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COMPUTING THE SIGNED DISTANCE BETWEEN
OVERLAPPING ELLIPSOIDS∗

SATORU IWATA , YUJI NAKATSUKASA , AND AKIKO TAKEDA †

Abstract. Computing the signed distance between two ellipsoids is a convex optimization
problem when the two ellipsoids have no intersection, but becomes non-convex when the ellipsoids
overlap. Efficient algorithms for convex optimization problems are thus not guaranteed to find the
correct signed distance between overlapping ellipsoids. In this paper, we first show that computing
the signed distance is equivalent to minimizing the norm along the boundary of the Minkowski
difference. We then derive a polynomial-time O(n6) algorithm, where n is the dimension of the
ellipsoids, that obtains a global minimizer on the boundary of the Minkowski difference and hence
provides the exact signed distance. The algorithm first finds all the points that satisfy the Karush-
Kuhn-Tucker (KKT) conditions, and then identifies a relevant KKT point with the smallest signed
distance. The primary difficulty in computing the KKT points is that they are the solutions of two
bivariate rational equations, whose poles are not known explicitly. Our key step is to convert the
rational equations into polynomial equations, which we do by constructing certain bivariate matrix
pencils whose zeros of determinants are the zeros of the rational functions. This reduces the problem
to a two-parameter quadratic eigenvalue problem, which can be solved via a single-parameter linear
eigenvalue problem of larger (squared) size, for which reliable algorithms are available. Thus we
provide the first polynomial-time algorithm for computing the signed distance between overlapping
ellipsoids.

Key words. ellipsoids, signed distance, non-convex optimization, KKT conditions, Minkowski
difference, two-parameter eigenvalue problem, quadratic eigenvalue problem

AMS subject classifications. 49M37, 65K05, 90C25, 90C30

1. Introduction. An ellipsoid E lying in an n-dimensional space centered at
b ∈ Rn can be represented as the set of points x satisfying

(x− b)>A−1(x− b) ≤ 1,

where A ∈ Rn×n is a symmetric positive definite matrix. We denote such an ellipsoid
by E(b, A). The signed distance between two ellipsoids E1 = E(b1, A1) and E2 =
E(b2, A2) is defined by (see e.g. [19])

(1.1) dist(E1, E2) = max
‖w‖=1

(
〈w, b1〉 −

√
〈w,A1w〉 − 〈w, b2〉 −

√
〈w,A2w〉

)
.

Here 〈·, ·〉 denotes the inner product, which for simplicity we take to be 〈x, y〉 = x>y,
and ‖ · ‖ designates the norm defined by ‖x‖ =

√
〈x, x〉.

Computing the signed distance between ellipsoids arises in various engineering
problems such as collision detection in graphics, motion planning in robotics, and
binary classification in machine learning [3, 25, 29].

When the two ellipsoids do not overlap, the signed distance dist(E1, E2) coincides
with the perhaps more intuitive formulation of the distance

minimize ‖x1 − x2‖(1.2)

subject to x1 ∈ E1, x2 ∈ E2.
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The equivalence can be verified by noting that for a fixed vector w, the quantity inside
the parenthesis of (1.1) represents the distance between the two parallel hyperplanes
that are tangent to the ellipsoids, see Figure 1.1 for an illustration. More specifically,
〈w, b1〉 − 〈w, b2〉 is the distance between two parallel hyperplanes with normal vector
w that pass through the centers b1 and b2, and

√
〈w,A1w〉 and

√
〈w,A2w〉 are the

distance between the centers b1, b2 and the hyperplanes tangent to the ellipsoids and
have gradient parallel to w. To see this, note that the gradient at x1 on the boundary of

E1 is 2A−1
1 (x1−b1), so its normalized vector w =

A−1
1 (x1−b1)

‖A−1
1 (x1−b1)‖ satisfies w>(x1−b1) =√

〈w,A1w〉, which is the distance between the two hyperplanes that pass through b1
and x1. The term

√
〈w,A2w〉 is analogous. Therefore the maximization problem

(1.1) over w corresponds to finding parallel tangent hyperplanes of E1, E2 with the
smallest distance.

When the ellipsoids overlap, much of the above interpretation remains valid; one
difference is that now dist(E1, E2) is negative, whose absolute value quantifies the
amount of overlap. In either case, dist(E1, E2) is the smallest signed distance between
two parallel hyperplanes that are tangent to E1, E2 such that the two ellipsoids lie on
opposite sides of each hyperplane. The optimal vector w in (1.1) is in fact parallel to
the gradients of both E1 and E2 at the points x1 and x2.

Fig. 1.1. For non-overlapping ellipsoids E1 and E2 (left), the signed distance dist(E1, E2) is
the distance between the two tangent planes indicated by the dashed lines. For overlapping ellipsoids
(right) dist(E1, E2) is negative: the distance between the tangent planes times −1.

The two cases of overlapping and non-overlapping ellipsoids as illustrated in Fig-
ure 1.1 lead to nontrivial mathematical differences. First, when the two ellipsoids
overlap the equivalence between (1.1) and (1.2) is lost: the signed distance (1.1) takes
a negative value, whereas the minimum value of (1.2) is zero. In this case, the signed
distance provides information about how deeply the two ellipsoids cross with each
other.

The second, and computationally more important, difference is that the problem
of computing the signed distance becomes a non-convex optimization problem with
many local minima. By contrast, in the non-overlapping case, finding the distance can
be recast as a convex optimization problem and can be computed efficiently by solving
second order cone programming (SOCP). A more direct geometric method has been
proposed by Lin and Han [21], which computes the (standard) distance between two
non-overlapping ellipsoids. This algorithm, which crucially relies on the convexity of
the problem, is used by the Ellipsoidal Toolbox [19]. Indeed the signed distance is not
supported by the toolbox: it returns the distance zero when the ellipsoids overlap.
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Solving the non-convex optimization problem to compute the signed distance in
the overlapping case is nontrivial, and to our knowledge there is no method that
is guaranteed to provide a globally optimal solution. The goal of this paper is to
develop such an algorithm. Our approach is to introduce a dual problem of (1.1) with
zero duality gap, and find all the points (x1, x2) that satisfy the Karush-Kuhn-Tucker
(KKT) conditions for its relaxation. We then identify a relevant KKT point with
the smallest dual objective value. The Lagrange multipliers corresponding to KKT
points are characterized as the common zeros of two bivariate rational functions,
whose poles are not known explicitly. A key step is to convert the rational equations
to polynomial matrix equations by considering the determinants of certain matrix
pencils. This results in solving a two-parameter quadratic eigenvalue problem, which
can be done via solving single-parameter linear eigenvalue problems of squared size,
for which reliable algorithms exist [16, 18, 23]. The main cost of our algorithm is in
solving a 4n2 × 4n2 (generalized) eigenvalue problem, and the overall complexity is
O(n6).

Since computing the signed distance is fundamentally more difficult in the over-
lapping case, it is recommended in practice to check in advance whether the two
ellipsoids overlap or not. This can be done via a quadratically constrained quadratic
programming problem. In the non-overlapping case, a convex optimization solver or a
more specified geometric method [21] are more efficient than the method we describe
and hence recommended. The focus of this paper is the non-convex case, where such
efficient algorithms may fail to provide the global solution.

This paper is organized as follows. In Section 2, we introduce an equivalent dual
problem of (1.1). Section 3 derives the KKT conditions for the primal (1.1) and its
relaxed dual problem to give an outline of our algorithm. Section 4 discusses the
solution of bivariate determinantal equations resulting from the KKT conditions and
shows that our algorithm works in generic cases with O(n6) time. In Section 5, we an-
alyze the degenerate case and show that our algorithm still works by employing certain
preprocessing techniques. In Section 6, we describe how to check the local optimality
of KKT points in the primal problem. Finally, we provide numerical experiments in
Section 7 to illustrate the properties and performance of our algorithm.

2. Dual problem. Computing the signed distance by solving the optimization
problem (1.1) directly via finding all the KKT points appears to be difficult due to
the presence of the square roots in the objective functions. In this section, we show
by taking the dual that computing the signed distance is equivalent to

minimize
x1,x2

‖x1 − x2‖(2.1)

subject to x1 ∈ E1, x2 ∈ E2,

x1 − x2 ∈ bd(E1 	 E2).

Here 	 designates the Minkowski difference and bd(U) indicates the boundary of a
set U . For simplicity, defining U = E1 	 E2, we write (2.1) as

minimize
x

‖x‖(2.2)

subject to x ∈ bd(U).

Note that U is a convex set because E1 and E2 are convex.
The two ellipsoids are said to overlap if they share a common interior point.

Testing whether E1 and E2 overlap or not can be done by solving the optimization
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problem:

minimize η(2.3)

subject to (x− b1)>A−1
1 (x− b1) ≤ η,

(x− b2)>A−1
2 (x− b2) ≤ η.

The optimal value satisfying η∗ ≥ 1 indicates the non-overlapping case and η∗ < 1
indicates the overlapping case. This is a convex quadratic optimization problem, and
can be solved efficiently by an interior-point method [7].

When the ellipsoids E1, E2 have no overlap, U does not contain the origin in its
interior. In this case, even if bd(U) is replaced by U in (2.2), the resulting problem
(1.2) has an optimal solution on bd(U). Therefore solving the convex problem (1.2)
is equivalent to computing the signed distance (1.1) when the two ellipsoids do not
overlap. The non-overlapping case of (2.2) includes the special case where the ellip-
soids E1, E2 are touching externally but do not overlap. In such a case, (1.2) has an
unique optimal solution satisfying x1 = x2.

We mainly focus on the case where the ellipsoids E1 and E2 overlap. In this case,
the origin lies inside the convex set U and (1.2) does not have an optimal solution
on bd(U). Therefore, we need to deal with a non-convex optimization problem; the
problem (2.2) is equivalent to finding the minimum distance from a point in a convex
set U to the complement of U , for which a dual problem with strong duality is
formulated by Briec [8], building upon the work of Nirenberg [26]. Following Briec
[8], we introduce the dual problem of (2.1) as

maximize
w

min
x∈U

x>w(2.4)

subject to ‖w‖ = 1.

Since E1 = {b1 +A
1/2
1 u1 : ‖u1‖ ≤ 1} and E2 = {b2 +A

1/2
2 u2 : ‖u2‖ ≤ 1}, the optimal

objective value of (2.4) is equivalent to

(2.5) max
w:‖w‖=1

min
‖u1‖,‖u2‖≤1

(
w>(b1 − b2) + w>(A

1/2
1 u1 −A1/2

2 u2)
)
.

Regarding the minimization with respect to u1 and u2, the first term w>(b1− b2)
is independent of u1 and u2, so the minimum is clearly attained when u1 and u2 are
given by

u1 = − A
1/2
1 w

‖A1/2
1 w‖

, u2 =
A

1/2
2 w

‖A1/2
2 w‖

.

We substitute this into (2.5) to obtain (1.1). Thus (2.1) is the dual problem of
computing the signed distance (1.1).

3. Finding the KKT points. Solving the dual problem (2.1) directly is highly
nontrivial. In fact, it is not an easy task to write down the KKT conditions, because
no explicit formula for bd(U) is available.

We overcome this difficulty by introducing the following relaxation problem:

minimize
x1,x2

‖x1 − x2‖(3.1)

subject to x1 ∈ bd(E1), x2 ∈ bd(E2).
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We find all the KKT points of (3.1), as described in Section 3.1. From among the
obtained KKT points (x1, x2), we select those having x1 − x2 on the boundary of U
as we explain in Section 3.2. It will be shown in Section 3.2 that these selected KKT
points of (3.1) correspond to the KKT points of the primal problem (1.1). We can
then compute the signed distance by comparing the objective values.

3.1. KKT conditions for relaxation. In this section, we present how to find
the KKT points of the relaxation problem (3.1), which can be recast as

minimize
x1,x2

‖x1 − x2‖2

subject to

(x1 − b1)>A−1
1 (x1 − b1) = 1,(3.2)

(x2 − b2)>A−1
2 (x2 − b2) = 1.(3.3)

The KKT conditions for the problem consist of these feasibility constraints and

x1 − x2 = λA−1
1 (x1 − b1),(3.4)

x2 − x1 = µA−1
2 (x2 − b2),(3.5)

where λ and µ are Lagrange multipliers. These conditions imply

µ(x2 − b2) = −λA2A1
−1(x1 − b1),(3.6)

λ(x1 − b1) = −µA1A2
−1(x2 − b2).(3.7)

Combining (3.4) and (3.6), we obtain

µx1 − µb2 = λµA1
−1(x1 − b1)− λA2A1

−1(x1 − b1).

Similarly, from (3.5) and (3.7), we obtain

λx2 − λb1 = λµA2
−1(x2 − b2)− µA1A2

−1(x2 − b2).

Defining

N(λ, µ) = λµI − µA1 − λA2,

we can write the two equalities as

µ(b1 − b2) = N(λ, µ)A1
−1(x1 − b1),(3.8)

λ(b2 − b1) = N(λ, µ)A2
−1(x2 − b2).(3.9)

The two equations (3.8) and (3.9) can be solved for x1, x2 to express them in terms of
λ, µ, which can be substituted into (3.2), (3.3) to yield two bivariate rational equations
with respect to λ, µ. However, solving them for λ, µ is difficult as the poles of the
rational equations are unknown.

Instead, we formulate a pair of matrix equations that provide the appropriate
Lagrange multipliers: we introduce a pair of matrices M1(λ, µ) and M2(λ, µ) defined
by

(3.10) M1(λ, µ) =

[
µA1 N(λ, µ)

N(λ, µ) µD

]
, M2(λ, µ) =

[
λA2 N(λ, µ)

N(λ, µ) λD

]
,
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where D = dd>, d := b1 − b2.
Lemma 3.1. For every pair of x1 ∈ bd(E1) and x2 ∈ bd(E2) that satisfies the

KKT conditions with multipliers λ and µ, we have detM1(λ, µ) = detM2(λ, µ) = 0.
Proof. By (3.2)–(3.5), if one of λ or µ is zero, then so is the other. In this case,

M1(λ, µ) = M2(λ, µ) = O. Hence we may assume that neither λ nor µ is zero.
By the conditions (3.8) and (3.9), we see that d = b1 − b2 must belong to

ImN(λ, µ). Therefore, if N(λ, µ) is singular, then we have rank
[
D N(λ, µ)

]
=

rank
[
d N(λ, µ)

]
< n, which implies that both M1(λ, µ) and M2(λ, µ) are singular.

Now suppose that N(λ, µ) is nonsingular. Note that

M ′1(λ, µ) =

 µA1 N(λ, µ) O
N(λ, µ) O µd
O µd> −µ

 , M ′2(λ, µ) =

 λA2 N(λ, µ) O
N(λ, µ) O λd
O λd> −λ


satisfy detM ′1(λ, µ) = −µdetM1(λ, µ) and detM ′2(λ, µ) = −λ detM2(λ, µ). Since[

µA1 N(λ, µ)
N(λ, µ) O

]−1

=

[
O N(λ, µ)−1

N(λ, µ)−1 −µN(λ, µ)−1A1N(λ, µ)−1

]
,

we also have

detM ′1(λ, µ) = (−1)n detN(λ, µ)2{µ3d>N(λ, µ)−1A1N(λ, µ)−1d− µ}.

Thus we obtain

detM1(λ, µ) = (−1)n−1 detN(λ, µ)2{µ2d>N(λ, µ)−1A1N(λ, µ)−1d− 1}
= (−1)n−1 detN(λ, µ)2{(x1 − b1)>A1

−1(x1 − b1)− 1},

where the last equality follows from (3.8). Similarly, using (3.9), we obtain

detM2(λ, µ) = (−1)n−1 detN(λ, µ)2{λ2d>N(λ, µ)−1A2N(λ, µ)−1 − 1}
= (−1)n−1 detN(λ, µ)2{(x2 − b2)>A2

−1(x2 − b2)− 1}.

It then follows from (3.2) and (3.3) that detM1(λ, µ) = 0 and detM2(λ, µ) = 0.

Lemma 3.1 suggests computing all possible pairs of Lagrange multipliers λ and µ
for the KKT points by solving the bivariate determinantal equations

(3.11) det(M1(λ, µ)) = det(M2(λ, µ)) = 0.

We will discuss how to solve (3.11) in Section 4. In practice, the computed pairs (λ, µ)
may contain nonreal pairs and those at infinity. These can immediately be removed
from consideration because (λ, µ) must be real at the KKT points.

For each pair of λ and µ thus obtained, one can compute x1 and x2 by solving
the system of linear equations (3.8) and (3.9). If N(λ, µ) is nonsingular, then x1 and
x2 are uniquely determined, and they naturally satisfy the feasibility conditions (3.2)
and (3.3). If N(λ, µ) is singular, among all the solutions of (3.8) and (3.9), we select
those that satisfy (3.2) and (3.3), and verify that (3.4) and (3.5) hold. This uniquely
determines x1, x2 if the null space of N(λ, µ) is 1-dimensional. If dim KerN(λ, µ) > 1,
then we have infinitely many solutions of x1, x2 satisfying (3.2) and (3.3). Specifically,
denoting by N0 the null space of N(λ, µ), they can be written as x1 = x1,∗+N0v1, x2 =
x2,∗ + N0v2, where x1,∗, x2,∗ are any vectors satisfying (3.8) and (3.9); for example
the least-squares solution. We then solve (3.4) and (3.5) for v1, v2.
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3.2. KKT points for the primal problem. The KKT conditions for the
primal problem (1.1) consist of the feasibility constraint w>w = 1 and

(3.12) −(b1 − b2) +
A1w√
w>A1w

+
A2w√
w>A2w

= ϕw,

where ϕ is a Lagrange multiplier. Then the objective value of (1.1) at a KKT point
w coincides with

(3.13) w>(b1 − b2)−
√
w>A1w −

√
w>A2w = −ϕ.

Given a KKT point of (1.1), one can obtain a KKT point of (3.1) as follows.

Lemma 3.2. Suppose that w is a KKT point of (1.1) with a Lagrange multiplier
ϕ. Then defining

x1 := b1 −
A1w√
w>A1w

λ := ϕ
√
w>A1w,(3.14)

x2 := b2 +
A2w√
w>A2w

, µ := ϕ
√
w>A2w,(3.15)

we obtain a KKT point (x1, x2) of (3.1) with Lagrange multipliers λ, µ.

Proof. It is easy to see from (3.14) and (3.15) that x1 and x2 satisfy the feasibility
constraints (3.2) and (3.3), respectively. By (3.14), we have

λA−1
1 (x1 − b1) = − λw√

w>A1w
= −ϕw.

Similarly, by (3.15), we also have

µA−1
2 (x2 − b2) =

µw√
w>A2w

= ϕw.

It follows from (3.12), (3.14) and (3.15) that x1 − x2 = −ϕw holds. Hence x1 and x2

satisfy (3.4) and (3.5).

Note that the Lagrange multipliers λ and µ thus obtained must both have the
same sign as ϕ. Intuitively, such a KKT point (x1, x2) with Lagrange multipliers
having the same sign places x1 − x2 on the boundary of E1 	 E2, because at such
points the gradients 2A−1

1 (x1 − b1) of (3.2) and 2A−1
2 (x2 − b2) of (3.3) point towards

exactly the opposite directions.

We now intend to claim conversely that any KKT point of (3.1) with nonzero
Lagrange multipliers with the same signs leads to a KKT point of (1.1).

Lemma 3.3. Suppose (x1, x2) is a KKT point of the relaxed dual problem (3.1)
with nonzero Lagrange multipliers λ, µ having the same sign, say σ ∈ {+,−}. Then
defining

(3.16) w := −σ(x1 − x2)

‖x1 − x2‖
, ϕ := σ‖x1 − x2‖,

we obtain a KKT point w of (1.1) with a Lagrange multiplier ϕ.
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Proof. The definitions (3.16) of w and ϕ imply that x1 − x2 = −ϕw. By (3.4)
and (3.2), we have

A1w√
w>A1w

= − σA1(x1 − x2)√
(x1 − x2)>A1(x1 − x2)

= − σλ(x1 − b1)

|λ|
√

(x1 − b1)>A−1
1 (x1 − b1)

= −(x1 − b1).

Similarly, by (3.5) and (3.3), we also have

A2w√
w>A2w

=
σA2(x2 − x1)√

(x2 − x1)>A2(x2 − x1)

=
σµ(x2 − b2)

|µ|
√

(x2 − b2)>A−1
2 (x2 − b2)

= x2 − b2.

Combining these equalities, one can easily verify that w and ϕ satisfy (3.12).

It will be demonstrated later in Section 7 that (3.1) admits KKT points with
Lagrange multipliers of different signs. Such KKT points correspond to interior points
of E1 	 E2, which are infeasible in the original dual problem (2.1).

For a KKT point (x1, x2) with Lagrange multipliers λ, µ, if one of λ or µ is
zero, then so is the other by (3.6) and (3.7). In this case, x1 = x2 must hold.
Conversely, any point x ∈ bd(E1) ∩ bd(E2) provides a KKT point (x1, x2) := (x, x)
with Lagrange multipliers λ, µ := 0. Thus, in the overlapping case, the relaxed dual
problem (3.1) has infinitely many KKT points with zero Lagrange multipliers, but
they are irrelevant to the signed distance problem. Fortunately, such KKT points are
removed automatically in the algorithm we describe in Section 4.1.

If (3.1) has a KKT point (x1, x2) with Lagrange multipliers λ, µ both negative,
then the objective value at the corresponding KKT point w of (3.1) must be positive,
which means the signed distance is positive. This can happen only if the two ellipsoids
are disjoint.

Conversely, since the signed distance between two non-overlapping ellipsoids must
be nonnegative, (3.13) and Lemma 3.2 imply that there is a KKT point (x1, x2) for
(3.1) with Lagrange multipliers λ, µ ≤ 0. Note that (x1, x2) remains to be a KKT point
with the same Lagrange multipliers if we replace the feasibility constraints by x1 ∈ E1

and x2 ∈ E2 (including the interior). The resulting convex optimization problem
(1.2) has a unique optimal solution. Since each KKT point in a convex optimization
problem provides an optimal solution, this establishes the uniqueness of the KKT
point for (3.1) with nonpositive Lagrange multipliers with the same signs in the non-
overlapping case, and the signed distance is obtained by dist(E1, E2) := ‖x1 − x2‖.

3.3. Outline of the algorithm. For computing the signed distance between
overlapping ellipsoids, Lemmas 3.2 and 3.3 together with (3.13) suggest finding all
the KKT points (x1, x2) for (3.1) with positive Lagrange multipliers and choosing the
one that attains the minimum value of ‖x1 − x2‖ among them. In fact, Lemma 3.3
and (3.13) ensure that the selected (x1, x2) provides a KKT point for (1.1) with the
objective value equal to −‖x1 − x2‖. On the other hand, it follows from Lemma 3.2
and (3.13) that any KKT point for (1.1) with the objective value −ϕ yields a KKT
point (x1, x2) for (3.1) with positive Lagrange multipliers such that ‖x1 − x2‖ = ϕ.
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This means if there were a better KKT point for the primal problem, then there
should have been a better one in the relaxed dual than the selected one. Thus the
algorithm computes the signed distance correctly in the overlapping case.

We now summarize the whole algorithm for computing the signed distance by a
pseudocode.

Algorithm 3.1 Compute the signed distance between two ellipsoids E1 and E2.

1: Test whether E1 and E2 overlap via the problem (2.3). If they do not overlap,
compute the distance as a convex optimization problem [21].

2: Solve the bivariate determinantal equations (3.11).
3: Among the pairs with λ > 0, µ > 0, find the corresponding x1, x2.
4: For each pair obtained in Step 3, compute and compare ‖x1−x2‖. The pair with

the smallest one gives the signed distance by dist(E1, E2) := −‖x1 − x2‖.

4. Solving the bivariate determinantal equations. We now discuss how
to solve the bivariate determinantal equations (3.11) for λ and µ. The algorithm is
shown to run in O(n6) time, which is the dominant cost in Algorithm 3.1.

4.1. Reduction to univariate linear eigenvalue problems. Observe that
(3.11) is a quadratic two-parameter eigenvalue problem, for which recent studies de-
scribe numerical solutions by reducing it to a single-parameter eigenvalue problem
[16, 18, 23]. In our case, (3.11) has a special form that can be expressed as

det(F00 + λF10 + µF01 + λµF11) = 0,(4.1)

det(G00 + λG10 + µG01 + λµG11) = 0.(4.2)

In the general quadratic problem there are two additional terms F20λ
2 + F02µ

2 in
(4.1) and G20λ

2 + G02µ
2 in (4.2), but in our case we do not have them. We can

take advantage of this structure to reduce the computational cost: following [18], the
2n × 2n quadratic two-parameter eigenvalue problem (4.1), (4.2) can be solved via
two (2n)2 × (2n)2 quadratic single-parameter eigenvalue problems

detQ1(λ) := det
[
λ2(F11 ⊗G10 − F10 ⊗G11) + (F01 ⊗G00 − F00 ⊗G01)(4.3)

+ λ(F11 ⊗G00 − F00 ⊗G11 − F10 ⊗G01 + F01 ⊗G10)
]

= 0,

detQ2(µ) := det
[
µ2(F11 ⊗G01 − F01 ⊗G11) + (F10 ⊗G00 − F00 ⊗G10)(4.4)

+ µ(F11 ⊗G00 − F00 ⊗G11 + F10 ⊗G01 − F01 ⊗G10)
]

= 0.

The solutions (λ, µ) for (3.11) match those of (4.3) and (4.4). Moreover, if the eigen-
vectors of (3.11) are v1 and v2, i.e., M1(λ, µ)v1 = 0 and M2(λ, µ)v2 = 0, then those of
(4.3) and (4.4) are v1 ⊗ v2, with eigenvalues λ and µ, respectively [18]. That is, each
solution of (4.3) is paired with one solution of (4.4). In our case, defining J =

[
O I
I O

]
,

we have

F00 = O, F10 =

[
O −A2

−A2 O

]
, F01 =

[
A1 −A1

−A1 D

]
, F11 = J,(4.5)

G00 = O, G10 =

[
A2 −A2

−A2 D

]
, G01 =

[
O −A1

−A1 O

]
, G11 = J.(4.6)
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Generally, we can solve the single-parameter quadratic eigenvalue problem (4.3), (4.4)
by linearization, which results in a linear (generalized) eigenvalue problem of doubled
size. However, here we have F00 = G00 = O, which can be taken advantage of. All
the terms involving F00,G00 in (4.3) and (4.4) are zero, and in particular the constant
terms (F01 ⊗G00 − F00 ⊗G01) and (F10 ⊗G00 − F00 ⊗G10) are both zero. It follows
that instead of solving the quadratic eigenvalue problems, we can simply solve the
4n2 × 4n2 linear generalized eigenvalue problems

detL1(λ) := det
[
λ(F11 ⊗G10 − F10 ⊗G11) + (F01 ⊗G10 − F10 ⊗G01)

]
= 0,(4.7)

detL2(µ) := det
[
µ(F11 ⊗G01 − F01 ⊗G11) + (F10 ⊗G01 − F01 ⊗G10)

]
= 0.(4.8)

This problem is twice smaller than the 8n2 × 8n2 eigenvalue problem one obtains by
reducing the quadratic eigenvalue problems (4.3), (4.4) by the standard approach of
linearization [30]. This size reduction has the effect of removing the “trivial” solutions
λ = µ = 0 for detM1 = detM2 = 0.

4.2. Connection with Bézoutians. Here we mention a connection of the
above process to Bézoutians, which is also used later. Forming Q1, Q2 in (4.3),
(4.4) from M1,M2 is related to constructing the Bézoutians for matrix polynomi-
als [28]. Specifically, this conversion from a two-parameter eigenvalue problem to a
single-parameter eigenvalue problem is equivalent to taking the Bézoutian for the two
matrix polynomials I2n ⊗M1(λ, µ) and M2(λ, µ) ⊗ I2n, which are of size 4n2 × 4n2.
Here the Kronecker products are taken to achieve commutativity, which makes it
convenient for forming the Bézoutian for matrix polynomials [20].

Matrix polynomials P1 and P2 are said to commute if P1(ξ)P2(ξ) = P2(ξ)P1(ξ)
holds for every value of ξ. The Bézoutian for commuting regular matrix polynomials
P1, P2 of size n× n and degree k is defined by the bivariate matrix polynomial

(4.9) B(s, t) =
P1(s)P2(t)− P2(s)P1(t)

s− t
=

k−1,k−1∑
i,j=0

Bijs
itj

in s and t. Here Bij is the n× n coefficient matrix corresponding to the term sitj in
B(s, t). Then the block symmetric nk × nk matrix

B =

 B0,0 · · · B0,k−1

...
. . .

...
Bk−1,0 · · · Bk−1,k−1

 .
is called the Bézout matrix.

Lemma 4.1 ([20, Theorem 1.1]). The Bézout matrix B is singular if and only
if P1 and P2 share an eigenpair (ξ, v), i.e., a scalar ξ and a vector v 6= 0 such that
P1(ξ)v = P2(ξ)v = 0.

More generally, the null space of the Bézoutian is related to the so-called common
restriction [13, 20].

We now claim that det(Q1(λ)) = 0 in (4.3) solves the equation det(B(λ)) = 0 for
λ, where B(λ) is the Bézout matrix between P1(µ) := I2n ⊗M2(λ, µ) and P2(µ) :=
M1(λ, µ)⊗ I2n with respect to µ. More specifically, define the Bézoutian

B(s, t) =
1

s− t
(
(I2n ⊗M2(λ, s))(M1(λ, t)⊗ I2n)− (M1(λ, s)⊗ I2n)(I2n ⊗M2(λ, t))

)
.
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Then writing B(s, t) =
∑1
i=0

∑1
j=0 s

itjBij we have Q1(λ) = B10 = B01 (which is a
matrix polynomial in λ), the coefficient matrix of B(s, t) with linear terms in s, or
equivalently t. Noting that B11 = O, the Bézout matrix is

(4.10) B(λ) =

[
B00 Q1(λ)
Q1(λ) O

]
,

so solving detQ1(λ) = 0 is equivalent to finding the values of λ = λ∗ for which the
Bézout matrix is singular. By Lemma 4.1, this is in turn equivalent to finding λ∗
such that (I2n⊗M2(λ∗, µ∗))v = (M1(λ∗, µ∗)⊗ I2n)v = 0 for some µ∗ and v 6= 0. The
discussion for Q2(µ) is completely analogous, in which we start with the bivariate
matrix polynomial

B(s, t) =
1

s− t
(
(I2n ⊗M2(s, µ))(M1(t, µ)⊗ I2n)− (M1(s, µ)⊗ I2n)(I2n ⊗M2(t, µ))

)
.

This process is a generalization from scalars to matrices of solving a pair of bi-
variate polynomial equations via Bézoutians [5, 24].

4.3. The number of solutions is finite in the generic case. For the above
process to correctly find the KKT points, we need to show that the solution to (3.11)
is zero-dimensional, that is, the number of pairs (λ, µ) satisfying (3.11) is finite. In
fact, if we can show it is finite, then from the linear eigenvalue problems (4.7) and
(4.8) (or by Bézout’s theorem), we see that it is in fact bounded by 4n2.

Lemma 3.1 shows that every pair (λ∗, µ∗) corresponding to a KKT point satisfies
detM1(λ∗, µ∗) = detM2(λ∗, µ∗) = 0. In addition, ifM1(λ, µ)v1 = 0 andM2(λ, µ)v2 =
0, then L1(λ)(v1 ⊗ v2) = L2(µ)(v1 ⊗ v2) = 0 ([16], see also Section 5.1). Thus it
suffices to show that the matrix pencils L1(λ), L2(µ) are regular. We now claim that
generically this property holds. First we make precise the meaning of “generic” in our
problem.

Definition 4.2. We call the signed distance problem with (A1, A2, b1, b2) generic
if at least one of A1 and A2 has no eigenvector orthogonal to d = b1 − b2.

Calling this generic is justified because the property holds with probability 1 for
randomly generated positive definite matrices A1, A2 as long as d 6= 0.

We will need the following lemma.
Lemma 4.3. Let X be a real matrix in the form

(4.11) X =

[
Λ Ψ
Ψ dd>

]
,

where d is a vector, Λ, Ψ are n×n diagonal, Λ is nonsingular and Ψ is singular. Then
X is nonsingular if and only if there is no null vector of Ψ that is orthogonal to d.

Proof. Defining

X̂ =

Λ Ψ O
Ψ O d
O d> −1

 ,
we have det X̂ = −detX, so it suffices to examine when X̂ is singular. Recalling
that Λ and Ψ are both diagonal with Λ nonsingular, by the determinant expansion
we easily see that X̂ is singular if Ψii = di = 0 for some i. Similarly, X̂ is singular if Ψ
has two or more diagonal elements equal to zero. It remains to treat the case where Ψ
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has exactly one zero diagonal element Ψii = 0 with the corresponding element di 6= 0.
In this case there is only one nonzero term in the Leibniz determinant formula, which
is indeed nonzero, hence det X̂ 6= 0.

We now show that L1, L2 are regular pencils for generic (A1, A2, b1, b2).
Theorem 4.4. The matrix pencils L1(λ), L2(µ) in (4.7), (4.8) are regular, i.e.,

detL1(λ) 6= 0 and detL2(µ) 6= 0 for some (λ, µ), if at least one of A1 and A2 has no
eigenvector orthogonal to d.

Proof. We write L1(λ) = λX1 +Y1, L2(µ) = µX2 +Y2 and proceed by examining
the linear terms X1, X2, whose nonsingularity is a sufficient condition for L1(λ), L2(µ)
to be regular. We have

X1 = (F11 ⊗G10 − F10 ⊗G11) = J ⊗
[
A2 −A2

−A2 D

]
−
[
O −A2

−A2 O

]
⊗ J.

To simplify the expression, we reformulate the problem in the coordinate system
determined by the eigendecomposition A2 = QΛ2Q

>, in which Ã1 := Q>A1Q, b̃1 =
Q>b1, b̃2 = Q>b2, d̃ = b̃1 − b̃2, and D̃ := Q>DQ = d̃d̃>. Then we define the matrix
X̃1 unitarily similar to X1 by

X̃1 = (F̃11 ⊗ G̃10 − F̃10 ⊗ G̃11) = J ⊗
[
Λ2 −Λ2

−Λ2 D̃

]
−
[
O −Λ2

−Λ2 O

]
⊗ J.

We can write this as

X̃1 =

[
O2n2×2n2 X̃

X̃ O2n2×2n2

]
, X̃ = diag(G̃10 + λ1J, G̃10 + λ2J, . . . , G̃10 + λnJ),

where λi is the ith eigenvalue of A2. It follows that X̃1 is singular if and only if
G̃10 + λiJ is singular for some i. For each i we have

G̃10 + λiJ =

[
Λ2 λiI − Λ2

λiI − Λ2 d̃d̃>

]
.

Note that the off-diagonal blocks have a zero diagonal in the (i, i) entry.

By Lemma 4.3, (G̃10 + λiJ) is singular if and only if d̃i = 0. Since the argument

holds for every i, we conclude that X1 is singular if and only if d̃i = 0 for some i. In
the original coordinate system, this condition asserts that A2 has an eigenvector that
is orthogonal to d. An analogous argument shows that X2 is singular if and only if
A1 has an eigenvector that is orthogonal to d.

When just one of A1 and A2 has an eigenvector v orthogonal to d, one of L1 or
L2 has a nonsingular linear coefficient, so we can compute 4n2 values of λ (or µ) and
solve detM1 = detM2 = 0 for the other variable. Note that for λ fixed to any value,
detM1 and detM2 are not identically zero as µ varies. Hence detM1 = detM2 = 0
yields a pair of regular eigenvalue problems. Hence for each λ there are finitely many
solutions. It follows that detM1 = detM2 = 0 has a finite number of solutions, and
hence L1, L2 are both regular.

We have thus proved that L1 and L2 are regular matrix pencils in the generic
case. It remains to consider the situation where both A1 and A2 have eigenvectors
that are orthogonal to d.
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Note that indeed L1 and L2 can be singular. Suppose that A1 and A2 share an

eigenvector v orthogonal to d. For simplicity, we consider M̂1 :=
[Q O
O Q

]>
M1

[Q O
O Q

]
,

M̂2 :=
[Q O
O Q

]>
M2

[Q O
O Q

]
, where Q is an orthogonal matrix whose last column is v.

Then we see that for every λ, there exists µ such that M̂1, M̂2 both have a zero column
in the second block columns, which shows they are clearly singular. In such cases some
remedy is needed for the algorithm to compute the signed distance correctly, as we
describe in Section 5.

4.4. Alternative formulation for M1,M2 that avoids the cross term λµ.
We briefly discuss another formulation of bivariate matrix pencils to obtain the KKT
points. In the above derivation, the presence of the cross term λµ made the problem
quadratic instead of linear. In order to avoid the cross term λµ, one can construct a
pair of larger matrices

(4.12) K1(λ, µ) =


A1 O λI −A1 λI
O O A2 µI

λI −A1 A2 D O
λI µI O O

 ,

(4.13) K2(λ, µ) =


A2 O µI −A2 µI
O O A1 λI

µI −A2 A1 D O
µI λI O O

 .
Then detKj(λ, µ) = detMj(λ, µ) holds for j = 1, 2. The crux is that solving the
equation detK1(λ, µ) = detK2(λ, µ) = 0 for λ, µ is a linear two-parameter eigenvalue
problem, as opposed to the quadratic problem (4.3)–(4.4) with (4.5)–(4.6).

4.5. Complexity analysis. We have presented two possible methods for solving
detM1(λ, µ) = detM2(λ, µ) = 0; one solves detL1(λ) = 0,detL2(µ) = 0, and the
other detK1(λ, µ) = 0,detK2(λ, µ) = 0. Let us compare the computational costs in
terms of the size of the resulting linear generalized eigenvalue problems.

1. The first approach requires to solve the linear generalized eigenvalue prob-
lems detL1(λ) = 0, detL2(µ) = 0 of size (2n)2 = 4n2. Since the standard
QZ algorithm for computing the eigenvalues of an N ×N linear generalized
eigenvalue problem requires about 30N3 floating point operations [14, §7.7.7],
the computational cost is about 30(4n2)3 ≈ (1.9× 103)n6 flops.
Since a ballpark estimate of a feasible arithmetic cost for a current standard
desktop machine is about 1013 flops, a realistic limit for this method is n . 50.

2. Solving an N × N linear two-parameter eigenvalue problem can be done by
reducing the problem to an N2 × N2 linear generalized eigenvalue problem
formed as Kronecker products of the coefficient matrices [2]. Since the ma-
trices in detK1(λ, µ) = 0,detK2(λ, µ) = 0 in (4.12), (4.13) are of size 4n,
the resulting linear generalized eigenvalue problems are of size (4n)2 = 16n2.
With this approach a realistic limit is n . 25.

We conclude that the first approach of solving the quadratic problem (4.5), (4.6) via
detL1(λ) = 0,detL2(µ) = 0 is more efficient. Moreover, one can show that the linear
generalized eigenvalue problems resulting from (4.12), (4.13) are generically singular,
unlike (4.7) and (4.8) which are generically regular. For these reasons, we henceforth
focus only on solving (3.11) via (4.7) and (4.8).
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5. Degenerate case analysis. Algorithm 3.1 successfully computes the signed
distance for almost all pairs of E1 and E2, including virtually any randomly generated
example. However, there remain cases where the matrix pencils L1, L2 are singular,
and so the algorithm may fail to compute all the KKT points. In this section, we
analyze such situations and show that Algorithm 3.1 can still be used with appropriate
treatments to compute the signed distance reliably.

5.1. Relation between Mj and Lj. We first prove that the regularity of L1, L2

is precisely the condition for detM1(λ, µ) = detM2(λ, µ) = 0 to have a finite number
of solutions.

Lemma 5.1. Let M1(λ, µ),M2(λ, µ) and L1(λ), L2(µ) be as defined in (3.10),
(4.7), (4.8). Then the pencils L1(λ) and L2(µ) are regular if and only if the number
of solutions (λ, µ) for which detM1(λ, µ) = detM2(λ, µ) = 0 is finite.

Moreover, if detM1(λ, µ) = detM2(λ, µ) = 0 has infinitely many solutions, then
for every fixed λ (or µ) there exists a value of µ (or λ) for which detM1(λ, µ) =
detM2(λ, µ) = 0.

Proof. The key is to use the connection to Bézoutians. As seen in Section 4.2,
values of λ for which detQ1(λ) = 0 are those for which the Bézout matrix B(λ)
is singular between P1(µ) = I2n ⊗M2(λ, µ) and P2(µ) = M1(λ, µ) ⊗ I2n viewed as
matrix polynomials in µ, regarding λ as a hidden variable. Hence by Lemma 4.1,
if P1(µ), P2(µ) are regular matrix polynomials at λ = λ0, they share an eigenpair

(µ0, x), that is, P1(µ0)x = P2(µ0)x = 0 for a nonzero x ∈ R4n2

, and in this case
L1(λ0) has the same null vector x. The discussion for L2 is entirely analogous.

To invoke this result it is crucial to show that L1, L2 correspond to the Bézout
matrices of two regular matrix polynomials. Now note that for any fixed value of
λ, both M1(λ, µ) and M2(λ, µ) are regular matrix polynomials in µ, in that there
exist values of µ for which they are nonsingular. It follows that Q1(λ) is always the
off-diagonal part of the Bézout matrix (4.10) between two regular matrix polynomials

P1(µ), P2(µ), and since L1(λ) = Q(λ)
λ , L1(λ0) is a singular matrix if and only if

P1(µ), P2(µ) share an eigenpair (µ0, x) at λ0.
This condition is equivalent to detM1(λ0, µ0) = detM2(λ0, µ0) = 0. To see this,

note that P1(µ0) is singular if and only if M2(λ0, µ0) is singular, and if M2v2 = 0 then
P1(µ) has null space w⊗ v2 for any vector w ∈ R2n. Indeed, we have P1(µ)(w⊗ v2) =
(I2n ⊗ M2)(w ⊗ v2) = w ⊗ M2v2 = 0. Similarly, P2(µ) is singular if and only if
M1(λ0, µ0) is singular, and if M1v1 = 0 then P2(µ) has null space v1 ⊗ w for any
w ∈ R2n. Hence taking x := v1 ⊗ v2 we have P1(µ0)x = P2(µ0)x = 0, or equivalently
L1(µ0)x = L2(µ0)x = 0.

To establish the last statement of the lemma we see that if L1(λ) is singular
then for every fixed λ = λ0 the matrix L1(λ0) has a null vector, and by the Bézoutian
connection this means the matrix pencils M1(λ0, µ) and M2(λ0, µ) share an eigenvalue
µ. The same argument proves the counterpart for any fixed µ = µ0.

5.2. Conditions for L1, L2 to be singular. We have seen in Section 4.3 that
a necessary condition for L1, L2 to be singular is that both A1 and A2 have an eigen-
vector that is orthogonal to d. We next present a sufficient condition for L1, L2 to be
singular. Recall that a linear subspace W is called an invariant subspace of a square
matrix A if AW ⊆ W . By the same notation, we may express an orthonormal basis
of the subspace.

Proposition 5.2. Suppose that A1 and A2 have a shared invariant subspace W
that is orthogonal to d. Then detM1(λ, µ) = detM2(λ, µ) = 0 has infinitely many
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solutions with N(λ, µ) singular, and L1(λ), L2(µ) are singular matrix pencils.
Proof. Let k = dimW . By the assumption, W>d = 0 and there exist k × k

matrices X,Y such that A1W = WX, A2W = WY . Hence

N(λ, µ)W = λµW − µA1W − λA2W = W (λµI − µX − λY ),

and for each fixed value of µ, there exists λ such that µXx = λ(µI −Y )x with x 6= 0,
i.e., λ is a generalized eigenvalue of the matrix pencil µX − λ(µI − Y ). Hence for the
nonzero vector v := Wx ∈ W we have N(λ, µ)v = 0 and v>d = 0, so M1 and M2

have a null vector
[

0
v

]
, hence detM1 = detM2 = 0. It follows that detL1(λ) = 0 for

every value of λ, and hence, by Lemma 5.1, L1 is singular. The discussion for L2 is
analogous.

Note that most of the solutions (λ, µ) for detM1 = detM2 = 0 with N singular as
in the above proposition are irrelevant for our problem, as they do not satisfy the KKT
conditions; indeed |λ|, |µ| are necessarily bounded at the KKT points, see Section 6.2.
Below we discuss remedies for this issue of having infinitely many solutions.

Although we have derived both a necessary condition and a sufficient condition
for L1, L2 to be singular (and we derive another sufficient condition in Section 5.5.2),
identifying the precise necessary and sufficient condition appears to be highly non-
trivial. We leave this as an open problem.

5.3. Regularity test for L1, L2. We describe a process to test, and guarantee
when successful, that the matrix pencils L1, L2 are regular. One direct method is to
use the GUPTRI algorithm [10] for L1 or L2, but this can cost O(n8) operations in
the worst case as the matrices have size O(n2). We look for cheaper alternatives.

By the necessary condition, the first test to guarantee regularity of L1, L2 is to
see if both A1, A2 have an eigenvector orthogonal to d. This can be done with O(n3)
cost. Generic cases pass this test, in which we proceed with solving (4.7), (4.8).

If this first test fails, we employ another test: fix λ to an arbitrary number and
check whether detM1(λ, µ) = detM2(λ, µ) = 0 has a solution µ by solving two linear
eigenvalue problems of size 2n, which can be done with O(n3) cost. If there is no
solution µ, then we can safely conclude that L1, L2 are regular. On the other hand,
if the test fails for more than 4n2 distinct values of λ, we may assert that L1, L2

are singular. In this case, we take the additional preprocessing steps described below
before invoking Algorithm 3.1. Thus the test for regularity requires O(n5) cost in the
worst case.

5.4. Preprocessing by dimension reduction. Our next goal is to rectify
Algorithm 3.1 so that it can deal with pathological cases where L1, L2 are singular.

Proposition 5.2 implies that a sufficient condition for L1, L2 to be singular is for
A1 and A2 to have a common eigenvector orthogonal to d. Such cases may arise
naturally in practice, an extreme example being A1 = A2 = I. In general, if the
intersection of eigenspaces of A1 and A2 is of dimension two or larger, then there
must be a common eigenvector orthogonal to d.

Fortunately, there is a remedy in such cases. Let W1 and W2 be the eigenspaces
of A1 and A2 corresponding to the eigenvalues ρ1 and ρ2, respectively, and let W :=
W1 ∩W2 be nonzero. We now define subspaces Ŵ and W̄ as follows. If W>d 6= 0,
let W̄ be the set of vectors in W orthogonal to d. If W>d = 0, we take W̄ to be
an arbitrary subspace of W with one dimension less than W . Then we define Ŵ as
the orthogonal complement of W̄ in Rn. Using the same notation, we may designate
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orthonormal bases of these subspaces. We can simultaneously block-diagonalize A1

and A2 by the orthogonal matrix [Ŵ W̄ ], so that

(5.1) [Ŵ W̄ ]>A1[Ŵ W̄ ] =

[
Â1 O
O Ā1

]
, [Ŵ W̄ ]>A2[Ŵ W̄ ] =

[
Â2 O
O Ā2

]
.

We then solve the problem of reduced size with d := Ŵ>d, A1 := Â1, A2 := Â2. We
can repeat the reduction process recursively until no intersection of eigenspaces is of
dimension two or larger.

Algorithm 5.1 Preprocessing by dimension reduction.

1: Compute the eigenvalue decompositions of A1, A2, and look for the intersection
W of eigenspaces with dimW ≥ 2.

2: If such W exists, then take Ŵ as in (5.1) and call Algorithm 5.1 with b1 := Ŵ>b1,
A1 := Ŵ>A1Ŵ , b2 := Ŵ>b2, A2 := Ŵ>A2Ŵ .

3: If there exists no such W , then return (E1, E2) with E1 := E(b1, A1) and E2 :=
E(b2, A2).

Below we verify that this process yields a pair of ellipsoids having the same signed
distance as the original one. Recalling the definition (1.1) and writing w =

[
ŵ
w̄

]
with

ŵ ∈ Ŵ and w̄ ∈ W̄ , we have

dist(E1, E2) = max
‖ŵ‖2+‖w̄‖2=1

f(ŵ, w̄)

where using W̄>d = 0 we can write

f(ŵ, w̄) = 〈ŵ, Ŵ>d〉 −
√
〈ŵ, Â1ŵ〉+ 〈w̄, Ā1w̄〉 −

√
〈ŵ, Â2ŵ〉+ 〈w̄, Ā2w̄〉.

The following result shows that the dimension reduction employed in Algorithm 5.1
results in an equivalent signed distance problem of reduced size.

Proposition 5.3. Under the above notation, for every pair (ŵ, w̄) with ‖ŵ‖2 +
‖w̄‖2 = 1 and w̄ 6= 0, there exists a vector ŵ′ with ‖ŵ′‖ = 1 such that f(ŵ′, 0) ≥
f(ŵ, w̄).

Proof. Note that there exists a common eigenvector v̂ such that Â1v̂ = ρ1v̂ and
Â2v̂ = ρ2v̂. We choose v̂ so that 〈v̂,W>d〉 ≥ 0 and ‖v̂‖ = 1. Put ĉ = v̂>ŵ and
ĉ′ =

√
ĉ2 + ‖w̄‖2. Then ŵ′ = ŵ + (ĉ′ − ĉ)v̂ satisfies ‖ŵ′‖2 = ‖ŵ‖2 + ‖w̄‖2 = 1. In

addition, we have

〈ŵ′, Âjŵ′〉 = 〈ŵ, Âjŵ〉+ 〈w̄, Ājw̄〉

for j = 1, 2, and hence

f(ŵ′, 0)− f(ŵ, w̄) = 〈ŵ′, W̄>d〉 − 〈ŵ, W̄>d〉 = (ĉ′ − ĉ)〈v̂, W̄>d〉 ≥ 0,

as required.

The preprocessing step in Algorithm 5.1 results in an equivalent signed distance
problem with lower-dimensional Aj , bj . The reduced problem belongs to the generic
case (no eigenvector is orthogonal to d) for some instances including those with A1 =
α1I, A2 = α2I, and d 6= 0 in the original setting.
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5.5. Perturbing the ellipsoids to avoid singular L1, L2. There are situa-
tions in which even with the preprocessing step just described, Algorithm 3.1 does
not result in L1, L2 regular. An example is when W>d = 0 in the above setting.

Another extreme example is when b1 = b2, i.e., when the center of the ellipsoids
are the same. In this case d = 0, and it is easy to see that (3.11) holds for every
pair (λ, µ) such that N(λ, µ) is singular. Even worse, one can show that even the
Kronecker canonical form of the linear problems L1, L2 do not provide the KKT
points λ, µ. Handling this case analytically appears to be surprisingly difficult.

To illustrate the distinct cases, Figure 5.1 shows the representative configuration
of the ellipsoids in the plane n = 2: (i) the generic case, (ii) the degenerate case
treated in Section 5.4, and (iii) the degenerate case treated in this subsection.

−1 0 1 2 3

−1

0

1

−1 0 1 2

−1

0

1

−2 −1 0 1 2

−1

0

1

Fig. 5.1. Two-dimensional illustration of generic and degenerate cases. Left: generic case
where at least one of A1 or A2 has no eigenvector (shown by arrows) orthogonal to d, shown by
the dotted line. Center: degenerate case of shared invariant subspace caused by multiple eigenvalues
of A1 and A2. This case can be resolved by the process of dimension reduction as described in
Section 5.4. Right: degenerate case of shared eigenspace caused by eigenvectors for distinct eigen-
values being orthogonal to d. In this case dimension reduction cannot be employed; indeed the
tangent planes corresponding to the signed distance (dashed black lines) are not perpendicular to the
horizontal axis. In this case our solution is to slightly perturb the center b1.

5.5.1. Perturbing a center. A simple remedy for the difficulty arising from
d = 0, and also the case where W := W1 ∩W2 as above satisfies W>d = 0, is to
introduce a small perturbation in the center bj , thus perturbing d.

Specifically, the following procedure constructs a perturbed problem such that
eigenvectors of A1 corresponding to simple eigenvalues all become non-orthogonal to
d. The perturbed problem belongs to the generic case for example when the original
Aj had only simple eigenvalues.

Algorithm 5.2 Preprocessing by perturbing bj .

1: Let Aj = QΛjQ
> be the eigenvalue decomposition with an orthogonal matrix Q.

2: For each column vector qi of Q corresponding to a simple eigenvalue, if q>i d = 0,
then set bj := bj + εiqi with an arbitrary nonzero number εi of magnitude O(ε),
where ε is the machine precision.

5.5.2. Perturbing a matrix. It is sometimes necessary to also perturb the
matrices A1, A2. This happens when for every fixed λ, (even after the dimension
reduction) there exists µ such that N(λ, µ) = λµI − µA1 − λA2 has a null space of
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dimension ≥ 2. An n = 4 example is

A1 = 2I +


0 0 1 0
0 0 0 0
1 0 0 1
0 0 1 0

 , A2 = 2I +


0 1 0 0
1 0 0 1
0 0 0 0
0 1 0 0

 .

In such cases, L1, L2 are singular regardless of d.

Proposition 5.4. Suppose that for every fixed λ ∈ R, there exists µ ∈ R such
that N(λ, µ) = λµI − µA1 − λA2 has a null space of dimension ≥ 2. Then L1, L2

in (4.7), (4.8) are singular matrix pencils.

Proof. Let λ ∈ R any fixed nonzero finite number. By the assumption, there
exists a finite µ ∈ R such that N(λ, µ) has a null space of dimension two or larger,
which means the null space contains a nonzero vector x with x>d = 0. Then we easily
see that the vector

[
0
x

]
∈ R2n is a null vector of both M1(λ, µ) and M2(λ, µ), so (λ, µ)

is a solution of detM1(λ, µ) = detM2(λ, µ) = 0. Hence by Lemma 5.1 we conclude
that L1, L2 are singular.

This is another sufficient condition for L1, L2 to be singular, which is neither a
subset nor a superset of the condition in Proposition 5.2.

Since the statement of the proposition makes no reference to d, this result indicates
that perturbing the ellipsoid centers is sometimes not enough. If we do not pass the
regularity test in Section 5.3 after having perturbed the center bj as in Algorithm 5.2,
then as a last resort we perturb the matrix Aj as well.

Algorithm 5.3 Preprocessing by perturbing Aj and bj .

1: Let Aj = QΛjQ
> be the eigenvalue decomposition with an orthogonal matrix Q.

2: For each column vector qi of Q corresponding to a multiple eigenvalue, if q>i d = 0,
then set bj := bj + εiqi with an arbitrary nonzero number εi of magnitude O(ε).

3: Update Aj := Q(Λj +∆)Q>, where ∆ is a diagonal matrix with nonzero distinct
diagonals of magnitude O(ε).

The matrix Aj thus obtained has only simple eigenvalues, and no eigenvector is
orthogonal to d, resulting in a generic situation of Definition 4.2.

5.5.3. Sensitivity analysis under perturbation. Perturbing the inputs clearly
perturbs the output dist(E1, E2), which is undesirable if the change in the output
is significantly magnified. We now examine the sensitivity of the signed distance
dist(E1, E2) under perturbation in bj and Aj .

Recalling (1.1), we first examine the term 〈w, bj〉, the only term that depends on

bj . Defining b̂j = bj + δbj , for any vector w with 〈w,w〉 = 1, we have

|〈w, b̂j〉 − 〈w, bj〉| ≤ max
〈w,w〉=1

|〈w, δbj〉| = ‖δbj‖.

Therefore, perturbing bj by ε can only perturb the signed distance by at most ε, that
is, the signed distance is a well-conditioned function of bj , so slightly perturbing the
ellipsoid centers is always harmless.

Perturbation in Aj is a bit more subtle. Defining Âj = Aj + δAj and assuming
the perturbation is small enough so that ‖δAj‖ ≤ σmin(Aj), in which we take the
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spectral norm ‖A‖ := σmax(A), we have∣∣∣∣√〈w, Âjw〉 −√〈w,Ajw〉∣∣∣∣ ≤ ∣∣∣∣√〈w,Ajw〉 − ‖δAj‖ −√〈w,Ajw〉∣∣∣∣
=

‖δAj‖√
〈w,Ajw〉 − ‖δAj‖+

√
〈w,Ajw〉

.
‖δAj‖

2
√
〈w,Ajw〉

≤ ‖δAj‖
2
√
σmin(Aj)

.

Strict inequality holds here up to O(‖δAj‖2). Using these bounds we obtain

(5.2) |dist(E1, E2)− dist(Ê1, Ê2)| . ‖δb1‖+ ‖δb2‖+
‖δA1‖

2
√
σmin(A1)

+
‖δA2‖

2
√
σmin(A2)

.

Note that equality can be attained in (5.2) up to O(‖δAj‖2): denoting by v the
eigenvector for σmin(Aj), suppose w = v and take δAj = εvv>. The above argument
shows that the conditioning with respect to perturbation in Aj is proportional to the
smallest eigenvalue of Aj , so care is needed when Aj is ill-conditioned. For a matrix
A, we denote by κ(A) its condition number, i.e., κ(A) := σmax(A)/σmin(A). Between
A1 and A2, it is advised to perturb Aj with smaller condition number. If κ(Aj)� 1,
then the change in the solution may be unacceptably large, and one may be advised
to use higher precision arithmetic. If κ(Aj) = O(1), which is easy to verify, then
perturbing Aj can be done safely.

We note that while the conditioning of the signed distance can be analyzed as
above, that of the corresponding points (x1, x2) on the ellipsoids cannot be bounded
in general. For an extreme example, let E1, E2 both be unit spheres centered at the
origin. Then the signed distance is clearly −2, attained at (u,−u) for an arbitrary
point u with ‖u‖ = 1. However, by a small ε perturbation in b1, the correspond-
ing points become uniquely determined with signed distance ε − 2, illustrating the
sensitivity of the points (x1, x2) to perturbation in bj .

This does not necessarily indicate the weakness of the algorithm, but rather the
difficulty of the problem of finding xj . Indeed, small perturbation in Aj , bj can be
regarded as a small backward error [15, §1.8], so the backward stability is not lost.

In practice, perturbing b1 to introduce a small nonzero d still results in detM1(λ, µ),
detM2(λ, µ) ≈ 0 whenever detN = 0, indicating numerical instability may be an is-
sue. One remedy for this is to apply a diagonal congruence scaling diag(

√
cI, 1√

c
I)

for some c > 0 to balance the norms of the diagonal blocks: we redefine

M1(λ, µ) :=

[
c1µA1 N(λ, µ)
N(λ, µ) µ

c1
D

]
, M2(λ, µ) =

[
c2λA2 N(λ, µ)
N(λ, µ) λ

c2
D

]
.

An appropriate choice is c1 ≈
√
‖D‖
‖A1‖ , c2 ≈

√
‖D‖
‖A2‖ . Clearly their determinants are

the same as those in (3.10), but the numerical behavior is improved significantly. This
scaling is recommended whenever the norms of ‖D‖ and ‖Aj‖ differ, so we employ it
by default in our algorithm.

5.6. The linearization is regular. In summary, our overall algorithm proceeds
as follows:

The rationale behind the choice of j is that if Aj has only simple eigenvalues
then Algorithm 5.2 alone is sufficient, and otherwise we choose j so that perturbing
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Algorithm 5.4 Overall algorithm to compute the signed distance between ellipsoids.

1: If the regularity test is not passed, then reduce dimension by Algorithm 5.1.
2: If the regularity test is not passed, then select j ∈ {1, 2} as follows: set j if Aj has

only simple eigenvalues. Otherwise, take j with smaller condition number κ(Aj),
and perturb bj by Algorithm 5.2.

3: If the regularity test is not passed, then perturb Aj , bj by Algorithm 5.3.
4: Invoke Algorithm 3.1 to compute the signed distance.

Aj by Algorithm 5.3 is more stable. After the preprocessing steps in Algorithms
5.1, 5.2 and 5.3, L1, L2 are regular matrix pencils, and detM1 = detM2 = 0 has a
finite number of solutions. As a result, one can reliably compute the eigenvalues of
L1, L2, which give a finite number 4n2 of candidate points for the KKT conditions,
and hence Algorithm 3.1 computes the signed distance between overlapping ellipsoids
with O(n6) cost.

6. KKT points and local optimality. We now turn to analyzing the KKT
points; in particular we discuss how to check the local optimality of the KKT points.
Although this is not directly necessary for Algorithm 3.1, which simply compares
the objective values at the KKT points, investigating the local optima reveals the
nonconvex nature of the problem and deepens our understanding.

6.1. Checking local optimality of the primal KKT points. For a KKT
point w of the primal problem (1.1) obtained through (3.16), we would like to identify
whether it is a local optimum or a saddle point. For simplicity, we introduce the
equivalent problem

(6.1) minimize
‖w‖=1

(
−〈w, b1〉+

√
〈w,A1w〉+ 〈w, b2〉+

√
〈w,A2w〉

)
and its Lagrangian function

(6.2) L(w,ϕ) = −〈w, b1〉+
√
〈w,A1w〉+ 〈w, b2〉+

√
〈w,A2w〉+

ϕ

2
(1− ‖w‖2).

Classical results in constrained optimization [27, §12.5] implies that if a KKT point ŵ
with a Lagrange multiplier ϕ̂ is a local minimum then the projected Hessian of L onto
the tangent plane T (ŵ) = {v : ŵ>v = 0} at ŵ is positive semidefinite. Conversely, ŵ
is a strict local minimum if the projected Hessian of L onto T (ŵ) is positive definite.
Direct computation shows that the Hessian is

(6.3)
∂2L
∂w2

=
1√

w>A1w

(
A1 −

A1ww
>A1

w>A1w

)
+

1√
w>A2w

(
A2 −

A2ww
>A2

w>A2w

)
−ϕI.

Recall that our algorithm obtains the KKT point w for (1.1) through (3.16), and the
corresponding KKT point (x1, x2) and Lagrange multipliers λ, µ for (3.1) are already
available. Using these we can rewrite the right-hand side of (6.3) as

∂2L
∂w2

=
ϕ

λ

(
A1 − (x1 − b1)(x1 − b1)>

)
+
ϕ

µ

(
A2 − (x2 − b2)(x2 − b2)>

)
− ϕI.

We can then test the local optimality by checking if the matrix Q>w
∂2L
∂w2Qw is positive

definite, where Qw is the n× (n− 1) matrix such that [ŵ, Qw] is orthogonal. This is



SIGNED DISTANCE BETWEEN ELLIPSOIDS 21

a basic problem in linear algebra requiring O(n3) operations, which can be done by
either attempting the Cholesky factorization or computing the eigenvalues.

There is some subtlety in testing local optimality by this process: when the

projected Hessian Q>w
∂2L
∂w2Qw is positive semidefinite but not definite. In this case

we can neither guarantee that the KKT point is locally optimal, nor exclude it as a
saddle point. Fortunately, this rarely happens. Under the nondegeneracy assumption
that the projected Hessian is nonsingular at every KKT point, we can enumerate all
the locally optimal solutions.

6.2. Bounds for Lagrange multipliers. We show that at the KKT points the
Lagrange multipliers λ, µ are bounded in absolute value.

Proposition 6.1. At every KKT point (x1, x2) of (2.1) with Lagrange multipliers
λ and µ satisfying (3.2)–(3.5), the absolute values of λ and µ are bounded by

|λ| ≤
‖A1‖(‖b1‖+ ‖b2‖+

√
‖A1‖+

√
‖A2‖)√

σmin(A1)
,(6.4)

|µ| ≤
‖A2‖(‖b1‖+ ‖b2‖+

√
‖A1‖+

√
‖A2‖)√

σmin(A2)
.(6.5)

Proof. By (3.2) and (3.3) we have

(6.6)
√
σmin(Ai) ≤ ‖xi − bi‖ ≤

√
σmax(Ai), i ∈ {1, 2}.

These also imply bounds on ‖x1‖, ‖x2‖: we have ‖xi‖ ≤ ‖bi‖+
√
‖Ai‖. Now by (3.4)

and (3.5) we have

(6.7) |λ|‖A−1
1 (x1 − b1)‖ = ‖x1 − x2‖ ≤ ‖b1‖+ ‖b2‖+

√
‖A1‖+

√
‖A2‖.

Since ‖A−1
1 (x1 − b1)‖ ≥ σmin(A−1

1 )‖x1 − b1‖, from (6.7) we obtain

|λ| ≤
‖b1‖+ ‖b2‖+

√
‖A1‖+

√
‖A2‖

‖A−1
1 (x1 − b1)‖

≤
‖A1‖(‖b1‖+ ‖b2‖+

√
‖A1‖+

√
‖A2‖)

‖x1 − b1‖

≤
‖A1‖(‖b1‖+ ‖b2‖+

√
‖A1‖+

√
‖A2‖)√

σmin(A1)
,

where we used the lower bound in (6.6) for the last inequality. This proves (6.4). The
bound (6.5) can be obtained entirely analogously.

The bounds (6.4), (6.5) can be used to exclude some of the computed solutions
for detL1(λ) = 0, detL2(µ) = 0 that violate them.

7. Numerical experiments. This section presents numerical experiments to
illustrate Algorithm 3.1. All the experiments were conducted in Matlab 2013A.
Unless otherwise mentioned, we generate the ellipsoids by setting Ai = X>i Xi with
Xi being n×n random matrices and by taking random vectors as bi, using the standard
normal distribution randn.

7.1. Illustration in two dimensions. For ease of visualization we first consider
the two-dimensional case n = 2.

Recall that in order to compute the signed distance our algorithm finds the KKT
points for the relaxed dual problem (3.1). As shown in Section 3.2, the computed
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KKT points contain those of the primal problem (1.1) (those with λµ > 0) and more
(those with λµ < 0).

We illustrate the situation by visualizing the set x1 − x2 with the conditions
x1 ∈ bd(E1), x2 ∈ bd(E2), then plotting the KKT points of (3.1) in the left figures
below. Plotting the set {x1−x2 | x1 ∈ bd(E1), x2 ∈ bd(E2)} directly is nontrivial, so
we fix x1 ∈ bd(E1) on a boundary of E1 and plot x1 − x2 where x2 moves along x2 ∈
bd(E2), then repeat this for many points on x1 ∈ bd(E1) (black curves). The convex
set U = E1	E2 in Section 2 is the interior of the outer boundary of the black region
{x1 − x2 | x1 ∈ bd(E1), x2 ∈ bd(E2)}. The KKT points computed by Algorithm 3.1
are indicated by the dots (green, blue and red); those on the boundary bd(E1 	 E2)
correspond to the KKT points for the primal problem (1.1). In particular, the blue
dots correspond to the local solutions as verified by the procedure in Section 6.1, and
the red dot to the global solution.

In the center figures, we draw the ellipsoids together with the KKT points, with
each pair of KKT points connected by black lines: the solid thick line corresponds to
the solution, the dashed line connects x1, x2 at the KKT points with λµ > 0 (critical
points for the primal problem (1.1)), and the dot-dashed lines show the other KKT
points with λµ < 0 (critical points for the relaxation problem (3.1), with x1 − x2 in
the interior of U = E1 	 E2).
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Fig. 7.1. Overlapping case with four local minima. For the figures in this subsection, the three
plots illustrate the following: Left: The Minkowski difference {x1 − x2|x1 ∈ bd(E1), x2 ∈ bd(E2)}
and the KKT points. Center: ellipsoids and the KKT points. Right: (λ, µ)-values satisfying the
KKT conditions.
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Fig. 7.2. Overlapping case with three local minima.

Observe from Figures 7.1–7.4 that the number of local minima for (1.1) in the
overlapping case differs depending on the relative positioning of E1 and E2. Our
experiments suggest that the number of local minima is 1, 2, 3 or 4. Moreover, we
observe that each local minimum for (1.1) is also a local minimum for the dual problem
(2.1). The total number of KKT points for the relaxation problem (3.1) also depends
largely on the relative positioning of the ellipsoids.
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Fig. 7.3. Overlapping case with two local minima.
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Fig. 7.4. Overlapping case with one local minimum equal to the global solution.
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Fig. 7.5. Non-overlapping case. There is just one local minimum equal to the global solution.

Figure 7.5 is a typical illustration of a non-overlapping (convex) case, for which
more efficient algorithms are available but Algorithm 3.1 is still applicable.

7.2. KKT points for larger dimension. We next run Algorithm 3.1 for larger
dimension n and illustrate by plotting the Lagrange multipliers (λ, µ) corresponding
to the KKT points for the relaxation problem (3.1). As before, the KKT points for
the primal problem are those for which λ and µ have the same sign; see Figure 7.6.

In the non-overlapping case, we generally observe that there is at least one point
in each quadrant of the (λ, µ)-plane and the unique point with λ, µ < 0 corresponds
to the global solution, verifying our results in Section 3.2.

In the overlapping case there are generally many more KKT points, reflecting the
non-convexity of the problem. We also observe that the solution in the overlapping
case generally corresponds to one of the KKT points closest to the origin with λ, µ > 0.
This is analogous to the point-ellipsoid distance problem, in which the solution cor-
responds to the KKT point with the smallest Lagrange multiplier [12, 17]. However,
the right plot of Figure 7.6 suggests that the solution may not have the smallest value
of λ or µ. Experiments suggest it may hold that the pair of Lagrange multipliers
(λ∗, µ∗) for the global solution admits no other positive Lagrange multipliers (λ, µ)
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Fig. 7.6. Values of (λ, µ) for the KKT points, non-overlapping case (left) and overlapping case
(center and right).

for KKT points with λ > λ∗ and µ > µ∗; a precise characterization appears to be
nontrivial and we leave it as an open problem.

We also used the process in Section 6.1 to examine the number of local optima
among the KKT points. Fortunately, the projected Hessian was always either strictly
indefinite or positive definite, so we accurately counted the number of local optima.
Experiments suggest that in the overlapping case there are at most four local optima,
regardless of the dimension n. Note that for the special case of point-ellipsoid dis-
tance problem it is known that there can be at most two local minima [12, 22], and
our experiments indicate that an analogous result may hold in our ellipsoid-ellipsoid
problem. Making this observation precise is also an open problem.

7.3. Runtime with increasing dimension. The dominant cost of our algo-
rithm is in computing the eigenvalues of a 4n2 × 4n2 linear generalized eigenvalue
problem, for which the complexity is O(n6). To verify this numerically we generated
random examples of varying dimension n = 2, 3, . . . , 40 and examined the runtime.
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Fig. 7.7. Runtime as the dimension n varies.

Figure 7.7 confirms that the runtime scales as O(n6). In all cases with n ≥ 10, at
least 90% of the runtime was spent on the eigensolver.

8. Conclusion and discussion. We have proposed the first polynomial-time
algorithm for computing the signed distance between two ellipsoids. The algorithm
computes the KKT points for a relaxation of the dual problem, for which we analyze
connections with the primal KKT points. A crucial component is to convert the
KKT conditions into a two-parameter eigenvalue problem, which is then reduced to
linear generalized eigenvalue problems of size O(n2). We analyze when the conversion
results in a regular pencil, and propose remedies for the pathological cases. We
present numerical experiments, which, in addition to illustrating the ellipsoids and
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the algorithm performance, pose several open problems.

Let us conclude with remarks on possible future work. First, the O(n6) complexity
can be a bottleneck when n is large, so a natural question is to design a more efficient
algorithm. In addition, our algorithm perturbs the ellipsoids in the pathological cases,
and it would be nice to have an approach that does not require such treatments.

Finally, an active area of research in non-convex optimization is the Celis-Dennis-
Tapia (CDT) problem, which arises as a subproblem of a nonlinear optimization
problem [9, 11]. In the CDT problem one is asked to minimize a non-convex quadratic
function over the intersection of two ellipsoids. A number of recent studies (e.g.
[1, 6]) examine and analyze the CDT problem, but to our knowledge there is no
established deterministic polynomial-time algorithm for solving it, except for the one
in the very recent preprint [4] that addresses this question and describes a polynomial-
time algorithm for the CDT problem under some solvability assumptions on a system
of quadratic equations.

This paper has focused on the signed distance problem, but we suspect some of the
ideas that we have introduced may be useful for the CDT problem. Specifically, both
problems have two ellipsoidal constraints, which lead to KKT conditions involving
two Lagrange multipliers. In this paper we have computed the KKT points for the
signed distance problem by solving an eigenvalue problem, and we conceive that this
framework may be applicable also to the CDT and other optimization problems.
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