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Abstract

We investigate asymptotic construction of constant-risk Bayesian predictive densities under the
Kullback–Leibler risk when the distributions of data and target variables are different and have a
common unknown parameter. It is known that the Kullback–Leibler risk is asymptotically equal to a
trace of the product of two matrices: the inverse of the Fisher information matrix for the data, and the
Fisher information matrix for the target variables. We assume that the trace has an unique maximum
point with respect to the parameter. We construct asymptotically constant-risk Bayesian predictive
densities using a prior depending on the sample size. Further, we apply the theory to the subminimax
estimator problem and the prediction based on the binary regression model.

1 Introduction

Let x(N) = (x1, · · · , xN ) be independent N data distributed according to a probability density p(x|θ)
that belongs to a d-dimensional parametric model {p(x|θ) : θ ∈ Θ}, where θ = (θ1, · · · , θd) is an unknown
d-dimensional parameter, and Θ is the parameter space. Let y be a target variable distributed according
to a probability density q(y|θ) that belongs to a d-dimensional parametric model {q(y|θ) : θ ∈ Θ} with
the same parameter θ. Here, we assume that the distributions of the data and the target variables p(x|θ)
and q(y|θ) are different. For simplicity, we assume that the data and the target variables are independent
given by θ.

We construct predictive densities for target variables based on the data. We measure the performance
of the predictive density q̂(y|x(N)) by the Kullback–Leibler divergence D(q(·|θ), q̂(·|x(N))) from the true
density q(y|θ) to the predictive density q̂(y|x(N)):

D(q(·|θ), q̂(·|x(N))) =

∫
q(y|θ) log q(y|θ)

q̂(y|x(N))
dy.

Then, the risk function R(θ, q̂(y|x(N))) of the predictive density q̂(y|x(N)) is given by

R(θ, q̂(y|x(N))) =

∫
p(x(N)|θ)D(q(·|θ), q̂(·|x(N)))dx(N)

=

∫
p(x(N)|θ)

∫
q(y|θ) log q(y|θ)

q̂(y|x(N))
dydx(N).

For the construction of predictive densities, we consider the Bayesian predictive density defined by

qπ(y|x(N)) =

∫
q(y|θ)p(x(N)|θ)π(θ;N)dθ∫

p(x(N)|θ)π(θ;N)dθ
,

where π(θ;N) is a prior density for θ possibly depending on the sample size N . Aitchison (1975) showed
that, for a given prior density π(θ;N), the Bayesian predictive density qπ(y|x(N)) is a Bayes solution under
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the Kullback–Leibler risk. Based on the asymptotics as the sample size goes to infinity, Komaki (1996)
and Hartigan (1998) showed its superiority over any plug-in predictive density q(y|θ̂) with any estimator θ̂.
However, there remains a problem of prior selection for constructing better Bayesian predictive densities.
Thus, a prior π(θ;N) must be chosen based on an optimality criterion for actual applications.

Among various criteria, we focus on a criterion of constructing minimax predictive densities under the
Kullback–Leibler risk. For simplicity, we refer to the priors generating minimax predictive densities as
minimax priors. Minimax priors have been previously studied in various predictive settings; see Bernardo
(1979), Clarke and Barron (1994), Aslan (2006), and Komaki (2011, 2012). Except for Komaki (2011),
these studies are based on the assumption that the distributions p(x|θ) and q(y|θ) are identical. Let us
consider the prediction based on the logistic regression model where the covariates of the data and the
target variables are not identical. In this predictive setting, the assumption that the distributions p(x|θ)
and q(y|θ) are identical is no longer valid.

We focus on the minimax priors in predictions where the distributions p(x|θ) and q(y|θ) are different
and have a common unknown parameter. Such a predictive setting has traditionally been considered in
the statistical prediction and the experiment design. It has recently been studied in the statistical learning
theory (e.g., Kanamori and Shimodaira, 2003). Predictive densities where the distributions p(x|θ) and
q(y|θ) are different and have a common unknown parameter are studied by Shimodaira (2000), Fushiki,
Komaki, and Aihara (2004), Suzuki and Komaki (2010), and Komaki (2013).

Let gXij (θ) be the (i, j)-component of the Fisher information matrix of the distribution p(x|θ), and let

gYij (θ) be the (i, j)-component of the Fisher information matrix of the distribution q(y|θ). Let gX,ij(θ)

and gY,ij(θ) denote the (i, j)-components of their inverse matrices. We adopt the Einstein’s summation
convention: if the same indices appear twice in any one term, it implies summation over that index from
1 to d. For the asymptotics below, we assume that the prior densities π(θ;N) are smooth.

On the asymptotics as the sample size N goes to infinity, we construct asymptotically constant-risk
priors π(θ;N) in the sense that the asymptotic risk

R(θ, qπ(y|x(N))) =
1

N
R1(θ, qπ(y|x(N))) +

1

N
√
N

R2(θ, qπ(y|x(N))) +O(N−2)

is constant up to O(N−3/2). Since the proper prior with the constant risk is a minimax prior for any finite
sample size, the asymptotically constant-risk prior relates to the minimax prior; in Section 4, we verify
that the asymptotically constant-risk prior agrees with the exact minimax prior in binomial examples.

It is known that the N−1-order term R1(θ, qπ(y|x(N))) of the Kullback–Leibler risk is equal to the
trace gX,ij(θ)gYij (θ). If the trace does not depend on the parameter θ, the construction of asymptotically
constant-risk priors is parallel to Aslan (2006); see also Komaki (2013).

However, we consider the setting where there exists a unique maximum point of the trace gX,ij(θ)gYij (θ);
for example, this setting appears in predictions based on the binary regression model where the covariates
of the data and the target variables are not identical. In this setting, there does not exist asymptotically
constant-risk priors among the priors independent of the sample size N . The reason is as follows: we
consider the proper priors π(θ). Although the asymptotic Bayes risk

∫
(1/N)gX,ij(θ)gYij (θ)π(θ)dθ is

maximized by the discrete priors, the discrete priors violate the smoothness condition of the priors for
the asymptotics.

When there exists a unique maximum point of the trace gX,ij(θ)gYij (θ), we construct the asymptotically

constant-risk prior π(θ;N) up to O(N−2) by making the prior dependent on the sample size N as

π(θ;N)

|gX(θ)|1/2
∝ {f(θ)}

√
Nh(θ),

where f(θ) and h(θ) are the scalar functions of θ independent of N , and |gX(θ)| denotes the determinant
of the Fisher information matrix gX(θ).

The key idea is that, if the specified parameter point has the more undue risk than the other parameter
points, then the more prior weights should be concentrated on that point.

Further, we clarify the subminimax estimator problem based on the mean squared error from the
viewpoint of the prediction where the distributions of data and target variables are different and have
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a common unknown parameter. We obtain the improvement achieved by the minimax estimator over
the subminimax estimators up to O(N−2). The subminimax estimator problem (Hodges and Lehmann,
1950; Ghosh, 1964) is the problem that, at first glance, there seems to exist asymptotically dominating
estimators of the minimax estimator. However, any relationship between such subminimax estimator
problems and predictions have not been investigated, and further, in general, the improvement by the
minimax estimator over the subminimax estimators have not been investigated.

2 Information Geometrical Notations

In this section, we prepare the information geometrical notations; see Amari (1985) for details. We
abbreviate ∂/∂θi to ∂i where the indices i, j, k, . . . run from 1 to d. Similarly, we abbreviate ∂2/∂θi∂θj ,
∂3/∂θi∂θj∂θk, and ∂4/∂θi∂θj∂θk∂θl to ∂ij , ∂ijk, and ∂ijkl, respectively. We denote the expectations
of the random variables X, Y , and X(N) by EX [·], EY [·], and EX(N) [·], respectively. We denote their
probability densities by p(x|θ), q(y|θ), and p(x(N)|θ), respectively.

We define the predictive metric proposed by Komaki (2013) as

g̊ij(θ) = gXik(θ)g
Y,kl(θ)gXlj (θ).

When the parameter is one-dimensional, gθθ(θ) denotes Fisher information, and gθθ(θ) denotes its inverse.

Let
e
Γ X
ij,k(θ) and

m
Γ X
ij,k(θ) be the quantities given by

e
Γ X
ij,k(θ) := EX [∂ij log p(x|θ)∂k log p(x|θ)]

and

m
Γ X
ij,k(θ) :=

∫
1

p(x|θ)
[∂ijp(x|θ)∂kp(x|θ)]dx.

Using these quantities, the e-connection and m-connection coefficients with respect to the parameter θ
for the model {p(x|θ) : θ ∈ Θ} are given by

e
Γ X,k
ij (θ) := gX,lk(θ)

e
Γ X
ij,l(θ)

and

m
Γ X,k
ij (θ) := gX,kl(θ)

m
Γ X
ij,l(θ),

respectively.
The (0, 3)-tensor TX

ijk(θ) is defined by

TX
ijk(θ) := EX [∂i log p(x|θ)∂j log p(x|θ)∂k log p(x|θ)].

The tensor TX
ijk(θ) also produces a (0, 1)-tensor

TX
i (θ) := TX

ijk(θ)g
X,jk(θ).

In the same manner, the information geometrical quantities
e
Γ Y
ij,k(θ),

m
Γ Y
ij,k(θ), and T Y

ijk(θ) are defined
for the model {q(y|θ) : θ ∈ Θ}.

Let Mk
ij(θ) be a (1, 2)-tensor defined by

Mk
ij(θ) :=

m
Γ Y,k
ij (θ)−

m
Γ X,k
ij (θ).

For a derivative (∂1v(θ), · · · , ∂dv(θ)) of the scalar function v(θ), the e-covariant derivative is given by

e
∇ivj(θ) := ∂ijv(θ)−

e
Γ X,k
ij (θ)vk(θ).
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3 Asymptotically constant-risk priors when the distributions of data
and target variables are different

In this section, we consider the setting where the trace gX,ij(θ)gYij (θ) has an unique maximum point.
We construct asymptotically constant-risk priors under the Kullback–Leibler risk in the sense that the
asymptotic risk up to O(N−2) is constant. We find asymptotically constant-risk priors up to O(N−2) in
two steps: first, expand the Kullback–Leibler risk of Bayesian predictive densities. Second, find the prior
having an asymptotically constant risk using this expansion.

From now on, we assume following two conditions for the prior π(θ;N):

(C1) The prior π(θ;N) has the form

π(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f(θ) + log h(θ)},

where f(θ) and h(θ) are smooth scalar functions of θ independent of N .

(C2) The unique maximum point of the scalar function f(θ) is equal to the unique maximum point of
the trace gX,ij(θ)gYij (θ).

Based on conditions (C1) and (C2), we expand the Kullback–Leibler risk of a Bayesian predictive
density up to O(N−2).

Theorem 3.1. The Kullback–Leibler risk of a Bayesian predictive density based on the prior π(θ;N)
satisfying condition (C1) is expanded as

R(θ, qπ(y|x(N)))

=
1

2N
gYij (θ)g

X,ij(θ) +
1

2N
g̊ij(θ)∂i log f(θ)∂j log f(θ)−

1

N
√
N

T Y
ijk(θ)g

X,ij(θ)gX,kl(θ)∂l log f(θ)

+
1

N
√
N

g̊ij(θ)
e
∇i∂j log f(θ) +

1

N
√
N

g̊ij(θ)gX,kl(θ)

{
e
∇i∂k log f(θ)

}
∂j log f(θ)∂l log f(θ)

− 1

3N
√
N

T Y
ijk(θ)g

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
1

2N
√
N

gYkl(θ)M
l
ij(θ)g

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
1

2N
√
N

gX,ij(θ)gYkl(θ)g
X,kl(θ)Mm

ij (θ)∂m log f(θ) +
1

N
√
N

g̊ij(θ)Mk
ij(θ)∂k log f(θ)

+
1

2N
√
N

g̊ij(θ)TX
i (θ)∂j log f(θ) +

1

2N
√
N

gX,im(θ)gYij (θ)g
X,kl(θ)M j

kl(θ)∂m log f(θ)

+
1

N
√
N

g̊ij(θ)∂i log f(θ)∂j log h(θ) + O(N−2). (1)

The proof is given in the Appendix.

Remark 3.1. For the subsequent theorem, it is important that at the point θf maximizing the scalar
function log f(θ), R(θf , qπ(y|xN )) is given by

R(θf , qπ(y|xN ))

=
1

2N
sup
θ∈Θ

{gX,ij(θ)gYij (θ)}+
1

N
√
N

g̊ij(θf )∂ij log f(θf ) + O(N−2). (2)

The N−3/2-order term of this risk is common whenever we use the same scalar function log f(θ). This
term is negative because of the definition of the point θf . Under condition (C2), θf is equal to the unique
maximum point θmax of the trace gX,ij(θ)gYij (θ).

4



Based on (1) and (2), we construct asymptotically constant-risk priors using the solutions of the partial
differential equations.

Theorem 3.2. Suppose that the scalar functions log f̃(θ) and log h̃(θ) satisfy the following conditions:

(A1) log f̃(θ) is the solution of the Eikonal equation given by

g̊ij(θ)∂i log f̃(θ)∂j log f̃(θ) = gX,ij(θmax)g
Y
ij (θmax)− gX,ij(θ)gYij (θ), (3)

where θmax is the unique maximum point of the scalar function gX,ij(θ)gYij (θ).

(A2) log h̃(θ) is the solution of the first-order linear partial equation given by

g̊ij∂i log f̃(θ)∂j log h̃(θ) = −g̊ij(θ)
e
∇i∂j log f̃(θ)

− g̊ij(θ)gX,kl(θ)

{
e
∇i∂k log f̃(θ)

}
∂j log f̃(θ)∂l log f̃(θ)

+ T Y
ijk(θ)g

X,ij(θ)gX,kl(θ)∂l log f̃(θ)

+
1

3
T Y
ijk(θ)g

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f̃(θ)∂t log f̃(θ)∂u log f̃(θ)

− 1

2
gYkl(θ)M

l
ij(θ)g

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f̃(θ)∂t log f̃(θ)∂u log f̃(θ)

− 1

2
gX,ij(θ)gYkl(θ)g

X,kl(θ)Mm
ij (θ)∂m log f̃(θ)− g̊ij(θ)Mk

ij(θ)∂k log f̃(θ)

− 1

2
g̊ij(θ)TX

i (θ)∂j log f̃(θ)−
1

2
gX,im(θ)gYij (θ)g

X,kl(θ)M j
kl(θ)∂m log f̃(θ)

+ g̊ij(θmax)∂ij log f̃(θmax). (4)

Let π(θ;N) be the prior that is constructed as

π(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f̃(θ) + log h̃(θ)}.

Further, suppose that log f̃(θ) satisfies condition (C2).
Then, the Bayesian predictive density based on the prior π(θ;N) has the asymptotically smallest con-

stant risk up to O(N−2).

Proof. First, we consider the prior ϕ(θ;N) constructed as

ϕ(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f̃(θ)}.

From Theorem 3.1, the Kullback–Leibler risk R(θ, qϕ(y|x(N))) based on the prior ϕ(θ;N) is given by

R(θ, qϕ(y|x(N))) =
1

2N
gX,ij(θmax)g

Y
ij (θmax) + o(N−1). (5)

This is constant up to o(N−1).
Suppose that there exists another prior φ(θ;N) constructed as

φ(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f(θ)},

and the Bayesian predictive density based on the prior φ(θ;N) has the asymptotically constant risk

R(θ, qφ(y|x(N))) =
k

2N
+ o(N−1).

5



From Theorem 3.1, the prior φ(θ;N) must satisfy the equation

g̊ij(θ)∂i log f(θ)∂j log f(θ) = k − gX,ij(θ)gYij (θ).

The left-hand side of the above equation is non-negative, because the matrix g̊ij(θ) is positive-definite.
Hence, the infimum of the constant k is equal to gX,ij(θmax)g

Y
ij (θmax). From (5), the N−1-order term

of the risk based on the prior ϕ(θ;N) achieves the infimum gX,ij(θmax)g
Y
ij (θmax). Thus, the Bayesian

predictive density based on the prior ϕ(θ;N) has the asymptotically smallest constant risk up to o(N−1).
Second, we consider the prior π(θ;N) constructed as

π(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f̃(θ) + log h̃(θ)}.

The above argument ensures that the prior π(θ;N) has the asymptotically smallest constant risk up
to o(N−1). Thus, we only have to check if the N−3/2-order term of the risk is the smallest con-
stant. From (2), the N−3/2-order term of the risk at the point θmax is unchanged by the choice of
the scalar function log h(θ). In other words, the constant N−3/2-order term must agree with the quantity
g̊ij(θmax)∂ij log f̃(θmax). From Theorem 3.1, if we choose the prior π(θ;N), the N−3/2-order term of the
risk is the smallest constant, and it agrees with the quantity g̊ij(θmax)∂ij log f̃(θmax). Thus, the prior
π(θ;N) has the asymptotically smallest constant risk up to O(N−2).

Remark 3.2. In particular, we consider the model with a one-dimensional parameter θ. From condition
(C2), ∂θ log f̃(θ) is specified as√

g̊θθ(θ)∂θ log f̃(θ) =
√

gX,θθ(θmax)gYθθ(θmax)− gX,θθ(θ)gYθθ(θ) if θ ≤ θmax,√
g̊θθ(θ)∂θ log f̃(θ) = −

√
gX,θθ(θmax)gYθθ(θmax)− gX,θθ(θ)gYθθ(θ) if θ ≥ θmax. (6)

Integrating both sides of equation (6), the unique function log f̃(θ) is obtained. By substituting log f̃(θ)
in (4), the unique function log h̃(θ) is obtained.

Remark 3.3. Compare the Kullback–Leibler risk based on the asymptotically constant-risk priors
π(θ;N) with that based on the priors λ(θ) independent of the sample size N . From Theorem 3.1 and
Theorem 3.2, the Kullback–Leibler risk based on the asymptotically constant-risk priors π(θ;N) is given
as

R(θ, qπ(y|x(N))) =
1

2N
gX,ij(θmax)g

Y
ij (θmax)

+
1

N
√
N

g̊ij(θmax)∂ij log f̃(θmax) + O(N−2). (7)

In contrast, the Kullback–Leibler risk based on the priors λ(θ) is given as

R(θ, qλ(y|x(N))) =
1

2N
gX,ij(θ)gYij (θ) + O(N−2). (8)

The N−1-order term in (8) is above the N−1-order term in (7); although the N−3/2-order term in (8)
does not exist, the N−3/2-order term in (7) is negative. Thus, the maximum of the risk based on the
asymptotically constant-risk priors π(θ;N) is smaller than that of the risk based on the priors λ(θ).

4 Subminimax estimator problem based on the mean squared error

In this section, we refer to the subminimax estimator problem based on the mean squared error, from the
viewpoint of the prediction where the distributions of data and target variables are different and have a
common unknown parameter.
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Let us consider the binomial estimation based on the mean squared error RMSE(θ, θ̂). For any finite

sample size N , the Bayes estimator θ̂π based on the Beta prior π(θ;N) ∝ θ
√
N/2−1(1 − θ)

√
N/2−1 is

minimax under the mean squared error. The mean squared error of the minimax Bayes estimator θ̂π is
given by

RMSE(θ, θ̂π) =
N

4(
√
N +N)2

=
1

4N
− 1

2N
√
N

+O(N−2). (9)

In contrast, the mean squared error of the maximum likelihood estimator θ̂MLE is given by

RMSE(θ, θ̂MLE) =
θ(1− θ)

N
.

We compare the two estimators θ̂π and θ̂MLE. In comparison of the N−1-order terms of the mean
squared errors, it seems that the maximum likelihood estimator θ̂MLE dominates the minimax Bayes
estimator θ̂π. In other words, theN−1-order term ofRMSE(θ, θ̂MLE) is not greater than that ofRMSE(θ, θ̂π)
for every θ ∈ Θ, and the equality holds when θ = 1/2. This seeming paradox is known as the subminimax
estimator problem; see Robbins (1950), Hodges and Lehmann (1950), and Frank and Kiefer (1951) for
details. See also Ghosh (1964) for the conditions that such problems do not occur in estimation.

However, this paradox does not mean the inferiority of the minimax Bayes estimator, because, although
the mean squared error of the minimax Bayes estimator θ̂π has the negative N−3/2-order term, the mean
squared error of the maximum likelihood estimator θ̂MLE does not have the N−3/2-order term. Hence,
in comparison of the mean squared errors up to O(N−2), the maximum of the mean squared error
RMSE(θ, θ̂π) is below the maximum of the mean squared error RMSE(θ, θ̂MLE).

We consider the prior λ(θ) independent of the sample size. In the content of the estimation based
on the mean squared error, the mean squared error RMSE(θ, θ̂λ) of the Bayes estimator θ̂λ based on the
prior λ(θ) is expanded as

RMSE(θ, θ̂λ) =
1

N

d
Σ
i=1

gX,ii(θ) + O(N−2).

In the content of the prediction when the distributions of data and target variables are different and have
a common unknown parameter, the Kullback–Leibler risk R(θ, qλ(y|x(N))) of the Bayesian predictive
density qλ(y|x(N)) based on the prior λ(θ) is expanded as

R(θ, qλ(y|x(N))) =
1

2N
gX,ij(θ)gYij (θ) + O(N−2).

If the target variable y is a d-dimensional Gaussian random variable with the mean vector θ and unit
variance, then the Kullback–Leibler risk of the predictive density qλ(y|x(N)) is equivalent to the mean
squared error of the Bayesian estimator based on the prior λ(θ) up to O(N−2):

R(θ, qλ(y|x(N))) =
1

2
RMSE(θ, θλ) + O(N−2).

Based on this equivalence, we consider the estimation based on the mean squared error when Σd
i=1 g

X,ii(θ)
has a unique maximum point θmax. By substituting the identity matrix δij in the expansion of the quantity

gYij (θ)EX(N) [(θiπ − θi)(θjπ − θj)], we obtain the asymptotically constant-risk priors π(θ;N) up to O(N−2);
see Lemma A2.

We compare the mean squared error of the asymptotically constant-risk Bayes estimator θ̂π with that
of the maximum likelihood estimator θ̂MLE. The mean squared error of the maximum likelihood estimator
θ̂MLE is given as

RMSE(θ, θ̂MLE) =
1

N
Σd
i=1g

X,ii(θ) + O(N−2).
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See Efron (1975) and Amari (1985). The mean squared error of the asymptotically constant-risk Bayes
estimator θ̂π is given as

RMSE(θ, θ̂π) =
1

N

d
Σ
i=1

gX,ii(θmax) +
2

N
√
N

gX,ik(θmax)g
Y
kl(θmax)g

X,lj(θmax)∂ij log f̃(θmax)

+O(N−2).

Thus, the maximum of the mean squared error of the asymptotically constant-risk Bayes estimator is
smaller than that of estimators by the improvement of order N−3/2 in proportion to the Hessian of the
scalar function log f̃(θ) at θmax. In the prediction where the trace gX,ij(θ)gYij (θ) has a unique maximum
point, the same improvement holds (Remark 3.3).

For example, we consider the binomial estimation based on the mean squared error. The geometrical
quantities to be used are given by

gXθθ(θ) =
1

θ(1− θ)
, gYθθ(θ) = 1,

m
Γ X
θθ,θ(θ) = 0,

m
Γ Y
θθ,θ(θ) = 0,

e
Γ X
θθ,θ(θ) = − 1− 2θ

θ2(1− θ)2
,

e
Γ Y
θθ,θ(θ) = 0,

TX
θθθ(θ) =

1− 2θ

θ2(1− θ)2
, and T Y

θθθ(θ) = 0,

respectively. Since
m
Γ X,θ
θθ ,

m
Γ Y,θ
θθ , and T Y

θθθ vanish, the asymptotically constant-risk prior in the estimation
is identical to the asymptotically constant-risk prior in the prediction; compare Theorem 3.1 with the
expansion of gY,ij(θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)] in Lemma A2.

In this example, equation (3) is given by

θ2(1− θ)2{∂θ log f̃(θ)}2 =

√
1

4
− θ(1− θ),

and the solution log f̃(θ) is (1/2) log{θ(1− θ)}. Here, the second-order derivative of the function log f̃(θ)
is given by

∂θθ log f̃(θ) = −1− 2θ + 2θ2

2θ2(1− θ)2
.

From this, equation (4) is given by

1

2
θ(1− θ)(1− 2θ)∂θ log h̃(θ) + θ2 − θ = −1

4
,

and the solution log h̃(θ) is (1/2) log{θ(1− θ)}. Hence, the asymptotically constant-risk prior π(θ;N) is
a Beta prior with the parameters α =

√
N/2 and β =

√
N/2. Note that the asymptotically constant-risk

prior coincides with the exact minimax prior. Since gX,θθ(θmax) = 1/2 and gX,θθ(θmax)∂θθ log f̃(θmax) =
−1, the mean squared error of the asymptotically constant-risk Bayes estimator θ̂π agrees with (9) up to
O(N−2).

5 Application to the prediction of the binary regression model under
the covariate shift

In this section, we construct asymptotically constant-risk priors in the prediction based on the binary
regression model under the covariate shift; see Shimodaira (2000).
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We consider that we predict a binary response variable y based on the binary response variables x(N).
We assume that the target variable y and the data x(N) follow the logistic regression models with the
same parameter β given by

log
Πx

1−Πx
= α+ zβ

and

log
Πy

1−Πy
= α̃+ z̃β,

where Πx is the success probability of the data, and Πy is the success probability of the target variable.
Let α and α̃ denote known constant terms, and let β denotes the common unknown parameter. Further,
we assume that the covariates z and z̃ are different.

Using the parameter θ = Πx, we convert this predictive setting to binomial prediction where the data
x and the target variable y are distributed according to

p(x|θ) :=
{

θ if x = 1,
1− θ if x = 0,

and

q(y|θ) :=

 eα̃−z̃z−1αθz̃z
−1
/
{
(1− θ)z̃z

−1
+ eα̃−z̃z−1αθz̃z

−1
}

if y = 1,

(1− θ)z̃z
−1
/
{
(1− θ)z̃z

−1
+ eα̃−z̃z−1αθz̃z

−1
}

if y = 0,

respectively. We obtain two Fisher informations for x and y as

gXθθ(θ) =
1

θ(1− θ)

and

gYθθ(θ) =

(
z̃

z

)2

e−α̃+z̃z−1α (1− θ)z̃z
−1−2θz̃z

−1−2{
θz̃z−1 + e−α̃+z̃z−1α(1− θ)z̃z−1

}2 ,

respectively.
For simplicity, we consider the setting where z = 1, z̃ = 2, and α = α̃ = 0. The geometrical quantities

to be used are given by

gXθθ(θ) =
1

θ(1− θ)
, gYθθ(θ) =

4

{(1− θ)2 + θ2}2
,

m
Γ X
θθ,θ(θ) = 0,

m
Γ Y
θθ,θ(θ) = 4

(1− 2θ)(1 + 2θ − 2θ2)

θ(1− θ){(1− θ)2 + θ2}3
,

e
Γ X
θθ,θ(θ) = − 1− 2θ

θ2(1− θ)2
,

e
Γ Y
θθ,θ(θ) = −4

1− 2θ

θ(1− θ){(1− θ)2 + θ2}2
,

TX
θθθ(θ) =

1− 2θ

θ2(1− θ)2
, and T Y

θθθ(θ) = 8
1− 2θ

θ(1− θ){(1− θ)2 + θ2}3
,

respectively. Using these quantities, equation (3) is given by

4
θ2(1− θ)2

{θ2 + (1− θ)2}2
(∂θ log f̃(θ))

2 = 4− 4
θ(1− θ)

{θ2 + (1− θ)2}2
.

By noting that the maximum point of gX,θθ(θ)gYθθ(θ) is 1/2, the solution log f̃(θ) of this equation is given
by

log f̃(θ) = 2
√

1− θ + θ2 + log{θ(1− θ)}
− log(2− θ + 2

√
1− θ + θ2)− log(1 + θ + 2

√
1− θ + θ2).
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Figure 1: Asymptotically constant-risk prior in the prediction where the data are distributed according
to the binomial distribution Bin(N, θ) and the target variable is distributed according to the binomial
distribution Bin(1, θ2/(θ2 + (1− θ)2))
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Figure 2: Bayes risk based on the asymptotically constant-risk prior in the prediction where the data
are distributed according to the binomial distribution Bin(N, θ) and the target variable is distributed
according to the binomial distribution Bin(1, θ2/(θ2 + (1− θ)2))

Using this solution, we obtain the solution of equation (4) given by

log h̃(θ) =
1

6

[
− 1

1− θ
− 1

θ
− 12θ(1− θ)− 12

√
3
√

1− θ + θ2

+(3− 6
√
3){log θ + log(1− θ)} − 3 log(1− θ + θ2) + 10 log{(1− θ)2 + θ2}

−6 log(
√
3 + 2

√
1− θ + θ2) + 6

√
3 log{1 + (1− θ) + 2

√
1− θ + θ2}

+6
√
3 log{1 + θ + 2

√
1− θ + θ2}

]
.
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Figure 3: Comparison of the Kullback–Leibler risk calculated using the Monte Carlo simulations and
the asymptotic risk 2/N − (4

√
3)/(N

√
N) in the prediction where the data are distributed according

to the binomial distribution Bin(N, θ) and the target variable is distributed according to the binomial
distribution Bin(1, θ2/(θ2 + (1− θ)2))

The asymptotically constant-risk priors for the different sample sizes are shown in Fig.1. The prior weight
is found to be more concentrated to 1/2 as the sample size N grows.

In this example, we obtain the Kullback–Leibler risk of the Bayesian predictive density based on the
asymptotically constant-risk prior π(θ;N) as

R(θ, qπ(y|x(N))) =
2

N
− 4

√
3

N
√
N

+O(N−2).

We compare this value with the Bayes risk calculated using the Monte Carlo simulation; see Fig.2. As
the sample size N grows, the difference appears negligible. Further, we compare this value with the risk
itself calculated by the Monte Carlo simulation; see Fig.3. As the sample size N grows, the risk becomes
more constant.

6 Discussion

We have considered the setting where the quantity gX,ij(θ)gYij (θ) – the trace of the product of the inverse

Fisher information matrix gX,ij(θ) and the Fisher information matrix gYij (θ)– has a unique maximum
point, and we have investigated asymptotically constant-risk priors in the sense that the asymptotic risk
is constant up to O(N−2).

In Section 3, we have considered the prior depending on the sample size N and constructed the
asymptotically constant-risk prior using the partial differential equations (3) and (4). In Section 4, we
have clarified the relationship between the subminimax estimator problem based on the mean squared
error and the prediction where the distributions of data and target variables are different. In Section 5,
we have constructed asymptotically constant-risk priors in the prediction based on the logistic regression
model under the covariate shift.

We have assumed that the trace gX,ij(θ)gYij (θ) is finite. However, the trace may diverge in the non-
compact parameter space; for example, it diverges under the predictive setting where the distribution
q(y|θ) of the target variable is the Poisson distribution and the data distribution p(x|θ) is the exponential
distribution with Θ equivalent to R. Therefore, for our future work, in such a setting, we should adopt
the criteria other than minimaxity.
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Appendix

We prove Theorem 3.1. First, we introduce some lemmas for the proof. For the expansion, we follow the
following six steps (the first five steps are arranged in the form of lemmas): the first is to expand the
MAP estimator, the second is to calculate their bias and mean squared error, the third is to expand the
Kullback–Leibler risk using θ̂π-plugin predictive density q(y|θ̂π), the fourth is to expand the Bayesian
predictive density based on the prior π(θ;N), the fifth is to expand the Bayesian estimator minimizing
the Bayes risk, and the last is to prove Theorem 3.1 using these lemmas.

We use some additional notations for the expansion. Let θ̂π be the maximum point of the scalar
function log p(x(N)|θ)+ log{π(θ;N)/|gX(θ)|1/2}. Let l(θ|x(N)) denote the log likelihood of the data x(N).
Let lij(θ|x(N)), lijk(θ|x(N)), and lijkl(θ|x(N)) be the derivatives of order 2, 3, and 4 of the log likelihood
l(θ|x(N)). Let Hij(θ|x(N)) denote the quantity lij(θ|x(N)) + NgXij (θ). Let l̃i(θ|x(N)) and H̃ij(θ|x(N))

denote (1/
√
N)li(θ|x(N)) and (1/

√
N)Hij(θ|x(N)), respectively. In addition, the brackets ( ) denotes the

symmetrization: for any two tensors aij and bij , ai(jbk)l denotes ai(jbk)l = (aijbkl + aikbjl)/2.

Lemma A1. Let θ̂π be the maximum point of log p(x(N)|θ) + log{π(θ;N)/|gX(θ)|1/2}. Then, the i-th
component of this estimator θ̂π is expanded as follows:

θ̂iπ = θi +
1√
N

gX,ik(θ)l̃k(θ|x(N)) +
1√
N

gX,ik(θ)∂k log f(θ)

+
1

N
gX,ik(θ)H̃km(θ|x(N))gX,mr(θ)l̃r(θ|xN )

+
1

2N
gX,ik(θ)LX

kmr(θ)g
X,mq(θ)gX,rs(θ)l̃q(θ|xN )l̃s(θ|x(N))

+
1

N
gX,ik(θ)H̃km(θ|xN )gX,mr(θ)∂r log f(θ)

+
1

N
gX,ik(θ)LX

kmr(θ)g
X,mq(θ)gX,rs(θ)l̃q(θ|xN )∂s log f(θ)

+
1

2N
gX,ik(θ)LX

kmr(θ)g
X,mq(θ)gX,rs(θ)∂q log f(θ)∂s log f(θ)

+
1

N
gX,ik(θ)gX,mq(θ)∂km log f(θ)l̃q(θ|x(N))

+
1

N
gX,ik(θ)gX,mq(θ)∂km log f(θ)∂q log f(θ)

+
1

N
gX,ik(θ)∂k log h(θ) + OP(N

−3/2). (10)

Proof. By the definition of θ̂π, we get the equation given by

∂i log p(x
(N)|θ̂π) + ∂i log

π(θ̂π;N)

|gX(θ̂π)|1/2
= 0.

From our assumption that prior π(θ;N) has the form given by

π(θ;N)

|gX(θ)|1/2
∝ exp{

√
N log f(θ) + log h(θ)},

we rewrite this equation as

∂i log p(x
(N)|θ̂π) +

√
N∂i log f(θ̂π) + ∂i log h(θ̂π) = 0.

By applying Taylor expansion around θ to this new equation, we derive the following expansion:

∂i log p(x
(N)|θ) + {∂ij log p(x(N)|θ)}(θ̂jπ − θj)

+
1

2
{∂ijk log p(x(N)|θ)}(θ̂jπ − θj)(θ̂kπ − θk) +

√
N∂i log f(θ)

+
√
N{∂ij log f(θ)}(θ̂jπ − θj) + ∂i log h(θ) + oP(1) = 0.
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From the law of large numbers and the central limit theorem, we rewrite the above expansion as

NgXij (θ)(θ̂
j
π − θj) = ∂i log p(x

(N)|θ) +
√
N∂i log f(θ) +Hij(θ|x(N))(θ̂jπ − θj)

+
N

2
Lijk(θ)(θ̂

j
π − θj)(θ̂kπ − θk) +

√
N∂ij log f(θ)(θ̂

j
π − θj)

+∂i log h(θ) + oP(1). (11)

By substituting the deviation θ̂π − θ recursively into expansion (11), we obtain expansion (10).

Lemma A2. Let θ̂π be the maximum point of log p(x(N)|θ) + log{π(θ;N)/|gX(θ)|1/2}. Then, the i-th
component of the bias of the estimator θ̂π is given by

EX(N) [θ̂iπ] = θi +
1√
N

gX,ik∂k log f(θ)

− 1

2N

m
Γ X,i(θ) +

1

2N
gX,ik(θ)gX,mq(θ)gX,rs(θ)LX

kmr(θ)∂q log f(θ)∂s log f(θ)

+
1

N
gX,ik(θ)gX,mq(θ)∂km log f(θ)∂q log f(θ)

+
1

N
gX,ik(θ)∂k log h(θ) + O(N−3/2). (12)

The (i, j)-component of the mean squared error of θ̂π is given by

EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)]

=
1

N
gX,ij(θ) +

1

N
gX,ik(θ)gX,jl(θ)∂k log f(θ)∂l log f(θ)

− 1

N
√
N

gX,k(i(θ)
m
Γ X,j)(θ)∂k log f(θ) +

2

N
√
N

gX,k(i(θ)gX,j)l(θ)∂kl log f(θ)

+
2

N
√
N

gX,k(i(θ)∂kg
X,j)l(θ)∂l log f(θ)

+
1

N
√
N

gX,k(i(θ)gX,j)l(θ)gX,nr(θ)gX,pt(θ)LX
lrt(θ)∂k log f(θ)∂n log f(θ)∂p log f(θ)

+
2

N
√
N

gX,k(i(θ)gX,j)l(θ)gX,nr(θ)∂ln log f(θ)∂r log f(θ)∂k log f(θ)

+
2

N
√
N

gX,k(i(θ)gX,j)l(θ)∂k log f(θ)∂l log h(θ)

+O(N−2), (13)

where gX,k(i(θ)
m
Γ X,j)(θ) denotes (1/2){gX,ki(θ)

m
Γ X,j(θ) + gX,ki(θ)

m
Γ X,j(θ)} and gX,k(i(θ)∂kg

X,j)l(θ) de-
notes (1/2){gX,ki(θ)∂kg

X,jl(θ) + gX,kj(θ)∂kg
X,il(θ)}. The (i, j, k)-component of the mean of the third

power of the deviation θ̂π − θ is given by

EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)]

=
1

N
√
N

gX,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
3

N
√
N

gX,(ij(θ)gX,k)l(θ)∂l log f(θ) + O(N−2). (14)
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Proof. First, using Lemma A1, we determine the i-th component of the bias of θ̂π given by

EX(N) [θ̂iπ − θi]

=
1√
N

gX,ik∂k log f(θ)

− 1

2N

m
Γ X,i(θ) +

1

2N
gX,ik(θ)gX,mq(θ)gX,rs(θ)LX

kmr(θ)∂q log f(θ)∂s log f(θ)

+
1

N
gX,ik(θ)gX,mq(θ)∂km log f(θ)∂q log f(θ)

+
1

N
gX,ik(θ)∂k log h(θ) + O(N−3/2).

Second, consider the following relationship:

EX(N)

[{
θ̂iπ − θi − 1√

N
gX,ik(θ)l̃k(θ|x(N))− 1√

N
gX,ik(θ)∂k log f(θ)

}
×
{
θ̂jπ − θj − 1√

N
gX,jl(θ)l̃l(θ|xN )− 1√

N
gX,jl(θ)∂l log f(θ)

}]
= EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)] +

1

N
gX,ij(θ) +

1

N
gX,ik(θ)gX,jl(θ)∂k log f(θ)∂l log f(θ)

− 1√
N

gX,ki(θ)EX(N) [(θ̂jπ − θj)l̃k(θ|x(N))]

− 1√
N

gX,kj(θ)EX(N) [(θ̂iπ − θi)l̃k(θ|x(N))]

− 1√
N

gX,ki(θ)EX(N) [(θ̂jπ − θj)∂k log f(θ)]

− 1√
N

gX,kj(θ)EX(N) [(θ̂iπ − θi)∂k log f(θ)]. (15)

By differentiating the j-th component of the bias EX(N) [θ̂
j
π − θj ], we obtain the equation given by

1

N
∂kEX(N) [θ̂jπ − θj ] = − 1

N
δjk +

1√
N

EX(N) [(θ̂jπ − θj)l̃k(θ|xN )], (16)

where δij denotes the delta function: if the upper and the lower indices agree then the value of this
function is 1 and otherwise 0. Equation (16) has been used by Efron (1975), Amari (1985), and Komaki
(1996). By substituting equations (16) and (12) into relationship (15), we obtain the (i, j)-component of
the mean squared error of θ̂π given by

EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)]

=
1

N
gX,ij(θ) +

1

N
gX,ik(θ)gX,jl(θ)∂k log f(θ)∂l log f(θ)

− 1

N
√
N

gX,k(i(θ)
m
Γ X,j)(θ)∂k log f(θ) +

2

N
√
N

gX,k(i(θ)gX,j)l(θ)∂kl log f(θ)

+
2

N
√
N

gX,k(i(θ)∂kg
X,j)l(θ)∂l log f(θ)

+
1

N
√
N

gX,k(i(θ)gX,j)l(θ)gX,nr(θ)gX,pt(θ)LX
lrt(θ)∂k log f(θ)∂n log f(θ)∂p log f(θ)

+
2

N
√
N

gX,k(i(θ)gX,j)l(θ)gX,nr(θ)∂ln log f(θ)∂r log f(θ)∂k log f(θ)

+
2

N
√
N

gX,k(i(θ)gX,j)l(θ)∂k log f(θ)∂l log h(θ)

+O(N−2).
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Finally, by taking the expectation of the third power of the deviation θ̂iπ − θi, we obtain the following
expansion:

EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)]

=
1

N
√
N

gX,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
3

N
√
N

gX,(ij(θ)gX,k)l(θ)∂l log f(θ) + O(N−2).

Lemma A3. Let θ̂π be the maximum point of log p(x(N)|θ) + log{π(θ;N)/|gX(θ)|1/2}. The Kullback–
Leibler risk of the plug-in predictive density q(y(N)|θ̂π) with the estimator θ̂π is expanded as follows:

R(θ, q(y|θ̂π))

=
1

2N
gYij (θ)g

X,ij(θ) +
1

2N
g̊ij(θ)∂i log f(θ)∂j log f(θ)

+
1

N
√
N

g̊ij(θ)

{
∂ij log f(θ)−

e
Γ X,k
ij (θ)∂k log f(θ)

}
+

1

N
√
N

g̊ij(θ)gX,kl(θ)

{
∂ik log f(θ)−

e
Γ X,m
ik ∂m log f(θ)

}
∂j log f(θ)∂l log f(θ)

− 1

N
√
N

T Y
ijk(θ)g

X,ij(θ)gX,kl(θ)∂l log f(θ)

− 1

3N
√
N

T Y
ijk(θ)g

X,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
1

2N
√
N

gYkl(θ)

{
m
Γ Y,l
ij (θ)−

m
Γ X,l
ij (θ)

}
gX,is(θ)gX,jt(θ)gX,ku(θ)∂s log f(θ)∂t log f(θ)∂u log f(θ)

+
1

2N
√
N

gX,ij(θ)gYkl(θ)g
X,kl(θ)

{
m
Γ Y,m
ij (θ)−

m
Γ X,m
ij (θ)

}
∂m log f(θ)

+
1

N
√
N

g̊ij(θ)

{
m
Γ Y,k
ij (θ)−

m
Γ X,k
ij (θ)

}
∂k log f(θ)

+
1

N
√
N

g̊ij(θ)∂i log f(θ)∂j log h(θ) + O(N−2). (17)

Proof. By applying the Taylor expansion, the Kullback–Leibler risk R(θ, q(y|θ̂π)) is expanded as

Ex(N) [D(q(·|θ), q(·|θ̂π))]

= EX(N)

[∫
q(y|θ)

{
−li(θ|y)θ̃iπ − 1

2
lij(θ|y)(θ̂iπ − θi)(θ̂jπ − θj)

−1

6
lijk(θ|y)(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk) + OP(N

−2)

}
dy

]
=

1

2
gYij (θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)]− 1

6
LY
ijk(θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)] + O(N−2)

=
1

2
gYij (θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)]

+

{
3

2

m
Γ Y
(ij,k)(θ)−

1

3
T Y
ijk(θ)

}
EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)] + O(N−2)

=
1

2
gYij (θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)]− 1

3
T Y
ijk(θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)]

+
1

2

{
gYkl(θ)

m
Γ Y,l
ij (θ)− gYkl(θ)

m
Γ X,l
ij (θ)

}
EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)]

+
1

2
gYkl(θ)

m
Γ X,l
ij (θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk] + O(N−2), (18)
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where
e
Γ Y
(ij,k) denotes (1/3){

e
Γ Y
ij,k +

e
Γ Y
jk,i +

e
Γ Y
ki,j}.

By the definition of the predictive metric g̊ij(θ) = gXik(θ)g
Y,kl(θ)gXlj (θ), by expansions (13) and (14),

and by the relationship LX
ijk(θ) = −

e
Γ X
ij,k(θ)−

e
Γ X
jk,i(θ)−

e
Γ X
ki,j(θ)−TX

ijk(θ), the last two terms of the above
expansion (18) are expanded as

1

2
gYij (θ)EX(N) [(̂θ

i

π − θi)(θ̂jπ − θj)] +
1

2
gYkl(θ)

m
Γ X,l
ij (θ)EX(N) [(θ̂iπ − θi)(θ̂jπ − θj)(θ̂kπ − θk)]

=
1

2N
gYij (θ)g

X,ij(θ) +
1

2N
g̊ij(θ)∂i log f(θ)∂j log f(θ)

+
1

N
√
N

g̊ij(θ)

{
∂ij log f(θ)−

e
Γ X,k
ij (θ)∂k log f(θ)

}
+

1

N
√
N

g̊ij(θ)gX,kl(θ)

{
∂ik log f(θ)−

e
Γ X,m
ik ∂m log f(θ)

}
∂j log f(θ)∂l log f(θ)

+
1

N
√
N

g̊ij(θ)∂i log f(θ)∂j log h(θ) + O(N−2). (19)

By substituting expansion (19) into expansion (18), expansion (17) is obtained.

Note that expansion (17) is invariant up to O(N−2) under the reparametrization so that each term of
this expansion is a scalar function of θ.

Lemma A4. Let θ̂π be the maximum point of log p(x(N)|θ) + log{π(θ;N)/|gX(θ)|1/2}. The Bayesian
predictive density based on the prior π(θ;N) is expanded as

qπ(y|x(N)) = q(y|θ̂π) +
1

N
gX,ij(θ̂π)

{
∂i log |gX(θ̂π)|

1
2 −

e
Γ X,k
ik (θ̂π)

}
∂jq(y|θ̂π)

+
1

2N
gX,ij(θ̂π)

{
∂ijq(y|θ̂π)−

m
Γ X,k
ij (θ̂π)∂kq(y|θ̂π)

}
+OP(N

−3/2). (20)

Proof. Let θ̃π denote θ̂π − θ. First, using a Taylor expansion twice, we expand the posterior density
π(θ|x(N)) as

π(θ|x(N)) = |gX(θ̂π)|
1
2

π(θ̂π)

|gX(θ̂π)|
1
2

p(x(N)|θ̂π) exp
[
−1

2
{−lij(θ̂π|x(N))}θ̃iπ θ̃jπ

]

×

[
1− {∂i log |gX(θ̂π)|

1
2 }θ̃iπ +

1

2

{
∂ij |gX(θ̂π)|

1
2

|gX(θ̂π)|
1
2

}
θ̃iπ θ̃

j
π +OP(N

−3/2)

]

×
(
1 +

1

2
{
√
N∂ij log f(θ̂π)}θ̃iπ θ̃jπ − 1

6
{lijk(θ̂π|x(N))}θ̃iπ θ̃jπ θ̃kπ

+
1

2
{log h(θ̂π)}θ̃iπ θ̃jπ

−1

6
{
√
N∂ijk log f(θ̂π)}θ̃iπ θ̃jπ θ̃kπ +

1

24
lijkl(θ̂π|x(N))θ̃iπ θ̃

j
π θ̃

k
π θ̃

l
π

+
1

2

[
1

2
{
√
N∂ij log f(θ̂π)}θ̃iπ θ̃jπ − 1

6
lijk(θ̂π|xN )θ̃iπ θ̃

j
π θ̃

k
π

]
×
[
1

2
{
√
N∂ij log f(θ̂π)}θ̃iπ θ̃jπ − 1

6
lijk(θ̂π|x(N))θ̃iπ θ̃

j
π θ̃

k
π

]
+OP(N

−3/2)

)
×

{∫
p(x(N)|θ) π(θ;N)

|gX(θ)|
1
2

|gX(θ)|
1
2dθ

}−1

.
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We denote the N− 1
2 -order, N−1-order, and N−3/2-order terms by (N−1/2)a0(θ̃π; θ̂π), (N

−1)a1(θ̃π; θ̂π),
and (N−3/2)a2(θ̃π; θ̂π), respectively. Then, this expansion is rewritten as

π(θ|x(N)) = |gX(θ̂π)|
1
2

π(θ̂π)

|gX(θ̂π)|
1
2

p(x(N)|θ̂π) exp
[
−1

2
{−lij(θ̂π|x(N))}θ̃iπ θ̃jπ

]
×
[
1 +

1√
N

a0(θ̃π; θ̂π)

+
1

N
a1(θ̃π; θ̂π) +

1

N
√
N

a2(θ̃π; θ̂π) + OP(N
−2)

]
×

{∫
p(x(N)|θ) π(θ;N)

|gX(θ)|
1
2

|gX(θ)|
1
2dθ

}−1

.

To make the expansion easier to see, the following notations are used. Let ϕ(η;−lij(θ̂π|x(N))) be the
probability density function of d-dimensional normal distribution with the precision matrix whose (i, j)-
component is −lij(θ̂π|x(N)). Let η = (η1, · · · , ηd) be a d-dimensional random vector distributed according

to the normal density ϕ(η;−lij(θ̂π|x(N))) The notations ā0(θ̂π), ā1(θ̂π), ā2(θ̂π), and ω̂ij(θ̂π) denote the

expectations of a0(η; θ̂π), a1(η; θ̂π), a2(η; θ̂π), and ηiηj , respectively.
Using the above notations, we get the following posterior expansion:

π(θ|x(N)) = ϕ(θ̂π;−lij(θ̂π|x(N)))

×
[
1 +

1√
N

{a0(θ̃π; θ̂π)− ā0(θ̂π)}

+
1

N
{a1(θ̃π; θ̂π)− ā1(θ̂π)} −

1

N
ā0(θ̂π){a0(θ̃π; θ̂π)− ā0(θ̂π)}

+
1

N
√
N

{a2(θ̃π; θ̂π)− ā2(θ̂π)} −
1

N
√
N

ā0(θ̂π){a1(θ̃π; θ̂π)− ā1(θ̂π)}

− 1

N
√
N

ā1(θ̂π){a0(θ̃π; θ̂π)− ā0(θ̂π)}

+
1

N
√
N

ā20(θ̂π){a1(θ̃π; θ̂π)− ā1(θ̂π)}+OP(N
−2)

]
. (21)

Second, using (21), the Bayesian predictive density qπ(y|x(N)) based on the prior π(θ;N) is expanded
as

qπ(y|x(N))

=

∫
q(y|θ̂π)

[
1− {∂i log q(y|θ̂π)}θ̃iπ +

1

2

∂ijq(y|θ̂π)
q(y|θ̂π)

θ̃iπ θ̃
j
π + oP(N

−1)

]
π(θ|xN )dθ

=

∫
q(y|θ̂π)

[
1 + {∂i log |gX(θ̂π)|

1
2 }{∂j log q(y|θ̂π)}θ̃iπ θ̃jπ

+
1

6
{∂ijk log p(x(N)|θ̂π) +

√
N∂ijk log f(θ̂π)}{∂l log q(y|θ̂π)}θ̃iπ θ̃jπ θ̃kπ θ̃lπ

+
1

2

∂ijq(y|θ̂π)
q(y|θ̂π)

θ̃iπ θ̃
j
π + oP(N

−1)

]
ϕ(θ̃π;−lij(θ̂π|xN ))dθ̃π

= q(y|θ̂π) + ω̂ij(θ̂π){∂i log |gX(θ̂π)|
1
2 }∂jq(y|θ̂π) +

1

2
ω̂ik(θ̂π)ω̂

jl(θ̂π)lijk(θ̂π|xN )∂lq(y|θ̂π)

+
1

2
ω̂ij(θ̂π)∂ijq(y|θ̂π) + OP(N

−3/2). (22)

Here, the following two equations hold:

−lij(θ̂π|x(N)) = NgXij (θ̂π)−
√
NH̃ij(θ̂π|xN ) + OP(1), (23)
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lijk(θ̂π|x(N)) = −2N
e
Γ X
ij,k(θ̂π)−N

m
Γ X
ik,j(θ̂π) +

√
NH̃ijk(θ̂|xN ). (24)

By combining equation (23) with the Sherman–Morrison–Woodbury formula, the following expansion
is obtained:

ω̂ij(θ̂π) =
1

N
gX,ij(θ̂π) +

1

N
√
N

gX,ik(θ̂π)g
X,jl(θ̂π)Hkl(θ̂π|x(N)) + OP(N

−2). (25)

By substituting equations (23), (24), and (25) into expansion (22), expansion (20) is obtained.

Note that the integration of expansion (20) is 1 up to OP(N
−2). Further, expansion (20) is similar

to the expansion in Komaki (1996). However, the estimator that is a center of the expansion is different
because of the dependence of the prior on the sample size.

Lemma A5. The Bayesian estimator θ̂opt minimizing the Bayes risk∫
R(θ, q(y|θ̂))dπ(θ;N) among plug-in predictive densities is given by

θ̂iopt = θ̂iπ +
1

2N
gX,ij(θ̂π)T

X
j (θ̂π)

+
1

2N
gX,jk(θ̂π)

{
m
Γ Y,i
jk (θ̂π)−

m
Γ X,i
jk (θ̂π)

}
+OP(N

−3/2). (26)

Proof. The Bayes risk
∫
R(θ, q(y|θ̂))dπ(θ;N) is decomposed as∫

R(θ, q(y|θ̂))dπ(θ;N) =

∫
π(θ;N)

∫
p(x(N)|θ)

∫
q(y|θ) log q(y|θ)

qπ(y|x(N))
dydx(N)dθ

+

∫
π(θ;N)

∫
p(x(N)|θ)

∫
q(y|θ) log qπ(y|x(N))

q(y|θ̂)
dydx(N)dθ.

The first term of this decomposition is not dependent on θ̂. From Fubini’s theorem and Lemma A4, the
proof is completed.

Using these lemmas, we prove Theorem 3.1. First, we find that the Kullback–Leibler risk of the plug-in
predictive density with the estimator θ̂opt defined in Lemma A5 is given by

R(θ, q(y|θ̂opt)) = R(θ, q(y|θ̂π)) +
1

2N
√
N

g̊ij(θ)TX
i (θ)∂j log f(θ)

+
1

2N
√
N

gX,im(θ)gYij (θ)g
X,kl(θ)

×
{

m
Γ Y,j
kl (θ)−

m
Γ X,j
kl (θ)

}
∂m log f(θ). (27)

Using the expansion (27) and Lemma A3, we expand the Kullback–Leibler risk R(θ, qπ(y|x(N))). Here,
the risk R(θ, qπ(y|x(N))) is equal to the risk R(θ, q(y|θ̂opt)) up to O(N−2), because we expand the risk
R(θ, qπ(y|x(N))) as

R(θ, qπ(y|x(N))) = R(θ, q(y|θ̂opt)) + O(N−2). (28)

Thus, we obtain expansion (1).
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