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The Minimization of Matrix Logarithms: On a

Fundamental Property of the Unitary Polar Factor

Johannes LANKEIT ∗, Patrizio NEFF†and Yuji NAKATSUKASA‡

January 2014

Abstract

We show that the unitary factor Up in the polar decomposition of
a nonsingular matrix Z = UpH is the minimizer for both

‖Log(Q∗Z)‖ and ‖ sym
*
(Log(Q∗Z))‖

over the unitary matrices Q ∈ U(n) for any given invertible matrix
Z ∈ Cn×n, for any unitarily invariant norm and any n. We prove that
Up is the unique matrix with this property. As important tools we use a
generalized Bernstein trace inequality and the theory of majorization.

Keywords: unitary polar factor, matrix logarithm, matrix exponential,
Hermitian part, minimization, unitarily invariant norm, polar decomposi-
tion, majorization, optimality
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1 Introduction

Just as every nonzero complex number z = reiϕ admits a unique polar
representation with r ∈ R+, ϕ ∈ (−π, π], every matrix Z ∈ Cn×n can be
decomposed into a product of the unitary polar factor Up ∈ U(n) (where
U(n) denotes the group of n×n unitary matrices) and a positive semidefinite
matrix H [4, Lemma 2, p.124], [23, Ch. 8],[24, p.414]:

Z = UpH.
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This theorem has its roots in some of Cauchy’s work on elasticity [13]. It
was given as an algebraic statement with ideas for a proof by Finger [19,
Eq (25)], and proven by E. and F. Cosserat [15, 6]. Finally, it was given in
matrix notation and extended to complex matrices by Autonne [4], cf. [16,
Sect. 43], [41, Sect. 35-37].

The polar decomposition is unique if Z is invertible. We note that the
polar decomposition exists for rectangular matrices Z ∈ Cm×n, but in this
paper we shall restrict ourselves to invertible Z ∈ Cn×n, in which case Up, H
are unique and H =

√
Z∗Z is positive definite, where the matrix square root

is taken to be the principal one [23, Ch. 6].
The unitary polar factor Up plays an important role in geometrically

exact descriptions of solid materials. In this case UTp F = H is called the right
stretch tensor of the deformation gradient F and serves as a basic measure
of the elastic deformation [10, 33, 37, 32, 31]. For additional applications
and computational issues of the polar decomposition see e.g. [20, Ch. 12]
and [30, 12, 28, 29].

The unitary polar factor also has the property that in terms of any
unitarily invariant matrix norm ‖ · ‖, i.e. norms that satisfy ‖X‖ = ‖UXV ‖
for any unitary U, V , it is the nearest unitary matrix [7, Thm. IX.7.2], [18],
[21], [23, p. 197] to Z, that is,

min
Q∈U(n)

‖Z −Q‖ = min
Q∈U(n)

‖Q∗Z − I‖ = ‖U∗pZ − I‖ = ‖
√
Z∗Z − I‖. (1)

The presumably first proof - also motivated by elasticity theory - of the
important case of dimension three and the Frobenius norm can be found in
Grioli’s work [21], see [38]. The purpose of the present paper is to show that
the unitary polar factor enjoys this minimization property (made precise in
(10)) also with respect to ‖Log . . . ‖, an expression that arises when con-
sidering geodesic distances on matrix Lie groups (see [39], [34] and [35] for
further motivation):

min
Q∈U(n)

‖LogQ∗Z‖ = ‖ logU∗pZ‖ = ‖ log
√
Z∗Z‖,

and with respect to the Hermitian part of the logarithm

min
Q∈U(n)

‖ sym
*
LogQ∗Z‖ = ‖ sym

*
logU∗pZ‖ = ‖ log

√
Z∗Z‖.

Here LogZ denotes any solution to expX = Z, while logZ denotes the
principal matrix logarithm (we discuss more details in section 2.3); sym

*
X =

1
2(X +X∗) is the Hermitian part of X ∈ Cn×n.

This minimization property is fundamental as it holds for arbitrary n ∈
N, all unitarily invariant matrix norms, and in fact for the whole family

µ‖ sym
*
Log(Q∗Z)‖2 + µc‖ skew

*
Log(Q∗Z)‖2, µ > 0, µc ≥ 0. (2)
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By contrast, the respective property does not hold true [36] for

µ‖ sym
*
(Q∗Z − I)‖2 + µc‖ skew

*
(Q∗Z − I)‖2, 0 < µc < µ, (3)

wherefore the minimization (2) seems even more fundamental than (3). Note
that (3) reduces to (1) by taking µ = µc = 1.

This result, which is a generalization of the fact for scalars that for any
complex logarithm and for all z ∈ C \ {0}

min
ϑ∈(−π,π]

|LogC(e−iϑz)|2 = | log |z||2 , min
ϑ∈(−π,π]

|ReLogC(e−iϑz)|2 = | log |z||2 ,

has recently been proven for the spectral norm in any dimension n and the
Frobenius norm for n ≤ 3 in [39]. By using majorization techniques (see also
[9]) we now prove this property in any dimension n and for any unitarily
invariant matrix norm.

In [39] the conditions for applying the new sum of squared logarithms
inequality [11] are obtained from the inequality

‖ expX‖ ≤ ‖ exp sym
*
X‖, [7, IX.3.1], (4)

which can be derived from Cohen’s generalization [14] of Bernstein’s trace
inequality [5], which is inequality (4) for the Frobenius norm. In this pa-
per, we exploit the conditions obtained by Cohen [14], inequality 6 below,
directly, apply the logarithm first and then use majorization techniques.

In the next section we provide some basics about compound matrices
and majorization upon which our proof is built. We then discuss properties
of the matrix logarithm, and in section 3 we prove the asserted minimization
property. Finally, we prove the uniqueness of Up as the minimizer.

Notation. σi(X) =
√
λi(X∗X) denotes the i-th largest singular value of

X. The symbol Ik denotes the k× k identity matrix, which we simply write
I if the dimension is clear. By ‖ · ‖ we mean any unitarily invariant matrix
norm. U(n) denotes the group of complex unitary matrices. We let sym

*
X =

1
2(X∗ +X) denote the Hermitian part of X and skew

*
X = 1

2(X −X∗) the
skew-Hermitian part of X such that X = sym

*
X+skew

*
X. exp denotes the

matrix exponential function expX =
∑∞

n=0
1
n!X

n. In general, LogZ with
capital letter denotes any solution to expX = Z, while logZ denotes the
principal matrix logarithm.

2 Preliminaries

2.1 Compound matrices and the generalized Bernstein in-
equality

The most important ingredient for our proof is inequality (6) below, which
is stated in terms of compound matrices. The k-th compound matrix A(k)
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of a matrix A is the
(
n
k

)
×
(
n
k

)
-matrix consisting of the (lexicographically

ordered) determinants of all k × k submatrices of A (the minors). For the
convenience of the reader we recall some properties of compound matrices
(see e.g. [6, p.411]):

(AB)(k) = A(k)B(k) for any A,B ∈ Cn×n (Binet-Cauchy formula).

In particular: if A is invertible, ·(k) and −1 commute:

(A(k))−1 = (A−1)(k).

Denote by trki A := tri[A
(k)] the i-th partial trace (sum of the i largest

eigenvalues in modulus) of the k-th compound matrix of A. If A is similar
to B, that is A = SBS−1, then

trki A = trki B, (5)

because A(k) and B(k) are also similar by the preceding two properties.
For A = diag(x1, . . . xn), the k-th compound matrix A(k) is a diagonal

matrix with the different products of k factors xi as entries.

Example 2.1 Let X = diag(x1, x2, x3, x4), where x1 ≥ x2 ≥ x3 ≥ x4 > 0.
Then

X(1) = X,

X(2) = diag(x1x2, x1x3, x1x4, x2x3, x2x4, x3x4),

X(3) = diag(x1x2x3, x1x2x4, x1x3x4, x2x3x4),

X(4) =
(
x1x2x3x4

)
and e.g.

trX = trX(1) = tr
(1)
4 X,

tr
(1)
1 X = x1, tr

(1)
2 X = x1 + x2, tr

(1)
3 X = x1 + x2 + x3, tr

(1)
4 X = x1 + x2 + x3 + x4,

tr
(2)
1 X = x1x2, tr

(2)
2 X = x1x2 + x1x3,

tr
(2)
3 X = x1x2 + x1x3 + max{x1x4, x2x3},

tr
(3)
2 X = x1x2x3 + x1x2x4,

tr
(1)
1 X = x1, tr

(2)
1 X = x1x2, tr

(3)
1 X = x1x2x3, tr

(4)
1 = x1x2x3x4.

In general, for diagonal matrices diag(xi) with x1 ≥ x2 ≥ · · · ≥ xn > 0, one

obtains tr
(k)
1 diag(xi) = x1 · · ·xk.
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Cohen [14], generalizing Bernstein’s result [5], proved the inequality

trki (exp(A) exp(A∗)) ≤ trki (exp(A+A∗)) (6)

for any A ∈ Cn×n, k = 1, . . . , n, i = 1, . . . ,
(
n
k

)
and the matrix-exponential

function: exp(A) =
∑∞

n=0
An

n! . Of course (6) is an equality if AA∗ = A∗A.
We will use the case i = 1 of these inequalities for compound matrix

traces to show the majorization of suitable vectors.

2.2 Majorization

Let x, y ∈ Rn. Then x is said to be majorized by y, x ≺ y, if

k∑
i=1

x↓i ≤
k∑
i=1

y↓i for all k = 1, . . . , n

and

n∑
i=1

xi =

n∑
i=1

yi,

where x↓ denotes the vector x with decreasingly rearranged components.
If the latter condition is dropped, we say x is weakly majorized by y,
denoted by x ≺w y, see [27].

Theorem 2.2 ([27]) If x ≺ y and f : R → R is a convex function, then
(f(x1), . . . , f(xn)) ≺w (f(y1), . . . , f(yn)). [27, 5.A.1]

This theorem can be proved (see [1, eqn. (1.9)]) by using a characteriza-
tion of majorization, given in [22, Thm.8], via the existence of a doubly
stochastic matrix P such that x = Py. We note that the theorem includes
Karamata’s inequality [26], which states

∑n
i=1 f(xi) ≤

∑n
i=1 f(yi) under the

same conditions.
Based on an observation of von Neumann [40] (see also [7, Thm. IV.2.1],

[25, sec. 3.5]) on the relationship between unitarily invariant norms and
symmetric gauge functions (norms that are invariant under change of order
or signs of components) of their singular values and Ky Fan’s theorem on
a conditition for inequalities of symmetric gauge functions [17, Thm.4] (see
also [8]), one has the following important connection between majorization
and unitarily invariant norms :

Theorem 2.3 ([17]) Let X,Y ∈ Cn×n be two matrices. Then

‖X‖ ≥ ‖Y ‖

for all unitarily invariant norms ‖ · ‖ if and only if the vectors σ(X), σ(Y )
of singular values satisfy

σ(X) �w σ(Y ).
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2.3 Matrix logarithm

For every nonsingular Z ∈ GL(n,C) there exists a solution X ∈ Cn×n to
expX = Z, which we call a logarithm X = Log(Z) of Z. By definition,

∀X ∈ Cn×n : exp LogX = X ,

whereas the converse does not have to be true without further assumptions,

Log expX 6= X ,

because, as in the scalar case, the matrix logarithm is multivalued depending
on the unwinding number [23, p. 270] [3]: a nonsingular real or complex
matrix may have an infinite number of real or complex logarithms.

If we want to work with one special logarithm with certain desirable
properties, we use the principal matrix logarithm logX: Let X ∈ Cn×n,
and assume that X has no eigenvalues on (−∞, 0]. The principal matrix
logarithm of X is the unique logarithm of X (the unique solution Y ∈ Cn×n
of expY = X) whose eigenvalues lie in the strip {z ∈ C : −π < Im(z) < π}.
If X ∈ Rn×n and X has no eigenvalues in (−∞, 0], then the principal matrix
logarithm is real.

The following statements apply strictly only to the principal matrix log-
arithm [23, Ch. 11]:

log expX = X if and only if | Im(λ)| < π for all λ ∈ spec(X) , (7)

log(Q∗XQ) = Q∗ log(X)Q , ∀Q ∈ U(n) . (8)

Since sym
*
X is Hermitian the matrix exp sym

*
X is positive definite, so we

can apply (7) and it follows from (8) that

∀X ∈ Cn×n : Q∗[sym
*
X]Q = Q∗[log exp sym

*
X]Q = log[Q∗(exp sym

*
X)Q] .
(9)

3 The minimization

3.1 Preparation

The goal is to find the unitary Q ∈ U(n) that minimizes ‖Log(Q∗Z)‖ and
‖ sym

*
Log(Q∗Z)‖ over all possible logarithms. Due to the non-uniqueness

of the logarithm, we give the following as the statement of the minimization
problem:

min
Q∈U(n)

‖Log(Q∗Z)‖ := min
Q∈U(n)

{‖X‖ ∈ R | expX = Q∗Z} ,

min
Q∈U(n)

‖ sym
*
Log(Q∗Z)‖ := min

Q∈U(n)
{‖ sym

*
X‖ ∈ R | expX = Q∗Z} . (10)
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We first observe, as shown in [39], that without loss of generality we may
assume that Z ∈ GL(n,C) is real, diagonal and positive definite. To see
this, consider the unique polar decomposition Z = UpH and the eigenvalue
decomposition H = V DV ∗ where D = diag(d1, . . . , dn) with di > 0. Then

min
Q∈U(n)

‖ sym
*
Log(Q∗Z)‖ = min

Q∈U(n)
{‖ sym

*
X‖ | expX = Q∗Z}

= min
Q∈U(n)

{‖ sym
*
X‖ | expX = Q∗UpV DV

∗}

= min
Q∈U(n)

{‖ sym
*
X‖ | exp(V ∗XV ) = V ∗Q∗UpV D}

= min
Q̃∈U(n)

{‖ sym
*
X‖ | exp(V ∗XV ) = Q̃∗D} (11)

= min
Q̃∈U(n)

{‖ sym
*
(V ∗XV )‖ | exp(V ∗XV ) = Q̃∗D}

= min
Q̃∈U(n)

{‖ sym
*
(X̃)‖ | exp(X̃) = Q̃∗D}

= min
Q∈U(n)

‖ sym
*
LogQ∗D‖ ,

where we used the unitary invariance for any unitarily invariant matrix
norm and the fact that X 7→ sym

*
X and X 7→ expX are isotropic matrix

functions, i.e. f(V ∗XV ) = V ∗f(X)V for all unitary V . If the minimum
is achieved for Q = I in minQ∈U(n) ‖ sym

*
Log(Q∗D)‖ then this corresponds

to Q = Up in minQ∈U(n) ‖ sym
*
LogQ∗Z‖. Therefore, in the following we

assume that Z = D = diag(d1, . . . dn) with d1 ≥ d2 ≥ . . . ≥ dn > 0.

3.2 Main result: minimizing ‖Log Q∗D‖

Our starting point is the problem of minimizing the Hermitian part

min
Q∈U(n)

‖ sym
*
(Log(Q∗Z))‖.

As we will see, a solution of this problem will already imply the other min-
imization properties. Let n ∈ N be arbitrary. For any Q ∈ U(n) the
Hermitian positive definite matrix exp(sym

*
LogQ∗D) can be unitarily di-

agonalized with positive, real eigenvalues, i.e., for some Q1 ∈ U(n)

Q∗1
(
exp(sym

*
LogQ∗D)

)
Q1 = diag(x1, . . . , xn) =: X . (12)

Here, we assume that the positive real eigenvalues are ordered as x1 ≥ x2 ≥
. . . ≥ xn > 0. Then from

det expX = etrX ,
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which holds true for arbitrary matrices [6, p.712], we have

detX = det(exp(sym
*
LogQ∗D)) = | exp(tr(sym

*
LogQ∗D))|

= exp(Re tr(LogQ∗D)) = | exp(tr(LogQ∗D))| (13)

= | det exp Log(Q∗D)| = |det(Q∗D)| = detD,

and therefore

x1 x2 · · ·xn−1 xn = d1 d2 · · · dn−1 dn. (14)

Due to (12), X2 = XX∗ and exp(sym
*
LogQ∗D) exp(sym

*
LogQ∗D)∗

are similar. Furthermore,

exp(sym
*
LogQ∗D) exp(sym

*
LogQ∗D)∗ = exp(sym

*
(LogQ∗D)) exp((sym

*
(LogQ∗D))∗)

= exp(2 sym
*
LogQ∗D)

= exp((LogQ∗D) + (Log(Q∗D))∗).

Hence by equation (5) the matrices X2 and exp((LogQ∗D) + (Log(Q∗D))∗)
have the same partial compound traces trki , and setting i = 1 we obtain
from Cohen’s inequality (6) that

tr
(k)
1 X2 = tr

(k)
1 (exp((LogQ∗D) + (Log(Q∗D))∗))

≥ tr
(k)
1 (exp(LogQ∗D) exp(LogQ∗D)∗) = tr

(k)
1 (Q∗DD∗Q) = tr

(k)
1 D2,

i.e. (recall that tr
(k)
1 is the largest eigenvalue of the k-th compound matrix):

x21 ≥ d21
x21 x

2
2 ≥ d21 d22
... (15)

x21 x
2
2 · · ·x2n−1 ≥ d21 d22 · · · d2n−1

x21 x
2
2 · · ·x2n−1 x2n ≥ d21 d22 · · · d2n−1 d2n.

Of course, by (14) the last inequality is in fact an equality. Applying the
logarithm to (14) and to (15) gives

log x1 ≥ log d1

log x1 + log x2 ≥ log d1 + log d2

...

log x1 + log x2 + · · ·+ log xn−1 ≥ log d1 + log d2 + · · ·+ log dn−1 (16)

log x1 + log x2 + · · ·+ log xn = log d1 + log d2 + · · ·+ log dn.
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That is, we have the majorization

(log x1, . . . , log xn) � (log d1, . . . , log dn), (17)

very much in the spirit of the reformulation of Cohen’s result in [2, Thm.
C].
As the modulus is a convex function, from Theorem 2.2 we obtain

(| log x1|, . . . , | log xn|) �w (| log d1|, . . . , | log dn|) . (18)

Note that these vectors contain nothing but the singular values of logX and
logD respectively, and hence

‖ logX‖ ≥ ‖ logD‖ (19)

for any unitarily invariant norm, by Theorem 2.3.
According to (9) and (12),

logX = log[Q∗1 exp(sym
*
LogQ∗D)Q1] = Q∗1(sym

*
LogQ∗D)Q1 (20)

and because ‖ · ‖ is unitarily invariant, (19) can be stated as

‖ sym
*
LogQ∗D‖ ≥ ‖ logD‖. (21)

Together with the trivial upper bound for the minimum (let Q = I and
Log = log) we conclude that

min
Q∈U(n))

‖ sym
*
Log(Q∗D)‖ = ‖ logD‖ . (22)

The minimum is realized for Q = I, which corresponds to the polar factor
Up in the original formulation.

To obtain the solution for the minimization problem minQ∈U(n)) ‖Log(Q∗D)‖
from that of the Hermitian part (22), we use the fact that for any unitarily
invariant norm, the norm of the Hermitian part of any matrix is less than
or equal to the norm of the matrix [24, p.454],

‖ sym
*
X‖ ≤ ‖X‖.

It follows that

min
Q∈U(n)

‖LogQ∗D‖ ≥ min
Q∈U(n)

‖ sym
*
LogQ∗D‖ = ‖ logD‖ .

The last inequality, together with the minimum’s upper bound for Q = I,
yields

min
Q∈U(n)

‖Log(Q∗D)‖ = ‖ logD‖ . (23)
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Combining the above results, for all µ > 0, µc ≥ 0 we obtain (2):

min
Q∈U(n)

µ‖ sym
*
Log(Q∗Z)‖2 + µc‖ skew

*
Log(Q∗Z)‖2 ≥ min

Q∈U(n)
µ‖ sym

*
Log(Q∗Z)‖2

= µ‖ sym
*
Log(U∗pZ)‖2 = µ‖ sym

*
Log(U∗pZ)‖2 + µc ‖ skew

*
Log(U∗pZ)‖2︸ ︷︷ ︸
=0

= µ‖ logU∗pZ‖2 = µ‖ log
√
Z∗Z‖2 .

In summary, we have proved the following:

Theorem 3.1 Let Z ∈ Cn×n be a nonsingular matrix and let Z = UpH be
its polar decomposition. Then for any unitarily invariant norm ‖ · ‖

min
Q∈U(n)

‖LogQ∗Z‖ = ‖ logU∗pZ‖ = ‖ logH‖,

min
Q∈U(n)

‖ sym
*
LogQ∗Z‖ = ‖ sym

*
logU∗pZ‖ = ‖ logH‖,

and for any µ > 0, µc ≥ 0

min
Q∈U(n)

(
µ‖ sym

*
Log(Q∗Z)‖2 + µc‖ skew

*
Log(Q∗Z)‖2

)
= µ‖ logH‖2.

3.3 Uniqueness

The question of uniqueness was considered in [39] for the spectral norm and
for the Frobenius norm when n ≤ 3. The analysis there showed that Q = Up
is the unique minimizer of ‖LogQ∗Z‖ for the Frobenius norm for n ≤ 3, but
not for the spectral norm. Moreover, it was conjectured there that Q = Up
is the only matrix that minimizes ‖ logQ∗Z‖ regardless of the choice of the
unitarily invariant norm. Here we prove this in the affirmative:

Theorem 3.2 Let Z ∈ Cn×n be a nonsingular matrix, and suppose Q̂ ∈
U(n) is such that for every unitarily invariant norm ‖ · ‖ the equality

‖ log Q̂∗Z‖ = min
Q∈U(n)

‖LogQ∗Z‖

holds. Then Q̂ = Up, the unitary polar factor of Z.

proof. By Theorem 2.3, for a fixed Q to be the minimizer of ‖Log Q∗Z‖
for every unitarily invariant norm, we need equality to hold in (19) for every
Ky Fan k-norm ‖Z‖(k) =

∑k
i=1 σi(Z) for k = 1, 2, . . . , n. That is, we require

‖ logX‖(k) = ‖ logD‖(k), k = 1, 2, . . . , n. (24)

We re-order the sets log xi and log di to arrange in decreasing order of
absolute value and denote them by | log x̂1| ≥ | log x̂2| ≥ · · · ≥ | log x̂n| and
| log d̂1| ≥ | log d̂2| ≥ · · · ≥ | log d̂n|. Then (24) is equivalent to

(| log x̂1|, . . . , | log x̂n|) = (| log d̂1|, . . . , | log d̂n|). (25)
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Recall that log xi and log di also satisfy the majorization property (16). We
now claim that (16) and (25) imply xi = di for all i = 1, . . . , n.

It is worth noting that (25) includes the statement

n∑
i=1

| log x̂i| =
n∑
i=1

| log d̂i| ⇔
n∑
i=1

| log xi| =
n∑
i=1

| log di| ,

that is, Karamata’s inequality holds with equality. Moreover, Karamata’s
inequality is known to become an equality if and only if the two sets are
equal, which in this case means log xi = log di for all i, provided that the
function f(x) (which here is |x|) is strictly convex. However, since |x| is not
strictly convex over R, this argument is not directly applicable. Below we
shall see that we nonetheless have xi = di.

First, since log is a monotone function we have either log x̂1 = log x1 ≥ 0
or log x̂1 = log xn < 0, and similarly log d̂1 = log d1 ≥ 0 or log d̂1 = log dn <
0.

By (25) we need | log x̂1| = | log d̂1|, so either log x̂1 = log d̂1 or log x̂1 =
− log d̂1. Now if x̂1 = d̂1 then we can remove x̂1, d̂1 from the lists x̂i, d̂i with-
out affecting the argument. Hence here we suppose that log x̂1 = − log d̂1,
and show by contradiction that this assumption cannot hold, thus proving
x̂1 = d̂1.

Observe that the assumption log x̂1 = − log d̂1 forces x̂1 = x1 and d̂1 =
dn (instead of x̂1 = xn or d̂1 = d1), because if log x̂1 = log xn < 0 and hence
| log x̂1| > | log x1|, then log d̂1 > 0 and hence | log d̂1| = log d1 ≥ 0, and so
log d1 = | log d̂1| = | log x̂1| > | log x1|, contradicting the first majorization
property in (16).

Hence our assumptions are log x̂1 = − log d̂1, x̂1 = x1 and d̂1 = dn. In
the equality

∑n
i=1 log xi =

∑n
i=1 log di of (16), subtracting log dn = log d̂1 =

− log x1 from both sides yields

2 log x1 + log x2 + · · ·+ log xn = log d1 + log d2 + · · ·+ log dn−1.

Together with the (n−1)th majorization assumption
∑n−1

i=1 log xi ≥
∑n−1

i=1 log di
we need

log x1 + log x2 + · · ·+ log xn−1 ≥ 2 log x1 + log x2 + · · ·+ log xn,

which is equivalent to log x1 + log xn ≤ 0. This contradicts our assumption
| log x1| ≥ | log xn| unless | log x1| = | log xn|, but in this case we can remove
both xn and dn (with xn = dn) from the list without affecting the argument.
Overall we have shown that we have x1 = d1, and by repeating the same
argument we conclude that

xi = di for all i. (26)
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We next examine the necessary conditions to satisfy ‖ sym
*
Log(Q∗D)‖ =

‖ logD‖ in (22), and show that we need Q = I. We clearly need

‖ sym
*
Log(Q∗D)‖ = ‖Log(Q∗D)‖

for every unitarily invariant norm, which forces Log(Q∗D) to be Hermi-
tian. Hence the matrix exp(Log(Q∗D)) is positive definite, so we can write
exp(Log(Q∗D)) = Q∗1 diag(x1, . . . , xn)Q1 for some unitary Q1 and xi > 0.
Therefore the matrix logarithm is necessarily the principal one, and

Log(Q∗D) = log(Q∗D) = Q∗1 diag(log x1, . . . , log xn)Q1. (27)

Hence by (27) and (26) we have

log(Q∗D) = Q∗1 diag(log x1, . . . , log xn)Q1 = Q∗1 log(D)Q1,

so taking the exponential of both sides yields

Q∗D = Q∗1DQ1. (28)

Hence D = Q(Q∗1DQ1). Note that this is the polar decomposition of D,
as Q∗1DQ1 is Hermitian positive definite. It follows that Q must be equal
to the unique unitary polar factor of D, which is clearly I. Overall, for
(28) to hold we always need Q = I, which corresponds to the unitary polar
factor Up in the original formulation. Thus Q = Up is the unique minimizer
of ‖Log(Q∗D)‖ with minimum ‖ log(U∗pD)‖. Other choices of the matrix
logarithm are easily seen to give larger ‖Log(Q∗D)‖. �

Although we have shown thatQ = Up is always a minimizer of ‖LogQ∗Z‖,
for a specific unitarily invariant norm it may not be the unique minimizer.
For example, for the spectral norm there can be infinitely many Q for which
‖ logQ∗Z‖ = ‖ logU∗pZ‖, as was shown in [39]. In general, Z = Up is
not the unique minimizer when the norm does not involve all the singu-
lar values, such as the spectral norm ‖Z‖ = σ1(Z) and Ky Fan k-norm
‖Z‖ =

∑k
i=1 σi(Z) for k < n.

Below we discuss a general form of the minimizers Q for a Ky Fan k-
norm.

Proposition 3.3 Z = UΣV ∗ be an SVD of a nonsingular Z with Σ =
diag(σ1, σ2, . . . , σn). Let Σ̂ = diag(σ̂1, σ̂2, . . . , σ̂n) where {σ̂i} is a permuta-
tion of {σi} such that | log σ̂1| ≥ · · · ≥ | log σ̂n|, and define Û , V̂ such that
Z = Û Σ̂V̂ ∗ is an SVD with permuted order of singular values.

Then for any Q̂ ∈ U(n) expressed as Q̂ = Û diag(Ik, Q22)V̂
∗ where Q22 ∈

U(n− k) such that

‖ logQ22 diag(σ̂k+1, . . . , σ̂n)‖2 ≤ | log σ̂k|, (29)
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(where ‖ · ‖2 denotes the spectral norm, that is, the largest singular value),
we have

‖ log Q̂∗Z‖(k) = min
Q∈U(n)

‖LogQ∗Z‖(k). (30)

proof. Direct calculation shows for such Q̂ that

log Q̂∗Z = log V̂ diag(Ik, Q22)Σ̂V̂
∗,

so the singular values of log Q̂∗Z are the union of log σ̂i, i = 1, . . . , k and
those of log (Q22 diag(σ̂k+1, . . . , σ̂n)). By (29) we have ‖ log Q̂∗Z‖(k) =∑k

i=1 log σ̂i = ‖ logU∗pZ‖(k), and (30) follows from the fact that

‖ logU∗pZ‖(k) = min
Q∈U(n)

‖LogQ∗Z‖(k)

as we have seen in Theorem 3.1. �

We note that the set of Q22 that satisfies (29) includes the choice Q22 =
In−k. Moreover, the set generally includes more than In−k, and can be (but
not always) as large as the whole group U(n− k).

3.4 Rectangular Z

The polar decomposition Z = UpH is defined for any Z ∈ Cm×n with
m ≥ n, including singular and rectangular matrices [23, Ch. 8]. Also in this
case it solves [23, Thm. 8.4]

‖Z − Up‖ = min{‖Z −Q‖ : Q∗Q = In}.

Therefore a natural question arises of whether Up is still the minimizer of
‖LogQ∗Z‖ over Q ∈ Cm×n such that Q∗Q = In when m > n.

The answer to this question is in the negative, as can be seen by the
simple example Z =

[
1
1

]
, for which Z = UpH with Up = 1√

2

[
1
1

]
andH =

√
2.

Defining V =
[
1
0

]
we have logU∗pZ = 1√

2
but log V ∗Z = 0, clearly showing

that Up is generally not the minimizer of ‖LogQ∗Z‖. We conclude that the
minimization property of Up that we have discussed is particular for square
and nonsingular matrices, contrary to the minimization property of Up with
respect to ‖Z −Q‖, which holds for any Z including rectangular ones.
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[4] L. Autonne. Sur les groupes linéaires, réels et orthogonaux. Bull. Soc. Math. France,
30:121–134, 1902.

[5] D. S. Bernstein. Inequalities for the trace of matrix exponentials. SIAM J. Matrix
Anal. Appl., 9(2):156–158, 1988.

[6] D. S. Bernstein. Matrix Mathematics. Princeton University Press, New Jersey, 2009.

[7] R. Bhatia. Matrix Analysis, volume 169 of Graduate Texts in Mathematics. Springer,
New-York, 1997.

[8] R. Bhatia and C. Davis. Relations of linking and duality between symmetric gauge
functions. In A. Feintuch and I. Gohberg, editors, Nonselfadjoint Operators and
Related Topics, volume 73 of Operator Theory: Advances and Applications, pages
127–137. Birkhaeuser Basel, 1994.

[9] R. Bhatia and P. Grover. Norm inequalities related to the matrix geometric mean.
Linear Algebra Appl., 437(2):726 – 733, 2012.

[10] M. B̂ırsan and P. Neff. Existence of minimizers in the geometrically non-linear 6-
parameter resultant shell theory with drilling rotations. Mathematics and Mechanics
of Solids, 2013.

[11] M. B̂ırsan, P. Neff, and J. Lankeit. Sum of squared logarithms: An inequality relating
positive definite matrices and their matrix logarithm. Journal of Inequalities and
Applications, 2013(1):168, 2013.

[12] R. Byers and H. Xu. A new scaling for Newton’s iteration for the polar decomposition
and its backward stability. SIAM J. Matrix Anal. Appl., 30:822–843, 2008.
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