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Abstract

Exponentially-fitted (EF) methods are special methods for ordinary differential equa-
tions that better catch periodic/oscillatory solutions. Such solutions often appear in
Hamiltonian systems, and in view of this, symplectic or energy-preserving variants of
EF methods have been intensively studied recently. In these studies, the symplectic
variants have been further applied to Poisson systems, while such a challenge has not
ever been done for the energy-preserving variants. In this paper, we propose an energy-
preserving EF method for Poisson systems, with special emphasis on the second-/fourth-
order schemes.

1 Introduction

In this paper1, we consider numerical integration of Poisson systems of the form

ẏ = Λ(y)∇H(y), y(t0) = y0,

where y ∈ Rn, Λ(y) is a skew-symmetric matrix and the dot on y stands for the differentiation
with respect to time. It is well known that the energy (Hamiltonian) H(y) is constant along
the solution:

Ḣ(y(t)) = ∇H(y(t))⊤ẏ(t) = ∇H(y(t))⊤Λ(y(t))∇H(y(t)) = 0,

and Poisson systems often have periodic or oscillatory solutions. With these considerations,
the aim of this paper is to construct energy-preserving integrators specially tuned for periodic
or oscillatory solutions.

There have been a lot of studies on energy-preserving methods for Hamiltonian systems
in which the matrix Λ is independent of y. The average vector field (AVF) method [20]

y1 = y0 + hΛ

∫ 1

0
∇H(y0 + τ(y1 − y0)) dτ

1This work is a full version of our recent report [16] with detailed discussions.
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is a unified way of constructing energy-preserving integrators for Hamiltonian systems (see
also [11] for the discrete gradient method). The AVF method is of order two. Hairer extended
the method to higher-order [12] by introducing continuous stage Runge–Kutta (CSRK) meth-
ods. But Poisson systems require an additional technique, due to the dependence of the
matrix Λ on y(t). Cohen–Hairer [6] succeeded in constructing arbitrary high-order energy-
preserving schemes for Poisson systems by introducing an idea of partitioned methods. The
simplest second-order example reads

y1 = y0 + hΛ

(
y0 + y1

2

)∫ 1

0
∇H(y0 + τ(y1 − y0)) dτ. (1)

Note that in (1) Λ(y) and ∇H(y) are discretised in a different manner.
On the other hand, for ordinary differential equations with periodic or oscillatory solu-

tions, there have been a lot of research activities. For example, trigonometric methods for
second-order ODEs and exponentially-fitted methods for first-order ODEs have been studies
in the last few decades. Among them, we focus on exponentially-fitted (EF) methods [7, 8,
9, 14, 17, 18, 19, 23, 24, 25, 27]. The idea of EF methods is to construct numerical one-step
methods which exactly solve problems whose solution belongs to the linear space spanned
by

F = {exp(λ1t), . . . , exp(λrt)}, λi ∈ C.

Recently, symplectic EF methods have been developed for Hamiltonian systems (see,
e.g., [1, 2, 3, 4, 5, 10, 21, 22, 26]). Moreover, the methods can be (at least formally) applied
to Poisson systems, and in some papers above, this has been done. For both systems,
numerical experiments showed the effectiveness of the methods, though strictly speaking,
for Poisson systems, there has been no rigorous, theoretical discussions as far as the author
understands. From the perspective of geometric numerical integration, these works motivate
us to consider energy-preserving EF counterparts. The present author proposed an energy-
preserving EF method for Hamiltonian systems by introducing an algebraic condition of
energy-preservation in terms of CSRK methods [15]. Although this method can be simply
applied to Poisson systems like as in the symplectic versions, in this paper we do not take this
approach since such a formal application should obviously destroy the energy-preservation
of Poisson systems, and thus such an approach does not make good sense. Instead, in
this paper, we aim at a stronger result: namely, we give a new, rigorous framework for
constructing EF schemes which exactly inherit the energy-preservation property of Poisson
systems. When the new method is applied to Hamiltonian systems, it reduces to the existing
energy-preserving EF method.

The construction of the new method is based on the so called partitioned CSRK (PCSRK)
methods. We show characterisations of energy-preservation and symmetry properties in
terms of PCSRK methods, and based on them we give the new framework. There, the
biggest difficulty is that a PCSRK method contains more parameters than a CSRK method,
and all parameters have to be determined in terms of elementary functions. We illustrate how
this can be done taking the derivation of second- and fourth-order schemes as our working
examples.

This paper is organised as follows. In Section 2.1, we give energy-preservation and sym-
metry conditions for Poisson systems in terms of partitioned CSRK (PCSRK) methods. In
Section 2.2, we introduce the concept of EF methods by illustrating the derivation of energy-
preserving EF CSRK methods for Hamilton systems. In Section 3, we derive second- and
forth-order energy-preserving EF schemes. Section 4 is devoted to numerical experiments,
where we consider the Euler equations. In Section 5, we conclude this paper.
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2 Preliminaries

2.1 Characterisations of energy-preserving methods

We first summarise energy-preservation and symmetry characterisations for Hamiltonian
systems [15] in terms of CSRK methods. After that we give characterisations of PCSRK
methods being energy-preserving and symmetric for Poisson systems.

We consider an s-degree CSRK method defined by

Yτ = y0 + hΛ

∫ 1

0
Aτ,σ∇H(Yσ) dσ,

y1 = Y1,

where Yτ (τ ∈ [0, 1]) is a polynomial of degree s with respect to τ satisfying Y0 = y0, and
Aτ,σ is a polynomial with respect to the variables in the subscripts.

Theorem 1 ([15]). A CSRK method solving Hamiltonian systems is energy-preserving if
∂
∂τAτ,σ is symmetric2.

In fact, coefficient polynomials Aτ,σ derived in [12] satisfy this condition. This theo-
rem also indicates that Aτ,σ is polynomial of degree s and s − 1 with respect to τ and σ,
respectively. Symmetry condition is also written in terms of the coefficient polynomial.

Theorem 2 ([12]). A CSRK method is symmetric if

A1−τ,1−σ +Aτ,σ = A1,σ.

Next, let us consider Poisson systems (the following characterisation was already pointed
out in our recent report [15], but we here add a proof). We consider an s-degree PCSRK
method defined by

Yτ = y0 + h

s∑
j=1

∫ 1

0
Aiτ,jσΛ(Zj)∇H(Yσ) dσ,

Zi = z0 + h
s∑

j=1

∫ 1

0
Âiτ,jσΛ(Zj)∇H(Yσ) dσ (i = 1, . . . , s), (2)

y1 = y0 + h
s∑

i=1

∫ 1

0
BiτΛ(Zi)∇H(Yτ ) dτ,

z1 = z0 + h

s∑
i=1

∫ 1

0
B̂iτΛ(Zi)∇H(Yτ ) dτ,

with y0 = z0, where

• Yτ is a polynomial of degree s with respect to τ satisfying Y0 = y0,

• Aiτ,jσ is a polynomial with respect to the variables τ and σ,

• 0 ≤ c1 < · · · < cs ≤ 1,

• Âiτ,jσ = Aci,jσ,

2In this paper, a polynomial f(τ, σ) is said to be symmetric if f(τ, σ) = f(σ, τ).
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• Bjσ = B̂jσ = A1,jσ.

The notation Aiτ,jσ, which was introduced in [6], depends on τ, σ ∈ [0, 1], j = 1, . . . , s
and i. In reality, it does not depend on i, but we leave it as it is because it becomes
useful when considering order conditions. In other places, we can simply understand this as
Aiτ,jσ = Aτ,jσ.

It is clear that y1 = z1 and (2) is equivalent to Zi = Yci . For example, when s = 1,
Aτ,1σ = τ and c1 = 1/2, the PCSRK method reduces to (1). As mentioned in [6], these
methods are consistent with the partitioned system of differential equations

ẏ = Λ(z)∇H(y), y(t0) = y0,

ż = Λ(z)∇H(y), z(t0) = z0,

whose solutions satisfy y(t) = z(t) if y0 = z0.

Theorem 3. A PCSRK method solving Poisson systems is energy-preserving if ∂
∂τAiτ,jσ is

symmetric for all j = 1, . . . , s.

Proof. We can express each ∂
∂τAiτ,jσ as

∂

∂τ
Aiτ,jσ =

s−1∑
l=0

aj(l, l)τ
lσl +

∑
m<n

(aj(m,n)τmσn + aj(n,m)τnσm) .

Note that the symmetry of ∂
∂τAiτ,jσ is equivalent to aj(m,n) = aj(n,m) for all j,m, n. Thus

we have

H(y1)−H(y0) =

∫ 1

0

d

dτ
H(Yτ ) dτ =

∫ 1

0
Ẏ ⊤
τ ∇H(Yτ ) dτ

= h

∫ 1

0

 s∑
j=1

∫ 1

0

∂

∂τ
Aiτ,jσΛ(Zj)∇H(Yτ ) dσ

⊤

∇H(Yτ ) dτ

= h
s∑

j=1

s−1∑
l=0

aj(l, l)

(∫ 1

0
σl∇H(Yσ) dσ

)⊤

Λ⊤(Zj)

∫ 1

0
τ l∇H(Yτ ) dτ

+ h

s∑
j=1

∑
m<n

{
aj(m,n)

(∫ 1

0
σn∇H(Yσ) dσ

)⊤

Λ⊤(Zj)

∫ 1

0
τm∇H(Yτ ) dτ

+aj(n,m)

(∫ 1

0
σm∇H(Yσ) dσ

)⊤

Λ⊤(Zj)

∫ 1

0
τn∇H(Yτ ) dτ

}
= 0.

Symmetry condition is also given as follows.

Theorem 4. A PCSRK method is symmetric if Ai(1−τ),(s+1−j)(1−σ) + Aiτ,jσ = A1,jσ, and
the nodes ci are symmetric, i.e., cs+1−i = 1− ci.

In fact, the coefficient polynomials proposed in [6] satisfy the conditions of the above
theorems.
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2.2 Energy-preserving EF CSRK methods for Hamiltonian systems

This subsection is devoted to introduce the concept of EF methods by illustrating the deriva-
tion of a fourth-order energy-preserving EF CSRK integrator for Hamilton systems [15]. The
discussion here will be used in the derivation of energy-preserving EF integrators for Poisson
systems in the next section.

We start with a two-degree CSRK formulation:

Aτ,σ = a11τ + a12τσ + a21τ
2 + a22τ

2σ

with four parameters. It is easy to check that the energy-preservation condition in Theorem 1
is equivalent to

a12 = 2a21,

and the symmetry condition in Theorem 2 is equivalent to

a22 + 2a21 = 0, a22 + a12 = 0.

Next, we consider the EF conditions. We write Yτ as a linear combination of y0, Yc and
y1, i.e.,

Yτ = y0
(τ − c)(τ − 1)

c
+ Yc

τ(τ − 1)

c(c− 1)
+ y1

τ(τ − c)

1− c
.

The CSRK method can be rewritten as

Yc = y0 + h

∫ 1

0
Ac,σf(Yσ) dσ,

y1 = y0 + h

∫ 1

0
Bσf(Yσ) dσ,

where Bσ = A1,σ. The solution y1 in the standard CSRK method is independent of the
node c. But the solution of EF methods depends on c. Since the polynomial Yτ cannot
coincide with an exponential function exp(λiτh) in the EF methods, the node c, at which
the numerical solution is fitted to exponential functions, plays an important role.

Next we determine Aτ,σ and Bσ so that the method is exact for a problem whose solution
is a linear combination of F = {u1(t), . . . , ur(t)}. The conditions for ui(t) are

ui(t0 + ch) = ui(t0) + h

∫ 1

0
Ac,σũ

′
i(t0 + σh) dσ,

ui(t0 + h) = ui(t0) + h

∫ 1

0
Bσũ

′
i(t0 + σh) dσ,

where ũ′i(t0 + σh) denotes a polynomial of degree 2 (s, in general), which is a linear com-
bination of u′i(t0), u

′
i(t0 + ch) and u′i(t0 + h). We call such conditions for i = 1, . . . , r the

EF conditions. When we consider the set F1 = {exp(λt), exp(−λt)}, the EF conditions are
given as ∫ 1

0
Ac,σ c̃osh(σz) dσ =

sinh(cz)

z
,

∫ 1

0
Ac,σ s̃inh(σz) dσ =

cosh(cz)− 1

z
, (3)∫ 1

0
Bσ c̃osh(σz) dσ =

sinh(z)

z
,

∫ 1

0
Bσ s̃inh(σz) dσ =

cosh(z)− 1

z
, (4)
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where z = λh, c̃osh(σz) denotes a polynomial of degree two which is a linear combination of
cosh(0), cosh(cz) and cosh(z), and similar notation is used for sinh. Since Bσ is independent
of σ because of a22 + a12 = 0, the conditions (4) are equivalent to

Bσ
(3c2 − 4c+ 1)− cosh(cz) + (3c2 − 2c) cosh(z)

6c2 − 6c
=

sinh(z)

z
,

Bσ
− sinh(cz) + (3c2 − 2c) sinh(z)

6c2 − 6c
=

cosh(z)− 1

z
.

We obtain c = 1/2 so that the two conditions are compatible, and then have

Bσ = a11 + a21 =
6(cosh(z)− 1)

z(4 sinh( z2) + sinh(z))
.

It follows from (3) that

a11 =
6(−7 + 4 cosh( z2) + 3 cosh(z))

z(4 sinh( z2) + sinh(z))
, a21 =

12(3− 2 cosh( z2)− cosh(z))

z(4 sinh( z2) + sinh(z))
. (5)

The resulting method is of order four, which can be verified by checking the conditions for
order three. It is also worth mentioning that in the limit z → 0 the standard fourth-order
energy-preserving method Aτ,σ = τ((4− 3τ)− 6(1− τ)σ) [12] is recovered.

3 Energy-preserving exponentially-fitted schemes for Poisson
systems

We shall derive second- and fourth-order energy-preserving EF schemes for Poisson systems.
While the derivation of second-order scheme is relatively easy, the derivation of fourth-order
one requires a more careful treatment.

3.1 Second order scheme

Let s = 1. In this case, we have c = 1/2 from the symmetry condition. The PCSRK method
reduces to

y1 = y0 + a11hΛ

(
y0 + y1

2

)∫ 1

0
∇H(y0 + τ(y1 − y0)) dτ

with a parameter a11. This method is always energy-preserving independently of a11. When
one consider the set F1 = {exp(λt), exp(−λt)}, the EF condition is given as

ez = 1 + a11z
1 + ez

2
, e−z = 1− a11z

1 + e−z

2
,

where z = λh, from which we immediately obtain

a11 =
2 sinh( z2)

z cosh( z2)
.

The resulting scheme reads

y1 = y0 +
2 sinh( z2)

z cosh( z2)
hΛ

(
y0 + y1

2

)∫ 1

0
∇H(y0 + τ(y1 − y0)) dτ.
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As is the case with standard EF methods, when we implement the scheme, if |z| ≪ 1, we
recommend the following expansion

a11 = 1− 1

12
z2 +

1

120
z4 − 17

20160
z6 +

31

362880
z8 − 691

79833600
z10 +

5461

6227020800
z12 − · · · .

3.2 Fourth order scheme

A more interesting, nontrivial example is a derivation of fourth order schemes. Setting s = 2,
we consider coefficient polynomials of the form Aiτ,jσ = aj11τ + aj12τσ + aj21τ

2 + aj22τ
2σ (j =

1, 2). Our aim is to determine these eight parameters and two nodes c1, c2 (thus, there are
10 unknowns) so that they satisfy conditions of energy-preservation, symmetry, exponential-
fitting and order. Note that considering symmetry conditions makes the derivation simple,
that is, we do not have to care conditions for odd order. The procedure consists of the
following four steps.

Step 1 (Energy-preservation condition) From Theorem 3, the energy-preservation con-
dition is equivalent to aj12 = 2aj21 (j = 1, 2).

Step 2 (Symmetry condition) From Theorem 4, the symmetry condition is equivalent
to

a122 = a222, a121 + a221 = −a122, a111 − a211 = 4a221 + 2a222, c1 + c2 = 1.

Step 3 (EF condition) Next we consider EF conditions, which make the scheme exact
for ODEs whose solution belongs to F1 = {exp(λt), exp(−λt)}. Note that there is a
linear ODE whose solution belongs to this space. Thus, we can reduce the discussion
of EF conditions into a framework of CSRK methods with Aτ,σ =

∑2
j=1Aiτ,jσ. From

the discussion in Section 2.2, the parameters of Aτ,σ are given as (5). Hence, for the
coefficients of PCSRK methods, we have

a111 + a211 =
6(−7 + 4 cosh( z2) + 3 cosh(z))

z(4 sinh( z2) + sinh(z))
, a121 + a221 =

12(3− 2 cosh( z2)− cosh(z))

z(4 sinh( z2) + sinh(z))
.

Step 4 (Order condition) Finally, we consider order conditions. Let

TP = { , , , , , , , , , , , , , . . . }

be a set of rooted bi-coloured trees (see [13, Chapter III.2] for a more precise definition
of this set, and the theory of P-series). We denote the subset of TP whose roots are
by TPy, and the remains by TPz. We also denote the elementary weights by ϕ(τ)

(τ ∈ TP ), which are well-defined as with the standard partitioned RK methods. For
example,

ϕ( ) =

∫ 1

0

∫ 1

0

∫ 1

0

∑
i,j,k

BiτAiτ,jσÂjσ,kυ dτdσdυ

for PCSRK methods, while

ϕ( ) =
∑
i,j,l

biaij âjk
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for partitioned RK methods. Since the elementary weights depend on h for EF meth-
ods, we have to consider order conditions taking this effect into consideration. The
order conditions are summarised as follows. An EF PCSRK method is of order p if

ϕ(τ) =
1

γ(τ)
+O(hp−|τ |+1) for τ ∈ TPy, |τ | ≤ p,

where |τ | denotes the order of τ (i.e., the number of vertices). Note that we do not
have to consider TPz because y1 = z1. Since symmetric methods always have even
order, it is sufficient to consider only first- and third-order conditions:

ϕ( ) = 1 +O(h4),

ϕ( ) =
1

3
+O(h2), ϕ( ) =

1

3
+O(h2), ϕ( ) =

1

3
+O(h2),

ϕ( ) =
1

6
+O(h2), ϕ( ) =

1

6
+O(h2), ϕ( ) =

1

6
+O(h2), ϕ( ) =

1

6
+O(h2).

These conditions are all satisfied if the perturbations of all parameters from those of
the standard fourth-order energy-preserving scheme

Aiτ,1σ =
1

2
√
3

(
(4
√
3 + 6)τ − 6(1 +

√
3)τσ − 3(1 +

√
3)τ2 + 6

√
3τ2σ

)
, (6)

Aiτ,2σ =
1

2
√
3

(
(4
√
3− 6)τ + 6(1−

√
3)τσ + 3(1−

√
3)τ2 + 6

√
3τ2σ

)
, (7)

c1,2 =
1

2
∓

√
3

6
(8)

are less than O(h2). Note that we have obtained eight independent conditions for ten
parameters in Step 3, and thus two freedoms still remain at this stage. If one introduce
two additional constraints arbitrarily so that they are consistent with the above order
conditions, all parameters are uniquely determined.

In the next section, we simply consider the choices

c1 =
1

2
−

√
3

6
, 2a21 + a22 = −

√
3
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as additional constraints in Step 4. Then all parameters are uniquely determined to be

a111 =
3(−7 + 4 cosh( z2) + 3 cosh(z))

z(4 sinh( z2) + sinh(z))
+

√
3,

a112 =
12(3− 2 cosh( z2)− cosh(z))

z(4 sinh( z2) + sinh(z))
−

√
3,

a121 =
6(3− 2 cosh( z2)− cosh(z))

z(4 sinh( z2) + sinh(z))
−

√
3

2
,

a122 = −
12(3− 2 cosh( z2)− cosh(z))

z(4 sinh( z2) + sinh(z))
,

a211 =
3(−7 + 4 cosh( z2) + 3 cosh(z))

z(4 sinh( z2) + sinh(z))
−

√
3

a212 =
12(3− 2 cosh( z2)− cosh(z))

z(4 sinh( z2) + sinh(z))
+

√
3,

a221 =
6(3− 2 cosh( z2)− cosh(z))

z(4 sinh( z2) + sinh(z))
+

√
3

2
,

a222 = −
12(3− 2 cosh( z2)− cosh(z))

z(4 sinh( z2) + sinh(z))
,

c1 =
1

2
−

√
3

6
,

c2 =
1

2
+

√
3

6
.

It is checked that the perturbations of these parameters from those in (6), (7) and (8) are
less than O(h2).

4 Numerical experiments

In this section, we test the derived schemes numerically. For a problem whose period is
estimated to T = 2π/ω, we consider the set F1 = {exp(λt), exp(−λt)} with λ = iω, which
is equivalent to {sin(ωt), cos(ωt)}. All computations were done in the computation environ-
ment: 2 GHz Inter Core i7, 8GB memory, OS X 10.9.3. We used Python 2.7.5 and its numpy
and scipy packages.

We consider the Euler equations

q̇ = f(q) = ((α− β)q2q3, (1− α)q3q1, (β − 1)q1q2)
⊤,

which describe the motion of a rigid body under no forces. This system can be seen as a
Poisson system

q̇ =

 0 αq3 −βq2
−αq3 0 q1
βq2 −q1 0

∇H(q), H(q) =
q21 + q22 + q23

2
.

We set the initial value to q(0) = (0, 1, 1)⊤, and the parameters α = 1 + (1/
√
1.51), β =

1− (0.51/
√
1.51), which are employed in [3]. The exact solution is given by

q(t) = (
√
1.51 sn(t, 0.51), cn(t, 0.51), dn(t, 0.51))⊤,

9
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Figure 1: Global error of (left) the first and (right) second examples for Euler equations. 2EP:
standard second-order energy-preserving scheme, 2EPEF: second-order energy-preserving EF
scheme, 4EP: standard fourth-order energy-preserving scheme, 4EPEF: fourth-order energy-
preserving EF scheme.

where sn, cn, dn are the Jacobi elliptic functions. This solution is periodic with the period
T = 4K(0.51) = 7.450563209330954, where K(k) stands for the complete elliptic integral of
the first kind defined by

K(k) =

∫ π/2

0

1√
1− k2 sin2 θ

dθ =

∫ 1

0

1√
(1− t2)(1− k2t2)

dt.

The left figure in Fig. 1 plots the global error, from which one can see that the solution by the
second-order energy-preserving EF scheme is better than that by the standard second-order
energy-preserving scheme.

We also consider a more anomalous case. When β ≈ 1, we expect, at least intuitively,
q̇3 ≈ 0 and thus q3(t) ≈ 1. Therefore, the variables q1 and q2 seem to behave like harmonic
oscillator with period T = 2π/(α − 1). We set α = 51 and β = 1.01. The global error
is shown in the right figure of Fig. 1. One can see that EF schemes produce much better
solutions than the same order, standard energy-preserving schemes.

5 Concluding remarks

In this paper, we derived energy-preserving exponentially-fitted integrators for Poisson sys-
tems. In the derivation, we used the energy-preservation and symmetry conditions in terms
of partitioned continuous stage Runge–Kutta methods, EF conditions and order conditions.
Through the numerical experiments for the Euler equations, we observed that the derived
schemes gave better numerical solutions than the standard energy-preserving schemes, even
if the period was roughly estimated.
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