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Abstract

Hassin (1983) proposed a dual algorithm for the minimum cost
flow problem, which iteratively updates dual variables in a steepest
ascent manner. This algorithm is generalized to the minimum cost
submodular flow problem by Chung and Tcha (1991). In discrete con-
vex analysis, the dual of the minimum cost flow problem is known to
be formulated as the maximization of a polyhedral L-concave function.
It is recently pointed out that Hassin’s algorithm can be recognized as
a steepest ascent algorithm for polyhedral L-concave functions. The
objective of this paper is to show some nice properties of the steepest
ascent algorithm for polyhedral L-concave functions. We show that
the algorithm shares a monotonicity property of Hassin’s algorithm.
Moreover, the algorithm finds the “nearest” optimal solution to a given
initial solution, and the trajectory of the solutions generated by the al-
gorithm is a “shortest” path from the initial solution to the “nearest”
optimal solution. The algorithm and its properties can be extended
for polyhedral L♮-concave functions.
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1 Introduction

Among many algorithms for the minimum cost flow problem (see, e.g.,
[1, 15]), Hassin’s dual algorithm [5] is unique in that it maintains only dual
variables, while most of the other algorithms use primal (i.e., flow) vari-
ables. Hassin’s algorithm iteratively chooses a subset of dual variables that
corresponds to a graph cut and increments them so that the dual objective
function increases strictly. It is shown in [5] that the sequence of solutions
generated by the algorithm has a certain monotonicity property, from which
follows the finite termination of the algorithm. Hassin’s algorithm is later
generalized to the minimum cost submodular flow problem by Chung and
Tcha [2].

In discrete convex analysis ([8], [9]), the dual of the minimum cost (sub-
modular) flow problem is known to be formulated as the maximization of a
polyhedral L-concave function. The concept of polyhedral L-concave func-
tions in real variables was introduced by Murota and Shioura [11] as a vari-
ant of L-concave functions originally defined for functions on integer lattice
points. It is pointed out in [12] that Hassin’s algorithm as well as Chung
and Tcha’s algorithm can be recognized as a steepest ascent algorithm for
polyhedral L-concave functions, where the steepest ascent direction is cho-
sen from a finite set of 0-1 vectors. This observation indicates that the
steepest ascent algorithm for polyhedral L-concave functions is fundamental
in combinatorial optimization.

In this paper, we investigate the behavior of the steepest ascent algorithm
for polyhedral L-concave function maximization and show its monotonicity
properties. First, it is endowed with the same monotonicity property as that
of Hassin’s algorithm, which guarantees its finite termination. Second, for
any initial solution, the algorithm finds the smallest optimal solution that is
not smaller than the initial solution. Third, the trajectory of the solutions
generated by the algorithm is a “shortest” path from the initial solution to
the smallest optimal solution in the sense that the total sum of the step
lengths is equal to the ℓ∞-distance from the initial solution to the smallest
optimal solution. Fourth, the function g restricted on the trajectory of the
solutions generated by the algorithm is a concave function. Our second and
third results imply, in particular, that Hassin’s and Chung and Tcha’s algo-
rithms are efficient in terms of the number of iterations. The steepest ascent
algorithm for polyhedral L-concave functions can naturally be adapted to
polyhedral L♮-concave functions. The algorithm outputs the optimal solu-
tion that is “nearest” with respect to a variant of the ℓ∞-distance.

In each iteration of the steepest ascent algorithm discussed in this paper,
there may be several choices of steepest ascent directions, and from among
them, a steepest ascent direction satisfying a certain “minimality” condition
is chosen. We consider a variant of the steepest ascent algorithm where an
arbitrary steepest ascent direction is chosen in each iteration, and show that

2



the modified algorithm still satisfies some of the monotonicity properties.
We also prove that the modified algorithm terminates if the input function
satisfies a certain “rationality” condition. On the other hand, we show
by giving a bad instance for the modified algorithm that the “minimality”
condition of a steepest ascent direction is essential for the finite termination
of the algorithm if a polyhedral L-concave function is not “rational.”

The organization of this paper is as follows. We review the concept
of polyhedral L-concave function in Section 2, and Hassin’s and Chung and
Tcha’s algorithms for the dual of the minimum cost (submodular) flow prob-
lems in Section 3. Monotonicity properties of the steepest ascent algorithm
for polyhedral L-concave functions are shown in Section 4, and the algorithm
and its properties can be extended for polyhedral L♮-concave functions in
Section 5. Finally, a variant of the steepest ascent algorithm is discussed in
Section 6.

2 Preliminaries on L-concave Functions

We review the concept of polyhedral L-concave functions. Throughout this
paper, let V be a finite set. For a function g : RV → R∪{−∞}, its effective
domain is defined as

dom g = {p ∈ RV | g(p) > −∞}.

A function g : RV → R ∪ {−∞} is said to be a polyhedral concave function
if the set

{(p, α) ∈ RV × R | p ∈ dom g, α ≤ g(p)}

is a (nonempty) polyhedron. Equivalently, g : RV → R∪{−∞} is a polyhe-
dral concave function if there exist a nonempty polyhedron S ⊆ RV , a finite
number of vectors a1, . . . , at ∈ RV , and scalars b1, . . . , bt ∈ R such that

dom g = S, g(p) = min
1≤i≤t

{aTi p+ bi} (p ∈ S). (2.1)

For p ∈ dom g and d ∈ RV , the directional derivative of g at p in direction
d is defined as the limit

g′(p; d) = lim
λ↓0

g(p+ λd)− g(p)

λ
,

if it exists. We also define g′(p; d) = −∞ if p + λd /∈ dom g for all λ > 0.
Moreover, when g′(p; d) > −∞, define the value c̄(p; d) ∈ R ∪ {+∞} by

c̄(p; d) = sup{λ ∈ R+ | g(p+ λd)− g(p) = λ g′(p; d)}. (2.2)

If function g is given in the form (2.1), then we have

g′(p; d) = aTi d, c̄(p; d) = sup{λ ∈ R+ | g(p+ λd) = aTi (p+ λd) + bi}
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for some i with 1 ≤ i ≤ t. Note that c̄(p; d) > 0 and g(p + λd) − g(p) =
λ g′(p; d) holds for every λ with 0 ≤ λ ≤ c̄(p; d). Hence, if g′(p; d) > 0 and g
is bounded from above, then c̄(p; d) < +∞.

A polyhedral concave function g : RV → R∪ {−∞} is said to be polyhe-
dral L-concave [11] if it satisfies the following conditions:

(LF1) g(p) + g(q) ≤ g(p ∧ q) + g(p ∨ q) (∀p, q ∈ dom g),
(LF2) ∃r ∈ R s.t. g(p+ λ1) = g(p) + λr (∀p ∈ dom g, ∀λ ∈ R),

where p ∧ q, p ∨ q (∈ RV ) denote the vectors with

(p ∧ q)(v) = min{p(v), q(v)}, (p ∨ q)(v) = max{p(v), q(v)} (v ∈ V ),

and 1 (∈ RV ) is the vector with each component being equal to one. Note
that r = 0 is assumed in (LF2) whenever we consider maximization of a
polyhedral L-concave function since otherwise there exists no maximizer.

A typical example of polyhedral L-concave function arises from the max-
imum weight tension problem. For a directed graph G = (V,E), let φuv :
R → R ∪ {−∞} be an edge weight function for (u, v) ∈ E. We assume
that functions φuv ((u, v) ∈ E) are polyhedral (or piecewise-linear) concave
functions. The maximum weight tension problem is formulated as follows:

(MWT)
Maximize

∑
(u,v)∈E

φuv(p(u)− p(v))

subject to p ∈ RV .

We denote by gT : RV → R ∪ {−∞} the objective function of the problem
(MWT). Note that dom gT ̸= ∅ if and only if (MWT) has a feasible solution,
i.e., there exists some p ∈ RV such that φuv(p(u) − p(v)) > −∞ for all
(u, v) ∈ E.

Proposition 2.1 ([11, Example 2.4]). Suppose that dom gT ̸= ∅. Then,
function gT is polyhedral L-concave with r = 0 in (LF2).

Another example of polyhedral L-concave function comes from the so-
called Lovász extension of a submodular function. A set function ρ : 2V → R
is said to be submodular if it satisfies

ρ(X) + ρ(Y ) ≥ ρ(X ∩ Y ) + ρ(X ∪ Y ) (∀X,Y ⊆ V ).

Given a set function ρ : 2V → R with ρ(∅) = 0, define a function ρ̂ : RV → R
by

ρ̂(p) =

h−1∑
i=1

(p̃i − p̃i+1)ρ(Li) + p̃hρ(Lh) (p ∈ RV ), (2.3)

where p̃1 > p̃2 > · · · > p̃h are the distinct values of components of p and

Li = {v ∈ V | p(v) ≥ p̃i} (i = 1, 2, . . . , h).

The function ρ̂ is called the Lovász extension of ρ.
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Proposition 2.2 ([11, Theorem 4.36]). For a submodular set function ρ :
2V → R with ρ(∅) = 0, the function −ρ̂ is a polyhedral L-concave function.
If ρ(V ) = 0, then −ρ̂ satisfies property (LF2) with r = 0.

3 Hassin’s and Chung and Tcha’s Algorithms

As the motivation of the present paper, we review the dual algorithm for
the minimum cost flow problem by Hassin [5] and that for the minimum
cost submodular flow problem by Chung and Tcha [2]. We also observe the
polyhedral L-concavity of the dual objective functions of the problems in [5]
and in [2]. In the following, we denote by χX ∈ {0, 1}V the characteristic
vector of X ⊆ V , i.e., χX(v) = 1 if v ∈ X and χX(v) = 0 if v ∈ V \X.

3.1 Hassin’s Algorithm

For a directed graph G = (V,E) with nonnegative edge capacity c(e) and
edge cost γ(e) for e ∈ E, the minimum cost flow problem treated in [5] is
formulated as follows:

Minimize
∑

(u,v)∈E

γ(u, v)x(u, v)

subject to ∂x(u) = 0 (u ∈ V ),
0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E),

where
∂x(u) =

∑
v:(u,v)∈E

x(u, v)−
∑

v:(v,u)∈E

x(v, u) (u ∈ V ).

The dual problem is given as

Maximize gH(p) ≡
∑

(u,v)∈E

c(u, v)min{0, p(u)− p(v) + γ(u, v)} (3.1)

subject to p(v) ∈ R (v ∈ V ).

The function gH is polyhedral L-concave since it is a special case of the
function gT in Proposition 2.1.

Hassin’s algorithm is described as follows. For p ∈ RV and X ⊆ V , we
define

I(p,X) =
∑

(u,v)∈E<
out(p,X)

c(u, v)−
∑

(u,v)∈E≤
in(p,X)

c(u, v), (3.2)

where

E<
out(p,X) = {(u, v) ∈ E | p(u)− p(v) + γ(u, v) < 0, u ∈ X, v ∈ V \X},
E≤

in(p,X) = {(u, v) ∈ E | p(u)− p(v) + γ(u, v) ≤ 0, u ∈ V \X, v ∈ X}.
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We also define λ(p,X) by

λ(p,X) = min
{
|p(u)− p(v) + γ(u, v)|∣∣ (u, v) ∈ E<

out(p,X) ∪ E>
in(p,X)

}
, (3.3)

where

E>
in(p,X) = {(u, v) ∈ E | p(u)− p(v) + γ(u, v) > 0, u ∈ V \X, v ∈ X}.

Then, it holds that

gH(p+ αχX)− gH(p) = αI(p,X) (0 ≤ ∀α ≤ λ(p,X)).

Hassin’s Algorithm

Step 0: Set p := p◦, where p◦ is an initial vector chosen from RV .

Step 1: Find X ⊆ V that maximizes I(p,X); if there exists more than one
such X, then take a (unique) minimal one.

Step 2: If I(p,X) ≤ 0, then stop; p is a maximizer of gH.

Step 3: Set p := p+ λ(p,X)χX . Go to Step 1.

For each positive integer k, we denote by Xk and pk, respectively, the
set X and the vector p just after Step 1 in the k-th iteration. The next
property shows that the value I(pk, Xk) is monotone nonincreasing.

Proposition 3.1 ([5]). For k = 1, 2, . . . , I(pk, Xk) ≥ I(pk+1, Xk+1) holds.
Moreover, if I(pk, Xk) = I(pk+1, Xk+1), then we have Xk ⊊ Xk+1.

It is observed in [5] that the set of possible values of I(p,X) is finite, and
hence the algorithm terminates in a finite number of iterations by Proposi-
tion 3.1 (see [5] for details).

3.2 Chung and Tcha’s Algorithm

Suppose now that a submodular function ρ : 2V → R with ρ(∅) = ρ(V ) =
0 is given, in addition to a directed graph G = (V,E) with nonnegative
edge capacity c(e) and edge cost γ(e) for e ∈ E. Then, the minimum cost
submodular flow problem is formulated as follows:

Minimize
∑

(u,v)∈E

γ(u, v)x(u, v)

subject to
∑
u∈Y

∂x(u) ≤ ρ(Y ) (Y ⊊ V ),
∑
u∈V

∂x(u) = ρ(V ),

0 ≤ x(u, v) ≤ c(u, v) ((u, v) ∈ E).
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The linear programming dual is given as

Maximize −
∑

(u,v)∈E

c(u, v)s(u, v)−
∑
Y⊆V

ρ(Y )t(Y )

subject to −s(u, v)−
∑

Y :u∈Y
t(Y ) +

∑
Y :v∈Y

t(Y ) ≤ γ(u, v) ((u, v) ∈ E),

s(u, v) ≥ 0 ((u, v) ∈ E),
t(Y ) ≥ 0 (Y ⊊ V ), t(V ) ∈ R.

It is known that for every vector p ∈ RV , the real numbers sp(u, v) ((u, v) ∈
E) and tp(Y ) (Y ⊆ V ) defined by

sp(u, v) = −min{0, p(u)− p(v) + γ(u, v)} ((u, v) ∈ E),

tp(Y ) =


p̃i − p̃i+1 (if Y = Li, 1 ≤ i ≤ h− 1),
p̃h (if Y = Lh),
0 (otherwise)

(3.4)

provide a feasible solution of the dual problem, where

p̃1 > p̃2 > · · · > p̃h are the distinct values of components of p,

Li = {v ∈ V | p(v) ≥ p̃i} (i = 1, 2, . . . , h).

Moreover, some optimal solution of the dual problem can be represented in
the form of (3.4) for some p (see [2, 3]; see also Theorem 5.6 and its proof
in [4]). Hence, the dual problem is rewritten as follows:

Maximize

gCT(p) ≡
∑

(u,v)∈E

c(u, v)min{0, p(u)− p(v) + γ(u, v)} − ρ̂(p) (3.5)

subject to p(v) ∈ R (v ∈ V ),

where ρ̂ : RV → R is the Lovász extension of ρ given by (2.3). It is observed
that the objective function gCT is expressed as gCT = gH − ρ̂, which implies
that gCT is polyhedral L-concave since both of gH and −ρ̂ are polyhedral
L-concave functions and polyhedral L-concavity is closed under addition.

Chung and Tcha’s algorithm is described as follows. Recall the defi-
nitions of I(p,X) and λ(p,X) in (3.2) and in (3.3), respectively. We also
define

µ(p,X) = min{p̃i − p̃i+1 | 1 ≤ i ≤ h− 1, (Li+1 \ Li) ∩X ̸= ∅,
(Li \ Li−1) \X ̸= ∅}, (3.6)

where L0 is defined to be the empty set. Then, it holds that

gCT(p+ αχX)− gCT(p) = α(I(p,X)− ρ̂′(p;χX))
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for every α ∈ R with 0 ≤ α ≤ min{λ(p,X), µ(p,X)}, where ρ̂′(p;χX) is the
directional derivative1 of ρ̂ at p in direction χX .

Chung and Tcha’s Algorithm

Step 0: Set p := p◦, where p◦ is an initial vector chosen from RV .

Step 1: Find X ⊆ V that maximizes I(p,X)− ρ̂′(p;χX).

Step 2: If I(p,X) ≤ ρ̂′(p;χX), then stop; p is a maximizer of gCT.

Step 3: Set p := p+min{λ(p,X), µ(p,X)}χX . Go to Step 1.

Chung and Tcha derive a pseudo-polynomial bound on the number of
iterations of the algorithm by assuming that the edge costs γ(e) are all
integer-valued [2].

4 Steepest Ascent Algorithm for Polyhedral L-concave
Functions

4.1 Algorithm

We consider the following steepest ascent algorithm for the maximization of
a polyhedral L-concave function g : RV → R ∪ {−∞}, where it is assumed
that argmax g is nonempty. Since g is a polyhedral concave function, the
nonemptiness of argmax g is equivalent to the condition that g is bounded
from above; in particular, g satisfies property (LF2) with r = 0.

Whereas a standard steepest ascent algorithm iteratively updates a cur-
rent solution p by using a direction d ∈ RV which maximizes the value of
directional derivative g′(p; d), our algorithm uses a restricted class of direc-
tions given by 0-1 vectors. Recall the definition of c̄(p; d) in (2.2).

Steepest Ascent Algorithm for Polyhedral L-concave Functions

Step 0: Set k := 1 and p1 := p◦, where p◦ is an initial vector chosen from
dom g.

Step 1: Let Xk ⊆ V be a set maximizing the value g′(pk;χXk
); if there

exists more than one such Xk, then take a (unique) minimal one.

Step 2: If g′(pk;χXk
) ≤ 0, then output the current vector pk and stop2 (pk

is a maximizer of g).

Step 3: Set λk := c̄(pk;χXk
), pk+1 := pk + λkχXk

, and k := k + 1. Go to
Step 1.

1ρ̂′(p;χX) admits an explicit formula [2], which is omitted here.
2If the algorithm stops, we have Xk = ∅ since it is the smallest set with g′(pk;χXk) ≤ 0.
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We note that the minimal Xk that maximizes g′(pk;χXk
) in Step 1 is

uniquely determined by the following property:

Proposition 4.1. Let p ∈ dom g. If X,Z ∈ argmax{g′(p;χY ) | Y ⊆ V },
then it holds that X ∩ Z,X ∪ Z ∈ argmax{g′(p;χY ) | Y ⊆ V }.

Proof. By property (LF1) of g, we have

g′(p;χX) + g′(p;χZ) ≤ g′(p;χX∩Z) + g′(p;χX∪Z).

Since X,Z ∈ argmax{g′(p;χY ) | Y ⊆ V }, this implies

X ∩ Z,X ∪ Z ∈ argmax{g′(p;χY ) | Y ⊆ V }.

The validity of the steepest ascent algorithm follows immediately from
the following proposition, stating that maximizers of a polyhedral L-concave
function are characterized by a local property.

Proposition 4.2 ([11, Theorem 4.29]). Let g : RV → R ∪ {−∞} be a
polyhedral L-concave function, and p ∈ dom g. Then, p is a maximizer of g
if and only if g′(p;χX) ≤ 0 for every X ⊆ V .

Hence, the output of the algorithm is a maximizer of function g.

Remark 4.3. It is easy to see that the steepest ascent algorithm described
above coincides with Hassin’s and Chung and Tcha’s algorithms when ap-
plied to polyhedral L-concave functions gH in (3.1) and gCT in (3.5), respec-
tively. Our algorithm is different from Chung and Tcha’s algorithm in the
choice of X in Step 1. The unique minimal maximizer X of g′(p;χX) is
chosen in our algorithm to guarantee the finite termination (see Theorem
4.7), whereas Chung and Tcha’s algorithm takes an arbitrary maximizer
and imposes integrality assumption on the input to show the finite termina-
tion.

Remark 4.4. The steepest ascent algorithm presented in this section can
also be seen as a natural generalization of the steepest ascent algorithm for
L-concave functions defined on integer lattice points (see [9, 10]).

4.2 Monotonicity Properties

In the analysis of the steepest ascent algorithm, the smallest maximizer that
is not smaller than the initial vector p◦ plays an important role. Note that
a maximizer p satisfying p ≥ p◦ always exists by property (LF2) with r = 0.
Moreover, the existence of the unique minimal maximizer p satisfying p ≥ p◦

follows from the closedness of dom g and the following property.
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Proposition 4.5. Let p, q be maximizers of g satisfying p ≥ p◦ and q ≥ p◦.
Then, p ∧ q is also a maximizer of g and satisfies p ∧ q ≥ p◦.

Proof. It follows from p ≥ p◦ and q ≥ p◦ that p∧q ≥ p◦. By property (LF1),
we have

g(p ∧ q) + g(p ∨ q) ≥ g(p) + g(q) = 2max{g(p′) | p′ ∈ RV },

from which follows that both of p ∧ q and p ∨ q are maximizers of g.

Denote by p̂ the unique minimal maximizer of g such that p̂ ≥ p◦. Note
that the maximizer p̂ is “nearest” to p◦ in the sense that

∥p̂− p◦∥∞ = min{∥p− p◦∥∞ | p ∈ argmax g, p ≥ p◦}. (4.1)

We now present the main theorem of this paper. For k = 1, 2, . . ., we
define real numbers αk, βk and sets Ak, Bk ⊆ V by3

αk = min{p̂(i)− pk(i) | i ∈ Xk},
βk = max{p̂(i)− pk(i) | i ∈ V } −max{p̂(i)− pk(i) | i ∈ V \Xk},
Ak = argmax{p̂(i)− pk(i) | i ∈ V },
Bk = {i ∈ V | p̂(i) = pk(i)},

where pk and Xk are the variables in the k-th iteration of the steepest
ascent algorithm. Note that the set B1 is nonempty due to the choice of p̂
and property (LF2) of the function g.

Theorem 4.6. In the steepest ascent algorithm for a polyhedral L-concave
function g, the following hold for k = 1, 2, . . .:

pk ≤ p̂, (4.2)

λk ≤ min{αk, βk}, (4.3)

Ak ⊆ Xk ⊆ V \Bk, (4.4)

Ak ⊆ Ak+1;moreover, Ak ⊊ Ak+1 if λk = βk

and Ak = Ak+1 if λk < βk, (4.5)

Bk ⊆ Bk+1;moreover, Bk ⊊ Bk+1 if λk = αk

and Bk = Bk+1 if λk < αk, (4.6)

g′(pk;χXk
) ≥ g′(pk+1;χXk+1

);

moreover, Xk ⊊ Xk+1 if g′(pk;χXk
) = g′(pk+1;χXk+1

). (4.7)

3It should be understood that αk, βk, Ak, and Bk are defined for each k which is less
than the total number of the iterations executed in the algorithm.
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The proof of Theorem 4.6 is given in Section 4.3.
From this technical theorem we obtain various nice properties which

are peculiar to the steepest ascent algorithm described above for polyhe-
dral L-concave functions and are not shared by the ordinary steepest ascent
algorithm for general concave functions.

The first property is the finite termination of the algorithm.

Theorem 4.7. The steepest ascent algorithm for polyhedral L-concave func-
tions terminates in a finite number of iterations.

Proof. By (4.7) in Theorem 4.6, it suffices to show that g′(pk;χXk
) takes a

value in a finite set of real numbers. Let

D = {g′(p;χX) | p ∈ dom g, X ⊆ V, g′(p;χX) > −∞}.

Since g is a polyhedral concave function, it can be represented as

g(p) = min
1≤i≤t

{aTi p+ bi} (p ∈ dom g)

for some ai ∈ RV and bi ∈ R (i = 1, 2, . . . , t). Hence, if g′(p;χX) > −∞,
then we have g′(p;χX) = aTi χX for some i. This implies that D is a finite
set.

In the following, we denote by m the total number of iterations executed in
the algorithm.

The next property is that the algorithm outputs the maximizer p̂ that
is smallest with p̂ ≥ p◦.

Theorem 4.8. The steepest ascent algorithm outputs the maximizer p̂.

Proof. By (4.2) in Theorem 4.6, we have pk ≤ p̂ for all k. Since pk ≥ p◦,
if pk ̸= p̂, then pk is not a maximizer of g, and the algorithm continues
to the next iteration. Hence, the algorithm outputs the vector p̂ when it
terminates.

The third property is that the trajectory of the solutions generated by the
algorithm is a “shortest” path from the initial solution p◦ to the “nearest”
maximizer p̂ in the sense that the total sum of the step lengths is equal to
the ℓ∞-distance ∥p̂−p◦∥∞ from the initial solution p◦ to the nearest optimal
solution p̂.

Theorem 4.9. The total sum
∑m−1

k=1 λk of the step lengths is equal to ∥p̂−
p◦∥∞.

Proof. By (4.4) in Theorem 4.6, we have

∥p̂− pk+1∥∞ = ∥p̂− pk∥∞ − λk

for k = 1, 2, . . . ,m− 1. This implies
∑m−1

k=1 λk = ∥p̂− p◦∥∞.
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The fourth property is the concavity of the function g on the trajectory
of the solutions generated by the algorithm.

Theorem 4.10. Let ψ : [0,Λm−1] → R be a function defined by

ψ(λ) = g(pk + (λ− Λk−1)χXk
) (k = 1, 2, . . . ,m− 1, Λk−1 ≤ λ ≤ Λk),

where Λk =
∑k

j=1 λj (k = 0, 1, . . . ,m − 1). Then, ψ is a piecewise-linear
increasing concave function.

Proof. For each k = 1, 2, . . . ,m − 1, the function ψ is linear in each subin-
terval and its slope is given by g′(pk;χXk

), which is a positive number due
to the choice of Xk. Hence, the claim follows from (4.7) in Theorem 4.6.

Remark 4.11. We see from Theorem 4.6 that the monotonicity property
of Hassin’s algorithm extends to the steepest ascent algorithm for L-concave
functions. Indeed, Proposition 3.1 for Hassin’s algorithm can be obtained as
a special case of Theorem 4.6 applied to the polyhedral L-concave functions
gH given by (3.1), where g′(pk;χXk

) = I(pk, Xk) for each k.

4.3 Proof

In this section we give a proof of Theorem 4.6. We assume that g : RV →
R ∪ {−∞} is a polyhedral L-concave function that has a maximizer.

Lemma 4.12 ([11, Lemma 4.28]). It holds that

g(p) + g(q) ≤ g(p+ λχX) + g(q − λχX)

for every p, q ∈ dom g and λ ∈ R with 0 ≤ λ ≤ λ′ − λ′′, where

λ′ = max
i∈V

{q(i)− p(i)}, X = argmax{q(i)− p(i) | i ∈ V },

λ′′ = max
i∈V \X

{q(i)− p(i)} (λ′′ = −∞ if V \X = ∅).

The following two lemmas show two properties for the proof of Theorem
4.6. We say that X ⊆ V is a steepest ascent direction of function g at
p ∈ dom g if

g′(p;χX) = max{g′(p;χY ) | Y ⊆ V }.

By Proposition 4.2 and property (LF2) with r = 0, every steepest ascent
directionX is a nonempty proper subset of V if p is not a maximizer of g, i.e.,
∅ ⊊ X ⊊ V . Note that for p ∈ dom g with p ̸∈ argmax g and every steepest
ascent direction X at p, we have c̄(p;χX) < +∞ since g′(p;χX) > 0 holds
by Proposition 4.2 and there exists a maximizer of g by our assumption.

12



Lemma 4.13. Let p ∈ dom g be a vector with p◦ ≤ p ≤ p̂ and p ̸= p̂, and
X be a steepest ascent direction of g at p. Put

A = argmax
i∈V

{p̂(i)− p(i)}, B = {i ∈ V | p̂(i) = p(i)}.

(i) A ⊆ X holds.
(ii) X \B is also a steepest ascent direction at p.
(iii) X ∩B = ∅ holds if X is the unique minimal steepest ascent direction at
p.

Proof. We first note that p is not a maximizer of g. Let ε be a sufficiently
small positive real number such that

g(p+ εχX)− g(p) = εg′(p;χX). (4.8)

To prove (i), assume, to the contrary, that A \X ̸= ∅ holds. Then, we
have

argmax
i∈V

{p̂(i)− (p+ εχX)(i)} = A \X.

Hence, Lemma 4.12 implies that

g(p̂) + g(p+ εχX) ≤ g(p̂− εχA\X) + g(p+ εχX + εχA\X)

= g(p̂− εχA\X) + g(p+ εχX∪A). (4.9)

Since p̂ ≥ p and p̂ ̸= p, we have A \X ⊆ {i ∈ V | p̂(i) > p(i)}. Therefore,
we may assume that ε is chosen so that

p̂ ≥ p̂− εχA\X ≥ p (4.10)

holds. It follows from (4.10) and the choice of p̂ that g(p̂) > g(p̂− εχA\X),
which, together with (4.9), implies g(p + εχX∪A) > g(p + εχX). From this
inequality and (4.8) follows that

εg′(p;χX∪A) ≥ g(p+ εχX∪A)− g(p) > g(p+ εχX)− g(p) = εg′(p;χX),

where the first inequality is by the concavity of g. This, however, is a
contradiction to the choice of X. Hence, we have A \X = ∅, i.e., A ⊆ X.

We then show that X \ B is also a steepest ascent direction at p. We
may assume that X ∩ B ̸= ∅ since otherwise the claim holds immediately.
Then, we have

argmax
i∈V

{(p+ εχX)(i)− p̂(i)} = X ∩B.

It follows from Lemma 4.12 that

g(p+ εχX) + g(p̂) ≤ g(p+ εχX − εχX∩B) + g(p̂+ εχX∩B)

= g(p+ εχX\B) + g(p̂+ εχX∩B). (4.11)

13



Since p̂ is a maximizer of g, we have g(p̂) ≥ g(p̂+ εχX∩B), which, together
with (4.11), implies g(p+ εχX) ≤ g(p+ εχX\B). Hence, it follows that

εg′(p, χX) = g(p+ εχX)− g(p) ≤ g(p+ εχX\B)− g(p) ≤ εg′(p, χX\B),

i.e., X \B is also a steepest ascent direction at p. Hence Claim (ii) holds.
Finally, (iii) follows easily from (ii) since (ii) implies X \B ⊇ X if X is

the unique minimal steepest ascent direction at p.

Lemma 4.14. Let p ∈ dom g be a vector with p ̸∈ argmax g, X ⊆ V
be a steepest ascent direction of g at p, and λ ∈ R be a real number with
0 < λ ≤ c̄(p;χX). Put q = p + λχX , and let Y ⊆ V be a steepest ascent
direction of g at q. Then, the following three properties hold:
(i) g′(p;χX) ≥ g′(q;χY ).
(ii) If g′(p;χX) = g′(q;χY ), then X ∩ Y is also a steepest ascent direction
at p.
(iii) If λ < c̄(p;χX), then X is a steepest ascent direction at q.
Moreover, under the assumption that X (resp., Y ) is the unique minimal
steepest ascent direction at p (resp., at q), the following two properties also
hold:
(iv) If g′(p;χX) = g′(q;χY ), then X ⊆ Y holds.
(v) If λ < c̄(p;χX), then X = Y holds.

Proof. By the choice of λ and concavity of g, we have

g(p+ λχX)− g(p) = λ g′(p;χX). (4.12)

Let ε ∈ R be a positive real number with ε < λ such that

g(q + εχY )− g(q) = εg′(q;χY ). (4.13)

Put q̂ = q + εχY . By (4.12) and (4.13), we have

g(q̂)− g(p) = λg′(p;χX) + εg′(q;χY ). (4.14)

Note that q̂ can be represented as

q̂ = p+ εχX∪Y + (λ− ε)χX + εχX∩Y .

Claim: The following inequalities hold:

g(q̂)− g(q̂ − εχX∩Y ) ≤ εg′(p;χX), (4.15)

g(p+ εχX∪Y + (λ− ε)χX)− g(p+ εχX∪Y ) ≤ (λ− ε)g′(p;χX), (4.16)

g(p+ εχX∪Y )− g(p) ≤ εg′(p;χX). (4.17)

[Proof of Claim] Inequality (4.17) can be shown as follows:

g(p+ εχX∪Y )− g(p) ≤ εg′(p;χX∪Y ) ≤ εg′(p;χX),
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where the first inequality is by the concavity of g and the second inequality
follows from the fact that X is a steepest ascent direction of g at p.

We then prove (4.15). It may be assumed that X∩Y ̸= ∅ since otherwise

g(q̂)− g(q̂ − εχX∩Y ) = g(q̂)− g(q̂) = 0 < εg′(p;χX)

holds, where the inequality follows from p ̸∈ argmax g and Proposition 4.2.
Since argmax{q̂(i)− p(i) | i ∈ V } = X ∩ Y , Lemma 4.12 implies that

g(p) + g(q̂) ≤ g(p+ εχX∩Y ) + g(q̂ − εχX∩Y ),

from which follows that

g(q̂)− g(q̂ − εχX∩Y ) ≤ g(p+ εχX∩Y )− g(p)

≤ εg′(p;χX∩Y ) ≤ εg′(p;χX). (4.18)

Inequality (4.16) can be shown in a similar way as (4.15) as follows.
Lemma 4.12 implies that

g(p) + g(p+ εχX∪Y + (λ− ε)χX)

≤ g(p+ (λ− ε)χX) + g((p+ εχX∪Y + (λ− ε)χX)− (λ− ε)χX)

= g(p+ (λ− ε)χX) + g(p+ εχX∪Y ),

from which follows that

g((p+ εχX∪Y + (λ− ε)χX)− g(p+ εχX∪Y )

≤ g(p+ (λ− ε)χX)− g(p) ≤ (λ− ε)g′(p;χX).

[End of Claim]

Inequalities (4.15), (4.16), and (4.17) imply

g(q̂)− g(p) ≤ (λ+ ε)g′(p;χX). (4.19)

Then, Claim (i) follows from (4.14) and (4.19).
To prove Claims (ii) and (iv), assume that g′(p;χX) = g′(q;χY ). It

follows from (4.14) that g(q̂)− g(p) = (λ+ ε)g′(p;χX), which, together with
the inequalities (4.15), (4.16), and (4.17), implies that all the inequalities
(4.15), (4.16), and (4.17) hold with equality. In particular, we have

g(q̂)− g(q̂ − εχX∩Y ) = εg′(p;χX), (4.20)

from which follows that X ∩ Y ̸= ∅ since g′(p;χX) > 0 by Proposition 4.2.
By (4.18) and (4.20), we have

εg′(p;χX) = g(q̂)− g(q̂ − εχX∩Y ) ≤ g(p+ εχX∩Y )− g(p) ≤ εg′(p;χX∩Y ).
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This shows that X ∩ Y is also a steepest ascent direction of g at p, i.e., (ii)
holds. If X is the unique minimal steepest ascent direction at p, then we
have X ⊆ X ∩ Y , i.e., X ⊆ Y . Thus, (iv) holds.

We finally prove Claims (iii) and (v). For λ < c̄(p;χX), we have g′(q;χX) =
g′(p;χX), which, together with (i), implies

g′(q;χX) = g′(p;χX) ≥ g′(q;χY ).

This shows thatX is also a steepest ascent direction at q and that g′(p;χX) =
g′(q;χY ). If Y is the unique minimal steepest ascent direction at q, we have
X ⊇ Y , which, combined with Claim (iv), implies X = Y .

We now give a proof of Theorem 4.6.
[Proofs of (4.2) and (4.3)] It suffices to show that for k = 1, 2, . . . ,m−1,

if pk ≤ p̂ then λk ≤ min{αk, βk} and pk+1 ≤ p̂ hold.
Assume that pk ≤ p̂ holds. First suppose, to the contrary, that αk < λk.

Let p′ = pk + αkχXk
. Since pk ≤ p̂, the definition of p′ implies p′ ≤ p̂. Note

that p′ is not a maximizer of g since

g(pk+1)− g(p′) = (λk − αk)g
′(pk;χXk

) > 0.

Hence, p′ ̸= p̂ holds. Since p′ is given as p′ = pk + αkχXk
with αk < λk =

c̄(pk;χXk
), the set Xk is also the unique minimal steepest ascent direction

at p′ by Lemma 4.14 (v). By Lemma 4.13, we have Xk ∩ B′ = ∅, where
B′ = {i ∈ V | p̂(i) = p′(i)}. On the other hand, the definition of p′ implies
that B′ contains some element in Xk, a contradiction. Hence, we have
αk ≥ λk.

Next suppose that βk < λk. Let p′′ = pk + βkχXk
. In a similar way as

in the previous case, we can show that p′′ ≤ p̂, p′′ ̸= p̂, and that the set
Xk is also the unique minimal steepest ascent direction at p′′. By Lemma
4.13, we have A′′ ⊆ Xk, where A

′ = argmaxi∈V {p̂(i)− p′′(i)}. On the other
hand, the definition of p′′ implies that A′′ contains some element in V \Xk,
a contradiction. Hence, we have βk ≥ λk.

Finally, the inequality pk+1 ≤ p̂ follows immediately from pk ≤ p̂ and
λk ≤ αk.

[Proof of (4.4)] By Lemma 4.13 applied to p = pk and X = Xk, we
obtain Ak ⊆ Xk ⊆ V \Bk, i.e., (4.4) holds.

[Proofs of (4.5) and (4.6)] Claims (4.5) and (4.6) follow from (4.3),
(4.4), and definitions of αk, βk, and pk+1.

[Proof of (4.7)] The inequality g′(pk;χXk
) ≥ g′(pk+1;χXk+1

) follows
immediately from Lemma 4.14 (i). Suppose that g′(pk;χXk

) = g′(pk+1;χXk+1
)

holds. By the definition of pk+1 (and c̄(pk;χXk
)), we have g′(pk+1;χXk

) <
g′(pk;χXk

), and therefore Xk ̸= Xk+1 holds. This, together with Lemma
4.14 (iv), implies Xk ⊊ Xk+1.

This completes the proof of Theorem 4.6.
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4.4 Computation of Step Size

So far we have assumed that the value c̄(p;χX) is given by some “oracle,”
i.e., that the exact value of c̄(p;χX) can be computed efficiently for every
p ∈ dom g and X ⊆ V . Here we discuss the computation of the value
c̄(p;χX) for a polyhedral L-concave function g.

We can indeed compute the value c̄(p;χX) efficiently for the special case
of polyhedral L-concave functions arising from the minimum cost (submod-
ular) flow problems discussed in Section 3. For the minimum cost flow
problem considered in Section 3.1, the value c̄(p;χX) is equal to λ(p,X)
given by (3.3), which can be computed in linear time in the size of the edge
set E. In the minimum cost submodular flow problem considered in Sec-
tion 3.2, the value c̄(p;χX) is equal to min{λ(p,X), µ(p,X)}, where µ(p,X)
given by (3.6) can also be computed in polynomial time in the size of the
set V .

For a general polyhedral L-concave function g, we can still compute the
value c̄(p;χX) efficiently if the function g has a certain “integrality” property.
For a polyhedral concave function g : RV → R ∪ {−∞} and x ∈ RV , we
denote

argmax g[−x] = argmax{g(p)− pTx | p ∈ dom g}. (4.21)

A polyhedral L-concave function g : RV → R ∪ {−∞} is said to be integral
if for every x ∈ RV with argmax g[−x] ̸= ∅, the polyhedron argmax g[−x]
is integral. Note that the polyhedral L-concave functions gH in (3.1) is
integral if γ(e) ∈ Z ∪ {+∞} for all e ∈ E, and gCT in (3.5) is integral if
γ(e) ∈ Z ∪ {+∞} for all e ∈ E and ρ is an integer-valued function [9].

It is known (see, e.g., [9, Chapter 7]) that for every integral polyhedral
L-concave function g and every x ∈ RV with argmax g[−x] ̸= ∅, there exists
an integer-valued function µ : V × V → Z ∪ {+∞} such that

argmax g[−x] = {p ∈ RV | p(v)− p(u) ≤ µ(u, v) (u, v ∈ V )}.

It follows from this fact that the value c̄(p;χX) is an integer for every p ∈
dom g∩ZV and X ⊆ V . Hence, c̄(p;χX) can be computed exactly by binary
search, and its running time is bounded by log Φ, where

Φ = max
i,j∈V

max{|(p(i)− p(j))− (q(i)− q(j))| | p, q ∈ dom g}.

Even for a non-integral polyhedral L-concave function g, we can compute
an approximate value of c̄(p;χX) with additive error at most ε in time poly-
nomial in log Φ and log(1/ε). Note that if an approximate value of c̄(p;χX)
with additive error at most ε is used in the steepest ascent algorithm, we
can compute a vector p ∈ dom g satisfying

inf{∥p− p∗∥∞ | p∗ ∈ argmax g} ≤ |V | · ε

(i.e., p is in the neighbor of an optimal solution) by the proximity result
shown in [7].
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5 Algorithm for Polyhedral L♮-concave Functions

The steepest ascent algorithm for maximization of polyhedral L-concave
functions is naturally adapted to polyhedral L♮-concave functions. A polyhe-
dral concave function g : RV → R∪{−∞} is said to be polyhedral L♮-concave

if the function g̃ : RṼ → R ∪ {−∞} defined by

g̃(η, p) = g(p− η1) ((η, p) ∈ R× RV = RṼ ) (5.1)

is polyhedral L-concave, where Ṽ = {v0}∪V . Polyhedral L♮-concavity of g is
characterized by the following “translation-supermodularity” [11, Theorem
4.39]:

g(p)+g(q) ≤ g(p∨(q−λ1))+g((p+λ1)∧q) (∀p, q ∈ dom g, ∀λ ≥ 0). (5.2)

We now consider the maximization of a polyhedral L♮-concave function
g : RV → R ∪ {−∞}, where it is assumed that argmax g is nonempty.
The steepest ascent algorithm in Section 4.1 applied to the polyhedral L-
concave function g̃ given by (5.1) with an initial vector (0, p◦) ∈ RṼ yields
the following algorithm for the polyhedral L♮-concave function g and the
initial vector p◦ through the following correspondence (see also [9, Section
10.3.1]):

g̃ g

(η, p) ⇐⇒ q = p− η1
(η, p) + λ(0, χX) ⇐⇒ q + λχX

(η, p) + λ(1, χX) ⇐⇒ q − λχV \X

(5.3)

Steepest Ascent Algorithm for Polyhedral L♮-concave Functions

Step 0: Set k := 1 and p1 := p◦, where p◦ is an initial vector chosen from
dom g.

Step 1: Let σk ∈ {+1,−1} and Xk ⊆ V be a pair of a sign and a set
maximizing the value g′(pk;σk χXk

); if there exists more than one such
pair, then choose σk and Xk according to the following rule:
(i) if there exists such (σk, Xk) with σk = +1, then set σk = +1 and
take a (unique) minimal Xk.
(ii) otherwise, set σk = −1 and take a (unique) maximal Xk.

Step 2: If g′(pk;σk χXk
) ≤ 0, then output the current vector pk and stop

(pk is a maximizer of g).

Step 3: Set λk := c̄(pk;σk χXk
), pk+1 := pk + λk σk χXk

, and k := k + 1.
Go to Step 1.
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The finite termination of the algorithm follows immediately from Theo-
rem 4.7.

Corollary 5.1. The steepest ascent algorithm for polyhedral L♮-concave
functions terminates in a finite number of iterations.

In the following, we denote by m the total number of iterations executed in
the algorithm.

The properties of the steepest ascent algorithm for polyhedral L♮-concave
functions in this section can be derived from the corresponding results for
polyhedral L-concave functions in Section 4.1 through rather mechanical
translations based on the correspondence (5.3). Although the concept of
polyhedral L♮-concave function is equivalent to that of polyhedral L-concave
function by definition, it is emphasized that the class of polyhedral L♮-
concave functions contains that of polyhedral L-concave functions as a spe-
cial case, and accordingly, the results to be established in this section have
wider applicability than those in Section 4.

Remark 5.2. If the steepest ascent algorithm in this section is applied to
a polyhedral L-concave function g, then its behavior coincides with that of
the steepest ascent algorithm for polyhedral L-concave functions in Section
4.1.

For a vector q ∈ RV , define

∥q∥+∞ = max
[
0,max

i∈V
q(i)

]
, ∥q∥−∞ = max

[
0,max

i∈V
{−q(i)}

]
.

Note that ∥q∥+∞+∥q∥−∞ serves as a norm of q (satisfying the axioms of norms),
and accordingly, the value ∥p − q∥+∞ + ∥p − q∥−∞ represents a “distance”
between two vectors p and q.

Let

η̂ = min{η | η ∈ R+, ∃p ∈ argmax g s.t. p ≥ p◦ − η1}, (5.4)

and denote by p̂ the unique minimal maximizer of g under the condition p̂ ≥
p◦− η̂1. Note that the vector (η̂, p̂+ η̂1) is the unique minimal maximizer of
the associated L-concave function g̃ under the condition (η̂, p̂+ η̂1) ≥ (0, p◦),
and satisfies

∥(η̂, p̂+ η̂1)− (0, p◦)∥∞ = ∥p̂− p◦∥+∞ + ∥p̂− p◦∥−∞. (5.5)

The maximizer p̂ is “nearest” to the initial vector p◦ in the following
sense.

Proposition 5.3. The maximizer p̂ satisfies

∥p̂−p◦∥+∞+∥p̂−p◦∥−∞ = min{∥p−p◦∥+∞+∥p−p◦∥−∞ | p ∈ argmax g}. (5.6)
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Proof. Let η̂ be the real number defined by (5.4). Since the vector (η̂, p̂+ η̂1)
is the unique minimal maximizer of g̃ under the condition (η̂, p̂ + η̂1) ≥
(0, p◦), we have

∥(η̂, p̂+ η̂1)− (0, p◦)∥∞
= min{∥(ζ, p+ ζ1)− (0, p◦)∥∞ | (ζ, p+ ζ1) ∈ argmax g̃,

(ζ, p+ ζ1) ≥ (0, p◦)}. (5.7)

The left-hand side of (5.7) can be rewritten by (5.5). On the right-hand side
of (5.7), we have

(ζ, p+ ζ1) ∈ argmax g̃ ⇐⇒ p ∈ argmax g,

(ζ, p+ ζ1) ≥ (0, p◦) ⇐⇒ ζ ≥ ∥p− p◦∥−∞,

and the latter implies

∥(ζ, p+ ζ1)− (0, p◦)∥∞ = ∥p− p◦∥+∞ + ζ.

Therefore, the right-hand side of (5.7) is equal to

min{∥p− p◦∥+∞ + ∥p− p◦∥−∞ | p ∈ argmax g}.

Hence, the equation (5.6) follows from (5.7).

The next property, which follows from Theorem 4.8, states that the
algorithm outputs the “nearest” maximizer p̂.

Corollary 5.4. The steepest ascent algorithm for polyhedral L♮-concave
functions outputs the maximizer p̂.

As in Theorem 4.9, the trajectory of the solutions generated by the
algorithm is a “shortest” path from the initial solution p◦ to the “nearest”
maximizer p̂.

Corollary 5.5. The total sum
∑m−1

k=1 λk of the step lengths is equal to ∥p̂−
p◦∥+∞ + ∥p̂− p◦∥−∞.

Proof. By Theorem 4.9 applied to the L-concave function g̃ and the initial
vector (0, p◦), it holds that

m−1∑
k=1

λk = ∥(η̂, p̂+ η̂1)− (0, p◦)∥∞ = ∥p̂− p◦∥+∞ + ∥p̂− p◦∥−∞,

where the second equality is due to (5.5).

The next property is the concavity of the function g on the trajectory of
the solutions generated by the algorithm.
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Corollary 5.6. Let ψ : [0,Λm−1] → R be a function defined by

ψ(λ) = g(pk + (λ−Λk−1)σkχXk
) (k = 1, 2, . . . ,m− 1, Λk−1 ≤ λ ≤ Λk),

where Λk =
∑k

j=1 λj (k = 0, 1, . . . ,m − 1). Then, ψ is a piecewise-linear
increasing concave function.

Proof. The claim follows from Theorem 4.10 and the correspondence (5.3)
between the two algorithms.

We finally show some monotonicity properties of the algorithm by using
Theorem 4.6. For q ∈ RV , we denote

supp+(q) = {i ∈ V | q(i) > 0}, supp−(q) = {i ∈ V | q(i) < 0}.

For k = 1, 2, . . . ,m, we define sets Ak, Bk ⊆ V by

Ak = argmax{p̂(i)− pk(i) | i ∈ V, p̂(i) ≥ pk(i)}

=

{
argmax{p̂(i)− pk(i) | i ∈ V } (if supp+(p̂− pk) ̸= ∅),
{i ∈ V | p̂(i) = pk(i)} (if supp+(p̂− pk) = ∅),

Bk = argmin{p̂(i)− pk(i) | i ∈ V, p̂(i) ≤ pk(i)}

=

{
argmin{p̂(i)− pk(i) | i ∈ V } (if supp−(p̂− pk) ̸= ∅),
{i ∈ V | p̂(i) = pk(i)} (if supp−(p̂− pk) = ∅),

ηk =
∑

{λj | 1 ≤ j ≤ k − 1, σj = −1},

where pk is the vector in the k-th iteration of the steepest ascent algorithm.

Corollary 5.7. In the steepest ascent algorithm for a polyhedral L♮-concave
function g, the following hold for k = 1, 2, . . . ,m− 1:
(i) (ηk, pk + ηk1) ≤ (η̂, p̂+ η̂1).
(ii) Ak ⊆ Xk ⊆ V \Bk if σk = +1; Bk ⊆ Xk ⊆ V \Ak if σk = −1.
(iii) Ak ⊆ Ak+1 and Bk ⊆ Bk+1.
(iv) g′(pk;σkχXk

) ≥ g′(pk+1;σk+1χXk+1
); moreover, if

g′(pk;σkχXk
) = g′(pk+1;σk+1χXk+1

),

then we have the following:
(iv-a) If σk = −1, then σk+1 = −1.
(iv-b) If σk = σk+1 = +1, then Xk ⊊ Xk+1.
(iv-c) If σk = σk+1 = −1, then Xk ⊋ Xk+1.
(iv-d) If σk = +1 and σk+1 = −1, then Xk ⊆ V \Xk+1.

Proof. For k = 1, 2, . . . ,m, let p̃k ∈ RṼ and X̃k ⊆ Ṽ be the variables
obtained in the k-th iteration of the steepest ascent algorithm in Section 4.1
applied to the L-concave function g̃ and the initial vector p̃◦ = (0, p◦). Note
that

p̃1 = p̃◦, p̃m = (η̂, p̂+ η̂1).
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We denote p̃∗ = (η̂, p̂+ η̂1), and define

Ãk = argmax{p̃∗(i)− p̃k(i) | i ∈ Ṽ },
B̃k = {i ∈ Ṽ | p̃∗(i)− p̃k(i) = 0}.

Then, Theorem 4.6 implies the following properties:

(i ′) p̃k ≤ p̃∗.
(ii ′) Ãk ⊆ X̃k ⊆ Ṽ \ B̃k.
(iii ′) Ãk ⊆ Ãk+1 and B̃k ⊆ B̃k+1.
(iv ′) g̃′(p̃k;χX̃k

) ≥ g̃′(p̃k+1;χX̃k+1
); moreover, X̃k ⊊ X̃k+1 if

g̃′(p̃k;χX̃k
) = g̃′(p̃k+1;χX̃k+1

).

We show below that Claims (i), (ii), (iii), and (iv) follow from (i ′), (ii ′),
(iii ′), and (iv ′), respectively.

By the correspondence (5.3) between the two algorithms, the following
property holds:

if σk = +1, then v0 ̸∈ X̃k and Xk = X̃k;

if σk = −1, then v0 ∈ X̃k and Xk = V \ X̃k.

}
(5.8)

Hence, we have ηk = p̃k(v0) for all k, and therefore p̃k = (ηk, pk+ηk1) holds.
From this and (i ′), Claim (i) follows.

We then prove (ii) and (iii). By (ii ′), (iii ′), and (5.8), it suffices to show
that Ãk ∩ V = Ak and B̃k ∩ V = Bk. Since

max{p̃∗(i)− p̃k(i) | i ∈ Ṽ }
= max

[
η̂ − ηk, max{(p̂(i) + η̂)− (pk(i) + ηk) | i ∈ V }

]
= η̂ − ηk +max

[
0,max{p̂(i)− pk(i) | i ∈ V }

]
,

it holds that

Ãk =

{
argmax{p̂(i)− pk(i) | i ∈ V } (if supp+(p̂− pk) ̸= ∅),
{i ∈ V | p̂(i) = pk(i)} ∪ {v0} (if supp+(p̂− pk) = ∅). (5.9)

Hence, we have Ãk ∩ V = Ak.
Note that B̃k is rewritten as

B̃k = argmin{p̃∗(i)− p̃k(i) | i ∈ Ṽ }

since B̃k ̸= ∅ and p̃∗ ≥ p̃k for each k. Hence, we can show the following
equation in the same way as (5.9):

B̃k =

{
argmin{p̂(i)− pk(i) | i ∈ V } (if supp−(p̂− pk) ̸= ∅),
{i ∈ V | p̂(i) = pk(i)} ∪ {v0} (if supp−(p̂− pk) = ∅). (5.10)

This implies B̃k ∩ V = Bk, and therefore Claims (ii) and (iii) hold.
Finally, Claim (iv) follows from (iv ′) and (5.8).
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6 Variant of Steepest Ascent Algorithm

We discuss a variant of the steepest ascent algorithm for polyhedral L-
concave functions, where the set Xk in Step 1 is chosen arbitrarily from
among the sets maximizing the value g′(pk;χXk

) (i.e., not necessarily mini-
mal); in this section we call this variant the modified (steepest ascent) algo-
rithm.

We see from Proposition 4.2 that the modified algorithm still outputs a
maximizer of a polyhedral L-concave function g if it terminates. While the
output of the algorithm is not necessarily the unique minimal maximizer
p̂ of g under the condition p̂ ≥ p◦, the output inherits a nice property of
p̂ as shown in Section 6.1 (see Theorems 6.1 and 6.2). In addition, it is
shown that the modified algorithm terminates if the function g has a certain
“rationality” property (see Theorem 6.3).

On the other hand, we demonstrate in Section 6.2 that the modified
algorithm may not terminate in any finite number of iterations if the function
g is not “rational.” This fact shows that the choice of the unique minimal
steepest ascent direction is essential for the finite termination of the steepest
ascent algorithm for polyhedral L-concave functions.

6.1 Monotonicity Properties of Modified Algorithm

We show three properties of the modified algorithm. The first property is
that the output is the “nearest” maximizer of g from the initial vector p◦.
This property is a generalization of Theorem 4.8 (see (4.1)).

Theorem 6.1. Suppose that the modified steepest ascent algorithm for a
polyhedral L-concave function g with the initial solution p◦ ∈ dom g termi-
nates. Then, the output p∗ of the algorithm is a maximizer of g satisfying

∥p∗ − p◦∥∞ = min{∥p− p◦∥∞ | p ∈ argmax g, p ≥ p◦}. (6.1)

Note that (6.1) with (4.1) shows ∥p∗ − p◦∥∞ = ∥p̂− p◦∥∞, which, however,
does not imply p∗ = p̂.

The second property, which is a generalization of Theorem 4.9, is that
the trajectory of the solutions generated by the modified algorithm is a
“shortest” path from the initial solution p◦ to the “nearest” maximizer p∗.

Theorem 6.2. Suppose that the modified steepest ascent algorithm for a
polyhedral L-concave function g with the initial solution p◦ ∈ dom g termi-
nates after m iterations. Then, the total sum

∑m−1
k=1 λk of the step lengths

is equal to ∥p∗ − p◦∥∞.

The third property is that the modified algorithm terminates if the
function g has a certain “rationality” property. Recall the definition of
argmax g[−x] for x ∈ RV in (4.21).
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Theorem 6.3. The modified steepest ascent algorithm for a polyhedral L-
concave function g with the initial solution p◦ ∈ dom g terminates in a finite
number of iterations if the following conditions hold:
• for every x ∈ RV with argmax g[−x] ̸= ∅, the polyhedron argmax g[−x] is
rational,
• the initial solution p◦ is a rational vector.

Proofs of Theorems 6.1, 6.2, and 6.3 are given below, where the following
lemma is crucial.

Lemma 6.4. Let p ∈ dom g be a vector that is not a maximizer of g, and
X ⊆ V be a steepest ascent direction at p. Also, let p̄ be the unique minimal
maximizer of g under the condition p̄ ≥ p. Then, the following properties
hold with λ̄ = c̄(p;χX):
(i) For every λ ∈ [0, λ̄], the vector p̄λ = p̄∨ (p+λχX) is the unique minimal
maximizer of g under the condition p̄λ ≥ p+ λχX .
(ii) For every λ ∈ [0, λ̄], it holds that ∥p̄λ − (p+ λχX)∥∞ = ∥p̄− p∥∞ − λ.

Proof. [Proof of (i)] Let λ∗ ∈ [0, λ̄] be the maximum real number such
that p̄λ ∈ argmax g for every λ ∈ [0, λ∗]. In the following, we assume, to
the contrary, that λ∗ < λ̄ and derive a contradiction.

Put q = p + λ∗χX and qε = p + (λ∗ + ε)χX with a sufficiently small
positive real number ε. Then, for Y = {i ∈ X | p̄(i) ≤ p(i) + λ∗}, we have

qε ∧ p̄λ∗ = q + εχX\Y , qε ∨ p̄λ∗ = p̄λ∗+ε.

By (LF1) for g, it holds that

g(qε) + g(p̄λ∗) ≤ g(qε ∧ p̄λ∗) + g(qε ∨ p̄λ∗) = g(q+ εχX\Y ) + g(p̄λ∗+ε). (6.2)

By Lemma 4.14 (iii), X is a steepest ascent direction at q since λ∗ < λ̄.
Hence, we have

g′(q;χX) ≥ g′(q;χX\Y ),

from which follows that

g(qε)− g(q) = εg′(q;χX) ≥ εg′(q;χX\Y ) ≥ g(q + εχX\Y )− g(q), (6.3)

where the second inequality is by the concavity of g. By (6.2) and (6.3), it
holds that g(p̄λ∗) ≤ g(p̄λ∗+ε), i.e., p̄λ∗+ε ∈ argmax g.

We can choose ε sufficiently small so that

p̄λ = p̄λ∗ + (λ− λ∗)χY (λ∗ ≤ ∀λ ≤ λ∗ + ε)

holds. This, together with the concavity of g, implies that p̄λ ∈ argmax g
for every λ ∈ [λ∗, λ∗ + ε] since p̄λ∗ , p̄λ∗+ε ∈ argmax g. Hence, we have
p̄λ ∈ argmax g for every λ ∈ [0, λ∗ + ε], a contradiction to the definition of
λ∗. Hence, we have λ∗ = λ̄ and p̄λ ∈ argmax g for every λ ∈ [0, λ̄].

24



It remains to show the minimality of p̄λ, i.e., that for every λ ∈ [0, λ̄], if
q is a maximizer of g with q ≥ p+ λχX , then it satisfies q ≥ p̄λ. Since q is
a maximizer of g with q ≥ p+ λχX ≥ p, we have q ≥ p̄ by the definition of
p̄. This inequality and q ≥ p+ λχX imply that q ≥ p̄ ∨ (p+ λχX) = p̄λ.

[Proof of (ii)] Let λ be a real number with 0 ≤ λ < λ̄. To prove

∥p̄λ − (p+ λχX)∥∞ = ∥p̄− p∥∞ − λ, (6.4)

it suffices to show the following:

∥p̄λ − (p+ λχX)∥∞ = max{p̄(i)− p(i) | i ∈ X} − λ, (6.5)

∥p̄λ − (p+ λχX)∥∞ ≥ max{p̄(i)− p(i) | i ∈ V \X} − λ, (6.6)

since

∥p̄− p∥∞ = max
[
max{p̄(i)− p(i) | i ∈ X}, max{p̄(i)− p(i) | i ∈ V \X}

]
.

We first prove (6.5). By Lemma 4.14 (iii) and λ < λ̄, the set X is a
steepest ascent direction at p+ λχX . Hence, Lemma 4.13 (i) implies that

argmax{p̄λ(i)− (p+ λχX)(i) | i ∈ V } ⊆ X, (6.7)

since p̄λ is the unique minimal maximizer of g under the condition p̄λ ≥
p+ λχX by Claim (i) of this lemma. From (6.7) follows that

∥p̄λ − (p+ λχX)∥∞ = max{p̄λ(i)− (p+ λχX)(i) | i ∈ X}
= max

{
max(p̄(i)− p(i)− λ, 0) | i ∈ X

}
= max

[
max{p̄(i)− p(i) | i ∈ X} − λ, 0

]
= max

[
RHS of (6.5), 0

]
,

where p̄λ = p̄∨(p+λχX) is used. In addition, we have ∥p̄λ−(p+λχX)∥∞ ̸= 0,
since p+ λχX is not a maximizer of g by:

g(p+ λχX) = g(p+ λ̄χX)− (λ̄− λ)g′(p;χX) < g(p+ λ̄χX).

Therefore, we have (6.5). The inequality (6.6) can be shown easily as follows:

∥p̄λ − (p+ λχX)∥∞ ≥ max{p̄λ(i)− (p+ λχX)(i) | i ∈ V \X}
= max{p̄(i)− p(i) | i ∈ V \X}
≥ max{p̄(i)− p(i) | i ∈ V \X} − λ.

From (6.5) and (6.6) follows (6.4) for every λ with 0 ≤ λ < λ̄. By the
continuity of the norm, the equation (6.4) also holds with λ = λ̄. This
concludes the proof of (ii).
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Proof of Theorems 6.1 and 6.2. We now prove Theorems 6.1 and 6.2. Sup-
pose that the algorithm terminates in m iterations, and let p∗ be the output
of the algorithm, i.e., p∗ = pm. Since p∗ ≥ p◦, we have

∥p∗ − p◦∥∞ ≥ min{∥p− p◦∥∞ | p ∈ argmax g, p ≥ p◦} = ∥p̂− p◦∥∞,

where the equality is by (4.1). We also have

∥p∗ − p◦∥∞ = ∥(p◦ +
m−1∑
k=1

λkχXk
)− p◦∥∞ ≤

m−1∑
k=1

λk.

Hence, it suffices to show that

∥p̂− p◦∥∞ =

m−1∑
k=1

λk. (6.8)

We prove (6.8). Repeated application of Lemma 6.4 implies that for
k = 1, 2, . . . ,m, the vector p̂∨ pk is the unique minimal maximizer of g that
is lower-bounded by pk, and satisfies

∥(p̂ ∨ pk)− pk∥∞ = ∥(p̂ ∨ pk−1)− pk−1∥∞ − λk−1 = ∥p̂− p◦∥∞ −
k−1∑
j=1

λj .

Hence, we have p̂ ∨ pm = pm since pm ∈ argmax g. Therefore, (6.8) holds.
This concludes the proofs of Theorems 6.1 and 6.2.

Proof of Theorem 6.3. We first give a proof for the special case where

• g is an integral polyhedral L-concave function, i.e., for every
x ∈ RV with argmax g[−x] ̸= ∅, the polyhedron argmax g[−x] is
integral (see Section 4.4 for the definition of integral polyhedral
L-concave function),
• the initial solution p◦ is an integral vector.

Then, the value c̄(p;χX) is an integer for every p ∈ dom g ∩ZV and X ⊆ V ,
as shown in Section 4.4. Hence, we can inductively show that the vector pk
as well as the step size λk are integral for each k. This fact and Lemma 6.4
(ii) imply that

∥p̂k+1 − pk+1∥∞ = ∥p̂k − pk∥∞ − λk ≤ ∥p̂k − pk∥∞ − 1 (k = 1, 2, . . .),

where p̂k denotes the unique minimal maximizer of g under the condition
that p̂k ≥ pk. Hence, the number of iterations is at most ∥p̂1 − p1∥∞ =
∥p̂− p◦∥∞.

We then consider the general case. Since g is a polyhedral concave func-
tions, there exist a finite number of distinct sets of the form argmax g[−x].
Hence, there exists a positive integer τ such that
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• the function gτ : RV → R ∪ {−∞} given by gτ (p) = g(τp)
(p ∈ RV ) is an integral polyhedral L-concave function,
• τp◦ is an integral vector with τp◦ ∈ dom gτ .

We see that the behavior of of the modified steepest ascent algorithm applied
to g with the initial vector p◦ is essentially the same as that of the modified
steepest ascent algorithm applied to gτ with the initial vector τp◦, which
terminates in a finite number of iterations by the discussion above. This
concludes the proof.

6.2 A Bad Instance for the Modified Algorithm

We show that the modified algorithm may not terminate in any finite number
of iterations by using the polyhedral L-concave function gT arising from
the maximum weight tension problem (MWT) described in Section 2. In
particular, we consider a special case of the problem (MWT), which we call
the maximum linear-weight tension problem, where the weight function φuv

for (u, v) ∈ E is of the form

φuv(α) =

{
κ(u, v)α (if µ(u, v) ≤ α ≤ µ(u, v)),

−∞ (otherwise)

with κ(u, v) ∈ R and µ(u, v), µ(u, v) ∈ R. The function gT : RV → R∪{−∞}
associated with the maximum linear-weight tension problem is represented
as

gT(p) =


∑

(u,v)∈E

κ(u, v)(p(u)− p(v)) (if p ∈ P ),

−∞ (otherwise),

(6.9)

where

P = {p ∈ RV | µ(u, v) ≤ p(u)− p(v) ≤ µ(u, v) (∀(u, v) ∈ E)}. (6.10)

Note that gT is a linear function on dom gT = P .
We consider the function gT in (6.9) associated with an instance of the

maximum linear-weight tension problem given in Figure 1, which is a modi-
fication of the one in McCormick and Shioura [6] (see also Queyranne [13]).
Only the five broken edges have nonzero value of κ(u, v); κ(s, t) = +1, and
each of four arcs (u, v) = (s, 7), (7, 3), (8, 4), and (4, t) has κ(u, v) = K with
a sufficiently large positive number K. We set µ(u, v) = 0 for all (u, v) ∈ E.
The value µ(u, v) of each edge (u, v) is indicated in the figure, where

r = (
√
5− 1)/2, S1 = (1 + r)/2, S2 = 1/2, S3 = r/2,

and M is a sufficiently large positive number. These numbers satisfy the
identities

1 = r + r2,

S1 − r = r3S1, S2 − r2 = r3S2, S3 − r3 = r3S3,
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Figure 1: A bad instance for the modified algorithm. The number associated
with an edge (u, v) means the upper capacity µ(u, v).

and the inequalities 1 > S1 > r > S2 > r2 > S3 > r3 > S1 − r = r3S1. The
three thick edges (11, 10), (9, 6), and (5, 2) are special edges, which control
the behavior of the algorithm.

Suppose that the modified steepest ascent algorithm is applied to this
function with the initial vector p1 = 0. Set X1 = {s, 8, 9, 10, 11, 12} is a
steepest ascent direction at p1, where (gT)

′(p1;χX1) = 2K + 1. We assume
that this steepest ascent direction is selected in the first iteration. Then,
each component p1(i) for i ∈ X1 is incremented by c̄(p1;χX1) = r, i.e.,

p2(i) =

{
r (if i ∈ X1),
0 (otherwise).

In the second iteration, the set X2 = X1∪{4, 5, 6, 7} is a steepest ascent
direction, where (gT)

′(p2;χX2) = 2K + 1. We assume that this steepest
ascent direction is selected in the second iteration. Then, each component
p2(i) for i ∈ X2 is incremented by c̄(p2;χX2) = 1, i.e.,

p3(i) =


1 + r (if i ∈ X1),
1 (if i ∈ X2 \X1),
0 (otherwise).

The values of pk(u) − pk(v) at the beginning of the k-th iteration with
k = 1, 2, 3 are shown in Table 1. In the analysis below, we mainly consider
changes of values pk(u)− pk(v) for edges (u, v) rather than the components
pk(u) for u ∈ V of the vector pk.
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Table 1: The values pk(u)−pk(v) for (u, v) ∈ E at the beginning of the k-th
iteration.

k (4, t) (8, 4) special edges
(7, 3) (s, 7) (11, 10) (9, 6) (5, 2)

1 0 0 0 0 0

2 0 r 0 r 0

3ℓ 1 r 0 r3ℓ−2 r3ℓ−3

3ℓ+ 1 1 r r3ℓ−2 0 r3ℓ−1

3ℓ+ 2 1 r r3ℓ r3ℓ−1 0

k edges with
µ(u, v) = S1 µ(u, v) = S2 µ(u, v) = S3

1 0 0 0

2 0 0 0

3ℓ S1(1− r3ℓ−3) S2(1− r3ℓ−3) S3(1− r3ℓ−3)

3ℓ+ 1 S1(1− r3ℓ) S2(1− r3ℓ−3) S3(1− r3ℓ−3)

3ℓ+ 2 S1(1− r3ℓ) S2(1− r3ℓ) S3(1− r3ℓ−3)

Note that in the following iterations, every steepest ascent direction X
must satisfy the following conditions:

s ∈ X, t ∈ V \X, {s, 7} ∪ {7, 3} ⊆ X, {8, 4} ∪ {4, t} ⊆ V \X.

Hence, every steepest ascent direction X has the value of the directional
derivative equal to 1 in the following iterations.

Repeated choice of the same steepest ascent directions starts from the
third iteration. In the 3ℓ-th iteration with ℓ ≥ 1, we can select a steepest
ascent direction

X3ℓ = {s, 1, 2, 3, 6, 7, 11, 12}, with (gT)
′(p3ℓ;χX3ℓ

) = 1, c̄(p3ℓ;χX3ℓ
) = r3ℓ−2.

Note that the set X3ℓ cuts all edges in G with capacity S1, i.e., u ∈ X3ℓ

and v ̸∈ X3ℓ for each edge (u, v) with capacity S1. Note also that X3ℓ is
not a minimal steepest ascent direction at p3ℓ; the minimal steepest ascent
direction is given by {s, 3, 7}.

Similarly, in the (3ℓ+1)-st and (3ℓ+2)-nd iterations, we can select steep-
est ascent directionsX3ℓ+1 = {s, 2, 3, 7, 9, 10, 12} andX3ℓ+2 = {s, 3, 5, 6, 7, 10},
respectively, as

(gT)
′(p3ℓ+1;χX3ℓ+1

) = 1, c̄(p3ℓ+1;χX3ℓ+1
) = r3ℓ−1,

(gT)
′(p3ℓ+2;χX3ℓ+2

) = 1, c̄(p3ℓ+2;χX3ℓ+2
) = r3ℓ.

This shows that in the following iterations, there always exists a steepest
ascent direction with a positive value of the directional derivative. Hence,
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the modified steepest ascent algorithm applied to the function gT given
above does not terminate in any finite number of iterations. It should be
noted that this bad instance also shows that even if a given function is
linear on its effective domain, the modified steepest ascent algorithm may
not terminate in any finite number of iterations.

Remark 6.5. We see that the sequence of vector pk generated by the mod-
ified steepest ascent algorithm applied to the bad instance converges to an
optimal solution of the maximum linear-weight tension problem. This in-
stance can be modified so that pk does not converge to any optimal solution
(and the algorithm does not terminate in any finite number of iterations).

Let us consider a directed graph obtained from the one in Figure 1 by
adding a new vertex t′ and a new edge (t, t′), where µ(t, t′) = 1, µ(t, t′) = 0,
and κ(t, t′) is a real number with 0 < κ(t, t′) < 1. If we apply the modified
steepest ascent algorithm to the new instance, then the same sequence of
steepest ascent directions can be selected since κ(t, t′) < 1. Therefore, we
have pk(t) = pk(t

′) = 0 for all k, while every optimal solution p∗ of this
instance satisfies p∗(t) − p∗(t′) = µ(t, t′) > 0. Hence, pk does not converge
to any optimal solution.

6.3 A Bad Instance for the Modified Hassin’s Algorithm

In each iteration of Hassin’s algorithm in Section 3.1, the unique minimal
maximizer X ⊆ V of the value I(p,X) is chosen and used to update the
vector p. We point out that the choice of the unique minimal set is essential
for the finite termination of Hassin’s algorithm. We show that a modi-
fied version of Hassin’s algorithm, where X is not necessarily the minimal
maximizer of the value I(p,X), does not terminate in any finite number of
iterations for some instance of the dual of the minimum cost flow problem.
This modified version of Hassin’s algorithm coincides with a special case of
the modified steepest ascent algorithm considered in this section applied to
the polyhedral L-concave function in (3.1).

In the following, we show that every instance of the maximum linear-
weight tension problem can be transformed to an instance of the dual of
a minimum cost flow problem. According to this transformation, the bad
instance in Section 6.2 yields a bad instance for the modified Hassin’s algo-
rithm.

Consider an instance of the maximum linear-weight tension problem
given by a directed graph G = (V,E) and values κ(u, v), µ(u, v), µ(u, v) ∈ R
for (u, v) ∈ E. Recall that the set P of feasible vectors is given by (6.10).
We assume that P ̸= ∅. We define an instance of the dual of a minimum
cost flow problem on a directed graph G̃ = (Ṽ , Ẽ) with Ṽ = V and

Ẽ = {e′, e′′ | e′, e′′ are copies of e ∈ E}∪{ē | ē is the reverse edge of e ∈ E}.
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With sufficiently large positive numbers Γ and C, we set

γ(e′) = −Γ, c(e′) = κ(e),

γ(e′′) = −µ(e), c(e′′) = C,

γ(ē) = µ(e), c(ē) = C.

Then, the objective function of the dual minimum cost flow problem in (3.1)
is given as follows:

gH(p) =
∑

(u,v)∈E

κ(u, v)min{0, p(u)− p(v)− Γ}

+
∑

(u,v)∈E

C
[
min{0, p(u)− p(v)− µ(u, v)}

+min{0, p(v)− p(u) + µ(u, v)}
]
.

We show that the resulting instance of the dual minimum cost flow prob-
lem is equivalent to the given instance of the maximum linear-weight tension
problem. Since C is sufficiently large, every maximizer p of the function gH
satisfies

p(u)− p(v)− µ(u, v) ≥ 0, p(v)− p(u) + µ(u, v) ≥ 0 ((u, v) ∈ E),

i.e., argmax gH ⊆ P . Since Γ is also sufficiently large, we have

min{0, p(u)− p(v)− Γ} = p(u)− p(v)− Γ

for p ∈ P , which implies that

gH(p) =
∑

(u,v)∈E

κ(u, v)(p(u)− p(v)− Γ)

=
∑

(u,v)∈E

κ(u, v)(p(u)− p(v))− Γ
∑

(u,v)∈E

κ(u, v) (p ∈ P ),

where
∑

(u,v)∈E κ(u, v)(p(u)−p(v)) is equal to the objective function value of
the maximum linear-weight tension problem, and the term Γ

∑
(u,v)∈E κ(u, v)

is a constant. Hence, the set of optimal solutions of the dual minimum cost
flow problem coincides with that of the maximum linear-weight tension prob-
lem. Since C is sufficiently large, every steepest ascent direction X of gH
at p ∈ P satisfies the condition that p + ε′χX ∈ P for ε′ ∈ [0, ε] with a
sufficiently small ε > 0. This fact implies that the behavior of the modified
Hassin’s algorithm for the instance of the maximum linear-weight tension
problem coincides with that of the modified steepest ascent algorithm for
the given instance of the dual minimum cost flow problem.
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