2F , (4.13)

we may combine (4.12) and (4.13) with the sum of squared logarithms in-
equality (4.10) to obtain

‖ sym
*
LogQ∗D‖2F ≥ ‖ logD‖2F (4.14)

for any Q ∈ U(3). Since on the other hand we have the trivial upper bound
(choose Q = I)

min
Q∈U(3)

‖ sym
*
Log(Q∗D)‖2F ≤ ‖ logD‖2F , (4.15)

this shows that

min
Q∈U(3)

‖ sym
*
Log(Q∗D)‖2F = ‖ logD‖2F . (4.16)

The minimum is realized for Q = I, which corresponds to the polar factor
Up in the original formulation. Noting that

‖Log(Q∗D)‖2F = ‖ sym
*
Log(Q∗D)‖2F + ‖ skew∗Log(Q∗D)‖2F ≥ ‖ sym

*
Log(Q∗D)‖2F
(4.17)

by the orthogonality of the Hermitian and skew-Hermitian parts in the trace
scalar product, we also obtain

min
Q∈U(3)

‖Log(Q∗D)‖2F ≥ min
Q∈U(3)

‖ sym
*
Log(Q∗D)‖2F = ‖ logD‖2F . (4.18)

Since all the terms in (4.18) are equal when Q = I and the principal loga-
rithm is taken, we obtain

min
Q∈U(3)

‖Log(Q∗D)‖2F = ‖ logD‖2F . (4.19)

Hence, combining again we obtain for all µ > 0 and all µc ≥ 0

min
Q∈U(3)

µ ‖ sym
*
Log(Q∗D)‖2F + µc ‖ skew∗Log(Q∗D)‖2F = µ ‖ logD‖2F .

(4.20)

Observe that although we allowed Log to be any matrix logarithm, the
one that gives the smallest ‖Log(Q∗D)‖F and ‖ sym

*
Log(Q∗D)‖F is in both

cases the principal logarithm, regardless of Z.
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4.2 Spectral matrix norm for arbitrary n ∈ N

For the spectral norm, the conditions (4.8) can be expressed as

x2
1 ≥ d2

1 ,
1

x2
n

≥ 1

d2
n

, (4.21)

x1 x2 x3 . . . xn = d1 d2 d3 . . . dn.

This yields the ordering

0 < xn ≤ dn ≤ d1 ≤ x1 . (4.22)

It is easy to see that this implies (even without the determinant condition
(4.21)3)

max{| log xn| , | log dn| , | log d1| , | log x1|} = max{| log xn| , | log x1|} , (4.23)

which shows

max{| log dn| , | log d1|} ≤ max{| log xn| , | log x1|} . (4.24)

Therefore, cf. (4.12),

‖ sym
*
LogQ∗D‖22 =‖ log diag(x1, . . . , xn)‖22

=‖ diag(log x1, . . . , log xn)‖22
= max
i=1,2,3, ...,n

{| log x1| , | log x2| , . . . , | log xn|}2

= max
i=1,2,3, ...,n

{(log x1)2 , (log x2)2 , . . . , (log xn)2}

= max{(log x1)2 , (log xn)2}
≥ max{(log d1)2 , (log dn)2}
= max

i=1,2,3,...n
{(log d1)2 , (log d2)2 , . . . , (log dn)2} (4.25)

= max
i=1,2,3, ...,n

{| log d1| , | log d2| , . . . , | log dn|}2

= ‖ diag(log d1, . . . , log dn)‖22
= ‖ log diag(d1, . . . , dn)‖22 = ‖ logD‖22 ,

from which we obtain, as in the case of the Frobenius norm, due to unitary
invariance,

min
Q∈U(n)

‖ sym
*
Log(Q∗D)‖22 = ‖ logD‖22 . (4.26)

For complex numbers we have the bound |z| ≥ |Re z|. A matrix analogue is
that the spectral norm of some matrix X ∈ Cn×n bounds the spectral norm
of the Hermitian part sym

*
X, see [4, p.355] and [20, p.151], i.e. ‖X‖22 ≥
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‖ sym
*
X‖22. In fact, this inequality holds for all unitarily invariant norms

[19, p.454]:

∀X ∈ Cn×n : ‖X‖2 ≥ ‖ sym
*
X‖2 . (4.27)

Therefore we conclude that for the spectral norm, in any dimension we have

min
Q∈U(n)

‖Log(Q∗D)‖22 ≥ min
Q∈U(n)

‖ sym
*
Log(Q∗D)‖22 = ‖ logD‖22 , (4.28)

with equality holding for Q = Up.

5 The real Frobenius case on SO(3)

In this section we consider Z ∈ GL+(3,R), which implies that Z = UpH
admits the polar decomposition with Up ∈ SO(3) and an eigenvalue decom-
position H = V DV T for V ∈ SO(3). We observe that

min
Q∈SO(n)

‖ sym
*
Log(QTD)‖2F ≥ min

Q∈U(n)
‖ sym

*
Log(Q∗D)‖2F . (5.1)

Therefore, for all µ > 0, µc ≥ 0 we have, using inequality (5.1)

min
Q∈SO(3)

µ ‖ sym
*
Log(QTZ)‖2F + µc ‖ skew∗Log(QTZ)‖2F

≥ min
Q∈SO(3)

µ ‖ sym
*
Log(QTZ)‖2F (5.2)

= µ‖ sym
*
log(UTp Z)‖2F = µ‖ sym

*
log(UTp Z)‖2F + µc ‖ skew∗ log(UTp Z)‖2F︸ ︷︷ ︸

= 0

,

and it follows that the solution to the minimization problem (1.8) for Z ∈
GL+(n,R) and n = 2, 3 is also obtained by the orthogonal polar factor (a
similar argument holds for n = 2).

Denoting by devnX = X − 1
ntr (X)I the orthogonal projection of X ∈

Rn×n onto trace free matrices in the trace scalar product, we obtain a further
result of interest in its own right (in which we really need Q ∈ SO(3)),
namely

min
Q∈SO(3)

‖ dev3 Log(QTD)‖2F = ‖ dev3 logD‖2F ,

min
Q∈SO(3)

‖dev3 sym
*
Log(QTD)‖2F = ‖ dev3 logD‖2F . (5.3)

As was in the previous section, it suffices to show (5.3)2. This is true since
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by using (4.6) for Q ∈ SO(3) we have

min
Q∈SO(3)

‖ dev3 sym
*
Log(QTD)‖2F = min

Q∈SO(3)

(
‖ sym

*
Log(QTD)‖2F −

1

3
tr
(
LogQTD

)2)
= min

Q∈SO(3)

(
‖ sym

*
Log(QTD)‖2F −

1

3
(log det(QTD))2

)
= min

Q∈SO(3)
‖ sym

*
Log(QTD)‖2F −

1

3
(log det(D))2

= min
Q∈SO(3)

‖ sym
*
Log(QTD)‖2F −

1

3
tr (logD)2

≥ min
Q∈U(n)

‖ sym
*
Log(Q∗D)‖2F −

1

3
tr (logD)2

= ‖ sym
*
logD‖2F −

1

3
tr (logD)2 (5.4)

= ‖ sym
*
logD‖2F −

1

3
tr
(
sym

*
logD

)2
= ‖ dev3 sym

*
logD‖2F = ‖ dev3 logD‖2F .

6 Uniqueness

We have seen that the polar factor Up minimizes both ‖Log(Q∗Z)‖2 and
‖ sym

*
(Log(Q∗Z))‖2, but what about its uniqueness? Is there any other

unitary matrix that also attains the minimum? We address these questions
below.

6.1 Uniqueness of Up as the minimizer of ‖Log(Q∗Z)‖2

Note that the unitary polar factor Up itself is not unique when Z does not
have full column rank [16, Thm. 8.1]. However in our setting we do not
consider this case because Log(UZ) is defined only if UZ is nonsingular.

We show below that Up is the unique minimizer of ‖Log(Q∗Z)‖2 for the
Frobenius norm, while for the spectral norm there can be many Q ∈ U(n)
for which ‖ log(Q∗Z)‖2 = ‖ log(U∗pZ)‖2.

Frobenius norm for n ≤ 3. We focus on n = 3 as the case n = 2 is
analogous and simpler. By the fact that Q = Up satisfies equality in (4.18),
any minimizer Q of ‖Log(Q∗D)‖F must satisfy

‖Log(Q∗D)‖F = ‖ sym
*
Log(Q∗D)‖F = ‖ logD‖F . (6.1)

Note that by (4.17) the first equality of (6.1) holds only if Log(Q∗D) is
Hermitian.

We now examine the condition that satisfies the latter equality of (6.1).
Since Log(Q∗D) is Hermitian the matrix exp(Log(Q∗D)) is positive definite,
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so we can write exp(Log(Q∗D)) = Q∗1 diag(x1, x2, x3)Q1 for some unitary Q1

and x1, x2, x3 > 0. Therefore

log(Q∗D) = Q∗1 diag(log x1, log x2, log x3)Q1. (6.2)

Hence for ‖ sym
*
Log(Q∗D)‖F = ‖ logD‖F to hold we need

(log x1)2 + (log x2)2 + (log x3)2 = (log d1)2 + (log d2)2 + (log d3)2,

which is precisely the case where equality holds in the sum of squared log-
arithms inequality (4.10). As discussed above, equality holds in (4.10) if
and only if (x1, x2, x3) = (d1, d2, d3). Hence by (6.2) we have log(Q∗D) =
Q∗1 diag(log x1, log x2, log x3)Q1 = Q∗1 log(D)Q1, so taking the exponential of
both sides yields

Q∗D = Q∗1DQ1. (6.3)

Hence Q1Q
∗DQ∗1 = D. Since Q1Q

∗ and Q∗1 are both unitary matrices this is
a singular value decomposition of D. Suppose d1 > d2 > d3. Then since the
singular vectors of distinct singular values are unique up to multiplication
by eiϑ, it follows that Q1Q

∗ = Q1 = diag(eiϑ1 , eiϑ2 , eiϑ3) for ϑi ∈ R, so
Q = I. If some of the di are equal, for example if d1 = d2 > d3, then we
have Q1 = diag(Q1,1, e

iϑ3) where Q1,1 is a 2 × 2 arbitrary unitary matrix,
but we still have Q = I. If d1 = d2 = d3, then Q1 can be any unitary
matrix but again Q = I. Overall, for (6.3) to hold we always need Q = I,
which corresponds to the unitary polar factor Up in the original formulation.
Thus Q = Up is the unique minimizer of ‖Log(Q∗D)‖F with minimum
‖ log(U∗pD)‖F .

Spectral norm For the spectral norm there can be many unitary matrices
Q that attain ‖Log(Q∗Z)‖22 = ‖ log(U∗pZ)‖22. For example, consider Z =[
e 0
0 1

]
. The unitary polar factor is Up = I. Defining U1 =

[
1 0
0 eiϑ

]
we have

‖ log(U1Z)‖2 = ‖
[

1 0
0 ϑ

]
‖2 = 1 for any ϑ ∈ [−1, 1].

Now we discuss the general form of the minimizer Q. Let Z = UΣV ∗

be the SVD with Σ = diag(σ1, σ2, . . . , σn). Recall that ‖ log(U∗pZ)‖2 =
max(| log σ1(Z)|, | log σn(Z)|).

Suppose that ‖ log(U∗pZ)‖2 = | log σ1(Z)| ≥ | log σn(Z)|. Then for any
Q = U diag(1, Q22)V ∗ we have

logQ∗Z = log V diag(1, Q22)ΣV ∗,

so we have ‖ logQ∗Z‖2 = | log σ1(Z)| = ‖ logU∗pZ‖2 for any Q22 ∈ U(n− 1)
such that ‖ logQ22 diag(σ2, σ3, . . . , σn)‖2 ≤ ‖ logU∗pZ‖2. Note that such Q22

always includes In−1, but may not include the entire set of (n− 1)× (n− 1)
unitary matrices as evident from the above simple example.
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Similarly, if ‖ logU∗pZ‖2 = | log σn(Z)| ≥ | log σ1(Z)|, then we have
‖ logQ∗Z‖2 = ‖ logU∗pZ‖2 for Q = U diag(Q22, 1)V ∗ where Q22 can be any
(n−1)×(n−1) unitary matrix satisfying ‖ logQ22 diag(σ1, σ2, . . . , σn−1)‖2 ≤
‖ logU∗pZ‖2.

6.2 Non-uniqueness of Up as the minimizer of ‖ sym
*
(Log(Q∗Z))‖2

The fact that Up is not the unique minimizer of ‖ sym
*
(Log(Q∗Z))‖2 can

be seen by the simple example Z = I. Then LogQ∗ is a skew-Hermitian
matrix, so sym

*
(Log(Q∗Z)) = 0 for any unitary Q.

In general, everyQ of the following form gives the same value of ‖sym(Log(Q∗Z))‖2.
Let Z = UΣV ∗ be the SVD with Σ = diag(σ1In1 , σ2In2 , . . . , σkInk) where
n1 + n2 + · · · + nk = n (k = n if Z has pairwise distinct singular values).
Then it can be seen that any unitary Q of the form

Q∗ = Udiag(Qn1 , Qn2 , . . . , Qnk)V ∗, (6.4)

where Qni is any ni × ni unitary matrix, yields ‖ sym
*
(Log(Q∗Z))‖2 =

‖ sym
*
(log(U∗pZ))‖2. Note that this holds for any unitarily invariant norm.

The above argument naturally leads to the question of whether Up is
unique up to Qni in (6.4). In particular, when the singular values of Z are
distinct, is Up determined up to scalar rotations Qni = eiϑni?

For the spectral norm an argument similar to that above shows there
can be many Q for which ‖ sym

*
(Log(Q∗Z))‖2 = ‖ sym

*
(log(U∗pZ))‖2.

For the Frobenius norm, the answer is yes. To verify this, observe in
(4.14) that ‖ sym

*
Log(Q∗D)‖F = ‖ logD‖F implies (x1, x2, x3) = (d1, d2, d3)

and hence Log(Q∗D) = Q∗1 diag(log d1, log d2, log d3)Q1 + S, where S is a
skew-Hermitian matrix. Hence

exp(Q∗1 diag(log d1, log d2, log d3)Q1 + S) = Q∗D, (6.5)

and by (4.2) we have

‖Q∗D‖F = ‖ exp(Q∗1 diag(log d1, log d2, log d3)Q1 + S)‖F
≤ ‖ exp(Q∗1 diag(log d1, log d2, log d3)Q1)‖F = ‖Q∗D‖F .

Since equality in (4.2) holds for the Frobenius norm if and only if X is normal
(which can be seen from the proof of [6, Thm. IX.3.1]), for the last inequality
to be an equality, Q∗1 diag(log d1, log d2, log d3)Q1 + S must be a normal
matrix. Since Q∗1 diag(log d1, log d2, log d3)Q1 is Hermitian and S is skew-
Hermitian, this means Q∗1 diag(log d1, log d2, log d3)Q1 + S = Q∗1 diag(is1 +
log d1, is2+log d2, is3+log d3)Q1 for si ∈ R. Together with (6.5) we conclude
that

Q∗D = Q∗1 diag(d1e
is1 , d2e

is2 , d3e
is3)Q1.

By an argument similar to that following (6.3) we obtainQ = diag(e−is1 , e−is2 , e−is3).
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7 Conclusion and outlook

The result in the Frobenius matrix norm cases for n = 2, 3 hinges crucially
on the use of the new sum of squared logarithms inequality (4.10). This
inequality seems to be true in any dimensions with appropriate additional
conditions [8]. However, we do not have a proof yet.

Nevertheless, numerical experiments suggest that the optimality of the
polar factor Up in both

min
Q∈U(n)

‖Log(Q∗Z)‖2 , min
Q∈U(n)

‖ sym
*
Log(Q∗Z)‖2 (7.1)

is true for any unitarily invariant norm, over R and C and in any dimension.
This would imply that for all µ, µc ≥ 0 and for any unitarily invariant norm

min
Q∈U(n)

µ ‖ sym
*
Log(Q∗Z)‖2 + µc ‖ skew∗Log(Q∗Z)‖2 = µ ‖ log(U∗pZ)‖2 = µ ‖ log

√
Z∗Z‖2 .

We also conjecture that Q = Up is the unique unitary matrix that minimizes
‖Log(Q∗Z)‖2 for every unitarily invariant norm.

In a forthcoming contribution [34] we will use our new characterization
of the orthogonal factor in the polar decomposition to calculate the geodesic
distance of the isochoric part of the deformation gradient F

det(F )
1
3
∈ SL(3) to

SO(3) in the canonical left-invariant Riemannian metric on SL(3), namely
based on (5.3)

dist2
geod,SL(3)(

F

det(F )
1
3

, SO(3)) = ‖ dev3 log
√
F TF‖2F = min

Q∈SO(3)
‖ dev3 sym

*
LogQTF‖2F .

Thereby, we provide a rigorous geometric justification for the preferred use
of the Hencky-strain measure ‖ log

√
F TF‖2F in nonlinear elasticity and plas-

ticity theory, see [15, 41] and the references therein.
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