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DERANDOMIZATION IN GAME-THEORETIC PROBABILITY

KENSHI MIYABE AND AKIMICHI TAKEMURA

Abstract. We give a general method for constructing a deterministic strategy
of Reality from a randomized strategy in game-theoretic probability. The
construction can be seen as derandomization in game-theoretic probability.

1. Introduction

1.1. Reality’s strategy in Game-theoretic probability. Game-theoretic prob-
ability [18] is a probability theory based on a betting game between two players,
Skeptic and Reality. Sometimes we add the third player called Forecaster. In game-
theoretic probability an almost sure event is (usually) formalized as an event such
that Skeptic can increase his capital to infinity if the event does not happen. In this
case we say that Skeptic has a winning strategy. In game-theoretic probability, in
order to prove that an event happens almost surely, we construct a winning strat-
egy of Skeptic. A number of such strategies have been constructed so far. Often
these strategies of Skeptic correspond to well-known proofs in measure-theoretic
probability that a certain event happens with probability one.

In this paper, when we just refer to a strategy, it is a deterministic strategy. We
explicitly say “randomized strategy”, when a strategy utilizes random variables in
the sense of measure-theoretic probability.

There is no counterpart of Reality’s strategy in measure-theoretic probability,
because in measure-theoretic probability Reality is simply generating random vari-
ables under a given probability distribution without any specific strategy. Hence it
is more difficult to derive results on Reality’s strategies. Reality’s strategies corre-
spond to the notion of derandomization, since if Reality is following a strategy she
is not random in the measure-theoretic sense.

If a two-player game (without Forecaster) is with perfect information, then at
least one of the players has a winning strategy in the game by Martin’s Theorem
(Theorem 5.8). If Skeptic does not have a winning strategy, Reality should have.
For instance, consider the game-theoretic version of Kolmogorov’s strong law of
large numbers [18, Proposition 4.1]. Shafer and Vovk proved the existence of Re-
ality’s winning strategy in Section 4.3 in their book [18]. The proof is, however,
nonconstructive. The two main tools of the proof are

(i) the randomized strategy for Reality that was devised by Kolmogorov,
(ii) Martin’s theorem.

It is unnatural that we need to use such a big theorem, Martin’s theorem, to
answer such a simple question. It was a long-standing question to give a concrete
deterministic strategy of Reality.

Vovk [20] finally gave such a strategy. The proof is simple, which is a desired
property. The proof seems to be based on the randomized strategy by Kolmogorov,
but it is not clear how these two strategies are related. Thus it is difficult to know
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from his proof how to modify the randomized strategy to answer a similar question
in different games. On the other hand, Miyabe and Takemura [12] derived a rather
strong result on strategies of Reality. The essential idea is that Reality uses a
“fictional” strategy of Skeptic. In fact, Theorem 4.12 of Miyabe and Takemura [12]
showed the existence of Reality’s strategy. However, they did not give a concrete
strategy. Thus we did not know how the strategy looks like.

In this paper we construct a concrete strategy of Reality based on the idea above.
The construction goes as follows.

(i) Take a randomized strategy of Reality.
(ii) Construct a strategy of Skeptic that forces the random event.
(iii) Construct a strategy of Reality using it.

Each step is straightforward and does not require coming up with a new strategy.
Since we construct a deterministic strategy from a randomized one, we call this
derandomization in game-theoretic probability.

1.2. Derandomization. Randomized algorithm [13, 11] has been frequently used
in complexity theory [7, 1]. One of the reasons is that there are some problems such
that it seems difficult to prove that they are polynomial-time computable but they
are polynomial-time computable with an random oracle with high probability.

The classBPP (Bounded-error Probabilistic Polynomial-time) is, roughly speak-
ing, the set of problems that are polynomial-time computable with a random-
ized algorithm. It has been conjectured that every problem in BPP is actually
polynomial-time computable, that is, BPP = P. In other words, the conjecture is
asking whether we can always derandomize in this setting.

An analogous question in computability theory [3, 15, 16] has been solved. On
Cantor space 2N with the uniform measure µ, if A ∈ 2N is not computable, then
the set of all sequences that compute A has measure 0 [4, 17]. Thus, if a sequence
is computable by a randomized strategy, then the sequence should be computable.
In other words, we can always derandomize if we do not care about computational
resource.

Derandomization asks the question how we can deterministically construct a
sequence random enough. Construction of such a sequence has been studied in
the theory of algorithmic randomness [5, 14] to separate some randomness notions.
The essential idea is diagonalization. One recent interesting application is the
construction of an absolutely normal number in polynomial time [10, 6, 2].

The same technique can be applied to construct a strategy of Reality that com-
plies with an event in game-theoretic probability. Derandomization itself is much
easier in this case because we do not care about computability at all. In contrast, we
need to consider a sequence of reals in our case while derandomization in complex-
ity theory and the theory of algorithmic randomness usually considers an infinite
binary sequence.

1.3. Overview of this paper. The main theme of this paper is the construction
of Reality’s strategy. In Section 3 we study Borel-Cantelli lemmas in game-theoretic
probability. This is a simple case and illustrates how the construction goes. Then,
the result will be used in the next section. In Section 4 we give a deterministic
strategy of Reality that complies with the success and the failure of the strong law
of large numbers. In Section 5 we give a general theory of the notion of compliance
and look at some examples.

2. Preliminaries

In this paper we mainly consider the unbounded forecasting game defined in
Chapter 4 of Shafer and Vovk [18].
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Unbounded Forecasting Game (UFG)
Players: Forecaster, Skeptic, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Forecaster announces mn ∈ R and vn ≥ 0.
Skeptic announces Mn ∈ R and Vn ≥ 0.
Reality announces xn ∈ R.
Kn := Kn−1 +Mn(xn −mn) + Vn((xn −mn)

2 − vn).
Collateral Duties: Skeptic must keep Kn non-negative. Reality
must keep Kn from tending to infinity.

An infinite sequence ξ = (m1, v1, x1,m2, v2, x2, · · · ) of moves of Forecaster and
Reality is called a path. Define the sample space

Ω = {ξ = (m1, v1, x1,m2, v2, x2, · · · ) : mn ∈ R, vn ≥ 0, xn ∈ R}

as the set of paths. Any subset E ⊆ Ω is called an event. We say that a strategy P
of Skeptic forces an event E if the capital KP

n (ξ) of Skeptic with P is non-negative
for all ξ ∈ Ω and for all n ≥ 0, and ξ ̸∈ E implies lim supn KP

n (ξ) = ∞. Skeptic can
force an event if there is a strategy P of Skeptic that forces the event. Note that
we are not distinguishing “weak forcing” and “forcing”, since they are equivalent
([18, Lemma 3.1]).

Definition 2.1 (Miyabe and Takemura [12]). By a strategy R, Reality complies
with an event E ⊆ Ω if

(i) ξ ∈ E, irrespective of the moves of Forecaster and Skeptic, with Skeptic
observing his collateral duty,

(ii) supn Kn < ∞.

Reality strongly complies with E if (ii) is replaced with Kn ≤ K0 for all n.

Theorem 2.2 (Shafer and Vovk [18, Proposition 4.1]). In the unbounded forecasting
game,

(i) Skeptic can force

∞∑
n=1

vn
n2

< ∞ ⇒ lim
n→∞

1

n

n∑
i=1

(xi −mi) = 0.

(ii) Reality can comply with

∞∑
n=1

vn
n2

= ∞ ⇒

(
1

n

n∑
i=1

(xi −mi) does not converge to 0

)
.

We call the event of (i) the success of SLLN (Strong Law of Large Numbers)
and the event of (ii) the failure of SLLN. In the proof of (ii), Shafer and Vovk [18,
Proposition 4.1] use a randomized strategy of Reality and Martin’s theorem, but
did not give a concrete strategy. Vovk [20] gave a concrete strategy. The result also
follows from Theorem 4.12 of Miyabe and Takemura [12].

The following is the key fact to give a strategy of Reality.

Theorem 2.3 (Miyabe and Takemura [12, Proposition 4.10]). In the unbounded
forecasting game, if Skeptic can force an event E, then Reality strongly complies
with E.

In the proof of this theorem, a strategy of Reality was constructed using the
strategy of Skeptic that forces the event.
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3. Borel-Cantelli lemmas

In this section we focus on game-theoretic versions of Borel-Cantelli lemmas,
which will play an important role to give the strategy of Reality that complies with
the success and the failure of SLLN in the next section.

Coin-Tossing Game
Players: Forecaster, Skeptic, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Forecaster announces 0 < pn < 1.
Skeptic announces Mn ∈ R.
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 +Mn(xn − pn).

Collateral Duties: Skeptic must keep Kn non-negative. Reality
must keep Kn from tending to infinity.

The following result is a game-theoretic version of Lévy’s Extension of the Borel-
Cantelli Lemma.

Proposition 3.1 (Miyabe-Takemura [12, Example 2.3]). In the coin-tossing game
Skeptic can force ∑

n

pn < ∞ ⇐⇒
∑
n

xn < ∞.(1)

By essentially the same argument in the proof of Theorem 2.3, we can show that
Reality can comply with the event (1). Here we give a concrete strategy. In order
to do that, we need a concrete strategy of Skeptic that forces (1) and the simpler
the better. Proposition 3.1 follows from the following two lemmas.

Lemma 3.2. In the coin-tossing game, Skeptic can force∑
n

pn = ∞ ⇒
∑
n

xn = ∞.

Proof. Let

(2) Hn = {k < n : xk = 1}, Tn = {k < n : xk = 0}
be the sets of time indices of heads and tails before the round n and let

(3) bn = #Hn

denote the number of heads before the round n. Note that for any distinct k, j ∈ Hn,
we have k < j ⇒ bk < bj . Hence

(4)
∑
k∈Hn

2−bk−1 ≤ 1.

Consider the following strategy of Skeptic:

Mn = −2−bn−1.

We claim that this strategy forces the event.
First, we show that this strategy keeps Kn non-negative. Note that

Kn = 1−
∑
k∈Hn

2−bk−1(1− pn)−
∑
k∈Tn

2−bk−1(−pn) > 1−
∑
k∈Hn

2−bk−1 ≥ 0.

Next, suppose that
∑

n pn = ∞ and
∑

n xn < ∞. Then, there exists N such
that n ≥ N ⇒ xn = 0. Thus, for every n ≥ N ,

Kn = KN−1 + 2−bN−1
n∑

k=N

pk → ∞.
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□

Lemma 3.3. In the coin-tossing game, Skeptic can force∑
n

pn < ∞ ⇒
∑
n

xn < ∞.

Proof. Let cn be the natural number satisfying

(5) cn − 1 ≤
n∑

k=1

pk < cn.

Note that ∑
k:ck=i

pk =
∑

k:ck≤i

pk −
∑

k:ck≤i−1

pk < i− (i− 2) = 2.

Consider the following strategy of Skeptic:

Mn = 2−cn−1.

We claim that this strategy forces the event.
First we show that this strategy keeps Kn non-negative. Note that∑

k∈Tn

2−ck−1pk ≤
∞∑
k=1

2−ck−1pk ≤
∞∑
i=1

∑
k:ck=i

2−i−1pk ≤
∞∑
i=1

2−i ≤ 1,(6)

where Tn is defined in (2). Then

Kn ≥ 1 +
∑
k∈Tn

Mk(xk − pk) > 1−
∑
k∈Tn

2−ck−1pk ≥ 0.

Next we show that this strategy forces the event. Assume that
∑

n pn < ∞ and∑
n xn = ∞. Let c be such that c−1 <

∑
n pn ≤ c. Then there exists N0 such that

c−1 <
∑N0

k=1 pk. Since
∑

n pn < ∞, there exists N1 such that n ≥ N1 ⇒ pn < 1/2.
Let N = max{N0, N1}. For n ≥ N such that xn = 1, we have

Kn −Kn−1 ≥ 2−c−1(1− pn) ≥ 2−c−2.

For n ≥ N such that xn = 0, we have

Kn −Kn−1 ≥ −2−c−1pn.

Since
∑

n pn < ∞, we have lim supn Kn = ∞. □

Using these strategies, Reality can strongly comply with the same event.

Theorem 3.4. In the coin-tossing game, Reality strongly complies with∑
n

pn < ∞ ⇐⇒
∑
n

xn < ∞.

Proof. Let bn, cn be defined by (3) and (5). We claim that the following strategy
of Reality strongly complies with the event:

Reality waits for the first round n0 such that Skeptic announces
Mn ̸= 0. If such a round does not exist, let n0 = ∞.

For n < n0 including the case n0 = ∞, Reality announces xn

as

xn =

{
1 if cn ̸= cn−1

0 if cn = cn−1.

For n = n0, Reality announces xn as

xn =

{
1 if Mn < 0

0 if Mn > 0.
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If Kn0 = 0, then for n > n0 Reality announces xn as

xn =

{
1 if cn ̸= cn−1

0 if cn = cn−1.

If Kn0 > 0, then let

ϵ = 1− Kn0

K0

For n > n0, Reality announces xn as

xn =

{
1 if Mn ≤ dn

0 if Mn > dn

where

dn =
ϵKn0

1− ϵ
(2−bn−2 − 2−cn−2).

We show that this strategy strongly complies with the event. If n0 = ∞, then
clearly

∑
n pn < ∞ if and only if

∑
n xn < ∞ and Kn = K0. Then, we can assume

that n0 < ∞.
Since Kn0 − Kn0−1 < 0, we have Kn0 < K0. If Kn0 = 0, then Skeptic should

announce Mn = 0 for every n > n0 in order to keep Kn non-negative. Thus, Kn = 0
for every n > n0. In this case clearly

∑
n pn < ∞ if and only if

∑
n xn < ∞.

In what follows, we assume Kn0 > 0. Then 0 < ϵ < 1. Suppose that
∑

n pn = ∞
and

∑
n xn < ∞. Since bn is bounded and cn goes to infinity, there exists δ such

that dn > δ and xn = 0 for all sufficiently large n > N . Then for such an n, we
have

Kn =KN −
n∑

k=N+1

Mkpk < KN −
n∑

k=N+1

dkpk

<KN −
n∑

k=N+1

δpk → −∞

as n → ∞. Thus, such a strategy of Skeptic is not allowed.
Suppose that

∑
n pn < ∞ and

∑
n xn = ∞. Since cn is bounded, bn goes to

infinity and pn goes to 0, there exists δ > 0 such that dn < −δ and pn ≤ 1/2 for
all sufficiently large n > N . For n > N such that xn = 1,

Kn −Kn−1 = Mn(1− pn) ≤ −δ(1− pn) ≤ −δ

2
.

For n > N such that xn = 0,

Kn −Kn−1 = −Mnpn < δpn.

Thus, Kn → −∞ and such a strategy of Skeptic is not allowed.
Finally we show that supn Kn ≤ 1. Since we have K0 = (1− ϵ)Kn0 , it suffices to

show that

Kn ≤ Kn0

1− ϵ
= Kn0 +

ϵKn0

1− ϵ
.

For n ≥ n0 such that xn = 1, we have

Kn −Kn−1 ≤ Mn(1− pn) < dn ≤ ϵKn0

1− ϵ
2−bn−2.

For n ≥ n0 such that xn = 0, we have

Kn −Kn−1 = −Mnpn <
ϵKn0

1− ϵ
2−cn−2pn.

By (4) and (6), we have Kn −Kn0 ≤ ϵKn0

1− ϵ
. □
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From now on we explain how we derived the above strategy. The goal is to
construct a strategy of Reality that complies with the event E of

∑
n pn < ∞ ⇐⇒∑

n xn < ∞. It suffices to give a strategy with which Reality’s move is “random”
in the following two senses:

(a) The capital is finite.
(b) The path satisfies the almost-sure property E.

The meaning of randomness in measure-theoretic probability is not clear. In the
theory of algorithmic randomness, one formulation of randomness is finiteness of the
capital for all betting strategies that are effective in some sense. In game-theoretic
probability, randomness of a path means the finiteness of the capital in the game.
For instance, Vovk and Shen [21] have used the terminology of “game-random”.
With this view, we express the property (b) by the finiteness of the capital with
respect to the strategy with which Skeptic can force the event E.

By the proof of Lemma 3.2 and Lemma 3.3, the following strategy F of Skeptic
forces the event E:

Mn = 2−cn−2 − 2−bn−2.

Reality uses this strategy F as a fictional strategy. We denote by S the real strategy
of Skeptic. In order to comply with the event E, all Reality has to do is to make
the capital with the strategy (S+F )/2 finite. Note that the finiteness of the capital
with (S + F )/2 implies the finiteness of the capital with S and the capital with F .
Furthermore, the finiteness of the capital with F implies the event E because F
forces the event E. The strategy O = (S + F )/2 announces

MO
n =

MS
n + 2−cn−2 − 2−bn−2

2
.

Reality can make KO
n ≤ KO

n−1 by announcing

xn =

{
1 if MO

n ≤ 0

0 if MO
n > 0.

Note that
MO

n ≤ 0 ⇐⇒ MS
n ≤ 2−bn−2 − 2−cn−2.

Then this strategy complies with the event E. Notice that this strategy gives the
essential part of the strategy in the proof of Theorem 3.4.

To give a strategy that “strongly” complies with the event, we need a little trick.
The idea is taken from the proof of Proposition 4.10 in [12]. A rough idea is as
follows. Wait until the round n0 satisfying Mn0 ̸= 0 so that Reality can make the
capital strictly less than the initial capital. Let 1− ϵ be the ratio of the capital at
n0 and the initial capital. After the round n0, Reality only has to make the capital
with (1− ϵ)S+ ϵF non-increasing. The derived strategy is the strategy in the proof
of Theorem 3.4.

4. Derandomization in the Unbounded Forecasting Game and its
generalization

In this section we give Reality’s strategies complying with the success and the
failure of the strong law of large numbers at the same time in the Unbounded
Forecasting Game and its generalization.

4.1. A strategy of Reality for the Unbounded Forecasting Game.

Theorem 4.1. In the unbounded forecasting game, Reality strongly complies with∑
n

vn
n2

< ∞ ⇐⇒ lim
n→∞

1

n

n∑
i=1

(xi −mi) = 0.
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Note that this theorem implies (ii) of Theorem 2.2. We show this by giving a
concrete strategy of Reality.

In measure-theoretic probability, the failure of SLLN was shown by the following
randomized strategy devised by Kolmogorov [8]: if vn < n2,

xn :=

 n
−n
0

 with probability

 vn/(2n
2)

vn/(2n
2)

1− vn/n
2

 ,

respectively; if vn ≥ n2,

xn :=

( √
vn

−√
vn

)
with probability

(
1/2
1/2

)
.

Here, to show the non-convergence, the second part of the Borel-Cantelli lemmas
is used. In contrast, if

∑
n vn/n

2 < ∞, then by the first part of the Borel-Cantelli
lemma, SLLN holds almost surely.

Motivated by this strategy we restrict xn ∈ {0,±n} if vn < n2, and xn ∈ {±√
vn}

if vn ≥ n2. Then, the strategy we need to construct is the one of Reality that
complies with ∑

n

vn
n2

< ∞ ⇐⇒ xn = 0 for all but finitely many n.

Recall that we can construct a strategy of Reality if we have a strategy of Skeptic
that forces the event. Such a strategy of Skeptic can be constructed by modifying
the strategy constructed in the previous section.

In what follows, without loss of generality, we assume that mn = 0 for every n.
Furthermore, we can forget the round n such that vn = 0 by letting xn = 0. Thus,
we assume that vn > 0 for every n.

Proof. We claim that the following strategy of Reality strongly complies with the
event:

Let

bn = #{k < n : xk ̸= 0}
and cn be the natural number satisfying

cn − 1 ≤
n∑

k=1

vk
k2

< cn.

Reality waits for the first round n0 such that Skeptic announces
(Mn, Vn) ̸= (0, 0). If such a round does not exist, let n0 = ∞.

For n < n0 including the case n0 = ∞, Reality announces xn as

xn =

{
n if cn ̸= cn−1

0 if cn = cn−1.

For n = n0, Reality announces xn as

xn =


1 if Vn = 0 and Mn < 0

−1 if Vn = 0 and Mn > 0

0 if Vn > 0.

If Kn0 = 0, then for n > n0 Reality announces xn as

xn =

{
n if cn ̸= cn−1

0 if cn = cn−1.
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If Kn0 > 0, let

ϵ = 1− Kn0

K0
.

For n > n0 Reality announces xn as

xn =



n if vn < n2, Vn ≤ dn and Mn < 0

−n if vn < n2, Vn ≤ dn and Mn ≥ 0

0 if vn < n2, Vn > dn√
vn if vn ≥ n2 and Mn < 0

−√
vn if vn ≥ n2 and Mn ≥ 0,

where

dn =
ϵKn0

1− ϵ

2−bn−2 − 2−cn−2

n2
.

We show that this strategy strongly complies with the event. If n0 = ∞, then
clearly

∑
n vn/n

2 < ∞ if and only if xn = 0 for all but finitely many n, and Kn = K0

for every n. Then, we can assume that n0 < ∞.
Consider the round n = n0. If Vn = 0, then

Kn0
−Kn0−1 = −|Mn| < 0.

If Vn > 0, then

Kn0 −Kn0−1 = −Vnvn < 0.

Thus, Kn0 < K0.
If Kn0 = 0, then Skeptic should announce (Mn, Vn) = (0, 0) for every n > n0 in

order to keep Kn non-negative. Thus, Kn = 0 for every n > n0. In this case clearly∑
n vn/n

2 < ∞ if and only if xn = 0 for all but finitely many n.
In what follows we assume Kn0 > 0. Then 0 < ϵ < 1.
Suppose that

∑
n vn/n

2 = ∞ and xn = 0 for all but finitely many n. Since
bn is bounded and cn goes to infinity, there exists δ such that dn > δ/n2 for all
sufficiently large n > N0. Then, for such an n,

Kn =KN0
−

n∑
k=N0+1

Vkvk < KN0
−

n∑
k=N0+1

dkvk

<KN0 −
n∑

k=N0+1

δ · vk
k2

→ −∞

as n → ∞. Thus, such a strategy of Skeptic is not allowed.
Suppose that

∑
n vn/n

2 < ∞ and xn ̸= 0 for infinitely many n. Since cn is
bounded and bn goes to infinity, dn is negative for all sufficiently large n. Since∑

n vn/n
2 < ∞, we have vn < n2 for all sufficiently large n. Thus, xn should be 0

for all sufficiently large n. This is a contradiction.

Finally we show that supn Kn ≤ 1. It suffices to show that Kn ≤ Kn0 +
ϵKn0

1−ϵ .
For n ≥ n0 such that xn ̸= 0, we have

Kn −Kn−1 ≤ Vnn
2 ≤ ϵKn0

1− ϵ
2−bn−2.

For n ≥ n0 such that xn = 0, we have

Kn −Kn−1 = −Vnvn ≤ 0.

Thus, Kn −Kn0 ≤ ϵKn0

1− ϵ
. □
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4.2. A strategy of Reality in a generalization of the Unbounded Fore-
casting Game. There are some possible ways in which we generalize our result
for the Unbounded Forecasting Game. Kumon, Takemura and Takeuchi [9] have
obtained similar results in a game which generalizes the Unbounded Forecasting
Game. Miyabe and Takemura [12] have shown the existence of the strategy that
strongly complies with the failure of SLLN in a rather general setting. Here, we
give a stronger result in the general setting in the following senses.

(i) We give a concrete deterministic strategy.
(ii) The strategy strongly complies with the success and the failure of SLLN

at the same time.
(iii) We use weaker assumptions.
(iv) The strategy is much simpler.

The following protocol is from Section 5 in Miyabe and Takemura [12].

Unbounded Forecasting Game with General Hedge (UFGH)
Parameters: A single hedge h : R → R
Players: Forecaster, Skeptic, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Forecaster announces mn ∈ R and vn ≥ 0.
Skeptic announces Mn ∈ R and Vn ≥ 0.
Reality announces xn ∈ R.
Kn := Kn−1 +Mn(xn −mn) + Vn(h(xn −mn)− vn).

Collateral Duties: Skeptic must keep Kn non-negative. Reality
must keep Kn from tending to infinity.

Assumption

(A0) h(x) = h(|x|) ≥ 0.
(A1) h(x)/x is monotone increasing for x > 0.
(A2) h(x)/x2 is monotone decreasing for x > 0.
(A3) h(x) = x2 for |x| ≤ 1.

Here, we are taking into account Remark 5.3 of [12].

Theorem 4.2 (Theorem 5.9 in [12]). Suppose that h satisfies (A0)-(A3) and that
g is a positive increasing function. Then in UFGH, Reality strongly complies with∑

n

vn
g(An)

= ∞ ⇒
n∑

k=1

xk −mk

h−1 ◦ g(Ak)
does not converge.

Theorem 4.3 (Theorem 5.10 in [12]). Let h(x) = xr where 1 ≤ r ≤ 2 and g be a
positive increasing function. Then in UFGH, Reality strongly complies with∑

n

vn
g(An)

= ∞ ⇒
∑n

k=1(xk −mk)

h−1 ◦ g(An)
does not converge.

We consider a slightly weaker condition, but the following assumption is cricital
to show the strong compliance. See Remark 4.7 for details.
Assumption

(A4) h(0) = 0.

From now on we show the following theorem.

Theorem 4.4. Suppose that h satisfies (A0)-(A2), (A4) and that g is a positive
increasing function. Then in UFGH, Reality strongly complies with∑

n

vn
g(An)

< ∞ ⇐⇒
∑n

k=1(xk −mk)

h−1 ◦ g(An)
converges.(7)
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Note that Theorem 4.4 implies the two theorems above. Theorem 4.4 also implies
Proposition 2.1 in [9] by letting mn = 0, vn = v, h(x) = xr and g(x) = x/v.
Furthermore, Theorem 4.4 also implies Proposition 3.1 in [9] by letting mn = 0,
vn = v and g(x) = h(vx).

In what follows, without loss of generality, we assume that mn = 0 for every n.
Furthermore, we can forget the round n such that vn = 0 by letting xn = 0. Thus,
we assume that vn > 0 for every n.

Before giving the strategy, we recall the following lemma.

Lemma 4.5 (Miyabe and Takemura [12, Lemma 4.15]). Let {an} be a sequence of
positive reals. Then there exists a sequence {ϵn} of positive reals such that

(i) ϵn is determined only by a1, · · · , an,
(ii) ϵnan ≤ 1,
(iii)

∑
n an = ∞ implies

∑
n ϵnan = ∞ and ϵn → 0.

Furthermore, by the proof, we can assume that

(iv)
∑

n an < ∞ implies that {ϵn} converges to a positive real.

Now we are ready to give the strategy.
In UFGH, we consider the following strategy of Reality:

Let

bn = #{k < n : xk ̸= 0}

and cn be the natural number satisfying

cn − 1 ≤
n∑

k=1

ϵkvk
g(Ak)

< cn

where {ϵn} is the sequence determined by Lemma 4.5 for {vn/g(An)}.
Reality waits for the first round n0 such that Skeptic announces
(Mn, Vn) ̸= (0, 0). If such a round does not exist, n0 = ∞.

For n < n0 including the case n0 = ∞, Reality announces xn as

xn =

{
en if cn ̸= cn−1

0 if cn = cn−1.

where

en = h−1(g(An) · ϵ−1
n ).

For n = n0, Reality announces xn as

xn =


1 if Vn = 0 and Mn < 0

−1 if Vn = 0 and Mn > 0

0 if Vn > 0.

.

If Kn0 = 0, then for n > n0 Reality announces xn as

xn =

{
en if cn ̸= cn−1

0 if cn = cn−1.

If Kn0 > 0, let

ϵ = 1− Kn0

K0
.
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For n > n0 Reality announces xn as

xn =



en if ϵnvn < g(An), Vn ≤ dn and Mn < 0

−en if ϵnvn < g(An), Vn ≤ dn and Mn ≥ 0

0 if ϵnvn < g(An), Vn > dn

h−1(vn) if ϵnvn ≥ g(An) and Mn < 0

−h−1(vn) if ϵnvn ≥ g(An) and Mn ≥ 0.

where

dn =
ϵKn0

1− ϵ

2−bn−2 − 2−cn−2

g(An) · ϵ−1
n

.

We show that this strategy strongly complies with the success and the failure of
SLLN at the same time. In the proof we use the following lemma.

Lemma 4.6 (Miyabe and Takemura [12, Lemma 4.14]). Let {yn} be a sequence of
reals and let {gn} be a non-decreasing sequence of positive reals. If (

∑
k≤n yk)/gn

converges to d, then |yn/gn| ≤ |d|+ 1 for all but finitely many n.

Proof of Theorem 4.4. By a similar argument as the proof of Theorem 4.1, we can
show that Reality can comply with∑

n

vn
g(An)

< ∞ ⇐⇒
∑
n

ϵnvn
g(An)

< ∞ ⇐⇒ xn = 0 for all but finitely many n

except the following two places. (1) The capital of the case such that
∑

n vn/g(An) =
∞ and xn = 0 for all but finitely many n is as follows:

Kn =KN0 −
n∑

k=N0+1

Vkvk < KN0 −
n∑

k=N0+1

dkvk

<KN0 −
n∑

k=N0+1

δ · vk
g(Ak)

→ −∞.

(2) For n ≥ n0 such that xn ̸= 0, we have

Kn −Kn−1 ≤Vn(h(en)− vn) ≤ dn · h(en)

≤ ϵKn0

1− ϵ
· 2−bn−2

g(An) · ϵ−1
n

· g(An) · ϵ−1
n =

ϵKn0

1− ϵ
· 2−bn−2

if ϵnvn < g(An), and Kn −Kn−1 ≤ 0 if ϵnvn ≥ g(An).
From now on, we show that xn = 0 for all but finitely many n if and only if∑n
k=1 xk/h

−1 ◦ g(An) converges.
Suppose that xn = 0 for all but finitely many n and limn An < ∞. Then,

∑
n xn

converges and h−1 ◦ g(An) converges. Thus,
∑n

k=1 xk/h
−1 ◦ g(An) converges.

Suppose that xn = 0 for all but finitely many n and limn An = ∞. Then,
∑

n xn

converges and limn h
−1 ◦ g(An) = ∞. Thus,

∑n
k=1 xk/h

−1 ◦ g(An) converges to 0.
Suppose that xn ̸= 0 for infinitely many n. This means that

|xn| =

{
en if ϵnvn < g(An)

h−1(vn) if ϵnvn ≥ g(An)

for infinitely many n. Note that, if ϵnvn ≥ g(An), then h−1(vn) ≥ h−1(g(An) · ϵ−1
n )

by the monotonicity of h. Thus,

|xn|
h−1 ◦ g(An)

≥ h−1(g(An) · ϵ−1
n )

h−1 ◦ g(An)

for infinitely many n. We claim that the right-hand side goes to infinity. Then, by
Lemma 4.6,

∑n
k=1 xk/h

−1 ◦ g(An) does not converge.
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Since ϵn → 0 as n → ∞, we have

g(An) ≤ g(An) · ϵ−1
n

for all sufficiently large n. Since h is non-decreasing, so is h−1 and

h−1(g(An)) ≤ h−1(g(An) · ϵ−1
n ).

By Assumption (A2), we have

g(An)

(h−1(g(An)))2
≥ g(An) · ϵ−1

n

(h−1(g(An) · ϵ−1
n ))2

,

which implies that
h−1(g(An) · ϵ−1

n )

h−1 ◦ g(An)
≥ ϵ−1/2

n → ∞.

□

Remark 4.7. Notice that Assumption (A4) is used to show that Kn0 < K0. At
the round n = n0, if Vn > 0, then xn = 0 and

Kn0 −Kn0−1 = Vn(h(0)− vn),

which is negative because h(0) = 0.

5. On the notion of Compliance

In this section we give a general theory on compliance. We consider the un-
bounded forecasting game or the coin-tossing game, but most theorems can be
applied to a similar game.

5.1. The strength of compliance. Recall Theorem 2.3, which says that Reality
strongly complies with the event that Skeptic can force. An interpretation of this
fact in the usual notion of probability is like this:

For each event with probability 1, one can deterministically take
a path in the event.

Clearly, the probability of the event is closely related to the supremum of the capital
of Skeptic. The strongness of the compliance seems to be due to probability 1 of the
event. With this motivation we study the relation between the notion of compliance
and the upper and lower probability.

We denote strategies of Forecaster, Skeptic and Reality by F , S and R respec-
tively.

Definition 5.1 (Shafer and Vovk [18, Chapter 8.3]). The upper probability of an
event E is defined as

P (E) = inf{a | (∃S)(∀F )(∀R)K0 = a & E ⇒ sup
n

Kn ≥ 1}

where S needs to keep the capital non-negative. The lower probability is defined as

P (E) = 1− P (Ec).

The following are some properties of P and P .

Proposition 5.2 (see [18, Proposition 8.12]). Skeptic can force an event E if and
only if P (E) = 1.

The “only if” direction holds because the convex combination of strategies of
Skeptic is possible in the game.

Proposition 5.3 (see [18, Proposition 8.10]). The upper probability P is an outer
measure and the lower probability P is an inner measure.
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Proposition 5.4 (see [19, Lemma 1]). For every event E, we have

0 ≤ P (E) ≤ P (E) ≤ 1.

We define a similar function based on the notion of compliance.

Definition 5.5. For an event E, let

Q(E) = sup{a | (∃R)(∀F )(∀S)K0 = a ⇒ E ∧ sup
n

Kn ≤ 1}.

Let
Q(E) = 1−Q(Ec).

The following are immediate by definition.

Proposition 5.6. If Reality strongly complies with E, then Q(E) = 1.

Proposition 5.7. If Q(E) > 0, then Reality complies with E.

A two-player game is called determined if one of the player has a winning strategy.

Theorem 5.8 (Martin’s theorem; see [18, Chapter 4.6]). If the winning condition
is Borel, then the game is determined.

Remark 5.9. In fact, Martin’s theorem says that quasi-Borel is enough.

If Forecaster does not exist, then the game is with perfect information. Then,
by Martin’s theorem, we can show that Q is equal to P in this case.

Theorem 5.10. Suppose that Forecaster’s strategy is fixed in advance and Borel.
If E is Borel, then P (E) = Q(E) and P (E) = Q(E).

Proof. Suppose the game whose winning condition Ca of Skeptic is

K0 = a ∧ E ⇒ sup
n

Kn ≥ 1.

This condition can be written as

A ∧

(
Ec ∨

∧
m

∨
n

Bn,m

)
where A is K0 = a and Bn,m is Kn ≥ 1 − 2−m. Note that A and Bn,m are
Borel. Recall that the class of Borel sets is closed under countable union, countable
intersection and complement. Thus, the condition is Borel for each a.

Suppose P (E) = x > 0, and let ϵ be a positive real small enough. If K0 = x− ϵ,
then no strategy S can guarantee to win. Then Reality has a winning strategy by
Martin’s theorem. It follows that Q(E) ≥ x = P (E).

Suppose P (E) = 0. Then for each x > 0 there exists a strategy S such that
K0 < x/2 and E ⇒ supn Kn ≥ 1. Thus, the strategy 2S forces K0 < x and
E ⇒ supn Kn > 1. This means that no Reality’s strategy complies with K0 < x
and E ⇒ supn Kn ≤ 1. Hence, Q(E) ≤ x. Since x is arbitrary, we have Q(E) = 0.

Since E is Borel, then so is Ec. Note that P (Ec) = Q(Ec). Then P (E) =
Q(E). □

Theorem 2.3 says that, in our terminology,

P (E) = 1 ⇒ Q(E) = 1.

By a little modification, we can show the following.

Proposition 5.11.
P (E) ≤ Q(E)

and
Q(E) ≤ P (E).



DERANDOMIZATION IN GAME-THEORETIC PROBABILITY 15

Proof. We can assume P (E) = x > 0. Then P (Ec) = 1− x. Hence there exists S
such that KS

0 = 1− x+ ϵ, and Ec ⇒ supn KS
n ≥ 1 for small enough ϵ > 0.

Now consider a strategy T of Skeptic such that KT
0 = x − 2ϵ. Then S + T

is a strategy such that KS+T
0 = 1 − ϵ. Hence Reality has the strategy satisfying

supn KS+T
n ≤ 1 − ϵ. It follows that supn KS

n ≤ 1 − ϵ and supn KT
n ≤ 1 − ϵ. Since

Ec ⇒ supn KS
n ≥ 1, we have E. Then this strategy is the witness of Q(E) ≥ x. □

Corollary 5.12. If P (E) > 0, then Reality can comply with E.

5.2. Examples.

5.2.1. Coin-tossing game. In the following we look at some examples. Some exam-
ples show the difference between P and Q.

Example 5.13. In the coin-tossing game, we have Q(x1 = 0) = Q(x1 = 1) = 0.

Proof. We show that Q(x1 = 1) = 0.
Consider the following strategy of Forecaster and Skeptic;

K0 = ϵ > 0, p1 = ϵ/2, M1 = 2.

If x1 = 0, then

K1 = ϵ+ 2
(
0− ϵ

2

)
≥ 0.

If x1 = 1, then

K1 = ϵ+ 2
(
1− ϵ

2

)
= 2 > 1.

Then this strategy satisfies the collateral duty. This fact means that no strategy
of Reality complies with K0 = ϵ > 0 ⇒ x1 = 1 ∧ supn Kn ≤ 1. This shows that
Q(x1 = 1) = 0.

We can show that Q(x1 = 0) = 0 in a similar way. □

Corollary 5.14. The function Q is not an outer measure in general and Q is not
an inner measure in general.

Proof. In the coin-tossing game, let A = {x1 = 0} and B = {x1 = 1}. Then,
Q(A) = Q(B) = 0 and Q(A∪B) = 1. Thus, the inequality Q(A∪B) ≤ Q(A)+Q(B)
does not hold even if A and B are disjoint. □

Recall that, in the coin-tossing game, we can assume that Skeptic announces
Nn ∈ R and Vn ≥ 0 and Kn := Kn−1+Nn(xn−pn)+Vn((xn−pn)

2−pn(1−pn)) by
letting Mn = Nn +Vn(1− 2pn). See Miyabe and Takemura [12, before Proposition
4.8] for details.

Recall the game-theoretic version of Lévy’s extension of the Borel-Cantelli lem-
mas (Proposition 3.1). In the following, we focus on the case

∑
n pn < ∞ and study

the distribution of
∑

n xn.

Example 5.15. In the coin-tossing game, consider the event Ec,k of∑
n

pn(1− pn) ≤ c2 and |
∑
n

(xn − pn)| ≥ ck.

Then

P (Ec,k) ≤
1

k2
.

Remark 5.16. This is Chebyshev’s inequality.
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Proof. Let

Sn =

n∑
i=1

(xi − pi), Tn = S2
n −

n∑
i=1

pi(1− pi).

Then Tn is a capital process because

Tn =S2
n −

n∑
i=1

pi(1− pi)

=Tn−1 + 2Sn−1(xn − pn) + ((xn − pn)
2 − pn(1− pn))

Consider the strategy with

K0 =
1

k2
, Nn =

2Sn

c2k2
, Vn =

1

c2k2
.

Then,

Kn =
1

k2
+

Tn
c2k2

≥ 1

k2
− 1

k2
≥ 0.

Hence, Kn keeps nonnegative.
Suppose |S∞| ≥ ck. Then T∞ ≥ c2k2 − c2 and

sup
n

Kn ≥ 1

k2
+

c2k2 − c2

c2k2
= 1.

□

If k > 1, then P (Ec
c,k) ≥ 1− 1

k2 > 0 and Reality can comply with Ec
c,k.

If Q(E) is positive, then Reality complies with the event E. The converse does
not hold. We give a counterexample.

Example 5.17. In the coin-tossing game, Reality can comply with the event E of∑
n

pn < ∞ ⇒ xn = 0 for all n.

but Q(E) = 0.

Proof. Reality’s strategy is just to announce xn = 0 for every n. Consider a strategy
of Skeptic. Since Skeptic should keep Kn non-negative,

Kn−1 +Mn(1− pn) ≥ 0,

and

Mn ≥ − Kn−1

1− pn
.

Then,

Kn ≤ Kn−1 −
Kn−1

1− pn
· (−pn) = Kn−1 ·

1

1− pn
.

Thus,

sup
n

Kn ≤ K0 ·
1∏

n(1− pn)
.

If
∑

n pn < ∞, then
∏

n(1− pn) converges to a positive real. Thus, supn Kn < ∞.
Hence, Reality can comply with this event.

Suppose Q(E) > 0 for a contradiction. Reality should announce xn = 0 for every
n. Consider the strategy such that

0 < K0 < Q(E) and Mn = − Kn−1

1− pn
.
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Then, Kn keeps non-negative. Let m ∈ N be such that K02
m > 1. Forecaster

announces pn = 1/2 for each n ≤ m and pn = 2−n for each n > m. Then∑
n pn < ∞. However,

sup
n

Kn = K0 ·
1∏

n(1− pn)
> K0 · 2m > 1.

□

5.2.2. Bounded forecasting game.

Bounded Forecasting Game
Players: Forecaster, Skeptic, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Forecaster announces pn ∈ [0, 1].
Skeptic announces Mn ∈ R.
Reality announces xn ∈ [0, 1].
Kn := Kn−1 +Mn(xn − pn).

Collateral Duties: Skeptic must keep Kn non-negative. Reality
must keep Kn from tending to infinity.

Example 5.18. In the bounded forecasting game with pn = 1/2 for all n, Q(x1 ∈
[0, 1/2)) = Q(x1 ∈ [1/2, 1]) = 1.

Proof. First we show that Q(x1 ∈ [1/2, 1]) = 1. Reality announces x1 as follows:

x1 =

{
1 if M1 < 0

1/2 if M1 ≥ 0
.

If M1 < 0, then

K1 −K0 = M1(1− 1/2) < 0.

If M1 ≥ 0, then

K1 −K0 = M1(1/2− 1/2) = 0.

Reality announces xn = 1/2 for all n ≥ 2. Then, this strategy of Reality strongly
complies with this event.

Next we show that Q(x1 ∈ [0, 1/2)) = 1. Let ϵ > 0. It suffices to give a strategy
of Reality that satisfies the following condition: if K0 = 1 − ϵ then x1 ∈ [0, 1/2)
and supn Kn ≤ 1.

We claim that the following strategy works: Reality announces

x1 =

{
1−ϵ
2 if M1 < 0,

0 if M1 ≥ 0,

and xn = 1/2 for all n ≥ 2.
First notice that, if K0 = 1− ϵ, then (1− ϵ)/2 ∈ [0, 1/2).
We claim that supn ≤ 1. It suffices to show that K1 ≤ 1. If M1 ≥ 0, then

K1 = 1− ϵ+M1(0− 1/2) < 1.

Suppose that M1 < 0. Since Skeptic needs to keep K1 non-negative, we have

K1 = 1− ϵ+M1

(
1− 1

2

)
≥ 0,
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which implies M1 ≥ −2(1− ϵ) > −2. Then,

K1 =1− ϵ+M1

(
1− ϵ

2
− 1

2

)
=1− ϵ+

−M1

2
· ϵ < 1− ϵ+ ϵ = 1.

□
Corollary 5.19. The function Q is not an inner measure in general and Q is not
an outer measure in general.

Corollary 5.20. There is a game and an event E in it such that Q(E) = 1 but
Reality can not strongly comply with E.

Proof. Consider the event E of x1 ∈ [0, 1/2) in the bounded forecasting game with
pn = 1/2 for all n. Then Q(E) = 1 as is shown above. Suppose that Skeptic
announces M1 = −1 with K0 = 1. This move keeps K1 non-negative. Since
x1 ∈ [0, 1/2),

K1 = 1− 1(x1 − 1/2) > 1.

Hence, Reality can not strongly comply with this event. □
Corollary 5.21. We do not have Q(E) ≤ Q(E) or Q(E) ≥ Q(E) in general.

Proof. In the bounded forecasting game with pn ∈ (0, 1) for all n, consider the
event E that xn = pn for infinitely many n. Reality can strongly comply with this
event E by announcing xn = pn for every n, thus Q(E) = 1. On the other hand
Reality can also strongly complies with Ec by announcing

xn =

{
1 if Mn ≤ 0

0 if Mn > 0,

thus Q(Ec) = 1 and Q(E) = 0.
In the coin-tossing game, consider the event F that xn = 1 for at most finitely

many n. When
∑

n pn = ∞, Skeptic can force the event F c. Thus, Q(F ) = 0. When∑
n pn < ∞, Skeptic can force the event F . Thus, Q(F c) = 0 and Q(F ) = 1. □
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