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MIMO Zero-Forcing Detection Performance
Evaluation by Holonomic Gradient Method

Constantin Siriteanu, Akimichi Takemura, Satoshi Kuriki

Abstract

We have recently derived infinite-series expressions for performance measures of multiple-input multiple-
output (MIMO) spatial multiplexing with zero-forcing detection (ZF) for Rician–Rayleigh fading, which is relevant
in heterogeneous networks. These expressions ensue from a well-known infinite-series expansion around σ = 0 of
the confluent hypergeometric function 1F1(·, ·, σ). Theoretically, this expansion converges for any σ. Numerically,
convergence becomes slow with increasing σ. Consequently, our ZF performance-measure expressions diverge
numerically at practically-relevant Rician K-factor values. Therefore, herein, we deploy instead the holonomic
gradient method (HGM), which computes a function by numerically solving the differential equation it satisfies.
HGM is applicable because 1F1(·, ·, σ) is holonomic, i.e., it satisfies a differential equation with polynomial
coefficients with respect to σ. First, using properties of holonomic functions, we reveal that the moment generating
function (m.g.f.) and probability density function (p.d.f.) of the ZF signal-to-noise ratio (SNR) are holonomic.
Then, from the differential equation for 1F1(·, ·, σ), we deduce those satisfied by the SNR m.g.f. and p.d.f. HGM is
shown to yield accurate p.d.f. computation for practically-relevant values of K (at which infinite-series truncation
breaks down). Numerical integration of the SNR p.d.f. obtained from HGM yields accurate outage probability and
ergodic capacity assessments for MIMO ZF under Rician–Rayleigh fading.

Index Terms

Confluent hypergeometric function, differential equation, holonomic function, infinite-series, holonomic gradi-
ent method, MIMO, numerical convergence, Rayleigh and Rician (Ricean) fading, spatial multiplexing, zero-forcing.

I. INTRODUCTION

A. Background, Previous Work, and Motivation
The performance evaluation for multiple-input multiple-output (MIMO) wireless communications sys-

tems has attracted substantial interest over the past decade [1] [2] [3]. Typically, this evaluation proceeds
from performance-measure (e.g., average error probability (AEP), outage probability, ergodic capacity)
expressions derived based on statistical assumptions about the channel-fading matrix. However, MIMO
analyses have often assumed zero-mean MIMO channel matrix, i.e., Rayleigh fading, for tractability,
although state-of-the-art channel measurements and models, e.g., WINNER II [4], have revealed that, in
practice, the mean is typically nonzero, i.e., the fading is Rician. MIMO performance analysis for Rician
fading is complicated by the ensuing noncentral Wishart matrix distribution [5]. Then, even for linear, i.e.,
low-complexity, interference-mitigation approaches such as zero-forcing detection (ZF), the performance
analysis of MIMO spatial-multiplexing is much less tractable than for Rayleigh fading [6]. Nonetheless,
with the advent of the massive-MIMO concept, it is likely that low-complexity detection methods such
as ZF shall remain practically relevant [7] [8].

Since ZF for MIMO Rician fading remains of interest, we have analyzed ZF recently in [6] [9]
for Rician–Rayleigh fading, i.e., when the intended Stream 1 undergoes Rician fading, whereas the
interfering streams undergo Rayleigh fading. This fading model is relevant in macrocells, microcells,
and heterogeneous networks, as explained in [6], and allows for a tractable exact analysis of ZF. Thus,
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in [6] we derived infinite-series expressions for its performance measures, and in [9] we proved that
they converge everywhere. However, we found that truncating the derived infinite series yields numerical
convergence only for a limited range of values for the Rician K-factor that is also unrealistic, according
to WINNER II.

The underlying reason for these numerical convergence difficulties is that the ZF performance-measure
expressions have been deduced in [6] from the widely-used infinite-series expression [10, Eq. (13.2.2),
p. 322] for the confluent hypergeometric function 1F1(·, ·, σ), where σ is a scalar argument. The numerical-
convergence difficulties of this series have been acknowledged and tackled in [11] and references therein.
Their cause is that the infinite series is an expansion around σ = 0. Therefore, with increasing σ, the
numerical convergence of truncating the infinite-series expression [10, Eq. (13.2.2), p. 322] is increasingly
difficult and eventually fails [11].

An alternative approach to computing 1F1(·, ·, σ) that is not frequently used is based on the fact that this
function satisfies, with respect to (w.r.t.) σ, the linear differential equation with polynomial coefficients
from [10, Eq. (13.2.1), p. 322], i.e., it is holonomic [12, p. 334] [13, p. 7] [14, p. 140] [15, Section 6.4].
Holonomic functions can be computed at some σ by numerically solving their differential equation starting
from an initial σ0 where 1) the function is known analytically, or 2) the function can be approximated
accurately, e.g., 1F1(·, ·, σ0) from its infinite series, for σ0 ≈ 0. This approach is known as the holonomic
gradient method (HGM) [16] [17]. It has recently been applied to evaluating the normalizing constant of
the Bingham distribution [16] and the cumulative distribution function (c.d.f.) of the dominant eigenvalue
of a Wishart-distributed matrix [17].

B. Approach and Contribution
This paper demonstrates that HGM can help accurately compute MIMO performance-measure expres-

sions obtained in terms of the confluent hypergeometric function 1F1(·, ·, ·), for practical fading-parameter
values. We proceed as follows, for ZF under Rician–Rayleigh fading. We start with [6, Eq. (31)], which
expresses the moment generating function (m.g.f.) of the signal-to-noise ratio (SNR) for Stream 1 in terms
of 1F1(·, ·, σ). Its infinite-series expansion around the origin yielded, after inverse-Laplace transformation,
the infinite-series expression for the SNR probability density function (p.d.f.) from [6, Eq. (39)].

Herein, we exploit instead the differential equation [10, Eq. (13.2.1), p. 322] satisfied by 1F1(·, ·, σ)
and deduce the corresponding differential equation for the ZF SNR m.g.f. Inverse-Laplace transformation
yields the differential equation satisfied by the ZF SNR p.d.f., which is then numerically computed with the
HGM. This approach starts from an initial value computed by truncating the infinite-series p.d.f. expression
[6, Eq. (39)]. Finally, numerical integration of the SNR p.d.f. output by the HGM yields accurately, for
the first time, the ZF outage probability and ergodic capacity for K values relevant for WINNER II.

C. Paper Organization
Section II describes the MIMO signal, noise, and channel models. Section III introduces the SNR

m.g.f. and p.d.f. infinite-series expressions derived in [6]. Section IV discusses difficulties encountered
in the truncation-based computation of the infinite-series expression for 1F1(·, ·, σ) and of the ensuing
infinite-series expression for the ZF SNR p.d.f. Section V defines holonomic functions and deduces from
their properties that the SNR m.g.f. and p.d.f. are holonomic. This justifies our search in Section VI for
the differential equations they satisfy. These differential equations are exploited in the HGM to generate
the numerical results shown and discussed in Section VII. Finally, Section VIII discusses other possible
HGM applications in MIMO evaluation. Throughout this paper we employ the same notation as in [6].

II. SIGNAL, NOISE, AND FADING MODELS [6]
Herein, the signal, noise, and channel models and assumptions follow closely the ones from [6]. Thus,

we consider uncoded MIMO spatial-multiplexing over a frequency-flat fading channel. We assume that
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there are NT and NR antenna elements at the transmitter(s) and receiver, respectively, with NT ≤ NR, and
denote the number of degrees of freedom as

N = NR −NT + 1. (1)

Letting x = [x1 x2 · · · xNT ]T denote the NT × 1 zero-mean transmit-symbol vector with E{xxH} = INT ,
the NR × 1 vector with the received signals can be represented as [1, Eq. (8)] [6, Eq. (1)]:

r =

√
Es

NT
Hx + v =

√
Es

NT
h1x1 +

√
Es

NT

NT∑
k=2

hkxk + v. (2)

Above, Es/NT represents the energy transmitted per symbol (i.e., per antenna), so that Es is the energy
transmitted per channel use. The additive noise vector v is zero-mean, uncorrelated, circularly-symmetric,
complex Gaussian with v ∼ CN (0, N0 INR). We will also employ its normalized version vn = v/

√
N0 ∼

CN (0, INR). We shall employ the per-symbol input SNR, defined as

Γs =
Es

N0

1

NT
, (3)

as well as the per-bit input SNR, which, for a modulation constellation with M symbols (e.g., MPSK),
is defined as

Γb =
Γs

log2M
. (4)

Then, H = (h1 h2 . . . hNT) is the NR ×NT complex-Gaussian channel matrix, assumed to have rank
NT. Vector hk comprises the channel factors between transmit-antenna k and all receive-antennas. The
deterministic (i.e., mean) and random components of H are denoted as Hd = (hd,1 hd,2 . . . hd,NT) and
Hr = (hr,1 hr,2 . . . hr,NT), respectively, so that H = Hd + Hr. If [Hd]i,j = 0 then | [H]i,j | has a Rayleigh
distribution; otherwise, | [H]i,j | has a Rician distribution [18]. Typically, the channel matrix for Rician
fading is written as

H = Hd + Hr =

√
K

K + 1
Hd,n +

√
1

K + 1
Hr,n, (5)

where it is assumed for normalization purposes [19] that ‖Hd,n‖2 = NTNR and E{| [Hr,n]i,j |2} = 1,∀i, j,
so that E{‖H‖2} = NTNR. Power ratio

K =
‖Hd‖2

E{‖Hr‖2}
=

K
K+1
‖Hd,n‖2

1
K+1

E{‖Hr,n‖2}
(6)

is the Rician K-factor: K = 0 yields Rayleigh fading for all elements of H; K 6= 0 yields Rician fading
if Hd,n 6= 0.

As in [6], we view the channel matrix as partitioned into the column that affects the intended stream,
i.e., Stream 1, and the matrix whose columns each affect the interfering streams, i.e.,

H = (h1 H2) = (hd,1 Hd,2) + (hr,1 Hr,2) (7)

and assume that Hd,2 = 0, whereas hd,1 can be nonzero, i.e., Rician–Rayleigh fading.
As a result of the above normalization and assumptions we can write

‖hd,1‖2 = ‖(hd,1 0NR×(NT−1))‖2 = ‖Hd‖2 =
K

K + 1
NRNT. (8)

We also assume zero receive-correlation but allow for nonzero transmit-correlation. Then, we assume, for
tractability, as in previous work [20] [21], that all conjugate-transposed rows of Hr,n have distribution
CN (0,RT), with [RT]i,i = 1, ∀i = 1 : NT. Thus, all conjugate-transposed rows of Hr have distribution
CN (0,RT,K = 1

K+1
RT). The elements of RT can be computed from the azimuth spread (AS) as shown

in [22, Section VI.A] for WINNER II, i.e., Laplacian, power azimuth spectrum. Note that WINNER II
has modeled both K (in dB) and AS (in degrees) as random variables with scenario-dependent lognormal
distributions [4].
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III. INFINITE-SERIES EXPRESSIONS FOR MIMO ZF M.G.F. AND P.D.F. [6]
A. MIMO ZF and Its SNR

For the received signal vector from (2), ZF means mapping the following vector into the closest
modulation constellation symbols [1, Eq. (22)]:√

NT

Es

[
HHH

]−1
HH r = x +

1√
Γs

[
HHH

]−1
HHvn. (9)

Then, the ZF SNR for Stream 1 is given by

γ1 =
Γs

[(HHH)−1]1,1
. (10)

B. Infinite-Series Expressions for ZF SNR M.G.F. and P.D.F. [6]
The m.g.f. of γ1 is defined as [18, Eq. (1.2)]

Mγ1(s, a) = E{esγ1} =

∫ ∞
0

estpγ1(t, a)dt, (11)

where pγ1(t, a) is the p.d.f. of γ1. Thus, the m.g.f. is related to the Laplace transform [10, Eq. (1.14.17)]
Lγ1(s, a) of the p.d.f. simply by a sign change, i.e.,

Mγ1(−s, a) = Lγ1(s, a) =

∫ ∞
0

e−stpγ1(t, a)dt. (12)

For MIMO ZF under Rician–Rayleigh fading we have recently obtained the following exact expression
for the m.g.f. of the SNR of the Rician-fading Stream 1 [6, Eq. (31)]:

Mγ1(s, a) =
1

(1− Γ1s)
N 1F1

(
N ;NR; a

Γ1s

1− Γ1s

)
, (13)

where 1F1(N ;NR;σ) is the confluent hypergeometric function of scalar argument σ [10, Ch. 13], and

Γ1 =
Γs[

R−1
T,K

]
1,1

∝ Γs

K + 1
, (14)

a =
[
R−1

T,K

]
1,1
‖hd,1‖2 ∝ KNRNT. (15)

The confluent hypergeometric function has the infinite-series expression [10, Eq. (13.2.2), p. 322]

1F1(N ;NR;σ) =
∞∑
n=0

(N)n
(NR)n

σn

n!
=
∞∑
n=0

An(σ), (16)

where (N)n is the Pochhammer symbol, i.e., (N)0 = 1 and (N)n = N(N + 1) . . . (N + n− 1), ∀n > 1
[10, p. xiv]. A proof of the fact (important herein) that expression (16) is the expansion of 1F1(N ;NR;σ)
around σ = 0 is provided, for completeness, in Appendix I.

Using (16), we have shown that (13) can be written as the infinite series [6, Eq. (37)]

Mγ1(s, a) =
∞∑
n=0

An(a)
n∑

m=0

(
n

m

)
(−1)m

1

(1− sΓ1)N+n−m . (17)

Then, the SNR p.d.f. is given by the following infinite series [6, Eq. (39)]

pγ1(t, a) =
∞∑
n=0

An(a)
n∑

m=0

(
n

m

)
(−1)m

tN+n−m−1e−t/Γ1

[(N + n−m)− 1]! ΓN+n−m
1

, t ≥ 0. (18)
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For the special case with N = 1, i.e., for NR = NT, the above becomes

pγ1(t, a) =
e−t/Γ1

Γ1

∞∑
n=0

An(a)
n∑

m=0

(
n

m

)
(−1)m

tn−m

(n−m)! Γn−m1

, t ≥ 0, (19)

which yields

lim
t→0,t>0

pγ1(t, a) = pγ1(0+, a) =
1

Γ1

∞∑
n=0

An(a)(−1)n =
1

Γ1

∞∑
n=0

(N)n
(NR)n

(−a)n

n!
. (20)

Thus, (20), (16), and (18) yield:

pγ1(0+, a) =

{
1

Γ1
1F1(N ;NR;−a), N = 1

0, N > 1.
(21)

For the special case of Rayleigh-only fading, K = 0 yields a = 0 from (15), and then only the term
for n = m = 0 remains in (17) and (18), i.e.,

Mγ1(s, 0) =
1

(1− sΓ1)N
, (22)

pγ1(t, 0) =
tN−1e−t/Γ1

(N − 1)! ΓN1
, t ≥ 0, (23)

so that the ZF SNR is gamma-distributed.
On the other hand, for K 6= 0, i.e., for Rician–Rayleigh fading, (17) and (18) reveal that the ZF

SNR is an infinite linear combination of gamma distributions. These m.g.f. and p.d.f. expressions have
yielded infinite-series expressions in [6, Eqs. (68),(71)], respectively, for the outage probability and ergodic
capacity, which are defined as follows:

Po(γ1,th, a) = Pr(γ1 ≤ γ1,th) =

∫ γ1,th

0

pγ1(t, a)dt, (24)

C(a) = Eγ1{C(γ1)} =

∫ ∞
0

log2(1 + t)pγ1(t, a)dt. (25)

In (24), γ1,th is the threshold-SNR.

IV. CONVENTIONAL COMPUTATION OF 1F1(·; ·;σ)AND ENSUING LIMITATIONS

A. Recursive Computation of Truncated Infinite Series of 1F1(·; ·;σ)

Recall that the ZF SNR expression (13) depends on the confluent hypergeometric function 1F1(·; ·;σ).
Conventionally, this function has been expressed as the infinite series given in (16), which is the result of
expansion around σ = 0, as detailed in Appendix I. Then, the truncation of this series has conventionally
been employed to compute (i.e., accurately approximate) 1F1(·; ·;σ).

However, computing and adding one-by-one each term An(σ) of (16) is not efficient. It also encounters
numerical instability even for relatively-low values of σ [11]. This is because, with increasing σ, terms for
higher n have to be considered for numerical convergence. However, Pochhammer products (similarly to
factorials) of large numbers are represented with large absolute error. We detailed these numerical issues
in [9].

Accurate results for larger σ can be computed more efficiently through recursive methods, e.g., [11,
Method 1]:
• Starting from A0(σ) = 1, recursively update An(σ) with:

An(σ) = An−1(σ)
N + n− 1

NR + n− 1

σ

n
, n = 1, 2, 3, . . . (26)
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Fig. 1. log10 (1F1(N ;NR;σ)), for NR = 6, NT = 2, computed with the MATLAB hypergeom function, with the series (16) using the
recursion (26), as well as with the system of differential equations (29) using HGM, for σ0 = 10−15.

• Stop at sufficiently large n = nmax (to avoid excessive computation time or numerical instability
caused by the inaccuracy in representing large numbers) or when∣∣∣∣ An(σ)∑n

i=1Ai(σ)

∣∣∣∣ ≤ ξ, (27)

where ξ is the tolerance level. Then, 1F1(N ;NR;σ) ≈
∑n

i=0Ai(σ).
Nevertheless, such recursive methods converge slowly and also incur numerical instability for sufficiently-
large σ [11].

We have implemented in MATLAB the recursive series-approximation method described above, for
nmax = 150 and ξ = 10−15. We have also employed the MATLAB function hypergeom, whose imple-
mentation details are inaccessible. Fig. 1 depicts the obtained results, along with HGM results described
later. First, these results reveal that all methods break down for sufficiently-large argument (i.e., σ ≈ 700).
Then, the results obtained by series truncation diverge significantly from the true value for σ > 200
because the series is an expansion around σ = 0.

B. Closed-Form and Infinite-Series Expressions for 1F1(N ;NR;σ)

On the one hand, 1F1(α; β;σ) can be represented, when α ≤ β are positive integers, as a combination of
two finite series [6, Eq. (35)]. Unfortunately, this closed-form expression for 1F1(N ;NR;σ) yields for the
MIMO ZF SNR m.g.f. a closed-form expression [6, Eq. (36)] that cannot be Laplace-inverted to express the
p.d.f. in terms of finite series. On the other hand, the infinite-series expression for 1F1(N ;NR;σ) from (16)
has yielded the infinite-series expression for the MIMO ZF SNR m.g.f. from (17), which, in turn, has
readily yielded the infinite-series p.d.f. expression in (18). Unfortunately, the difficulties described above
for the computation of 1F1(N ;NR;σ) by truncating its infinite series (16) also affect the computation of
the infinite-series p.d.f. expression in (18), as demonstrated next.
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Fig. 2. P.d.f. of the SNR (in linear units) for Stream 1, for NR = 6, NT = 2, K = 7 dB, AS = 51◦, Γs = 5 dB.

C. Difficulties Computing the SNR P.D.F. from Infinite-Series Expression [6] [9]
As we have discussed in [6] [9], the infinite-series expression (18) cannot be computed accurately,

or even at all, for large values of a (i.e., K), by truncation. This is also illustrated here in Fig. 2, for
NR = 6, NT = 2, and AS = 51◦, which is the average AS for WINNER II scenario A1, i.e., indoor
office/residential [22, Table I] [4].

For Rayleigh-only fading, i.e., for K = 0, results (identified in legend with Ray–Ray) from the infinite-
series (18) — which reduces to (23) — and from simulation agree. On the other hand, for Rician–Rayleigh
fading with K = 7 dB (identified in legend with Rice–Ray), the series (18) results not only do not match
the simulations, but they break down at most values of t, as revealed by the vertical lines in the figures.
(They connect the extreme computed values.)

Note that the value of K set for this experiment is not arbitrary: it is the average of the lognormal
distribution of measured K for WINNER II indoor (office, residential) scenario A1 [22, Table I] [4]. Thus,
accurately computing pγ1(t) for K = 7 dB has practical relevance. However, for NR = 6, NT = 2, we
have been able to accurately compute pγ1(t), and, thus, the outage probability and ergodic capacity, only
up to K ≈ 1.2 dB, as detailed in [6, Sec. VI.C] [9, Sec. V]. Since series truncation cannot help compute
ZF performance measures for relevant parameter values, an HGM-based approach is pursued next.

V. HOLONOMIC FUNCTIONS AND THE HOLONOMIC GRADIENT METHOD (HGM)
A. Differential Equation and HGM-Based Computation of 1F1(N ;NR;σ)

It is known that 1F1(N ;NR;σ) satisfies the second-order ordinary differential1 equation with polynomial
coefficients [10, Eq. (13.2.1), p. 322]

σ · 1F
(2)
1 (N ;NR;σ) + (NR − σ) · 1F

(1)
1 (N ;NR;σ)−N · 1F1(N ;NR;σ) = 0. (28)

Because (28) can be recast as

∂σ

(
1F1(N ;NR;σ)

1F
(1)
1 (N ;NR;σ)

)
=

(
0 1
N
σ

1− NR
σ

)(
1F1(N ;NR;σ)

1F
(1)
1 (N ;NR;σ)

)
, (29)

1Herein, 1F
(k)
1 (N ;NR;σ) stands for the kth derivative w.r.t. σ of 1F1(N ;NR;σ).
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given initial conditions, i.e., 1F1(N ;NR;σ0) and 1F
(1)
1 (N ;NR;σ0) for some σ0, one can compute 1F1(N ;NR;σ)

for any σ by solving (29) numerically2 between σ0 and σ.
Unfortunately, because σ multiplies 1F

(2)
1 (N ;NR;σ) in (28), i.e., it appears in denominators in (29), one

cannot use the initial value σ0 = 0 and the initial conditions 1F1(N ;NR; 0) = 1 and 1F
(1)
1 (N ;NR; 0) = N

NR

ensuing from (16). Therefore, the initial conditions 1F1(N ;NR;σ0) and 1F
(1)
1 (N ;NR;σ0) = N

NR 1F1(N +
1;NR + 1;σ0) [10, Eq. (13.3.15), p. 325] have to be obtained numerically for some σ0 > 0 by series (16)
truncation, as discussed in Section IV-A. Nevertheless, since σ0 can be selected arbitrarily small, we can
achieve high accuracy.

Thus, HGM for the computation of 1F1(N ;NR;σ) proceeds as follows:
• First, compute accurate initial conditions, i.e., 1F1(N ;NR;σ0) and 1F

(1)
1 (N ;NR;σ0), for some sufficiently-

small σ0 > 0, by infinite-series truncation.
• Then, solve numerically the system of differential equations (29) between σ0 and σ.
For example, the above approach starting at σ0 = 10−15 has yielded the results identified with HGM

in Fig. 1. They agree with the results from the MATLAB hypergeom function (but the latter required
orders-of-magnitude larger computation time for large σ).

B. Holonomic Functions: Definition and Properties
Definition 1 ( [16, Section 2]): A function that satisfies, w.r.t. each variable, an ordinary differential

equation with polynomial coefficients is referred to as holonomic.
Simple examples of holonomic functions are the polynomial and exponential-polynomial functions [12,

Section 2.5]. The confluent hypergeometric function 1F1(N ;NR;σ) is holonomic because it satisfies (28).
Proposition 1 ( [12, Proposition 2.1]): If f(x) is a polynomial then 1/f(x) is holonomic.
Proposition 2 ( [13, Theorem 1.4.2, p. 16]): If f(x) is holonomic and h(x) is a rational function then

f(h(x)) is holonomic.
Proposition 3 ( [12, Proposition 3.2]): If f(x) and g(x) are holonomic then their multiplication f(x) g(x)

is also holonomic.
Proposition 4 ( [12, p. 337]): If f(x) is holonomic then its Fourier transform is holonomic.
Based on the above properties, in the SNR m.g.f. expression (13), the first term

1

(1− Γ1s)
N

is holonomic w.r.t. s, and the second term

1F1

(
N ;NR; a

Γ1s

1− Γ1s

)
(30)

is holonomic w.r.t. both s and a. These yield the following property.
Lemma 1: The SNR m.g.f. Mγ1(s, a) described by expression (13) is holonomic w.r.t. both s and a,

i.e., it must satisfy ordinary differential equations with polynomial coefficients w.r.t. both s and a. Also,
the ZF SNR p.d.f. pγ1(t, a) is holonomic w.r.t. both t and a, i.e., it must satisfy ordinary differential
equations with polynomial coefficients w.r.t. both t and a.

Therefore, the remainder of this work is devoted to:
• Obtaining the differential equations (known to exist) satisfied by Mγ1(s, a), w.r.t. both s and a, as

well as by pγ1(t, a), w.r.t. both t and a.
• Exploiting the differential equations for the SNR p.d.f. pγ1(t, a) in HGM to accurately compute ZF

performance measures for practically-relevant values of K.

2E.g., with the ode function, in MATLAB.
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VI. DIFFERENTIAL EQUATIONS FOR ZF SNR M.G.F. AND P.D.F.
A. M.G.F. and P.D.F. Variable Scaling

In order to simplify notation and derivations hereafter, let us denote the m.g.f. Mγ1(s, a) and the
p.d.f. pγ1(t, a) for Γ1 = 1 as M(s, a) and p(t, a), respectively. Now, by definition, we have

Mγ1(s, a) = E{esγ1} =

∫ ∞
0

estpγ1(t, a)dt, (31)

M(s, a) =

∫ ∞
0

estp(t, a)dt. (32)

Then, because

Mγ1(s, a) = M(sΓ1, a) =

∫ ∞
0

esΓ1tp(t, a)dt =

∫ ∞
0

esy
1

Γ1

p(y/Γ1, a)dy,

the p.d.f. pγ1(t, a) of γ1 for any Γ1 can be obtained from p(t, a) as follows:

pγ1(t, a) =
1

Γ1

p(t/Γ1, a). (33)

Thus, below, we first derive differential equations for M(s, a) w.r.t. both s and a. From them we then
deduce differential equations for p(t, a) w.r.t. both t and a. They will help compute, by HGM, the function
p(t, a) at desired values of t and a (i.e., K). Finally, the scaling transformation from (33) will return the
value of the SNR p.d.f. pγ1(t, a), for any Γ1.

B. Differential Equation w.r.t. s for M(s, a)

Based on (13) and (31) we can write

M(s, a) =
1

(1− s)N 1F1

(
N ;NR;

as

1− s

)
. (34)

In Appendix II, manipulation and differentiation w.r.t. s of (34) followed by substitution into the differential
equation for 1F1 (N ;NR;σ) from (28) yield the following differential equation w.r.t. s for M(s, a), in (94):(

s(1− s)2∂2
s − [2(N + 1)s(1− s)− (1− s)NR + as] ∂s +N [(N + 1)s−NR − a]

)
M(s, a) = 0. (35)

Because sl appears in front of ∂ks in (35), the corresponding differential equation for p(t, a) cannot be
obtained directly. Therefore, we shall employ the following order-changing rule, which can readily be
deduced from [15, Th. 6.1.2 (Liebniz Formula), p. 282] [23, Th. 1.1.1, p. 3].

Proposition 5:

sl∂ks =

min(l,k)∑
m=0

(−1)m
l(l − 1) . . . (l −m+ 1) k(k − 1) . . . (k −m+ 1)

m!
∂k−ms sl−m. (36)

From (36) we obtain the following particular rules

s∂s = ∂ss− 1, (37)
s∂2

s = ∂2
ss− 2∂s, (38)

s2∂s = ∂ss
2 − 2s, (39)

s2∂2
s = ∂2

ss
2 − 4∂ss+ 2, (40)

s3∂2
s = ∂2

ss
3 − 6∂ss

2 + 6s, (41)

which, when applied in (35) yield for M(s, a) the following differential equation w.r.t. s:[
∂2
ss

3 − 2∂2
ss

2 + ∂2
ss+ (2N − 4)∂ss

2 + (6− 2N −NR − a) ∂ss+ (NR − 2)∂s

+(N − 1)(N − 2)s+ (N − 1)(2−NR − a)]M(s, a) = 0. (42)
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C. Differential Equation w.r.t. t for p(t, a)

The following proposition helps transform an expression whereby the operator ∂ks is applied to the
product slM(s, a) into a differential equation3 for p(t, a) w.r.t. t.

Proposition 6: The integral
∫∞

0
est
[
tkp(l)(t, a)

]
dt, which represents the Laplace transform of tkp(l)(t, a)

for argument −s, is given by:{
(−1)l∂ks

[
slM(s, a)

]
+
∑l

m=k+1(−1)m p(l−m)(0+, a) (m−1)!
(m−k−1)!

sm−k−1, l ≥ 1,

∂ksM(s, a), l = 0.
(43)

Proof: Follows from the well-known Laplace-transform property for higher-order derivatives from
[10, Eq. (1.14.29), p. 28] and the sign change from (12).

Using (43) appropriately for the terms in (42) yields the following Laplace transform pairs:

∂2
ss

3M(s, a) + 2! p(0+, a) ↔ −t2p(3)(t, a)

−2∂2
ss

2M(s, a) ↔ −2t2p(2)(t, a)

∂2
ssM(s, a) ↔ −t2p(1)(t, a)

(2N − 4)∂ss
2M(s, a) + (2N − 4) p(0+, a) ↔ (2N − 4) t p(2)(t, a)

(6− 2N −NR − a) ∂ssM(s, a) ↔ − (6− 2N −NR − a) t p(1)(t, a)

(NR − 2)∂sM(s, a) ↔ (NR − 2) t p(t, a)

(N − 1)(N − 2)sM(s, a) + (N − 1)(N − 2)p(0+, a) ↔ − (N − 1) (N − 2) p(1)(t, a)

(N − 1)(2−NR − a)M(s, a) ↔ (N − 1)(2−NR − a) p(t, a).

Summing the left-hand side terms (i.e., the s-domain terms) of the above transform pairs and accounting
for (42) yields the constant N(N − 1)p(0+, a), which reduces to 0 for any N ≥ 1 because, based on (21)
and (33), we have:

p(0+, a) =

{
1F1(N ;NR;−a), N = 1,

0, N > 1.
(44)

Then, by the uniqueness of the Laplace transform, the right-hand side terms (i.e., the t-domain terms) of
the above transform pairs also sum to 0, i.e.,

−t2p(3)(t, a)− 2t2p(2)(t, a)− t2p(1)(t, a) + (2N − 4) tp(2)(t, a)− (6− 2N −NR − a) t p(1)(t, a)

+ (NR − 2) t p(t, a)− (N − 1) (N − 2) p(1)(t, a) + (N − 1)(2−NR − a) p(t, a) = 0. (45)

This differential equation w.r.t. t for p(t, a) can be rewritten more compactly as

p(3)(t, a) =
(NR − 2)t+ (N − 1)(2−NR − a)

t2
p(t, a)

−t
2 + (6− 2N −NR − a)t+ (N − 1)(N − 2)

t2
p(1)(t, a)

−2t2 − (2N − 4)t

t2
p(2)(t, a). (46)

3Herein, p(l)(t, a) stands for the lth derivative w.r.t. t of p(t, a).
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D. Computation of p(t, a) vs. t, Given a, by HGM w.r.t. t
By defining the function vector

p(t, a) =
(
p(t, a) p(1)(t, a) p(2)(t, a)

)T
, (47)

we can recast (46) as the system of differential equations w.r.t. t

∂tp(t, a) = P(t, a)p(t, a), (48)

where the elements of the 3× 3 companion matrix P(t, a) are as follows:

[P(t, a)]1,1 = [P(t, a)]1,3 = 0 (49)
[P(t, a)]2,1 = [P(t, a)]2,2 = 0 (50)
[P(t, a)]1,2 = [P(t, a)]2,3 = 1 (51)

[P(t, a)]3,1 =
(NR − 2)t+ (N − 1)(2−NR − a)

t2
(52)

[P(t, a)]3,2 = −t
2 + (6− 2N −NR − a)t+ (N − 1)(N − 2)

t2
(53)

[P(t, a)]3,3 = −2t2 − (2N − 4)t

t2
. (54)

Now, since we are interested in computing the SNR p.d.f. over a relevant range of t, as depicted in
Fig. 2, an HGM-based procedure based on (48) would suit naturally, because it inherently computes
p(t, a) over a range of interest for t, for a given a, as follows. Given the initial condition p(t0, a) =(
p(t0, a) p(1)(t0, a) p(2)(t0, a)

)T for a certain t0, the system of differential equations (48) is solved nu-
merically between t0 and t. Note that HGM requires t0 6= 0 because t appears in denominators of the
elements of P(t, a). Then, the computation of p(t0, a), p(1)(t0, a), and p(2)(t0, a) may be attempted from
their infinite-series expressions derived in Appendix III. However, this approach is reliable only for a
sufficiently-small (i.e., practically-irrelevant). To compute p(t0, a) at relevant values of a, an HGM-based
approach needs to be pursued based on the differential equation w.r.t. a for p(t, a), which is known to
exist, and which is derived next.

E. Differential Equation w.r.t. a for p(t, a)

In Appendix IV, Eq. (108), we have deduced the relationship

a∂aM(s, a) =
(
s∂s − s2∂s −Ns

)
M(s, a). (55)

which, by using the order-changing rules (37) and (39), becomes

a∂aM(s, a) =
(
∂ss− 1− ∂ss2 + 2s−Ns

)
M(s, a)

=
[
−1 + (−Ns+ ∂ss+ 2s)− ∂ss2

]
M(s, a). (56)

Transforming (56) from the s-domain to the t-domain based on (43) yields

a∂ap(t, a) = (N − 1) p(0+, a)︸ ︷︷ ︸
=0,∀N

−p(t, a) + (N − t− 2) p(1)(t, a)− t p(2)(t, a)

= −p(t, a) + (N − t− 2) p(1)(t, a)− t p(2)(t, a). (57)
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Now, differentiating (57) w.r.t. t and then substituting p(3)(t, a) from (46) yields:

a∂ap
(1)(t, a) = −t p(3)(t, a) + (N − t− 3) p(2)(t, a)− 2p(1)(t, a)

=

(
2−NR +

2− 2N −NR − a+NNR +Na

t

)
p(t, a)

+

(
4− 2N −NR − a+ t+

2 +N2 − 3N

t

)
p(1)(t, a)

+ (1−N + t) p(2)(t, a). (58)

Finally, differentiating (58) w.r.t. t and then substituting p(3)(t, a) from (46) yields:

a∂ap
(2)(t, a) =

(
− 2 +NR +

−4 + 4N + 2NR + a− 2NNR −Na
t

+
−4 + 6N + 2NR + 2a− 3NNR − 3Na+N2NR +N2a− 2N2

t2

)
p(t, a)

+

(
3N − 4 + a− t+

−6− 3N2 + 9N

t
+
−4 + 8N − 5N2 +N3

t2

)
p(1)(t, a)

+

(
−1 + 2N −NR − a− t+

−2−N2 + 3N

t

)
p(2)(t, a). (59)

F. Computation of p(t, a) vs. a, Given t, by HGM w.r.t. a
Collecting (57)–(59) yields for the function vector p(t, a) defined in (48) the system of differential

equations w.r.t. a

∂ap(t, a) =
1

a
Q(t, a)p(t, a), (60)

where the elements of 3× 3 matrix Q(t, a) are:

[Q(t, a)]1,1 = −1 (61)
[Q(t, a)]1,2 = N − t− 2 (62)
[Q(t, a)]1,3 = −t (63)

[Q(t, a)]2,1 = 2−NR +
2− 2N −NR − a+NNR +Na

t
(64)

[Q(t, a)]2,2 = 4− 2N −NR − a+ t+
2 +N2 − 3N

t
(65)

[Q(t, a)]2,3 = 1−N + t (66)

[Q(t, a)]3,1 = −2 +NR +
−4 + 4N + 2NR + a− 2NNR −Na

t

+
−4 + 6N + 2NR + 2a− 3NNR − 3Na+N2NR +N2a− 2N2

t2
(67)

[Q(t, a)]3,2 = 3N − 4 + a− t+
−6− 3N2 + 9N

t
+
−4 + 8N − 5N2 +N3

t2
(68)

[Q(t, a)]3,3 = −1 + 2N −NR − a− t+
−2−N2 + 3N

t
. (69)

Now, the system of differential equations (60) may be solved numerically between some4 a0 and the
desired a, given t and an initial condition p(t, a0) =

(
p(t, a0) p(1)(t, a0) p(2)(t, a0)

)T whose elements can
be computed accurately for sufficiently-small a0 from the infinite-series expressions in Appendix III.

4Note that a0 cannot be 0 because a divides matrix Q in (60).
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This HGM-based approach w.r.t. a may be applied to compute p(t, a) either 1) between a0 and a
at samples of interest in the range of interest for t, or 2) between a0 and a to compute the initial
condition p(t0, a), followed by the application between t0 and t of the HGM-based approach w.r.t. t from
Section VI-D. However, numerical results (unshown due to length limitations) have revealed that neither
approach computes p(t, a) accurately in the upper range of t. Note that these approaches proceed along
axes in the (t, a)-plane. In order to improve numerical accuracy, next, we combine (48) and (60) and
compute p(t, a) along a line of slope 0 < c <∞ in the (t, a)-plane.

G. Computation of p(t, a) vs. t, by HGM w.r.t. t for a = c t

In the systems of differential equations obtained in (48) and (60), i.e., in

∂tp(t, a) = P(t, a)p(t, a), (70)

∂ap(t, a) =
1

a
Q(t, a)p(t, a), (71)

we now make the following changes of variables

t = c1u, (72)
a = c2u. (73)

Then, the bivariate function vector from (47) becomes the univariate function vector

p(c1u, c2u) =

 p(c1u, c2u)
p(1)(c1u, c2u)
p(2)(c1u, c2u)

 = p̃(u). (74)

Based on the chain rule [10, Eq. (1.5.7), p. 7] as well as (70) and (71), we can write:

d

du
p̃(u) =

d

du
p( c1u︸︷︷︸

t

, c2u︸︷︷︸
a

) =

[
∂tp(t, a)

dt

du
+ ∂ap(t, a)

da

du

] ∣∣∣∣
t=c1u
a=c2u

= c1 P(c1u, c2u) p̃(u) + c2
1

c2u
Q(c1u, c2u) p̃(u)

= c1 P(c1u, c2u) p̃(u) +
1

u
Q(c1u, c2u) p̃(u). (75)

Then, for example, for c1 = 1 and c2 = c, we obtain the system of differential equations

d

du
p̃(u) = R(u)p̃(u), (76)

where R(u) = P(u, c u) + 1
u
Q(u, c u) is a 3× 3 matrix.

VII. NUMERICAL RESULTS

For the numerical results described below, we have used the following procedure. Given the per-symbol
input SNR Γs, which is defined in (3), and the Rician K-factor, we computed Γ1 and a with (14) and (15),
respectively. Then, we computed the ZF SNR p.d.f. over the relevant SNR range by employing the HGM
ensuing from (76) as follows:
• Compute the initial condition p̃(u0) by replacing both t and a with a sufficiently-small u0 so that(

p(u0, u0) p(1)(u0, u0) p(2)(u0, u0)
)T is computed accurately based on the infinite series for p(q)(t, a)

from (98)–(100) in Appendix III.
• Sample the range of interest [u1, uM ] for u, i.e., t, as: u1, · · · , uM .
• For each sample u = um, m = 1 : M :

1) Set c = a/u.
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Fig. 3. Stream-1 SNR p.d.f. computed with HGM and by simulation, for NR = 6, NT = 2, K = 7 dB.

2) Solve the system of differential equations (76) from u0 to u.
3) Save p(u, cu), which represents p(t, a) on the line a = c t.

• Finally, recover the ZF SNR p.d.f. based on (33), i.e., with pγ1(t, a) = p(t/Γ1, a)/Γ1.
Figs. 3 and 4 depict the SNR p.d.f. and c.d.f. computed with the HGM as above, and by simulation,

for NR = 6, NT = 2, and K = 7 dB. (Since the computation of pγ1(t, a) based on its infinite series
expression (18) breaks down, we no longer try to plot its results.) HGM performs well, i.e., the resulting
p.d.f. and c.d.f. plots agree with the simulation results. Also, the c.d.f. shown in Fig 4 goes to 1 for
increasing t, as required.

Figs. 5 and 6 depict, respectively, the MIMO ZF outage probability and ergodic capacity. For Rayleigh-
only fading, they show results from simulation as well as from expressions5. On the other hand, for
Rician–Rayleigh fading with K = 7 dB, they show results from simulation and from the numerical
integration of pγ1(t, a) computed with HGM as described above, based on (24) and (25). The simulation
and HGM-based results agree closely.

Results from the infinite-series expressions [6, Eqs. (69),(71)] could not be shown for K = 7 dB because
they fall outside the displayed Po and C ranges. In fact, our attempts to compute the infinite-series Po

and C expressions [6, Eqs. (69),(71)] with a recursive method analogous to that described for 1F1(·; ·; ·)
in Section IV-A have been successful only up to K ≈ 1.2 dB — recall the pd.f. results from Section IV-C
and see for details [6, Sections V.F, VI.C].

VIII. OTHER RELEVANT HGM APPLICATIONS, AND FUTURE WORK

A. HGM-Based Computation of BPSK Error Probability (i.e., Q-Function)
Given the symbol-detection SNR, e.g., γ1, the bit error probability for BPSK modulation is given by

[24, Eqn. 5.2-57, p. 268]

Pe(γ1) = Q
(√

2γ1

)
=

1

2
[1− erf (

√
γ1 )] , (77)

5 [6, Eqs. (69) and (71)], with a = 0, i.e., for n = m = 0.
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Fig. 5. Stream-1 SNR outage probability, for NR = 6, NT = 2, K = 7 dB.

where Q(·) is the Gaussian Q-function [18, Eqn. 4.1, p. 70], and erf is the error function6 [10, Eq. (7.2.1),
p. 160]:

erf(x) =
2√
π

∫ x

0

e−y
2

dy. (78)

6Note that erf, i.e., the Q-function, can be expressed in terms of 1F1(·; ·; ·), based on [10, Eq. (7.11.4), p. 164].
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Fig. 6. Stream-1 SNR ergodic capacity, for NR = 6, NT = 2, K = 7 dB.

Now, if we write

E(x) = erf(x) =
2√
π

∫ x

0

e−y
2

dy =
2√
π

[F (x)− F (0)] , E(0) = 0, (79)

where F ′(x) = e−x
2 , then, by differentiating (79) twice, we obtain:

E ′(x) =
2√
π
F ′(x) =

2√
π
e−x

2

, E ′(0) =
2√
π
, (80)

E ′′(x) = −2x
2√
π
e−x

2

= −2xE ′(x). (81)

Differential equation (81) can be solved numerically starting at x0 = 0, using the initial conditions
from (79) and (80), to obtain E(x) at any value of x, i.e., Pe(γ1) from (77) at any γ1. The results of
this approach are identified with HGM in Fig. 7. They agree closely with the ones from the native erf
function in MATLAB, whose implementation details are inaccessible.

B. HGM-Based Computation of Hypergeometric Functions of Matrix Argument
Hypergeometric functions of matrix argument occur in analyses involving random matrix theory [25]

[26]. Thus, they frequently occur in MIMO analyses due to statistical assumptions about the MIMO channel
matrix. For example, the c.d.f. and m.g.f. of the dominant eigenvalue of a central-Wishart distributed matrix
have been expressed in terms of 1F1(a; c;R) and 2F1(a; c;R) in [26, Eqs. (34), (42)], respectively. Thus, for
binary signaling, MIMO Rayleigh fading, maximal-ratio combining, and coherent detection, the average
error probability and outage probability have been expressed in terms of 1F1(a; c;R) and 2F1(a; c;R) in
[26, Eqs. (30), (22)], respectively. However, the expressions typically employed for these functions involve
zonal polynomials [27, Eq. (1.1)] [25, Eq. (1.1)] [26, Eq. (61)], which renders computation difficult [25]
[26, p. 743].

These difficulties can be avoided by deploying HGM based on the differential equations satisfied by
such functions: those for 2F1(a, b; c;R) and 1F1(a; c;R) were deduced by Muirhead in [27, Eqs. (1.3),
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Fig. 7. BPSK error probability results obtained from (77).

(5.1)], respectively; those for other such functions relevant to MIMO analysis appear in [27, Eq. (5.2)] [28,
p. 51]. Thus, the differential equations satisfied by 1F1(c;R) [27, Eq. (5.1)] have recently been employed
to accurately compute by HGM the c.d.f. of the dominant eigenvalue of a (real-valued) central-Wishart-
distributed matrix in [17].

C. Automated Deduction of Differential Equations for MIMO Performance Measures
We familiarized ourselves with the HGM procedure by opting herein to manually deduce the differential

equations satisfied by the ZF SNR m.g.f. from the differential equation w.r.t. σ satisfied by 1F1(N ;NR;σ).
Nevertheless, software tools that can automate the deduction of differential equations for holonomic
functions ensuing from 1F1(N ;NR;σ), for specified values of N and NR, have recently become available
[14, p. 171] [15, Ch. 7] [29]. They shall be effectively employed in future work, also to deduce differential
equations for the outage probability and ergodic capacity of MIMO ZF.

IX. SUMMARY AND CONCLUSIONS

For MIMO ZF under Rician–Rayleigh fading with realistic parameter values, this paper demonstrates
that HGM helps compute accurately the performance measures. For the ZF SNR m.g.f. known in terms
of the confluent hypergeometric function, we deduced the satisfied differential equations. From them,
we deduced the differential equations satisfied by the SNR p.d.f. and used these equations to compute
the p.d.f. with the HGM. Finally, we computed the ZF outage probability and ergodic capacity by
numerically integrating the SNR p.d.f. obtained by HGM. Thus, we have been able to evaluate the
MIMO ZF performance under Rician–Rayleigh fading for realistic K-factor values, which had been
impossible by infinite-series truncation. Our approach may help accurately evaluate MIMO performance
for heterogeneous cell deployments.
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APPENDIX I
INFINITE-SERIES EXPRESSION FOR 1F1(N ;NR;σ) IS EXPANSION AROUND σ = 0

For NR = N , (16) reduces to 1F1(N ;NR;σ) =
∑∞

n=0
σn

n!
= eσ. On the other hand, for NR > N , the

confluent hypergeometric function has the integral form [10, Eq. (13.4.1), p. 326] [10, Eq. (13.6.1), p. 327]

1F1(N ;NR;σ) =
Γ(NR)

Γ(N)Γ(NR −N)

∫ 1

0

eσyyN−1(1− y)NR−N−1dy, NR > N, (82)

which yields its well known infinite-series form (16), by way of the Maclaurin expansion of eσy around
σ0 = 0, as follows [10, Eq. (13.2.4), p. 322] [10, Eq. (13.4.1), p. 326] [30, Eq. (3.191.3), p. 315] [30,
Eq. (8.384.1), p. 909]:

1F1(N ;NR;σ) =
Γ(NR)

Γ(N)Γ(NR −N)

∫ 1

0

∞∑
n=0

σnyn

n!
yN−1(1− y)NR−N−1dy

=
Γ(NR)

Γ(N)Γ(NR −N)

∞∑
n=0

σn

n!

∫ 1

0

yn+N−1(1− y)NR−N−1dy

=
Γ(NR)

Γ(N)Γ(NR −N)

∞∑
n=0

σn

n!

Γ(n+N)Γ(NR −N)

Γ(n+NR)

=
∞∑
n=0

σn

n!

Γ(n+N)Γ(NR)

Γ(N)Γ(n+NR)

=
∞∑
n=0

(N + n− 1)!(NR − 1)!

(N − 1)!(NR + n− 1)!

σn

n!

=
∞∑
n=0

(N)n
(NR)n

σn

n!
=
∞∑
n=0

An(σ). (83)

Finally, note that 1F1(N ;NR;σ) is referred to as ‘hypergeometric’ because the ratio of two successive
terms in series (83) is a rational function in n, i.e.,

An(σ)

An−1(σ)
=

N + n− 1

NR + n− 1

σ

n
, n ≥ 1. (84)

On the other hand, in a ‘geometric’ series, the ratio of successive terms is a constant, e.g., in
∑∞

n=0 σ
n.

APPENDIX II
DIFFERENTIAL EQUATION W.R.T. s FOR M(s, a)

First, substituting σ with as
1−s in the differential equation for 1F1(N ;NR;σ) from (28) yields

as

1− s1F
(2)
1

(
N ;NR;

as

1− s

)
+

(
NR −

as

1− s

)
1F

(1)
1

(
N ;NR;

as

1− s

)
−N1F1

(
N ;NR;

as

1− s

)
= 0. (85)

Then, from (34) we have

M(s, a) =
1

(1− s)N 1F1

(
N ;NR;

as

1− s

)
, (86)

which yields

1F1

(
N ;NR;

as

1− s

)
= (1− s)N M(s, a). (87)
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Differentiating (86) w.r.t. s yields:

∂sM(s, a) =
N

(1− s)N+1 1F1

(
N ;NR;

as

1− s

)
+

a

(1− s)N+2 1F
(1)
1

(
N ;NR;

as

1− s

)
, (88)

By first substituting (87) into (88) and then differentiating the result w.r.t. s we obtain

∂sM(s, a) =
N

(1− s)
M(s, a) +

a

(1− s)N+2 1F
(1)
1

(
N ;NR;

as

1− s

)
, (89)

∂2
sM(s, a) =

N

(1− s)2M(s, a) +
N

(1− s)
∂sM(s, a)

+
a(N + 2)

(1− s)N+3 1F
(1)
1

(
N ;NR;

as

1− s

)
+

a2

(1− s)N+4 1F
(2)
1

(
N ;NR;

as

1− s

)
(90)

which yield, respectively:

1F
(1)
1

(
N ;NR;

as

1− s

)
=

(1− s)N+2

a

[
∂s −

N

(1− s)

]
M(s, a), (91)

1F
(2)
1

(
N ;NR;

as

1− s

)
=

(1− s)N+4

a2

[
∂2
sM(s, a)− N

(1− s)2M(s, a)

− N

(1− s)
∂sM(s, a)− a(N + 2)

(1− s)N+3 1F
(1)
1

(
N ;NR;

as

1− s

)]
. (92)

Substituting (91) into (92) yields:

1F
(2)
1

(
N ;NR;

as

1− s

)
=

(1− s)N+4

a2

[
∂2
s −

2(N + 1)

(1− s)
∂s +

N(N + 1)

(1− s)2

]
M(s, a). (93)

Finally, substituting (87), (91), and (93) into the differential equation (85), and further manipulation, yield
the following differential equation w.r.t. s for M(s, a)(

s(1− s)2∂2
s − [2(N + 1)s(1− s)− (1− s)NR + as] ∂s +N [(N + 1)s−NR − a]

)
M(s, a) = 0, (94)

which appears in the main text in (35).

APPENDIX III
INFINITE-SERIES EXPRESSIONS OF DERIVATIVES OF p(t, a) W.R.T. t

Based on (18) and (33), let us define the function

f(t, a) = p(t, a)et =
∞∑
n=0

An(a)
n∑

m=0

(
n

m

)
(−1)m

tN+n−m−1

(N + n−m− 1)!
, (95)

whose first two derivatives are given by

f (1)(t, a) = p(1)(t, a)et + p(t, a)et, (96)
f (2)(t, a) = p(2)(t, a)et + 2p(1)(t, a)et + p(t, a)et. (97)

The above yield

p(t, a) = f(t, a)e−t, (98)

and

p(1)(t, a) =
[
f (1)(t, a)− f(t, a)

]
e−t, (99)

p(2)(t, a) =
[
f (2)(t, a)− 2f (1)(t, a) + f(t, a)

]
e−t, (100)
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TABLE I
DERIVATIVES OF f(t, a) FOR N = 1, 2

N = 1 N = 2

f(t, a) g(t, a) tg(t, a)

f (1)(t, a) g(1)(t, a) g(t, a) + tg(1)(t, a)

f (2)(t, a) g(2)(t, a) 2g(1)(t, a) + tg(2)(t, a)

which are the only derivatives of p(t, a) required for (47).
Now, if we rewrite f(t, a) from (95) further as

f(t, a) = tN−1

∞∑
n=0

An(a)
n∑

m=0

(
n

m

)
(−1)m

tn−m

(N − 1 + n−m)!︸ ︷︷ ︸
g(t,a)

= tN−1g(t, a), (101)

then its qth derivative can be written, using Leibniz’s formula [10, Eq. (1.4.12), p. 5], as

f (q)(t, a) =
dq
[
tN−1g(t, a)

]
dtq

(102)

=

q∑
k=0

(
q

k

)[
tN−1

](k)
g(q−k)(t, a) (103)

=

q∑
k=0

(
q

k

)
(N − 1)!

(N − 1− k)!
tN−1−kg(q−k)(t, a), k ≤ N − 1. (104)

Now, if we rewrite g(t, a) as

g(t, a) =
∞∑
n=0

An(a)
n∑
r=0

(
n

n− r

)
(−1)n−r

tr

(N − 1 + r)!
,

its derivative of order q ≥ 1 is given by

g(q)(t, a) =
∞∑
n=q

An(a)
n∑
r=q

(
n

n− r

)
(−1)n−r

1

(N − 1 + r)!

r!

(r − q)!
tr−q, (105)

On the other hand, note that going from (103) to (104) is allowed only for k ≤ N − 1. Because k ≤ q,
the requirement is that N − 1 ≥ q. Finally, because (47) requires the derivatives f (q)(t, a) only for q ≤ 2,
f (q)(t, a) can be written as in (104) only if N ≥ 3. The remaining cases are characterized separately in
Table I.

APPENDIX IV
RELATIONSHIP BETWEEN DERIVATIVES OF M(s, a) W.R.T. a AND s

Differentiating (86) w.r.t. a yields

∂aM(s, a) =
s

(1− s)N+1 1F
(1)
1

(
N ;NR;

as

1− s

)
, (106)

so that

1F
(1)
1

(
N ;NR;

as

1− s

)
=

(1− s)N+1

s
∂aM(s, a). (107)

Now, by substituting (87) and (107) into (88), and by further manipulation, we obtain

a∂aM(s, a) = s (1− s)∂sM(s, a)−NsM(s, a), (108)

which appears in the main text in (55).
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[23] M. Saito, B. Sturmfels, and N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations, ser. Algorithms and

Computation in Mathematics. Springer, 2011.
[24] J. G. Proakis, Digital Communications, 4th ed. New York, NY: McGraw-Hill, Inc., 2001.
[25] P. Koev and A. Edelman, “The efficient evaluation of the hypergeometric function of a matrix argument,” Mathematics of Computation,

vol. 75, no. 254, pp. 833–846, 2006.
[26] A. J. Grant, “Performance analysis of transmit beamforming,” IEEE Transactions on Communications, vol. 53, no. 4, pp. 738–744,

2005.
[27] R. J. Muirhead, “Systems of partial differential equations for hypergeometric functions of matrix argument,” The Annals of Mathematical

Statistics, vol. 41, no. 3, pp. 991–1001, 1970.
[28] I. G. Macdonald, “Hypergeometric functions I,” arXiv preprint arXiv:1309.4568, 2013. [Online]. Available: http://arxiv.org/abs/1309.

4568
[29] C. Koutschan. HolonomicFunctions package for Mathematica. Research Institute for Symbolic Computation (RISC).

Johannes Kepler University, Linz, Austria. [Online]. Available: http://www.risc.jku.at/research/combinat/software/ergosum/RISC/
HolonomicFunctions.html

[30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. Elsevier, Academic Press, 2007.

http://arxiv.org/abs/1307.2958
http://arxiv.org/abs/1309.4568
http://arxiv.org/abs/1309.4568
http://www.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
http://www.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html

