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Abstract

We study holonomic gradient decent for maximum likelihood estimation of exponential-
polynomial distribution, whose density is the exponential function of a polynomial in the
random variable. We first consider the case that the support of the distribution is the set
of positive reals. We show that the maximum likelihood estimate (MLE) can be easily
computed by the holonomic gradient descent, even though the normalizing constant of this
family does not have a closed-form expression and discuss determination of the degree of
the polynomial based on the score test statistic. Then we present extensions to the whole
real line and to the bivariate distribution on the positive orthant.

Keywords and phrases: algebraic statistics, bivariate distribution, score test.

1 Introduction
Exponential distribution and the truncated normal distribution have been frequently used for
positive continuous random variables (e.g., Chapter 19 and Section 13.10 of [7], [13]). Gener-
alizing these two cases, in this paper we consider fitting a density function which is the expo-
nential function of a polynomial in the random variable. For simplicity we first study the case
of a positive random variable. For x > 0, consider the following density

f (x; θ1, . . . , θd) =
1

A(θ1, . . . , θd)
exp(θ1x + · · · + θd xd), θd < 0, (1)

where
A(θ1, . . . , θd) =

∫ ∞

0
exp(θ1x + · · · + θd xd)dx (2)

is the normalizing constant of this density. In the following we write Ad(θ) = A(θ1, . . . , θd).
We call (1) the exponential-polynomial distribution of order d. Although it is a natural gener-
alization of the exponential (d = 1) and the truncated normal distribution (d = 2), it has been

∗Graduate School of Information Science and Technology, University of Tokyo

1



rarely used in statistics. One reason is that Ad(θ) can not be written in a closed form. Another
reason may be that the tail of the distribution is light because of the term θd xd, θd < 0. However
by having this term, we can allow arbitrary values of θ1, . . . , θd−1 and have a flexible family of
distributions.

Concerning the treatment of the normalizing constant, recently in [11] we proposed a new
method, called the holonomic gradient decent (HGD), for evaluating the normalizing constant
of the exponential family and for computing MLE. As in the subsequent works ([5], [12]), we
show that HGD works well also for the case of exponential-polynomial distribution.

When we fit (1) to a given sample, the natural question we face is the determination of
the order d of the model. The exponential-polynomial model has a special structure that the
model of order d − 1 with θd = 0 and θd−1 < 0 is the boundary of the model of order d with
θd < 0. Hence we need to adapt standard model selection procedures to this non-regular case.
We propose selection of d by a score test.

The organization of this paper is as follows. In Sections 2–4 we study exponential-polynomial
distribution over the set of positive reals. In Section 2 we derive a differential equation satisfied
by Ad(θ) and use the differential equation to compute MLE. In Section 3 we discuss how to
determine the order d of the model by a score test. In Section 4 we present results of some
numerical experiments. In Section 5 we extend the exponential-polynomial distribution to the
whole real line and in Section 6 we study a bivariate exponential-polynomial distribution. We
end the paper with some discussions on further extension of the model in Section 7.

2 Maximum likelihood estimation via holonomic gradient de-
scent

Given a sample x = (x1, . . . , xn) of size n, (1/n) times the log-likelihood function is written as

l̄(θ; x) = θ1 x̄ + θ2 x̄2 + · · · + θd x̄d − ψ(θ), ψ(θ) = log Ad(θ), (3)

where x̄m =
∑n

i=1 xm
i /n, m = 1, . . . , d. Let ∂m =

∂
∂θm

denote the differentiation with respect to θm.
In maximizing l̄ with respect to θ, we want to compute its gradient

∇l̄ =


∂1 l̄
...
∂d l̄

 =


x̄
...

x̄d

 −

∂1ψ
...

∂dψ

 , ∂mψ(θ) =
∂mAd(θ)

Ad(θ)

and its Hessian matrix

H(l̄)(θ) = −H(ψ)(θ) = −


∂2

1ψ · · · ∂1∂dψ
... · · · ...

∂d∂1ψ · · · ∂2
dψ

 , ∂l∂mψ(θ) =
∂l∂mAd(θ)

Ad(θ)
− ∂lAd(θ)

Ad(θ)
∂mAd(θ)

Ad(θ)
.

Note that I(θ) = H(ψ)(θ) is the Fisher information matrix for θ.
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In (2) we can interchange the integration and the differentiation by elements of θ as many
time as needed. Hence derivatives of Ad(θ) can be evaluated by numerical integration. However
it is cumbersome to perform numerical integration for the derivatives at every θ. The holonomic
gradient decent allows us to compute Ad(θ) and its derivatives at any point by numerically
solving a differential equation from those at an initial point θ = θ0. The fact that Ad(θ) is a
holonomic function (cf. Section 1 and Appendix of [11], Chapter 6 of [6], [14]) guarantees the
existence of a differential equation with polynomial coefficients satisfied by Ad(θ). Also, for our
problem there is a convenient initial point (see (8) below), where Ad(θ) and its derivatives have
a closed-form expression. Hence by using the holonomic gradient descent, we do not need any
numerical integration for our problem.

Differentiating (2) by θ1 we have

∂1Ad(θ) =
∫ ∞

0
x exp(θ1x + · · · + θd xd)dx.

Repeating this i times we have

∂i
1Ad(θ) =

∫ ∞

0
xi exp(θ1x + · · · + θd xd)dx. (4)

However the right-hand side is also equal to ∂iA(θ). Hence the following relation holds.

∂iAd(θ) = ∂i
1Ad(θ).

In general, for any higher-order mixed derivative ∂ j1
1 . . . ∂

jd
d A(θ) we have the relation

∂
j1
1 . . . ∂

jd
d Ad(θ) = ∂ j1+2 j2+···+d jd

1 Ad(θ).

Hence all mixed derivatives reduce to the derivatives of Ad(θ) with respect to θ1. It follows that
for numerical purposes we only need to keep in memory the derivatives of Ad(θ) with respect to
θ1.

Now as a relation among the derivatives of Ad(θ) with respect to θ1, we have the following
theorem.

Theorem 2.1. Ad(θ) satisfies the following differential equation

(θ1 + 2θ2∂1 + 3θ3∂
2
1 + · · · + dθd∂

d−1
1 )Ad(θ) = −1. (5)

Proof.

−1 =
[
exp(θ1x + · · · + θd xd)

]∞
0

=

∫ ∞

0
∂x exp(θ1x + · · · + θd xd) dx

=

∫ ∞

0
(θ1 + 2θ2x + 3θ3x2 + · · · + dθd xd−1) exp(θ1x + · · · + θd xd)dx

= (θ1 + 2θ2∂1 + 3θ3∂
2
1 + · · · + dθd∂

d−1
1 )Ad(θ). (by (4))

□
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By (5), ∂d−1
1 Ad(θ) is written in terms of lower-order derivatives as

∂d−1
1 Ad(θ) = − 1

dθd
(1 + θ1 + 2θ2∂1 + 3θ3∂

2
1 + · · · + (d − 1)θd−1∂

d−2
1 )Ad(θ). (6)

Recursively differentiating this by θ1 we see that all higher-order derivatives ∂m
1 Ad(θ), m ≥ d−1,

can be written in terms of the elements of a vector

F(θ) = [Ad(θ), ∂1Ad(θ), . . . , ∂d−2
1 Ad(θ)]T,

where T denotes the transpose of a vector or a matrix. If F(θ) can be evaluated at any point θ,
we can compute MLE of the exponential-polynomial distribution.

Note that the directional derivative of F(θ) in the direction h = (h1, . . . , hd) is written as

∂

∂s
F(θ + sh) =

d∑
j=1

h j∂ jF(θ + sh) =
d∑

j=1

h j∂
j
1F(θ + sh) =

d∑
j=1

h j


∂

j
1Ad(θ + sh)

∂
j+1
1 Ad(θ + sh)

...

∂
j+d−2
1 Ad(θ + sh)

 . (7)

When an appropriate initial point θ0 and F(θ0) are given, (7) can be solved by standard solver
for ordinary differential equation, such as the Runge-Kutta method.

As a convenient initial point consider θ0 = (0, 0, . . . , 0,−c), c > 0. Then

∂m
1 Ad(θ0) =

∫ ∞

0
xm exp(−cxd)dx =

1
d

c−(1+m)/dΓ
(1 + m

d
)
, m ≥ 0, (8)

which do not need numerical integration.
In summary, we have shown that the evaluation of Ad(θ) and the maximization of the like-

lihood function can be performed by using only a standard solver for an ordinary differential
equation. As we see in Section 4 this method works quite well in practice.

3 Determination of the degree of the model
When we fit the exponential-polynomial distribution in (1) to a given sample, we need to de-
termine the order d of the model. Suppose that we are fitting the model with order d − 1 and
wondering whether a model of order d fits better. One difficulty with (6) is that it becomes
unstable as θd → 0, i.e., the differential equation (5) has a singularity at θd = 0. Hence if the
data really come from the model of order d − 1, the estimation of the model of order d by our
method tends to be unstable.

We can understand this problem by considering the parameter spaces of order d − 1 and d.
Let Ωd = {(θ1, . . . , θd) | θd < 0} ⊂ Rd denote the parameter space of the model of order d. Ωd

is an open subset of Rd. Now Ωd−1 = {(θ1, . . . , θd−1, 0) | θd−1 < 0} considered as a subset of
Rd is on the boundary of Ωd. See Figure 1. In (θd−1, θd)-plane, Ωd is the lower half open plane
and Ωd−1 the left half open θd−1-axis {(θd−1, 0) | θd−1 < 0}. Since Ad(θ1, . . . , θd−1, 0) is finite for
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Figure 1: Model of order d − 1 within the model of order d

θd−1 < 0, MLE may not exist in the open set Ωd with positive probability. For each d, consider
Ω1, . . . ,Ωd as subsets of Rd and let Ω̄d = Ω1 ∪ · · · ∪ Ωd. Then ψd(θ) = Ad(θ) is strictly convex
on Ω̄d and approaches +∞ as θ approaches the open boundary of Ω̄d, such as the right half open
θd−1-axis {(θd−1, 0) | θd−1 > 0} in Figure 1. Hence MLE always exists in Ω̄d but may not fall on
Ωd.

We now consider the hypothesis testing problem:

H0 : θ ∈ Ωd−1 v.s. H1 : θ ∈ Ωd. (9)

If H0 is true let θ∗ ∈ Ωd−1 denote the true parameter vector and let θ̂d−1 = (θ̂1, . . . , θ̂d−1, 0),
θ̂d−1 < 0, denote the MLE under H0. Then θ̂d−1 converges to θ∗ in probability.

The MLE θ̂d−1 under H0 satisfies

∂ jl̄(θ̂d−1; x) = 0, j = 1, . . . , d − 1.

Note that l̄(θ̂d−1 + sh; x) is strictly concave in s ≥ 0 for any h = (h1, . . . , hd), hd < 0, i.e., on any
half line emanating from θ̂d−1 into Ωd. Hence on this half line, l̄(θ̂d−1; x) is maximized at s = 0
if and only if

0 ≥ ∂

∂s
l̄(θ̂d−1 + sh; x)|s=0 =

d∑
j=1

h j∂ j l̄(θ̂d−1; x) = hd∂d l̄(θ̂d−1; x)⇔ ∂d l̄(θ̂d−1; x) ≥ 0.

Note that the right-hand side does not depend on h. Hence MLE does not exist on Ωd and θ̂d−1

remains to be the MLE over Ω̄d if and only if ∂d l̄(θ̂d−1; x) ≥ 0.
Let the d × d Fisher information matrix I(θ) = H(ψ)(θ) be partitioned as

I(θ) =
[
Id−1,d−1(θ) Id−1,d(θ)
Id,d−1(θ) Idd(θ)

]
,

where Idd is a scalar. Note that we put a comma between two subscripts when the subscripts are
more complicated. Define

Idd·1,...,d−1(θ) = Idd(θ) − Id,d−1(θ)Id−1,d−1(θ)−1Id−1,d(θ).
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In the standard case, where Ωd−1 is in the interior of Ωd, the two-sided test based on

n(∂d l̄(θ̂d−1; x))2

Idd·1,...,d−1(θ̂d−1)

is the score test for (9) (e.g., Section 7.7 of [10]). In our case Ωd−1 is the boundary of Ωd and we
reject H0 if ∂d l̄(θ̂d−1; x) is negative and its absolute value is too large. However, from the form
of the log-likelihood function in (3), the asymptotic null distribution ∂d l̄(θ̂d−1; x) is the same as
in the standard case, i.e.,

√
n∂d l̄(θ̂d−1; x)

d→ N(0, Idd·1,...,d−1(θ∗)) (n→ ∞).

Since θ̂d−1 converges to θ∗, we propose the following score test statistic

Td−1 =

√
n∂d l̄(θ̂d−1; x)√

Idd·1,...,d−1(θ̂d−1)
. (10)

Let zα denote the upper α quantile of N(0, 1). Given a significance level α < 1/2, we can reject
H0 if Td−1 ≤ −zα, in view of the convergence in distribution

Td−1
d→ N(0, 1) (n→ ∞). (11)

4 Numerical experiments for the case of positive real line
We present results of some numerical experiments to show that MLE by HGD works well. We
also check the asymptotic approximation in (11).

4.1 Performance of MLE by the holonomic gradient descent
The asymptotic distribution of MLE θ̂d is

√
n(θ̂d − θ∗)

d→ Nd(0, I(θ∗)−1) (n→ ∞),

where I(θ∗) is the Fisher information matrix at the true parameter θ∗. Write

pi =

√
n(θ̂i − θ∗i )√

I−1
ii (θ∗)

, i = 1, 2, . . . , d, (12)

where I−1
ii (θ∗) denotes the (i, i)-component of I(θ∗)−1. Then

pi
d→ N(0, 1) (n→ ∞). (13)

Thus in our experiments we fix the true parameter θ∗, apply our method to simulated samples
many times and we check the convergence of the empirical distribution of pi to N(0, 1).
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Figure 2: Histogram of pi, i = 1, 2, 3 (from left to right) and density of N(0,1) for d = 3

We present simulation results for d = 3 in (1). We set θ∗ = (−1, 3,−2). In the experiment
we used n = 1000 and iterated computing MLE 1000 times (i.e. the replication size is 1000).
Computation of MLE quickly converged in each iteration. The histogram of pi is given in
Figure 2. The curved lines in these figures are the density function of N(0, 1). By comparing
the histogram and the curved line we see that MLE by HGD works well.

4.2 Asymptotic approximation for score tests
We check the asymptotic approximation in (11) in the case of d = 3, 4. For d = 3 we set
θ∗ = (3,−2, 0). The histograms of T2 and T3 are shown in Figure 3 (left to right). Again the
asymptotic approximation works as expected.
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Figure 3: Histogram of Td−1 and the density of N(0, 1) for d = 3, 4
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5 Exponential-polynomial distribution on the whole real line
In this section we extend the result of previous sections to the following density for the whole
real line R1. Consider the density function

f (x; θ1, . . . , θ2d) =
1

A(θ1, . . . , θ2d)
exp(θ1x + · · · + θ2d x2d), θ2d < 0, (14)

where
A(θ1, . . . , θ2d) =

∫ ∞

−∞
exp(θ1x + · · · + θ2d x2d)dx (15)

is the normalizing constant of this density. In following we write A2d(θ) = A(θ1, . . . , θ2d).

5.1 Maximum likelihood estimation for the whole line
The holonomic gradient decent is almost the same as in the previous sections. We have

∂i
1A2d(θ) =

∫ ∞

0
xi exp(θ1x + · · · + θ2d x2d)dx, i = 1, 2, . . . .

Also ∂iA2d(θ) = ∂i
1A2d(θ). In general ∂ j1

1 . . . ∂
jd
d A2d(θ) = ∂

j1+2 j2+···+d jd
1 A2d(θ). Hence all mixed

derivatives reduce to the derivatives of A2d(θ) with respect to θ1. It follows that for numerical
purposes we only need to keep in memory the derivatives of A2d(θ) with respect to θ1.

Now as a relation among the derivatives of A2d(θ) with respect to θ1 we have the following
theorem.

Theorem 5.1. A2d(θ) satisfies the following differential equation

(θ1 + 2θ2∂1 + 3θ3∂
2
1 + · · · + 2dθd∂

2d−1
1 )A2d(θ) = 0. (16)

Proof is omitted since it almost the same as the proof of Theorem 2.1, by noting

0 =
[
exp(θ1x + · · · + θ2d x2d)

]∞
−∞.

By (16), ∂2d−1
1 A2d(θ) is written in terms of lower-order derivatives as

∂2d−1
1 A2d(θ) = − 1

2dθ2d
(θ1 + 2θ2∂1 + 3θ3∂

2
1 + · · · + (2d − 1)θ2d−1∂

2d−2
1 )A2d(θ).

Recursively differentiating this by θ1 all higher-order derivatives ∂m
1 A2d(θ), m ≥ 2d − 1, can be

easily written in terms of A2d(θ), ∂1A2d(θ), . . . , ∂2d−2
1 A2d(θ).

As a convenient initial point consider θ0 = (0, 0, . . . , 0,−c), c > 0. Then

∂m
1 A2d(θ0) =

∫ ∞

−∞
xm exp(−cx2d)dx =

 1
d c−(1+m)/2dΓ

( 1+m
2d

)
m = 0, 2, 4, . . .

0 m = 1, 3, 5, . . .

which do not need numerical integration.
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5.2 Determination of the degree for the case of the whole line
For determining the order of the model we consider the testing problem

H0 : θ ∈ Ω2d−2 v.s. H1 : θ ∈ Ω2d.

The parameter space is illustrated in Figure 4, where Ω2d−2 corresponds to the origin.

Figure 4: Model of order 2d − 2 within the model of order 2d

Here we need to do more careful analysis than in Section 3. The difficulty in this case is that
A2d(θ) in (15) is infinite for θ2d−1 , 0, θ2d = 0:

A(θ1, . . . , θ2d, θ2d−1, 0) = ∞, ∀θ2d−1 , 0.

Hence we can not take the partial derivative of A2d(θ) with respect to θ2d−1 at (θ1, . . . , θ2d−2, 0, 0).
However ∂2d−1A(θ1, . . . , θ2d) and ∂2dA(θ1, . . . , θ2d) exist, as long as θ2d < 0. Also if θ2d−2 < 0,
as (θ2d−1, θ2d) → (0, 0) in such a way that |θ2d−1/θ2d| is bounded, by the dominated convergence
theorem we have

lim
(θ2d−1 ,θ2d )→(0,0)
|θ2d−1/θ2d | : bounded

∂2d−1A(θ1, . . . , θ2d) =
∫ ∞

−∞
x2d−1 exp(θ1x + · · · + θ2d−2x2d−2)dx

= A(θ2d−2)Eθ2d−2(X
2d−1),

and
lim

(θ2d−1 ,θ2d )→(0,0)
|θ2d−1/θ2d | : bounded

∂2dA(θ1, . . . , θ2d) = A(θ2d−2)Eθ2d−2(X
2d),

where θ2d−2 = (θ1, . . . , θ2d−2, 0, 0), θ2d−2 < 0 and Eθ2d−2 denotes the expected value under θ2d−2.
Let θ̂2d−2 denote MLE under H0.

We now redefine the (2d) × (2d) Fisher information matrix I(θ) at θ2d−2 as

Ĩ(θ2d−2) =
[
Ĩ2d−2,2d−2(θ2d−2) Ĩ2d−2,2d(θ2d−2)
Ĩ2d,2d−2(θ2d−2) Ĩ2d,2d(θ2d−2)

]
= lim

(θ2d−1 ,θ2d )→(0,0)
|θ2d−1/θ2d | : bounded

[
I2d−2,2d−2(θ) I2d−2,2d(θ)
I2d,2d−2(θ) I2d,2d(θ)

]
,

where I2d,2d is a 2 × 2 matrix. Define

Ĩ2d,2d·1,...,2d−2(θ) = Ĩ2d,2d(θ) − Ĩ2d,2d−2(θ)Ĩ2d−2,2d−2(θ)−1 Ĩ2d−2,2d(θ).
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For testing H0 we again propose to use a score statistic

T2d−2 = n[∂2d−1l̄(θ̂2d−2; x), ∂2d l̄(θ̂2d−2; x)] Ĩ2d,2d·1,...,2d−2(θ̂2d−2)−1
[
∂2d−1l̄(θ̂2d−2; x)
∂2d l̄(θ̂2d−2; x)

]
. (17)

We reject H0 if
T2d−2 ≥ χ2

2(α), (18)

where χ2
2(α) is the upper α-quantile of the χ2 distribution with two degrees of freedom. Numer-

ical performance of this test is confirmed in the next subsection.

5.3 Numerical experiments for the whole line
For checking the asymptotic distribution of the MLE, we compare the empirical distribution of
pi in (12) with N(0, 1) for 2d = 4 and θ∗ = (1, 4,−2,−3). For checking (18) we compare the
empirical distribution of T2d−2 of (17) with the χ2 distribution with 2 degrees of freedom. For
2d − 2 = 2 we choose θ∗ = (2,−1, 0, 0).
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Figure 5: Histogram pi and the density of N(0, 1) for 2d = 4
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Figure 5 shows for 2d = 4 the histogram of pi and the density of N(0, 1). We see that they
agree with each other. Figure 6 shows for 2d = 4, 6 the histogram of T2d−2 of (17) and the
density of the chi-square distribution with 2 d.f. We again see a good agreement.

6 Bivariate exponential-polynomial distribution on the posi-
tive orthant

In this section we develop holonomic gradient descent for bivariate exponential-polynomial
distribution on the positive orthant. The differential equations needed for HGD are more difficult
to derive than in the univariate case. Also the problem of singularity of the system of differential
equations arises in the bivariate case.

Let

h(θ, x, y) = exp

 ∑
0≤i+ j≤d

θi jxiy j


= exp(θ10x + θ01y + θ20x2 + θ11xy + θ02y2 + · · · + θd0xd + · · · + θ0dyd)

and consider the density function

f (x, y; θ) =
1

A(θ)
h(θ, x, y),

where
A(θ) =

∫ ∞

0

∫ ∞

0
h(θ, x, y)dxdy

is the normalizing constant. We call this distribution a bivariate exponential-polynomial distri-
bution of degree d. Here the parameter vector θ belongs to the parameter space

Θ = {θ | A(θ) < ∞}. (19)

We consider the structure of Θ below in Section 6.3. We note that if θ ∈ Θ, then h(θ, x, y)
satisfies

h(θ, x, y)→ 0 (x→ ∞), (20)
h(θ, x, y)→ 0 (y→ ∞).

Given the sample z = {(xi, yi)}ni=1, (1/n) times the log-likelihood function is written as

l̄(θ, z) =
∑

1≤i+ j≤d

θi jxiy j − log A(θ) (21)

= θ10x + θ01y + · · · + θstxsyt + · · · + θd0xd + · · · + θ0dyd − log A(θ).
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From (21) the gradient vectors is given as

∇l̄(θ, z) =



x
y
...

xsyt

...

xd

xd−1y
...

yd



− 1
A(θ)



∂10A(θ)
∂01A(θ)

...
∂stA(θ)

...
∂d0A(θ)
∂d−1,1A(θ)

...
∂0dA(θ)



, (22)

where ∂i j = ∂/∂θi j. As in the univariate case we would like to avoid numerical integration for
∂i jA(θ), 0 ≤ i + j ≤ d, in every step of iteration for obtaining MLE.

6.1 Maximum likelihood estimation for the bivariate case
We first derive differential equations satisfied by A(θ). Since there are terms like xy, we need to
obtain different types of differential equations, which were not needed in the univariate case.

Let

Ax(θ) =
∫ ∞

0
h(θ, x, 0)dx =

∫ ∞

0
exp(θ10x + θ20x2 + · · · + θd0xd)dx, (23)

Ay(θ) =
∫ ∞

0
h(θ, 0, y)dy =

∫ ∞

0
exp(θ01y + θ02y2 + · · · + θ0dyd)dy. (24)

The values of (23), (24) and their derivatives with respect to θi j can be obtained easily from our
results for the univariate case. Hence in the following derivation we treat them as known or
already evaluated.

We differentiate A(θ) by θ01 or θ10. Then

∂10A(θ) =
∫ ∞

0

∫ ∞

0
xh(θ, x, y)dxdy, ∂01A(θ) =

∫ ∞

0

∫ ∞

0
yh(θ, x, y)dxdy

and we have
∂s

10∂
t
01A(θ) =

∫ ∞

0

∫ ∞

0
xsyth(θ, x, y)dxdy. (25)

On the other hand,

∂stA(θ) =
∫ ∞

0

∫ ∞

0
xsyth(θ, x, y)dxdy. (26)

From (25), (26) we have
(∂st − ∂s

10∂
t
01)A(θ) = 0.

Furthermore corresponding to Theorem 2.1, we have the following theorem.

12



Theorem 6.1. A(θ) satisfies the following differential equations. ∑
1≤i+ j≤d,1≤i

iθi j∂
i−1
10 ∂

j
01

 A(θ) = −Ay(θ), (27) ∑
1≤i+ j≤d,1≤ j

jθi j∂
i
10∂

j−1
01

 A(θ) = −Ax(θ). (28)

Proof. By symmetry we only show (27). We have∫ ∞

0

∫ ∞

0
∂xh(θ, x, y)dxdy =

∫ ∞

0

{∫ ∞

0
∂xh(θ, x, y)dx

}
dy

=

∫ ∞

0

[
h(θ, x, y)

]x=∞
x=0 dy = −

∫ ∞

0
h(θ, 0, y)dy (by (20))

= −Ay(θ). (29)

On the other hand,∫ ∞

0

∫ ∞

0
∂xh(θ, x, y)dxdy =

∫ ∞

0

∫ ∞

0
∂x exp

( ∑
0≤i+ j≤d

θi jxiy j)dxdy

=

∫ ∞

0

∫ ∞

0

 ∑
1≤i+ j≤d,1≤i

iθi jxi−1y j

 exp(
∑

0≤i+ j≤d

θi jxiy j)dxdy

=

 ∑
1≤i+ j≤d,1≤i

iθi j∂
i−1
10 ∂

j
01

 ∫ ∞

0

∫ ∞

0
h(θ, x, y)dxdy (by (25))

=

 ∑
1≤i+ j≤d,1≤i

iθi j∂
i−1
10 ∂

j
01

 A(θ). (30)

(27) follows from (29) and (30). □

In the univariate case, the important fact was that higher-order derivatives of Ad(θ) are writ-
ten as rational function combinations of lower-order derivatives of Ad(θ). In (27), (28), the
highest order of derivatives in Ad(θ) is d − 1 and there are d derivatives of order d − 1:

∂d−1
10 , ∂d−2

10 ∂01, · · · , ∂10∂
d−2
01 , ∂d−1

01 .

If we want to evaluate these d derivatives of order d − 1 by solving a system of equations, then
we do not have enough equations for d ≥ 3, because there are only two equations in Theorem
6.1. We need to have more differential equations.

To obtain more equations, we operate the following set

Oq = {∂q
10, ∂

q−1
10 ∂01, ∂

q−2
10 ∂

2
01, · · · , ∂

q
01}
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of q + 1 differential operators of the same order q to (27) and (28). In order to determine q, we
count the number of differential equations obtained after operating Oq.

The highest order of derivatives after operating Oq to (27), (28) is q+ d− 1 and there are the
following q + d derivatives

∂
q+d−1
10 , ∂

q+d−2
10 ∂01, · · · , ∂10∂

q+d−2
01 , ∂

q+d−1
01 .

On the other hand there are 2(q+1) differential equations after operating Oq to (27), (28). Hence
we have the right number of equations if we take q + d = 2(q + 1) or

q = d − 2.

In view of
∂10Ay(θ) = 0, ∂01Ax(θ) = 0,

when we operate
Od−2 = {∂d−2

10 , ∂d−3
10 ∂01, ∂

d−4
10 ∂2

01, · · · , ∂d−2
01 }

to (27), (28), we have the following system of differential equations.

∂d−2
10 0

∂d−3
10 ∂01

...
...

...

∂10∂
d−3
01

...
∂d−2

01 0
0 ∂d−2

10
... ∂d−3

10 ∂0 1
...

...
... ∂10∂

d−3
01

0 ∂d−2
01




( ∑

1≤i+ j≤d,1≤i
iθi j∂

i−1
10 ∂

j
01

)
A(θ)( ∑

1≤i+ j≤d,1≤ j
jθi j∂

i
10∂

j−1
01

)
A(θ)

 =



∂d−2
10 0

∂d−3
10 ∂01

...
...

...

∂10∂
d−3
01

...
∂d−2

01 0
0 ∂d−2

10
... ∂d−3

10 ∂01
...

...
... ∂10∂

d−3
01

0 ∂d−2
01



[
−Ay(θ)
−Ax(θ)

]
= −



0
...
0

∂d−2
01 Ay(θ)
∂d−2

10 Ax(θ)
0
...
0


(31)

We transform (31) to a system of differential equations to solve for the derivatives of the highest
order

∂2d−3
10 , ∂2d−4

10 ∂01, · · · , ∂10∂
2d−4
01 , ∂2d−3

01 .

For any pair of non-negative integers (s, t) satisfying s + t = d − 2 let

ϕ(s, t) = s∂s−1
10 ∂

t
01 + θ10∂

s
10∂

t
01 +

∑
2≤i+ j≤d−1,1≤i

iθi j∂
s+i−1
10 ∂

j+t
01 ,

ψ(s, t) = t∂s
10∂

t−1
01 + θ01∂

s
10∂

t
01 +

∑
2≤i+ j≤d−1,1≤ j

jθi j∂
s+i
10 ∂

t+ j−1
01 .

(32)
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Then (31) is transformed to
∑

i+ j=d,1≤i
iθi j∂

s+i−1
10 ∂

t+ j
01 A(θ) = −∂s

10∂
t
01Ay(θ) − ϕ(s, t)A(θ),∑

i+ j=d,1≤ j
jθi j∂

s+i
10 ∂

t+ j−1
01 A(θ) = −∂s

10∂
t
01Ax(θ) − ψ(s, t)A(θ).

(33)

In matrix form (33) is expressed as

P(θ)


∂2d−3

10 A(θ)
∂2d−4

10 ∂01A(θ)
...

∂10∂
2d−4
01 A(θ)

∂2d−3
01 A(θ)


= Q(θ),

where

P(θ) =



dθd0 · · · · · · 2θ2,d−2 θ1,d−1

dθd0 · · · · · · 2θ2,d−2 θ1,d−1

· · · · · ·
dθd0 · · · · · · 2θ2,d−2 θ1,d−1

θd−1,1 2θd−2,2 · · · · · · dθ0d

θd−1,1 2θd−2,2 · · · · · · dθ0d

· · · · · ·
θd−1,1 2θd−2,2 · · · · · · dθ0d



 (d − 1) rows

 (d − 1) rows

,

(34)

Q(θ) = −



ϕ(d − 2, 0)A(θ)
ϕ(d − 3, 1)A(θ)

...
ϕ(1, d − 3)A(θ)

∂d−2
01 Ay(θ) + ϕ(0, d − 2)A(θ)
∂d−2

10 Ax(θ) + ψ(d − 2, 0)A(θ)
ψ(d − 3, 1)A(θ)

...
ψ(1, d − 3)A(θ)
ψ(0, d − 2)A(θ)



. (35)

In P(θ) empty elements in the matrix are zeros. We give further consideration of P(θ) in the
next section.

If det P(θ) , 0, 
∂2d−3

10 A(θ)
∂2d−4

10 ∂01A(θ)
...

∂10∂
2d−4
01 A(θ)

∂2d−3
01 A(θ)


= P−1(θ)Q(θ). (36)
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Hence from (32), (35), (36) we see that ∂2d−3
10 A(θ), ∂2d−4

10 ∂01A(θ), · · · , ∂10∂
2d−4
01 A(θ), ∂2d−3

01 A(θ), are
written as rational function combinations of elements of the vector

F(θ) = [A(θ), ∂10A(θ), ∂01A(θ), · · · , ∂2d−4
10 A(θ), ∂2d−5

10 ∂01A(θ), · · · , ∂10∂
2d−5
01 A(θ), ∂2d−4

01 A(θ)]T.

If we can evaluate F(θ) at any θ, then by (22) we can obtain the maximum likelihood estimate of
the bivariate exponential-polynomial distribution. As in the univariate case, if the initial values
of F(θ0) can be evaluated at θ0, then the value of F(θ) at any other point θ can be obtained by
solving the differential equation.

In the univariate case, the origin θd = 0 was the only singular point of the differential
equation (5). In the bivariate case the set {θ| det P(θ) = 0} is the set of singularities of (31). This
singularity causes difficulty for HGD and in the next section we investigate det P(θ).

6.2 Evaluation of the determinant of the Pfaffian system
We prove that det P(θ) in (34) is given by the discriminant of a polynomial equation. We use
the basic results on determinantal expression for resultants and discriminants (cf. Chapter 12 of
[4], Section 3.3 of [1]). Let two polynomials f (x), g(x) be denoted as

f (x) = amxm + am−1xm−1 + · · · + a0 = am

m∏
i=1

(x − αi), (37)

g(x) = bnxn + bm−1xm−1 + · · · + b0 = bn

n∏
i=1

(x − βi).

The resultant R( f , g) is defined as

R( f , g) = an
mbm

n

m∏
i=1

n∏
j=1

(αi − β j).

Then the determinantal expression of R( f , g) is given as follows ((1.12) of Chapter 12 of [4],
Lemma 3.3.4 of [1]).

R( f , g) = det



am am−1 · · · · · · · · · a0

an am−1 · · · · · · · · · a0

· · · · · · · · ·
am am−1 · · · · · · · · · a0

bn bn−1 · · · b0

bn bn−1 · · · b0

· · ·
· · ·

· · ·
bn bn−1 · · · b0



 n rows


m rows
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We also consider the discriminant. For f (x) in (37) the discriminant for the equation f (x) =
0 is given by

D = (−1)m(m−1)/2a2(m−1)
m

∏
1≤i< j≤m

(αi − α j)2.

Let
p(x; θ) = θd0xd + θd−1,1xd−1 + θd−2,2xd−2 + · · · + θ1,d−1x + θ0d. (38)

This polynomial will also appear in the next section in the investigation of the parameter space
Θ in (19). The discriminant D(θ) of the polynomial equation p(x, θ) = 0 is given as ((1.29) of
Chapter 12 of [4], Definition 3.3.3 of [1])

D(θ) =
1
θd0

R(p, p′), (39)

where

R(p, p′) = det



θd0 θd−1,1 · · · · · · · · · θ0d

θd0 θd−1,1 · · · · · · · · · θ0d

· · · · · · · · ·
θd0 θd−1,1 · · · · · · · · · θ0d

dθd0 · · · · · · 2θ2,d−2 θ1,d−1

dθd0 · · · · · · 2θ2,d−2 θ1,d−1

· · · · · ·
· · · · · ·
dθd0 · · · · · · 2θ2,d−2 θ1,d−1



 (d − 1) rows


d rows

.

Using (39) we give the following theorem on the relation of det P(θ) in (34) and the dis-
criminant D(θ) of polynomial equation p(x; θ) = 0 in (38).

Theorem 6.2.
det P(θ) = dd−2D(θ). (40)

Proof. Define a (2d − 1) × (2d − 1) matrix S as

S =
[
θd0 0 −θd−2,2 −2θd−3,3 · · · −(d − 1)θ0d 0 · · · 0
0 P(θ)

]
,

where 0 is a column vector of zeros of size 2d − 2. Expanding the determinant with respect to
the fist column we have

det S = θd0 det P(θ). (41)

On the other hand we add the i-row to the (i + d)-th rows (1 ≤ i ≤ d − 1) and then add the
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(d + 1)-st row multiplied by d − 1 to the first row. Then we obtain

det S = dd−2 det



dθd0 · · · · · · 2θ2,d−2 θ1,d−1

dθd0 · · · · · · 2θ2,d−2 θ1,d−1

· · · · · ·
· · · · · ·
dθd0 · · · · · · 2θ2,d−2 θ1,d−1

θd0 θd−1,1 · · · · · · · · · θ0d

θd0 θd−1,1 · · · · · · · · · θ0d

· · · · · · · · ·
θd0 θd−1,1 · · · · · · · · · θ0d


.

By interchanging rows

det S = dd−2(−1)d(d−1)R(p, p′)

= θd0dd−2 det D(θ). (by (39)) (42)

From (41), (42) we have
det P(θ) = dd−2D(θ).

□

6.3 Structure of the parameter space for the bivariate case
In this section we investigate the parameter space Θ. By the transformation

x = r cosω, y = r sinω,

define
H(θ, ω) =

∫ ∞

0
h̃(θ, r, ω)dr, h̃(θ, r, ω) = rh(θ, r cosω, r sinω).

Since h̃ is non-negative, by Fubini’s theorem A(θ) is written as

A(θ) =
∫ π/2

0
H(θ, ω)dω.

It is easily seen that H(θ, ω) is continuous in the compact interval ω ∈ [0, π/2] and A(θ) = ∞ if
and only if H(θ, ω) = ∞ for some ω ∈ [0, π/2]. Note that

H(θ, ω) < ∞ ⇔ h(θ, y/ tanω, y)→ 0 (y→ ∞).

The coefficient of the highest degree term in y of h(θ, ay, y) is p(a; θ), where p(x; θ) is given in
(38). If p(a; θ) < 0 for all a ≥ 0, then θ ∈ Θ. Hence if we define

Θ′ = {θ | ∀a ≥ 0, p(a; θ) < 0}, (43)
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then Θ′ ⊂ Θ. Note that for θ ∈ Θ \Θ′ there exists a ≥ 0 such that p(a; θ) = 0, i.e., the term of
order d in y vanishes on the ray {(ay, y), y ≥ 0}. In this sense θ ∈ Θ \Θ′ may be considered as a
model of order d − 1. We call Θ′ in (43) the parameter space of a proper order-d model.

The above consideration gives insight into the structure of Θ, but it is still difficult to decide
whether θ ∈ Θ′ for a given θ. We propose the following easier method for determination. Note
that θd0 < 0, θ0d < 0 is a trivial restriction and we assume this. Now clearly we have

p(x; θ) < 0 (∀x ≥ 0) ⇔
θd0 < 0,

p(x; θ) does not have a positive root.

Following the argument in [2], we now move θ from an initial point inΘ′, keeping θd0 < 0, θ0d <
0, and consider when p(x; θ) is no longer negative for some x > 0, i.e., when p(x; θ) = 0 has a
positive root. There are two cases.

1. A real root moves from the negative real line to the positive real line.

2. A complex root moves to the positive real line.

The fist case corresponds to θ0d > 0, but this does not happen by our assumption. Complex
roots for a polynomial with real coefficients appear in conjugate pairs and in the second case
we have a multiple root on the positive real line. Hence under the assumption θd0 < 0, θ0d < 0,
a positive root appears if and only if the discriminant D(θ) of p(x; θ) = 0 becomes 0 and the
root becomes positive. Note that D(θ) = 0 may also happen because of negative or complex
multiple roots.

Based on this observation consider the complement of the hypersurface {θ | D(θ) = 0} in
{θ | θd0 < 0, θ0d < 0}:

Θ′′ = {θ | θd0 < 0, θ0d < 0} \ {θ | D(θ) = 0}
Θ′′ consists of disjoint open connected components (“chambers”), which we denote by Θ′′i , i ∈
I. Then Θ′′ is partitioned as

Θ′′ =
∪
i∈I
Θ′′i .

Note that the number of positive roots of p(x; θ) is constant in each chamber Θ′′i . Hence if
Θ′′i ∩Θ′ , ∅, thenΘ′′i ⊂ Θ′, namely eachΘ′′i is either a subset ofΘ′ or disjoint fromΘ′. Define

I∗ = {i ∈ I | Θ′′i ∩Θ′ , ∅} = {i ∈ I | Θ′′i ⊂ Θ′}.

Since the hypersurface {θ | D(θ) = 0} has measure zero, we have the following theorem con-
cerning Θ′ in (43).

Theorem 6.3. Except for a set of measure zero

Θ′ =
∪
i∈I∗
Θ′′i . (44)

19



Although it is difficult to completely characterize the boundaries of Θ′′i ’s for general d, if
the boundary between Θi, i ∈ I∗, and Θ j, j ∈ I∗, corresponds to negative or complex multiple
roots, then the boundary also belongs to Θ′.

We illustrate the partition (44) for the case of d = 3. For any c1, c2 > 0, we have p(x; θ) <
0,∀x > 0 if and only if c1 p(c2x; θ) < 0,∀x > 0. This implies that we can assume θ03 = θ30 = −1
without loss of generality in considering the partition (44). In this case the discriminant is
written as

D(θ) = θ2
12θ

2
21 − 4θ3

12 − 4θ3
21 + 18θ12θ21 − 27.

On the (θ12, θ21)-plane, D(θ) = 0 consists of two curves as illustrated in Figure 7. In Figure 7,
chamber A corresponds to two positive roots and one negative root, chamber B corresponds to
two complex roots and one negative root, and chamber C corresponds to three negative roots.
Hence the partition in (44) is B ∪C. The boundary between B and C also belongs to Θ′.

Figure 7: Partition of Theorem 6.3 for d = 3

For maximum likelihood estimation we need to take an initial point in each chamber Θ′′i ,
i ∈ I∗, of Theorem 6.3 and perform the numerical integration only for those initial points. It is
difficult to give a simple initial point Θ′′i for all i ∈ I∗. For some i ∈ I∗, the following simple
initial point θ0 is available. For c1 > 0, c2 > 0 define θ0 by

θd0 = −c1, θ0d = −c2, θi j = 0 for (i, j) , (0, d), (d, 0).

Then
p(x; θ0) = −c1xd − c2 = 0, p′(x; θ0) = −dc1xd−1 = 0

do not have a common root and R(p, p′) , 0. Hence D(θ0) , 0 and det P(θ) , 0 by (40).
Furthermore clearly p(x; θ0) is negative for x > 0. Hence θ0 ∈ Θ′′i , i ∈ I∗. For this θ0 the
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normalizing constant and its derivatives are easily evaluated as

∂i jA(θ0) =
∫ ∞

0

∫ ∞

0
xiy j exp(−c1xd − c2yd)dxdy

=

∫ ∞

0
xi exp(−c1xd)dx

∫ ∞

0
y j exp(−c2yd)dy

=
1
d

c−(i+1)/d
1 Γ

(
i + 1

d

)
1
d

c−( j+1)/d
2 Γ

(
j + 1

d

)
.

Although we do not show numerical results for the bivariate case, for d = 2 the computation
of the normalizing constant and MLE is fast and the asymptotic distribution of MLE has been
checked. For d = 3, the computation of the normalizing constant is fast, but the computation of
MLE is somewhat heavy at current implementation in MATLAB. This seems to be due to high
dimensionality (9 parameters) of the model for d = 3.

7 Some discussions
In this paper we discussed the maximum likelihood estimation of the exponential-polynomial
distribution. Here we discuss some possible extensions of the distribution and topics for further
research.

In the exponential-polynomial distribution we have a polynomial as the exponent of the ex-
ponential function. We can add another polynomial to the exponential-polynomial distribution,
if this polynomial is non-negative over the sample space. Recall that the problem concerning
non-negative polynomials was also essential for understanding the structure of the parameter
space for the bivariate exponential-polynomial distribution in Section 6.3. Let

p(x; η) = η0 + η1x + · · · + ηhxh

be a polynomial in x. Consider the following density on the positive real line:

f (x; η, θ) =
1

Ã(η, θ)
p(x; η) exp(θ1x + · · · + θd xd),

Ã(η, θ) =
∫ ∞

0
p(x; η) exp(θ1x + · · · + θd xd)dx.

The normalizing constant Ã(η, θ) can be evaluated as

Ã(η, θ) =
h∑

i=0

ηi

∫ ∞

0
xi exp(θ1x + · · · + θd xd) =

h∑
i=0

ηi∂
i
1Ad(θ),

where Ad(θ) is given in (2). Hence from the view point of holonomic gradient descent this
generalization can be easily handled. However, in the estimation of this density we need to
guarantee that p(x; η̂) is a non-negative polynomial for x ≥ 0. This problem was considered in
Fushiki et al. ([3]). They showed that the maximum likelihood estimation under the restriction
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of non-negativity of p(x; η̂) can be performed with the technique of semidefinite programming.
We can also use the parameterization of non-negative polynomials given in Proposition 3.3 of
[9]. See also Section 9, Chapter V of [8].

For the univariate case we derived score tests for determining the order d of the model. The
difficulty in model selection is the fact that the model of order d − 1 is on the boundary of
the model of order d. In this paper we did not discuss the problem of model selection for the
bivariate case, because the boundary is much more difficult compared to the univariate case, as
discussed in Section 6.3. Also in the bivariate case, as the model of order d we included all
monomials xd, xd−1y, . . . , yd of order d. However we may omit some monomials among these
d + 1 monomials. The structure of the boundary of the model seems to depend on the choice of
monomials of order d. Model selection procedures for the bivariate case is left to a future study.
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