
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Combinatorial Relaxation Algorithm
for the Entire Sequence of the
Maximum Degree of Minors

Shun SATO

(Communicated by Takayasu MATSUO)

METR 2014–23 August 2014

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Combinatorial Relaxation Algorithm for the

Entire Sequence of the Maximum Degree of Minors

Shun Sato

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo
shun sato@mist.i.u-tokyo.ac.jp

August, 2014

Abstract

This paper presents an efficient “combinatorial relaxation” algo-
rithm for computing the entire sequence of the maximum degree of
minors, whereas the previous algorithms find them separately for a
specified order k. The efficiency of the algorithm is based on the dis-
crete concavity related to valuated bimatroids.

1 Introduction

Let A(x) be a rational matrix over a field F , i.e., each entry Aij(x) is a
rational function in x over F . Typically, F is the real number field R or
the rational number field Q. We define the degree of a rational function
f(x) = p(x)/q(x) by deg f = deg p−deg q. For f(x) = 0 we put deg f = −∞
by convention. The maximum degree of the minors of order k is defined as
follows:

δk(A) := max {deg detA[I, J] | I ⊆ Row(A), J ⊆ Col(A), |I| = |J | = k} ,
(1)

where Row(A) is the row-set of A, Col(A) is the column-set of A, and A[I, J]
denotes the submatrix of A with the row-set I and the column-set J . We
set δ0(A) = 0.

Finding the maximum degree of minors is a fundamental problem in
engineering. For example, the Smith–McMillan form at infinity and the
Kronecker form are closely related to the maximum degree of minors. The
former is a normal form of rational matrices often used in control theory
(e.g., Commault–Dion [1]), and the latter is a normal form of matrix pencils
frequently employed in analyzing DAEs (e.g., Hairer–Wanner [5]). These

1

normal forms are determined from the entire sequence of the maximum
degree of minors.

The aim of this paper is to propose an efficient combinatorial relaxation
type algorithm for finding the entire sequence of the maximum degree of
minors in rational matrices. We are based on the approach of Murota [9]
which gives a method for computing the maximum degree for a specified or-
der. Obviously, we can compute the entire sequence by repeatedly applying
the existing algorithm [9] (or its variant [6]). But it can be done much more
efficiently by fully utilizing the discrete concavity inherent in this problem.
In the present paper, we propose such an algorithm. We also use some tech-
niques for constructing the proposed algorithm and the method to analyze
the time complexity devised in Iwata–Takamatsu [7], where mixed polyno-
mial matrices were considered (instead of rational matrices).

All the existing algorithms mentioned above [6, 7, 9] adopted a general
framework of “combinatorial relaxation” due to Murota [8]. This framework
provides us the practical efficiency of the graph theoretic approach and the
accuracy of the numerical methods. The outline of the algorithm for δk(A)
for a specified k reads as follows:

Step 1: Solve a weighted bipartite matching problem (as a combinatorial
relaxation problem) associated with the rational matrix A(x).

Step 2: Test whether the solution of the combinatorial problem is equal
to δk(A) or not. This can be done without knowing δk(A) itself.

Step 3: In case they are not equal, modify A(x) and go back to Step 1.

The heart of the “combinatorial relaxation” lies in Step 3. Here we
introduce an auxiliary variable δ̂k(A), an estimate of δk(A), as the maximum
weight of a matching of size k computed in Step 1. The auxiliary variable
δ̂k(A) satisfies the following properties:

1. For all k, δk(A) ≤ δ̂k(A) holds (see Fig. 1);

2. There exists A′(x) such that δk(A) = δk(A
′) = δ̂k(A

′) holds.

Thanks to the former property, in the modification of the rational matrix
A(x) in Step 3, we only have to consider to decrease δ̂k(A). The latter
property guarantees that the estimated value can in fact achieve the desired
value.

This paper is organized as follows: Preliminaries such as the definition
of the maximum degree of minors are given in Section 2. In Section 3, we
show a primitive algorithm for the entire sequence of the maximum degree of
minors. The proposed algorithm is described in Section 4. In Section 5, we
illustrate the algorithm through a simple example. Then, we theoretically
analyze the time complexity of the proposed algorithm in Section 6.

2

δk(A), δ̂k(A)

k
r

δ̂k(A)
δk(A)

Figure 1: The relation between δk(A)’s and δ̂k(A)’s

2 Preliminaries

2.1 Biproper Equivalence Transformation

We call a rational function f(x) proper if deg f ≤ 0, and strictly proper if
deg f < 0. A rational matrix is said to be proper if each entry of it is proper.
Similarly, a rational matrix is said to be strictly proper if each entry of it is
strictly proper. We call a square proper rational matrix U(x) biproper if it
is invertible and U(x)−1 is proper. For a proper rational matrix U(x), the
following two conditions are equivalent (see, e.g., [12]):

1. U(x) is a biproper rational matrix;

2. detU(x) is a nonzero constant.

A transformation of the form: U(x)A(x)V (x) is called a biproper equiv-
alence transformation if U(x) and V (x) are biproper rational matrices. The
values δk(A)’s are invariant under biproper equivalence transformations.

2.2 Valuated Bimatroids

The concept of valuated bimatroid was defined by Murota [11] as a variant
of valuated matroid (Dress–Wenzel [2, 3]). A valuated bimatroid is a triple
(R,C,w), where R and C are disjoint finite sets and w : 2R×2C → R∪{−∞}
is a map that satisfies a certain exchange axiom (see, e.g., [11, 12]). We define
S ⊆ 2R × 2C , Sk ⊆ S and δk ∈ R as follows:

S = {(I, J) | |I| = |J |, I ⊆ R, J ⊆ C},
Sk = {(I, J) | |I| = |J | = k, I ⊆ R, J ⊆ C},
δk = max{w(I, J) | (I, J) ∈ Sk}.

Proposition 1 (Murota [11]). The following inequality holds:

δk−1 + δk+1 ≤ 2δk (k = 1, 2, . . . , r − 1). (2)

3

The set Mk of the maximizers of w is defined as follows:

Mk = {(I, J) ∈ Sk | w(I, J) = δk}.

Proposition 2 (Murota [11]). For any (Ik, Jk) ∈ Mk with k = 1, . . . , r−1,
there exist (Il, Jl) ∈ Ml (0 ≤ l ≤ r, l ̸= k) such that (∅ =)I0 ⊆ I1 ⊆ · · · ⊆
Ik−1 ⊆ Ik ⊆ Ik+1 ⊆ · · · ⊆ Ir and (∅ =)J0 ⊆ J1 ⊆ · · · ⊆ Jk−1 ⊆ Jk ⊆ Jk+1 ⊆
· · · ⊆ Jr.

It is known that
w(I, J) := deg detA[I, J] (3)

defines a valuated bimatroid [11, 12]. Therefore, {δk(A)}rk=0 is a concave
sequence by Proposition 1. Proposition 2 means that the maximizers of w
have a nesting structure.

3 Existing Combinatorial Relaxation Algorithm

The description of this section is based on [9, 10].
Let A(x) be a rational matrix with the row set R and the column set

C. We define G(A) = (R ∪ C,E(A), c) as a bipartite graph associated with
A(x) where the arc set E(A) and the weight c : E(A) → Z are defined as
follows:

E(A) = {(i, j) | i ∈ R, j ∈ C, Aij(x) ̸= 0} , (4)

c(i, j) = degAij ((i, j) ∈ E(A)). (5)

Let δ̂k(A) be the weight of a maximum weight matching of size k in
G(A), i.e.,

δ̂k(A) = max {c(M) | M : a matching in G(A), |M | = k} , (6)

where c(M) =
∑

(i,j)∈M c(i, j). If there is no matching of size k in G(A), we

define δ̂k(A) = −∞.
Then,

ŵ(I, J) := max{c(M) | M ⊆ E(A), ∂M = I ∪ J} (I ⊆ R, J ⊆ C),

as well as w(I, J) defined in (3), defines a valuated bimatroid. Therefore,
Propositions 1 and 2 hold for ŵ.

These δ̂k(A)’s play the role of a combinatorial relaxation of δk(A)’s, and
the following inequality holds ([9, Theorem 3]):

δk(A) ≤ δ̂k(A). (7)

4

We can test whether δk(A) = δ̂k(A) holds or not without knowing δk(A)
itself by utilizing the duality of linear programming. The primal-dual pair of
linear programming problems associated with weighted bipartite matching
problem discussed above are given as follows:

PLP(A, k) : maximize
∑
e∈E

ceξe,

subject to
∑
∂e∋i

ξe ≤ 1 (i ∈ V), (8)∑
e∈E

ξe = k,

ξe ≥ 0 (e ∈ E(A));

DLP(A, k) : minimize
∑
i∈R

pi +
∑
j∈C

qj + kt (=: π(p, q, t)),

subject to pi + qj + t ≥ cij ((i, j) ∈ E(A)), (9)

pi ≥ 0 (i ∈ R),

qj ≥ 0 (j ∈ C).

Here, ∂e is defined as ∂e = {i ∈ V | ∃j ∈ V, (i, j) = e or (j, i) = e}.
PLP(A, k) and DLP(A, k) have an integral optimal solution, and their op-
timal values are equal to δ̂k(A).

We define the active rows I∗ ⊆ R and the active columns J∗ ⊆ C as
follows:

I∗ = I∗(p) = {i ∈ R | pi > 0} , (10)

J∗ = J∗(q) = {j ∈ C | qj > 0} . (11)

Moreover, we define the tight coefficient matrix A∗ of A as follows:

A∗
ij = lim

x→∞
x−pi−qj−tAij(x). (12)

Note that the right-hand side of (12) is a bounded constant because of
pi + qj + t ≥ cij = degAij , and that computing the rank of A∗ is relatively
easy.

Proposition 3 enables us to test whether δk(A) = δ̂k(A) (which we call
“tight”) or not without knowing δk(A).

Proposition 3 ([9]). Let (p, q, t) be an optimal dual solution, I∗ and J∗ be
the active rows and columns defined by (10) and (11), and A∗ be the tight
coefficient matrix defined by (12). Then, δk(A) = δ̂k(A) if and only if the
following four conditions are satisfied:

(r1) rankA∗[R,C] ≥ k,

(r2) rankA∗[I∗, C] = |I∗|,

5

(r3) rankA∗[R, J∗] = |J∗|,

(r4) rankA∗[I∗, J∗] ≥ |I∗|+ |J∗| − k.

Let A(x) be an m × n Laurent polynomial matrix. A rational function
is said to be a Laurent polynomial function if there exists an integer N such
that xNf(x) is a polynomial function. We define dmax and dmin as follows:

dmax = dmax(A) = max{degAij | i ∈ R, j ∈ C},
dmin = dmin(A) = min{ordAij | i ∈ R, j ∈ C},

where ord f is defined as follows:

ord f := −min{N ∈ Z | xNf(x) is a polynomial}.

To compute the entire sequence of the maximum degree of minors
{δk(A)}rk=1 (r = rankA), we can simply execute the existing algorithms
[6, 9] r times as follows:

Outline of the Primitive Algorithm for Computing {δk(A)}rk=1

Step 0: Set k := 1.

Step 1: Find an optimal solution (p, q, t) of DLP(A, k).

Step 2: Test whether δk(A) = δ̂k(A) or not using (p, q, t) (Proposition 3).
If equality holds, go to Step 4.

Step 3: Modify A(x) to A′(x), and go back to Step 1.

Step 4: Output δk(A), update k := k + 1 and go back to Step 1.

In general, we do not know the value of r at the starting point of the
algorithm. But we can stop the algorithm as follows: If the rank of the
matrix A(x) is equal to min{m,n}, the rule of the termination is obvious.
Otherwise, we use the inequality δk(A) ≥ kdmin (k ≤ r) to stop the algorithm
in Step 1: If δ̂k(A) < kdmin holds, then stop with r := k − 1.

By virtue of the significant properties of δk(A)’s and δ̂k(A)’s shown in
Propositions 1 and 2, the efficiency of this algorithm can be improved, which
is the main contribution of this paper.

4 Proposed Algorithm

In this section, we propose an efficient algorithm to compute the entire
sequence of the maximum degree of minors. This section is organized as
follows: In Section 4.1, we show two key theorems for an efficient computa-
tion of the entire sequence of the maximum degree of minors. Section 4.2

6

provides the outline of the proposed algorithm. The details of each step of
the algorithm are developed in Section 4.3–4.6. Then, we show the complete
description of the algorithm in Section 4.7. Finally, we give the proofs of
the two key theorems (stated in Section 4.1) in Section 4.8.

4.1 Theorems to Improve Efficiency

We show two theorems which come from the significant properties of δk(A)’s
and δ̂k(A)’s.

Theorem 1. Suppose that δk(A) = δ̂k(A) holds and (p, q, t) is a common
optimal dual solution of DLP(A, k) and DLP(A, k + 1). Let A∗ be the tight
coefficient matrix defined by (12). Then, δk+1(A) = δ̂k+1(A) = δk(A) + t if
and only if rankA∗ ≥ k + 1.

Theorem 1 allows us to check if δk+1(A) = δ̂k+1(A) by computing rankA∗

only. This value, r∗ := rankA∗, is always greater than k. Furthermore, when
r∗ > k+1, thanks to the next theorem, we obtain all of δk+1(A), . . . , δr∗(A)
at the same time, i.e., we can skip the computation of δk+2(A), . . . , δr∗(A).

Theorem 2. Let (p, q, t) be a common optimal dual solution of DLP(A, k)
and DLP(A, k + 1). Let A∗ be the tight coefficient matrix defined by (12).
Suppose that δk(A) = δ̂k(A) holds and k < r∗ holds. Then, the following
equality holds:

δl(A) = δ̂l(A) = δk(A) + (l − k)t (l = k + 1, . . . , r∗). (13)

Moreover, δr∗+1(A) < δk(A) + (r∗ + 1− k)t holds.

4.2 The Outline of the Proposed Algorithm

The outline of the proposed algorithm is as follows.

Outline of the Proposed Algorithm for Computing {δk(A)}rk=1

Step 0: Compute δ1(A) and set k := 1.

Step 1: Find a common optimal dual solution (p, q, t) of DLP(A, k) and
DLP(A, k + 1).

Step 2: Test for the tightness, i.e., whether δk+1(A) = δ̂k+1(A) or not, by
using (p, q, t) and the tight coefficient matrix A∗ (Theorem 1). If the
equality holds, go to Step 4. Otherwise, go to Step 3.

Step 3: Modify A(x) to A′(x) such that δ̂k+1(A
′) < δ̂k+1(A) and δk+1(A

′) =
δ̂k+1(A) hold, and go back to Step 1.

Step 4: Output δk+1(A), . . . , δr∗(A) (Theorem 2), update k := r∗ and go
back to Step 1.

7

The detail of the algorithm is described in Section 4.7. The termination
of the algorithm will also be described there.

For Step 0, the initialization, we look for a pair (i, j) ∈ R × C that is a
maximizer of degAij . Then we have I∗1 = {i}, J∗

1 = {j}, M1 = {(i, j)}. The
other steps are discussed in Section 4.3–4.6.

4.3 Step 1: Construction of an Optimal Dual Solution

At every starting point of Step 1, the following conditions are satisfied as a
result of the last loop, or the initialization:

1. δl(A) = δ̂l(A) (l = 1, 2, . . . , k);

2. deg detA[I∗k , J
∗
k] =

∑
(i,j)∈Mk

degAij = δk(A);

3. I∗k = ∂+Mk, J
∗
k = ∂−Mk.

Here, ∂+M and ∂−M are defined as follows:

∂+M = {i ∈ R | ∃j ∈ C s.t. (i, j) ∈ M},
∂−M = {j ∈ C | ∃i ∈ R s.t. (i, j) ∈ M}.

In actual computation, we do not need to store I∗k and J∗
k because they can

be easily constructed from Mk. They are explicitly introduced here for a
better presentation of the proposed algorithm.

An optimal dual solution can be constructed as follows. As stated in
Iwata–Takamatsu [7], we can obtain it by solving a shortest path problem on
an auxiliary graph. Consider the auxiliary graph GMk

= (V,E, γ) associated
with Mk, where

V = R ∪ C ∪ {u+} ∪ {u−},
E = E(A) ∪M◦ ∪W+ ∪W−.

Here, u+ and u− are new vertices and

E(A) = {(i, j) | i ∈ R, j ∈ C, Aij(x) ̸= 0} ,
M◦ = {(j, i) | (i, j) ∈ Mk} ,
W+ =

{
(u+, i) | i ∈ R \ I∗k

}
,

W− =
{
(j, u−) | j ∈ C \ J∗

k

}
∪ {(u−, j) | j ∈ C}.

We define the arc length γ : E → Z by

γ(i, j) =


−degAij ((i, j) ∈ E(A)) ,

degAji ((i, j) ∈ M◦) ,

0 ((i, j) ∈ W+ ∪W−) .

8

Let φ(v) be the length of a shortest path from u+ to v ∈ V with arc length
γ in GMk

. If there is no path from u+ to v ∈ V , we set φ(v) = +∞. We
define (p, q, t) as follows:

pi = φ(i) (i ∈ R),

qj = φ(u−)− φ(j) (j ∈ C),

t = −φ(u−).

(14)

If there is a path from u+ to u−, (p, q, t) is an optimal dual solution
of DLP(A, k) as stated in Lemma 1 below. Otherwise, i.e., if there is no
path from u+ to u−, k = rankA(x) holds since k = term-rankA(x) ≥
rankA(x) ≥ k. Here, term-rankA is defined as follows (see, e.g., [12]):

term-rankA = max{|M | | M is a matching on G(A)}.

Lemma 1 (cf. [7, Lemma 3]). Let Mk be a maximum weight matching
in G(A) with |Mk| = k. The triple (p, q, t) defined by (14) with respect to
GMk

is an optimal dual solution of DLP(A, k). Furthermore, if the weight
function is integer valued, then (p, q, t) is an integral solution.

In this step, we can adopt “reweighting” using the newest optimal dual
variable [4, 13].

4.4 Step 2: Test for Tightness

Lemma 2. Under the condition of Lemma 1, (p, q, t) is an optimal dual
solution of DLP(A, k + 1).

Proof. Since the triple (p, q, t) is obviously a feasible solution of DLP(A,
k + 1), it is sufficient to show the optimality. The objective function of
DLP(A, k + 1) is expressed as

πk+1(p, q, t) =
∑
i∈R

pi +
∑
j∈C

qj + (k + 1)t = πk(p, q, t) + t.

On the other hand, since the dual variable t = −φ(u−) is defined as the
maximum length of augmenting paths, the optimal value of DLP(A, k + 1)
is larger than the optimal value of DLP(A, k) by t. Therefore, (p, q, t) is an
optimal dual solution of DLP(A, k + 1).

Lemma 2 means δ̂k+1(A) = δk(A) + t. Since δ̂k+1(A) ≥ δk+1(A) ≥
(k + 1)dmin holds for all integer k < r, δ̂k+1(A) = δk(A) + t < (k + 1)dmin

implies k = r. Therefore, if t < (k + 1)dmin − δk(A) holds, we can set
rankA = k and halt.

Since Lemmas 1 and 2 mean that (p, q, t) defined in (14) is a common op-
timal dual solution of DLP(A, k) and DLP(A, k+1), we can adopt Theorem 1
instead of Proposition 3 to test for the tightness, i.e., δk+1(A) = δ̂k+1(A)
holds if and only if rankA∗ > k.

9

4.5 Step 3: Matrix Modification

Theorem 1 allows us to focus on the single condition rankA∗ = k whereas
the existing algorithms deal with the four cases. When the execution of
Step 3 starts, the following conditions are satisfied:

1. rankA∗ = k,

2. rankA∗[I∗l , J
∗
l] = l (l = 1, 2, . . . , k).

Therefore, there exists a unique m×m constant matrix U such that

(U1) U [I∗k , I
∗
k] and U [R \ I∗k , R \ I∗k] are identity matrices,

(U2) U [I∗k , R \ I∗k] = O,

(U3) term-rankUA∗ = k.

Namely, there exist a matrix U such that

UA∗ =

[
I O

Ũ I

]
A∗ =

[
A∗[I∗k , C]

O

]
(15)

holds (strictly speaking, with some appropriate permutation), where I de-
note the identity matrix of suitable order and Ũ = U [R\I∗k , I∗k] is a constant
matrix. From (15), Ũ satisfies

ŨA∗[I∗k , J
∗
k] +A∗[R \ I∗k , J∗

k] = O. (16)

We can obtain the constant matrix U satisfying (U1), (U2) and (U3) by
solving (16); note that A∗[I∗k , J

∗
k] is nonsingular.

Then we consider to modify the matrix A(x) by the constant matrix U
satisfying (U1), (U2) and (U3); let us define a modified matrix

A′(x) = diag(x; p) · U · diag(x;−p) ·A(x), (17)

where · denotes the usual matrix multiplication.
The right-hand side of the equation (17) can be computed by executing

the multiplication of the submatrices as follows:

A′(x) = diag(x; p) ·
[

I O

Ũ I

]
· diag(x;−p) ·A(x) (18)

=

[
I O

Ũ · diag(x;−p∗k) I

] [
A[I∗k , C](x)

A[R \ I∗k , C](x)

]
, (19)

where diag(x; p) := diag(xp1 , . . . , xpm) and p∗k := (pi | i ∈ I∗k). Therefore,

A′[I∗k , C](x) = A[I∗k , C](x), (20)

A′[R \ I∗k , C](x) = Ũ · diag(x : −p∗k) ·A[I∗k , C](x) +A[R \ I∗k , C](x). (21)

This modification makes sense, as stated in Theorem 3.

10

Theorem 3. The matrix A′(x) defined in (17) has the following four prop-
erties:

1. δl(A
′) = δl(A) (l = 1, . . . , r);

2. deg detA′[I∗k , J
∗
k] = δk(A

′);

3. δ̂l(A
′) = δl(A

′) (l = 1, . . . , k);

4. δ̂k+1(A
′) < δ̂k+1(A).

Proof.

1. Since U(x) := diag(x; p)·U ·diag(x : −p) is biproper, they are satisfied.

2. A′[I∗k , J
∗
k](x) = A[I∗k , J

∗
k](x) holds from (20). Therefore,

deg detA′[I∗k , J
∗
k] = deg detA[I∗k , J

∗
k] = δk(A) = δk(A

′).

3. By Proposition 2 and the property 2 of this theorem, δ̂l(A[I
∗
k , J

∗
k]) =

δ̂l(A) and δ̂l(A
′[I∗k , J

∗
k]) = δ̂l(A

′) hold for all l ≤ k. From these equali-
ties and A[I∗k , J

∗
k] = A′[I∗k , J

∗
k], we obtain

δ̂l(A
′) = δ̂l(A

′[I∗k , J
∗
k]) = δ̂l(A[I

∗
k , J

∗
k]) = δ̂l(A) = δl(A) = δl(A

′).

4. First, we prove that an optimal dual solution (p, q, t) of DLP(A, k+1)
is feasible in DLP(A′, k + 1). We define a rational matrix F (x) as
follows:

F (x) := x−tdiag(x;−p) ·A′(x) · diag(x;−q).

By using (17), we obtain

F (x) = x−tU · diag(x;−p) ·A(x) · diag(x;−q)

= U · (A∗ +A∞(x)),

where A∞(x) is a strictly proper rational matrix. From this, we see
degFij ≤ 0. Then, we obtain pi + qj + t ≤ degA′

ij for all i ∈ R and
j ∈ C by using degFij = degA′

ij − pi − qj − t. Therefore, (p, q, t) is a
feasible solution of DLP(A′, k + 1).

Next, we prove that (p, q, t) is not optimal. It is sufficient to
prove that there exists another feasible solution (p′, q′, t′) such that
πk(p

′, q′, t′) < πk(p, q, t) holds. We define (p′, q′, t′) as follows:

p′i =

{
pi + 1 (i ∈ I∗k),

pi (i /∈ I∗k),

q′j = qj (j ∈ C),

t′ = t− 1.

11

Clearly, p′i ≥ 0 and q′j ≥ 0 hold for all i ∈ R and j ∈ C. We verify
that p′i + q′j + t ≥ degA′

ij holds for all i ∈ R and j ∈ C. If i ∈ I∗k , we
obtain

p′i + p′j + t = pi + 1 + qj + t− 1 = pi + qj + t ≥ degA′
ij

by using the feasibility of (p, q, t) in DLP(A′, k). Otherwise, i.e., when
i /∈ I∗k , it holds pi + qj + t > degA′

ij , and accordingly,

p′i + p′j + t = pi + qj + t− 1 ≥ degA′
ij

holds. Furthermore, by the definition of (p′, q′, t′), πk(p
′, q′, t′) is less

than πk(p, q, t) by one.

4.6 Step 4: Outputs and Updates

Recall that the task of this step is to output δk+1(A), . . . , δr∗(A) in view of
Theorem 2, and then we are going back to Step 1. But in order to start the
process of Step 1, we need the corresponding matching Mr∗ such that∑

(i,j)∈Mr∗

degAij = deg detA[∂+Mr∗ , ∂
−Mr∗] = δr∗(A)

holds. The key ingredient for obtaining this is the computation of I∗r∗ =
∂+Mr∗ and J∗

r∗ = ∂−Mr∗ , which can be obtained simultaneously in the
calculation of r∗ = rankA∗ by the trick below.

0. M ′ := Mk, R
′ := Row(A∗).

1. Repeat the following steps k times.

(a) Choose (i, j) ∈ M ′.

(b) Conduct the row elimination for all rows in R′ \ {i} taking A∗
ij as

the pivot.

(c) M ′ := M ′ \ {(i, j)}, R′ := R′ \ {i}.

2. Execute the Gaussian elimination for A∗[R′, C].

3. Set I∗r∗ and J∗
r∗ as follows:

I∗r∗ = {i ∈ R | ∃j, A∗
ij ̸= 0},

J∗
r∗ = {j ∈ C | ∃i ∈ I∗r∗ , j = min{j′ | A∗

ij ̸= 0}}.

Then, Mr∗ is an optimal solution of the weighted bipartite matching
problem on G = (I∗r∗ ∪ J∗

r∗ , E, γ), where

E = {(i, j) | i ∈ I∗r∗ , j ∈ J∗
r∗ , Aij(x) ̸= 0} ,

γ(i, j) = degAij(x) ((i, j) ∈ E).

We can construct Mr∗ efficiently by augmenting paths (we can use Mk as
an initial matching).

12

4.7 Complete Procedure of Proposed Algorithm

Summing up the discussion above, here we show the complete procedure.

Step 0: Initialization
Choose a row i∗ and a column j∗ that maximize degAij . Initialize I

∗
1 , J

∗
1 ,

M1 as:
I∗1 := {i∗}, J∗

1 := {j∗}, M1 := {(i∗, j∗)}.
Output degAi∗j∗ as δ1(A), and set k := 1. Proceed to Step 1.

Step 1: Construction of an Optimal Dual Solution

1. Construct an optimal dual solution from Mk by solving the shortest
path problem on the directed graph GMk

. If there is no path, set
rankA := k and halt.

2. If t < (k + 1)dmin − δk(A), then set rankA := k and halt.

Step 2: Test for Tightness

1. Construct A∗ from the optimal dual solution.

2. Compute r∗ := rankA∗ by the Gaussian elimination (and construct
I∗r∗ , J

∗
r∗ for a later use).

3. If rankA∗ = k, go to Step 3. Otherwise, go to Step 4.

Step 3: Matrix Modification

1. Solve Ũ ·A∗[I∗k , J
∗
k] +A∗[R \ I∗k , J∗

k] = O to obtain Ũ .

2. Construct A′(x) as follows (p∗k := (pi | i ∈ I∗k)):

A′[I∗k , C](x) := A[I∗k , C](x),

A′[R \ I∗k , C](x) := Ũ · diag(x;−p∗k) ·A[I∗k , C](x) +A[R \ I∗k , C](x).

3. Go to Step 1.

Step 4: Outputs and Updates

1. Output the following:

δl(A) := δk(A) + (l − k)t (l = k + 1, . . . , r∗).

2. If r∗ = min{m,n}, then halt.

3. Compute Mr∗ by solving the weighted matching problem (using I∗r∗
and J∗

r∗ obtaind in Step 2).

4. Set k := r∗ and go to Step 1

13

4.8 Proofs of Theorems 1 and 2

Proof of Theorem 1
Since δk(A) = δ̂k(A) holds, the following four conditions are satisfied by
Proposition 3:

(r1) rankA∗[R,C] ≥ k,

(r2) rankA∗[I∗, C] = |I∗|,

(r3) rankA∗[R, J∗] = |J∗|,

(r4) rankA∗[I∗, J∗] ≥ |I∗|+ |J∗| − k.

On the other hand, again by Proposition 3, δk+1(A) = δ̂k+1(A) holds if
and only if the following four conditions are all satisfied:

(r1)′ rankA∗[R,C] ≥ k + 1,

(r2)′ rankA∗[I∗, C] = |I∗|,

(r3)′ rankA∗[R, J∗] = |J∗|,

(r4)′ rankA∗[I∗, J∗] ≥ |I∗|+ |J∗| − k − 1.

Clearly, (r2)′, (r3)′ and (r4)′ are immediately derived from (r2), (r3) and
(r4), respectively. Therefore, δk+1(A) = δ̂k+1(A) if and only if rankA∗ ≥
k + 1.

Before we prove Theorem 2, we prepare the following lemma.

Lemma 3. Let (p, q, t) be a common optimal solution of DLP(A, k) and
DLP(A, k+1). Let A∗ be the tight coefficient matrix defined in (12). Suppose
that δk(A) = δ̂k(A) and k < r∗(= rankA∗) hold. Then, the following identity
holds true:

δr∗(A) = δk(A) + (r∗ − k)t. (22)

Proof. We start by proving that δr∗(A) ≥ δk(A) + (r∗ − k)t holds. Since
rankA∗ = r∗, there exist I ⊆ R, J ⊆ C such that |I| = |J | = r∗ and A∗[I, J]
is nonsingular. Then, we see

δr∗(A) ≥ deg detA[I, J]

= deg
{
xr

∗t · det diag(x; pI) · det(A∗[I, J] +A∞[I, J](x))

× det diag(x; pJ)
}

= deg det(A∗[I, J] +A∞[I, J](x)) + δk(A) + (r∗ − k)t

≥ δk(A) + (r∗ − k)t.

On the other hand, it is easy to see that δr∗ ≤ δk(A) + (r∗ − k)t by the
concavity (Proposition 1). Therefore, the equality holds.

14

Proof of Theorem 2
We prove (13) first. From Theorem 1, Lemma 3 and Proposition 1, we see

δl(A) = δk(A) + (l − k)q (l = k + 1, . . . , r∗). (23)

On the other hand, δ̂l(A) ≤ δ̂k(A) + (l− k)t holds because of the concavity.
From this and the inequality δl(A) ≤ δ̂l(A), we obtain

δ̂l(A) = δk(A) + (l − k)t (l = k + 1, . . . , r∗).

This proves (13).
Next, we prove δr∗+1(A) < δk(A) + (r∗ + 1 − k)t. If (p, q, t) is not an

optimal dual solution of DLP(A, r∗ + 1), the inequality obviously holds.
Otherwise, i.e., when (p, q, t) is an optimal solution of DLP(A, r∗ + 1), we
can use Theorem 1. Since rankA∗ = r∗, we obtain

δr∗+1(A) < δ̂r∗+1(A) = δk(A) + (r∗ + 1− k)t.

5 Illustrative Example

In this section, we illustrate the proposed algorithm by an example.
Let A(x) be the matrix pencil

A(x) =


x+ 1 x+ 3 x+ 2
x+ 2 x+ 6 x+ 4
x+ 1 x+ 3 x+ 1
2 1 3

 . (24)

Then, we label the sets of rows and columns as R = {r1, r2, r3, r4} and
C = {c1, c2, c3}, respectively.

Step 0: Initialization
From (24), we see that (r1, c1) is a maximizer of degAij(A). Accordingly,

we set I∗1 := {r1}, J∗
1 := {c1}, M1 := {(r1, c1)} and δ1(A) := 1. We set

k := 1 and proceed to Step 1.

Step 1: Construction of Optimal Dual Solutions
The auxiliary graph GM1 (Section 4.3) is defined as Fig. 2.
InGM1 , the length φ(i) of the shortest path from u+ to i ∈ V is computed

as follows:

φ(r1) = φ(r2) = φ(r3) = φ(r4) = 0,

φ(c1) = φ(c2) = φ(c3) = φ(u−) = −1.

Therefore, an optimal dual solution is

p =
[
0 0 0 0

]
, q =

[
0 0 0

]
, t = 1. (25)

15

0r1

0
r2

0
r3

0
r4

−1
c1

−1
c2

−1
c3

0u+ −1u−

E(A)

W+
W−

e ∈ M◦

Arcs with weight −1

Arcs with weight 0

Figure 2: Example: Auxiliary graph GM1

Step 2: Test for Tightness
With the optimal dual solution (25), A∗ is defined as follows:

A∗ :=


1 1 1
1 1 1
1 1 1
0 0 0

 . (26)

Since rankA∗ = 1 = k, we proceed to Step 3.

Step 3: Matrix Modification
The condition (16) for the 3× 1 matrix Ũ now reads

Ũ · 1 +

 1
1
0

 =

 0
0
0

 ,

from which we see Ũ = [−1 −1 0]⊤. Then, the rational matrix A(x)
can be modified as follows:

A′(x) :=

[
A[I∗1 , C]

Ũ · xpr1 ·A[I∗1 , C](x) +A[R \ I∗1 , C](x)

]

=


x+ 1 x+ 3 x+ 2
1 3 2
0 0 −1
2 1 3

 .

Next, we repeat the same steps (Step 1 and 2) to confirm that the mod-
ification makes sense.

Step 1 and 2:
Similarly, we can obtain an optimal dual solution:

p = [1 0 0 0], q = [0 0 0], t = 0. (27)

16

I∗3 I∗3
r1

r3

r4

c1

c2

c3

E3
e ∈ M1
Arcs with weight 1
Arcs with weight 0

Figure 3: Example: G = (I∗3 ∪ J∗
3 , E3, c)

Then, A∗ can be modified to

A∗ :=


1 1 1
1 3 2
0 0 −1
2 1 3

 . (28)

To compute rankA∗, we execute the Gaussian Elimination as stated in Sec-
tion 4.6:

1 1 1
1 3 2
0 0 −1
2 1 3

 →


1 1 1
0 2 1
0 0 −1
0 −1 1

 →


1 1 1
0 0 3
0 0 −1
0 −1 1

 →


1 1 1
0 0 0
0 0 −1
0 −1 1

 .

(29)
Since rankA∗ = 3, we jump to Step 4.

Step 4: Outputs and Updates
From the elimination (29), we see I∗3 := {r1, r3, r4} and J∗

3 := C. By
solving the weighted bipartite matching problem on G = (I∗3 ∪ J∗

3 , E3, c)
(Fig. 3), where E3 ⊆ E is defined by E3 = E(A) ∩ (I∗3 × J∗

3). Then we
obtain M3 := {(r1, c1), (r3, c3), (r4, c2)}. As a result, δ2(A) and δ3(A) are
calculated as follows:

δ2(A) = δ1(A) + 1 · 0 = 1,

δ3(A) = δ1(A) + 2 · 0 = 1.

Since k = rankA∗ = 3 and |C| = 3, the algorithm terminates.

6 Complexity Analysis

Table 1 shows the time complexity of each operation. Then the time com-
plexity of the proposed algorithm can be evaluated as follows.

17

Table 1: Time complexity of each operation (m: number of rows, n: number
of columns, r: rankA, dmax: max degAij , dmin: min ordAij , d: dmax−dmin)

Step Operation Complexity Method

Step 0 Initialization O(mn) Max Search

Step 1 Optimal Dual Solution O(dn2r) Shortest Path

Step 2 Calculation of Rank O(dmnr2) Gaussian Elimination

Step 3 Construction of Ũ O(dmr3) LU Decomposition

Matrix Modification O(d2mnr3) Matrix Multiplication

Step 4 Construction of Mr∗ O(r3) Shortest Path

Theorem 4. For an m× n Laurent polynomial matrix, A(x), the proposed
algorithm runs in O(dnr(n+ dmr2)) time.

Proof. The theorem follows from Table 1.
In Step 0, we search for a maximizer of degAij , which can be done in

O(mn) time.
In Step 1, we construct an optimal dual solution by solving a single

source shortest path problem. Since we can reweight the arc length to be
nonnegative, it can be done in O((n +m)2). Since the value of t decreases
at least by one each time and the difference between the optimal q’s of
DLP(A, 1) and of DLP(A, r) is at most rd, Step 1 can be done in O(dr) in
the worst case. Therefore, Step 1 runs in O(dn2r) time.

Step 2 runs in O(mnr)×O(dr) time, because the Gaussian elimination
can be done in O(mnr) time and it is executed O(dr) times (the number of
iterations of Step 2 is equal to that of Step 1).

In Step 3, we can construct Ũ by the LU decomposition in O(mr2) time
in each execution. Therefore, it can be done in O(dmr3) time. In the phase
of matrix modification, we execute the multiplication of an (m − s) × s
polynomial matrix and an s× n polynomial matrix when k = s. That mul-
tiplication of matrices can be substituted by executing the multiplications
of constant matrices (D+1) times ([7, Lemma 8]), where D := maxk δ̂k(A).
Since δ̂k(A) ≤ kdmax holds for all k, D = O(dr) is satisfied. Then, it can be
done in O(d2mnr3).

We solve the single source shortest path problem (r − 1) times in the
whole of Step 4. Moreover, the arc length of the auxiliary graph can be
reweighted to be nonnegative. Therefore, Step 4 runs in O(r3).

Acknowledgements Thanks are due to Kazuo Murota for helpful comments

on the manuscript.

18

References

[1] Commault, C., Dion, J. M.: Structure at infinity of linear multivariable
systems: A geometric approach. IEEE Trans. Automat. Control. AC-
27, 693–696 (1982)

[2] Dress, A. W. M., Wenzel, W.: Valuated matroid: A new look at the
greedy algorithm. Appl. Math. Lett. 3(2), 33–35 (1990)

[3] Dress, A. W. M., Wenzel, W.: Valuated matroids. Adv. Math. 93,
214–250 (1992)

[4] Edmonds, J., Karp, R. M.: Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of ACM. 19, 248–264
(1972)

[5] Hairer E., Wanner G.: Solving Ordinary Differential Equations II.
Springer, Berlin (1991)

[6] Iwata, S., Murota, K., Sakuta, I.: Primal-dual combinatorial relaxation
algorithm for the maximum degree of subdeterminants. SIAM J. Sci.
Comput. 17, 993–1012 (1996)

[7] Iwata, S., Takamatsu, M.: Computing the maximum degree of minors in
mixed polynomial matrices via combinatorial relaxation. Algorithmica
66, 346–368 (2013)

[8] Murota, K.: Computing Puiseux-series solutions to determinantal equa-
tions via combinatorial relaxation. SIAM J. Comput. 19, 1132–1161
(1990)

[9] Murota, K.: Combinatorial relaxation algorithm for the maximum de-
gree of subdeterminants: Computing Smith–Mcmillan form at infinity
and structural indices in Kronecker form. Appl. Algebra Eng. Commun.
Comput. 6, 251–273 (1995)

[10] Murota, K.: Computing the degree of determinants via combinatorial
relaxation. SIAM J. Comput. 24, 765–796 (1995)

[11] Murota, K.: Finding optimal minors of valuated bimatroids. Appl.
Math. Lett. 8, 37–42 (1995)

[12] Murota, K.: Matrices and Matroids for Systems Analysis. Springer,
Berlin (2000)

[13] Tomizawa, N.: On some techniques useful for solution of transportation
network problems. Networks 1, 173–194 (1971)

19

