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Stable economic agglomeration patterns in two
dimensions: beyond the scope of central place theory
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Abstract

This paper elucidates which agglomeration patterns are stable in two-dimensional
uniform economic space and how such patterns appear under decreasing transport
costs. Hexagonal lattices with and without boundary are advanced respectively
as suitable theoretical and practical spatial platforms of economic activities. Ag-
glomeration patterns on these lattices contain hexagons in central place theory, but
also encompass megalopolis and racetrack-shaped de-centralization, which are
beyond the scope of central place theory. When the transport cost decreases, sta-
ble economic agglomeration undergoes the formation of the smallest hexagon and
gradual transition to patterns with larger market areas, often undergoing down-
town decay but finally leading to a megalopolis.
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Figure 1: Spatial platforms for economic activities. Circles represent places and lines denote
roads.

1. Introduction

Economic agglomeration displays various spatial patterns serving as a cra-
dle of development and prosperity. Cities and towns in southern Germany are
spread out and led to the finding of hexagonal distributions in central place the-
ory (Christaller, 1933 [6]). In North America, a chain of cities is distributed from
Boston to Washington, DC in a closed long narrow zone between the Atlantic
Ocean and the Appalachian Mountains. Some spatial agglomerations are unsta-
ble and transient but several spatial agglomerations that develop and prosper sta-
bly exist worldwide. Nowadays downtowns are revitalized through investment in
transportation.

It is desirable to know what kinds of stable economic agglomeration patterns
exist in two-dimensional economic space. Yet there may be a widespread pes-
simism that such stable equilibria are literally infinite and, therefore, cannot be
exhausted. In this paper, to reébthis pessimism, two questions about existence
and stability are considered:

e What kinds of agglomeration patterns existin two dimensions?
e Among these patterns, which astable?

A key to answer these two questions is to distinguish spatial and microeconomic
properties and, as well as, model dependent and independent properties in eco-
nomic agglomeration. The former question is answered in relation to spatial prop-
erties that are model independent and the latter to microeconomic properties of
individual models.

SAnas (2004) [2] stated “Of course, when the number of cities or the geographic space itself
is limited or asymmetric, then agglomeration can arise as an artifact of the constraints imposed by
geography as demonstrated by numerous NEG models. This reveals that the central agglomeration
force in the NEG is space itself and not the underlying economic relations.”
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A preliminary and mandatory step to answer these questions is another ques-
tion: “What are suitable spatial platforms of spatial economic activities?” Sev-
eral spatial platforms have been developed, including two-place economy, long
narrow econom$,racetrack economyand lattice econon¥y(Fig. 1). Their ge-
ometries are simple to complex in this order, and there is a tfatiesd a more
complex economy can accommodate more patterns at the expense of increased
analytical task. The lattice economy is apparently capable of accommodating
two-dimensional patterns but involves a large number of degrees of freedom. The
two-place economy is too simple, despite its vital role in the development of NEG
models. Other one-dimensional economies, such as the long narrow and racetrack
economies, are believed to be capable of grasping some essential agglomeration
properties. Evolution of a regular lattice on a racetrack economy was set forth
by Fujita, Krugman, and Venables (1999b) [15], and a “highly regular hierarchi-
cal systema la Christaller” on a long narrow economy was observed by Fujita,
Krugman, and Mori (1999a) [14]. Tabuchi and Thisse (2011) [36] studied the
racetrack economy for a multi-industry model to produce Christaller-like spatial
patterns. Yet studies of these spatial platforms have been conducted somewhat
independentlyand several agglomeration patterns have been observed fragmen-
tarily. It would be desirable to possess a synthetic view of spatial patterns on these
platforms.

Hexagonal distributions have been advanced as the most geometrically fea-
sible forms of agglomeration in central place theory. Yet there is a criticism:
Although “it [central place theory] is a powerful idea too good for being left as
an obscure theory” (Fujita, Krugman, and Mori, 1999a [14]), this theory is based
only on a normative and geometrical approach and is not derived from market
equilibrium conditions. As an early attempt to provide central place theory with
a microeconomic foundation, Eaton and Lipsey (1975, 1982) [9, 10] showed the

5The long narrow economy was used by Fujita and Mori (1997) [16], Mori (1977) [26], and

Fujita, Krugman, and Mori (1999a) [14].
’Agglomeration patterns of the racetrack economy were studied by Krugman (1993) [24],

Fujita, Krugman, and Venables (1999b) [15], Picard and Tabuchi (2010) [32], Ikeda, Akamatsu,

and Kono (2012a) [18], and Akamatsu, Takayama, and lkeda (2012) [1].
8The dynamics of an urban spatial structure on a square lattice was studied by Clarke and Wil-

son (1985) [7] and numerical simulation of settlement formation on a square lattice was achieved
by Munz and Weidlich (1990) [28]. Stelder (2005) [33] conducted a simulation of agglomeration

for cities in Europe using a grid of points.
%A rare comparative study of the long narrow economy and the racetrack economy was con-

ducted by Mossay and Picard (2011) [27] in a continuous space.



existence of a hexagonal distribution of mobile production factors (e.g., firms and
workers) by a partial equilibrium approach without referring to the stability of
hexagonal agglomeration. The hexagonal lattice has come to be acknowledged
as a discretized counterpart of tindinite plainin central place theory. Hexag-
onal agglomeration on this lattice (without boundary) for core—periphery models
was found by bifurcation theory and its stability was investigated by numerical
analysis'®

This paper aims to answer the aforementioned questions aboci dinee of
pertinent spatial platform and tlexistenceand thestability of agglomeration pat-
terns in two-dimensional economic space. To begin with, in view of the foregoing
study (Footnote 10), it would be a logical sequel to choose a hexagonal lattice as
a spatial platform of economic activities that can accommodate extensive patterns
ranging from hexagons to racetracks and long narrow patterns. In this paper, two
kinds of hexagonal lattices with and without boundary are considered. There is
a traded that the former is suitable for theoretical study and the latter is more
realistic.

The question of thexistenceof agglomeration patterns can be answered by
the theoretical study of the hexagonal lattice without boundary. This study resort
to only spatial properties, and, therefore, is endowed with much-desired model in-
dependency. Agglomeration patterns of interest, such as hexada@hristaller
and Losch for centralization, racetracks expressing de-centralization, long narrow
patterns, are shown to exist as equilibria by bifurcation theory. Unlike the previ-
ous studies that focused on hexagons (Footnote10), patterns other than hexagons
are also considered in this paper. Market areas of the first-level centers for sta-
ble equilibria are shown to take various shapes, such as triangles, diamonds, and
trapezoids, in addition to hexagons in central place theory, thereby going beyond
the scope of central place theory.

The hexagonal lattice with boundary has asymmetry (inhomogeneity) as places
near the boundary are not as competitive as places near the center. This is a more
realistic spatial platform due to the presence of the boundary, but lacks a theo-
retical background to describe its agglomeration behavior. To compromise this
lack, this paper employs a basic strategy to describe and understand agglomera-
tion characteristics of the lattice with boundary based on theoretical information
drawn from the lattice without boundary.

10s5ee Ikeda, Murota, and Akamatsu (2012b) [21], Ikeda and Murota (2014) [20], and Ikeda et
al. (2014) [22].
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(a) Hexagon  (b) Mono-center (c) Megalopolis (d) Racetrack

Figure 2: Agglomeration patterns of economic interest. Circles denote population size.

The answer to another question of gtability is dependent on models. While
real economic activities allow models of various kinds, in order to deepen discus-
sion on the stability, we refer to a specific economic geography model: Forslid and
Ottaviano (2003) [12] version of modeling of Krugman (1991) [23When the
transport cost is reduced from a large value, it is proved that the smallest hexagon
(Fig. 2(a)) is the first non-uniform agglomeration pattern that breaks unifotfity.
Although this proof is carried out for this specific model, it is extendable to a fam-
ily of spatial economy models, for which the spatial interaction between places is
distant decaying. By numerical comparative static analysis, the most likely sta-
ble progress of agglomeration patterns is shown as the formation of the smallest
hexagon and gradual transition to patterns with larger market areas finally leading
to an atomic mono-center en route to a megalopolis (Figs. 2(b) and (c)). Racetrack
patterns (Fig. 2(d)), which are stable for very short durations, express the decay
of the center of the domain (downtown), whereas hexagons are related downtown
development.

This paper is organized as follows. Bifurcating agglomeration patterns for a
two-dimensional economy are theoretically predicted in Section 2. Spatial econ-
omy models of interest are explained and the governing equation for the ana-
lytically solvable core—periphery model is presented in Section 3. Formulas for
the value of transport cost at the emergence of downtown agglomeration are pre-
sented in Section 4. Stable agglomeration patterns in the hexagonal lattice without
boundary are investigated numerically in Section 5 and the patterns in the lattice
with boundary are examined in Section 6.

UThere are two kinds of workers: unskilled workers are immobile and equally distributed along
places, whereas skilled ones (footloose entrepreneurs) are mobile and choose the place to maxi-

mize wage. The immobile workers can be interpreted as a population attached to certain amenities.
12This proof is conducted by extending the strategy in Akamatsu, Takayama, and lkeda

(2012) [1], which utilizes the concept of spatial discounting.
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(a) 3x 3 hexagonal lattice (b) Spatially repeated
3 x 3 hexagonal lattices

Figure 3: A system of places on ax3 hexagonal lattice with periodic boundary.

2. Bifurcating hexagons on a hexagonal lattice without boundary

In this paper, spatial properties and microeconomic properties are highlighted
as independent sources of spatial agglomeration (Footnote 5). In this section,
spatial properties, which are model independent, are studied.

A hexagonal lattice without boundary, which serves as a discretized counter-
part of the isotropic infinite plain in central place theory, is introduced as a two-
dimensional spatial platform suited for theoretical treatment. Possible bifurcating
patterns on a hexagonal lattice without boundary are classified as a summary and
reorganization of the theoretical studies d@fdch’s hexagons (Ikeda and Murota,
2014 [20]; and Ikeda et al., 2014 [22]). In addition to these hexagons, we advance
patterns of economic interest related to central place formation, de-centralization
leading to decay of downtown, and formation of megalopolis.

Losch’s hexagons on a hexagonal lattice without boundary are introduced in
Section 2.1. General form of spatial equilibrium conditions is presented in Sec-
tion 2.2. Bifurcating hexagons are investigated in Section 2.3, and bifurcating
equilibria are classified in Section 2.4.

2.1. Losch’s hexagons on a hexagonal lattice without boundary

As two-dimensional economic space, a hexagonal lattice comprising uniformly
spreacdhxn places with periodic boundal’is considered (see Fig. 3(a) for 3).
Goods are transported along the homogeneous transportation link of this lattice
connecting neighboring places by roads of the same length.

13y virtue of this periodic boundary, this lattice can be repeated spatially to cover infinite
two-dimensional space, and every place is linked to six hexagonal neighboring places (Fig. 3(b)).
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Figure 4: LBsch’s hexagons on a hexagonal lattice. These patterns are obtained by spatially re-
peatingnx n hexagonal lattices and cutting out hexagonal windows; circles represent the first-level
places.

Losch’s hexagons (sch, 1940 [25]) were advanced as geometrically feasible
agglomeration patterns in an infinite plain in central place theory. The spatial
periodL between spatially repeated hexagons takes some specific values, such as

L/l= VD, D=1,34,79121316192125,..., (1)

wherel is the nominal distance between two neighboring placesdbds pro-
portional to the shortest Euclidean distatfdeetween the first-level centers, i.e.,
the spatial period. of these centers. Figure 4 depicts some of these hexagons with
D =1, 3, 4,and 7. The smallest valile= 1 corresponds to the flat earth equi-
librium (uniform distribution). The next three smallest value$of 3, 4, and 7,
respectively, are associated with Christallér’s 3, 4, and 7 systems (Christaller,
1933 [6]).

2.2. General form of spatial equilibrium conditions

Although diverse spatial equilibrium models have been developed on the basis
of an ensemble of economic principles and assumptions, it is possible to present a
general form of spatial equilibrium. Lat denote the population at thin place,
and definel = (14, ..., k)", whereK is the number of places, being equahfo
for then x n hexagonal lattice.

The adjustment dynamics

dae)
= = Fa@.? @

In the application to spatial economy models (Section 3.2.1), the distance betweeni places
and j for the transportation of goods on the hexagonal lattice is measured along the shortest link
of the lattice. On the other hand, the spatial petiobetween neighboring first-level centers is
measured by the Euclidean distance.



is considered with an appropriate functibf, 7) in 4 and some parameter A
stationary point of this adjustment dynamics (2) is defined #sat satisfies the
spatial equilibrium condition

F(4,7)=0. 3)

The stability of solutiom to (3) and the occurrence of bifurcation can be investi-
gated via eigenanalysis of the Jacobian m&triXa, 1) = 0F /0.
For spatial economy models with observer-independéhite flat earth equi-

librium
1

n?
exists on the hexagonal lattice for any value of the parameted are preserved
until bifurcation.

=117 4)

2.3. Bifurcating hexagons

Bifurcating equilibria from the flat earth equilibriugi in (4) were studied
theoretically to assess the emergence 0$dh’s hexagons (Ilkeda and Murota,
2014 [20]). These theoretical results are given below.

2.3.1. Losch’s hexagon with B 3: simple example

Losch's hexagon witlD = 3, which plays the most important role in the
present study, is investigated in detail as a simple example. This hexagon is associ-
ated with a bifurcation point with twice repeated zero eigenvalues of the Jacobian
matrix J(4,7). These eigenvalues are associated with two linearly independent
eigenvectors. For the ¥ 6 hexagonal lattice, for example, the two eigenvectors
are given explicitly as

1

@ = 3\/2(008(2.((”1_2”2)/3”nl,nZZO,...,S)
= L oaa2aa 1202 c12a024
6V2

2-1-12-1-1 -1-12-1-12 -12-1-12-1)7,

15The solution is termed linearly stable if every eigenvalue of the Jacobian ndéttix) has a
negative real part, and linearly unstable if at least one eigenvalue has a positive real part. Bifurca-

tion takes place when one or more eigenvalues become zero.
%The observer-independence is represented by the equivariance condition in nonlinear math-

ematics (e.g., lkeda and Murota, 2010 [19]). This condition was proved for the core—periphery
model (Section 3.2) in Ikeda, Murota, and Akamatsu (2012b) [21].
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Figure 5: Spatial patterns expressed by the vectoggs,af,, and—q; on the 6<6 hexagonal lattice.
A white circle denotes a positive component and a black circle denotes a negative component.

0 = %(Sin@r(nl -2np)/3)| N, N, =0,...,5)

= —\/_(Ow/é—wa\/é—xF V3 -v30 V3-v30 -v30 V3 -V30 V3
6

0Vv3-v30V3-V3 V3-V30V3-V30 -V30+V3-v30 v3)',

where the coordinates are defined in accordance with Fig. 3. These eigenvectors
are depicted in Figs. 5(a) and (b).
At the bifurcation point (repeated twice), the associated eigenvectors

Ci(s + C2Q

with constants; andc, span a two-dimensional space. Bifurcating solutions of
interest exist in the directiorg and—q;. Herein,q; represents &isch’s hexagon

with D = 3, as shown by the dashed lines in Fig. 5(a), in which the first-level place
with a white circle with increasing population is surrounded by six second-level
places with black circles with decreasing populations. Veetgy represents a
spatially-repeated racetrack pattern as depicted by the dashed circles in Fig. 5(c),
in which the second-level place with decreasing population show@bys(sur-
rounded by six first-level places with increasing populations showr )y (

2.3.2. Losch’s hexagons: general issue

Theoretical results for these hexagons are summarized in the proposition be-
low. Since smaller hexagons are of more economic interest, we focus hereafter on
the five smallest hexagons with siZzes= 3, 4, 7, 9, and 12, as well as those with
D = 36 appearing in the numerical analysis in Section 5.

Proposition 1. Bifurcations from the flat earth equilibrium on the hexagonal lat-
tice have the following properties:

e Property 1 (existence): Bifurcating equilibria associated with Losch’s hexagons
with sizes D= 3,4, 7,9, 12, and36 exist if and only if the size n of the lattice

9



is equal, respectively, to

3m, forD=3and D=9,
2m, for D =4,

n= (5)
m, forD =7,

6m, forD =12and D= 36
(m=12..).

e Property 2 (bifurcating patterns): Each of the bifurcating paths for Losch’s
hexagons with sizes B 3, 4, 7, 9, 12, and36 has a unique symmetry and
this symmetry is preserved until further bifurcation takes place.

2.4. Classification of bifurcating equilibria

Bifurcating equilibria are classified as a summary and extension of the theo-
retical analysis in Ikeda and Murota (2014) [20]. Bifurcation points are classified
in accordance with the multiplicityy of the associated zero eigenvalues of the
Jacobian matri¥)(4, ) = 0F /04 and the associated eigenvectors:

q,....q¥ (6)

with the correspondence betwedeandM given by’

k|13 4 7 9 36() 36(
M\123126 6 12

(7)

Here the superscripk) implies the sizeD of possible hexagons and there are two
kinds of hexagons fob = 36, which are called = 36(1) andD = 36(lIl). The
eigenvectors in (6) are given by discrete Fourier series in two dimensions and their
concrete forms are given in (A.3)—(A.9) in Appendix A.l.

The superposed eigenvectors

M
K
D
i=1

for some constants,,...,cy are possible candidates for the directions of bi-
furcating equilibria. By group-theoretic bifurcation analysis (Ikeda and Murota,

In (7), the lattice size 7 is associated witk: 1 and 7 and the lattice size 6 wikh= 1, 3, 4, 9,
36(1), and 36(11).

10
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Figure 6: Hexagon and megalopolis patterns on a hexagonal window expressed by eigenvectors
on 6x 6 and 7x 7 hexagonal lattices. These patterns are obtained by spatially repaating
hexagonal lattices and cutting out hexagonal windows; a white circle denotes a positive component
and a black circle denotes a negative component.
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hexagonal lattices. A white circle denotes a positive component and a black circle denotes a
negative component.
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2014 [20]), the eigenvectors for the directions of hexagons for thé Bexagonal
lattice were obtained as

q® =@,

4 = o0+ o+ o) ®
q@ =+l +q¥,  Kk=91236()

Q360 = q(lse(n)) + qffe(”” + qgseal)) + q<736(n» + qg%(ll» " q(l?f(“»,

which are given explicitly in (A.10)—(A.15) in Appendix A.1, where@® can

be consulted with Ikeda and Murota (2014,Chap.7) [20]. These hexagons are

illustrated in Figs. 5(a) and 6.

There are possible bifurcating patterns of economic interest, which are beyond

the scope of central place thed#fy.

e Megalopolis patternsare associated with eigenvectog$®() and 600,

As shown in Figs. 6(e) and (f), satellite places with small population are
scattered around the center of the hexagonal window (downtown) to form
a megalopolis. In particulag®() expresses a bump-shaped population
distribution near the center expressing centralization.

Racetrack patternsare associated with eigenvectors with the reversed sign:
—q®, k=3,4,7,9,12 36(I),36(ll), (9)

which display racetracks of several kinds, which express de-centralization
and are interpreted as the decay of downtown.-er 3, 4, and 7, one place
decaying into the second level center is surrounded by six places developing
into the first level centers (Figs. 5(c) and 7(a),(b)). Semi-circular zones of
growing places are observed for= 12, 36(1), 36(1) (Figs. 7(d)—(f)).

Long narrow patterns are given by the eigenvectogy’, o, o2, and

o°™. First-level places are located along spatially repeated narrow stripes
and represent a chain of cities forming an industrial belt in a two-dimensional
infinite space (Fig. 8).

Deformed hexagonis associated witlg>*" (Appendix A.2). The first-
level places form spatially repeated deformed hexagons (Fig. 9).

18The existence of the deformed hexagon is proved in Appendix A.2 as a theoretical contribu-
tion of this paper, while the existence of hexagons, racetrack patterns, and long narrow patterns
was proved in lkeda and Murota (2014) [20].

13
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Figure 9: Deformed hexagon on the hexagonal window expressed by an eigenvector on the 6

6 hexagonal lattice. A white circle denotes a positive component and a black circle denotes a
negative component.
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3. Modeling of spatial economy

After the description of spatial properties in Section 2, modeling of spatial
economy is presented in this section. After the explanation of a family of spatial
economy models in Section 3.1, an analytically solvable core—periphery model
that is put to use later in the analysis is presented in Section 3.2.

3.1. Spatial economy models

In many spatial economy models, the spatial interaction between plaoes
j is distance decaying and itffect is expressed by the spatial discounting factor
dij representing the friction of distané®,

dij =TI m(i,j)’ (10)

wherem(i, j) is an integer proportional to the shortest distance between the places
i and j, andr is a parameter satisfying@ r < 1. With the use of a matrix form
of dij,

D = (d;j), (11)

the indirect utility (or profit) vectow is expressed
v = v(4, D), (12)

whereaA is the vector expressing distribution of population (or firms).

In social interaction models,is given as a monotonically increasing function
of the parameter expressing accessibility between places (see, e.g., Fujita and
Ogawa, 1982 [17]; and Tabuchi, 1986 [34]).

In contrast, in NEG models (see, e.g., Oyama, 2009 [31]; and Akamatsu,
Takayama, and lkeda 2012 [1]),is given as a monotonically decreasing func-
tion of the transport cost parametesatisfying

r(Q)=1, r(+c0)=0.

Herer(0) = 1 represents the state of no transport cost igrdo) = 0 means
the state of infinite transport cost. Whens decreased from a large value, the
progress of agglomeration in populatidns studied by investigating the indirect
utility function vector of the form (see Section 3.2.2)

V(A, 1) = v(4, D(r(7))). (13)

9The present discussion is applicable with minor modifications to models using a linear trans-
port cost (e.g., Beckmann, 1976 [4]; Ottaviano, Tabuchi, and Thisse, 2002 [30]; and Mossay and
Picard, 2011 [27]).
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Itis proved in Section 4 for a hexagonal lattice without boundary and a spatial
economy model (Section 3.2) that the flat earth equilibrium is stable for a very
larget (— +c0) and that, when is reduced from+co, the agglomeration pattern
breaking uniformity is the smallest hexagon widh= 3.

3.2. Core—periphery model

As a representative of spatial economy models, an analytically solvable core—
periphery model by Forslid and Ottaviano (2003) [12] is employed, whereas the
methodology presented in this paper, in principle, is applicable to other models.
The fundamental logic and governing equation of this model, which replaces the
production function of Krugman with that of Flam and Helpman (1987) [11], are
presented.

3.2.1. Basic assumptions

The economy of this model is composedikofplaces (labeled = 1, ..., K),
two factors of production (skilled and unskilled labor) and two sectors (manu-
facturing, M, and agriculture, A). BotH skilled andL unskilled workers con-
sume two types of final goods: manufacturing sector goods and agricultural sec-
tor goods. Workers supply one unit of each type of labor inelastically. Skilled
workers are mobile among places, and the number of skilled workers inigkce
denoted byd; (3, 4 = H). The total numbeH of skilled workers is normal-
ized asH = 1. Unskilled workers are immobile and equally distributed across all
places with unit density (i.el, = 1 x K).

Preferencebl over the M- and A-sector goods are identical across individuals.
The utility of an individual in place is

UCM,CM = ulogCM + (1 - ) logCAh (0 <pu < 1), (14)

whereu is a constant parameter expressing the expenditure share of manufacturing
sector goodsC!* is the consumption of the A-sector product in placandCM is
the manufacturing aggregate in placevhich is defined as

o/(c-1)
N
CIM E(ZL qj'i(f)(o-_l)/o-df] 5
j

whereq;i (¢) is the consumption in pladeof a variety? € [0, n;] produced in place
J, nj is the number of available varieties, amd> 1 is the constant elasticity of
substitution between any two varieties. The budget constraint is given as

peh+ Y, [ puoaode = ¥, (15)
i 0
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wherep is the price of A-sector goods in plagep;i(¢) is the price of a variety
¢ in placei produced in placg andY; is the income of an individual in plade
The incomes (wages) of skilled workers and unskilled workers are represented,
respectively, by andw!-.

An individual in placei maximizes the utility in (14) subject to the budget
constraint in (15). This yields the following demand functions:

Ch = (1-p)

Y N pr Y, 16

M_ (f) =
D,A G _'upi’ d;i (£) Iupji(f)(r’

wherep; denotes the price index of thefldirentiated products in placewhich is

n; 1/(1-0)
pi:(Z fo p,-iw)l-”df) . (17)

Since the total income and population in plaggew;4; + w- and4; + 1, respec-
tively, we have the total demarfg;(¢) in placei for a variety/ produced in place

]

ot
Qii(0) = NW(Wi/li + W), (18)

The A-sector is perfectly competitive and produces homogeneous goods under
constant-returns-to-scale technology, which requires one unit of unskilled labor in
order to produce one unit of output. For simplicity, we assume that the A-sector
goods are transported between places without transportation cost and that they are
chosen as the nuenaire. These assumptions mean that, in equilibrium, the wage
of an unskilled workent is equal to the price of A-sector goods in all places (i.e.,
pA =wh = 1foreach =1,...,K).

The M-sector output is produced under increasing-returns-to-scale technology
and Dixit-Stiglitz monopolistic competition. A firm incurs a fixed input require-
ment® of a units of skilled labor and a marginal input requiremengafnits of
unskilled labor. That s, a linear technology in terms of unskilled labor is assumed
in the profit function. Given the fixed input requirementthe skilled labor mar-
ket clearing impliesy, = Aj/a in equilibrium. An M-sector firm located in plage
chooses|;(¢) | j = 1,...,K) that maximizes its profit

I(6) = )" pi(OQy(0) - (ew + X (0)).
i

20Given the fixed input requirement, the skilled labor market clearing implies = i/« in
equilibrium.
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wherex;(¢) is the total supply*

The transportation costs for M-sector goods are assumed to take the iceberg
form. That is, for each unit of M-sector goods transported from pidoeplace
j (# 1), only a fraction IT;; < 1 actually arrivesT; = 1). More concretely, the
transport cosT;; between placeisandj is defined as

Tij = exp@m(i, j) D), (19)

wherer is the transport cost parameter ands the nominal distance, which is
chosen as /n for then x n hexagonal lattice. (We defirlg, = 1.) Consequently,
the total supplyx(¢) is given asx(£) = 3; Ti; Qij (£).

Since we have a continuum of firms, each firm is negligible in the sense that
its action has no impact on the market (i.e., the price indices). Therefore, the
first-order condition for profit maximization yields

pi(0) = 227, (20)

oc-1
This expression implies that the price of the M-sector products does not depend

on variety¢, so thatQ;;(¢) andx;(¢) do not depend ofi. Therefore, argumerdtis
suppressed in the sequel. Substituting (20) into (17), we have the price index

5 (1 1/(1-0)
g,
pi = m[azj:/ljdji] , (21)

where

dji = TJ%_U (22)
is a spatial discounting factor between plagasadi; d; is obtained asgj Q;i) /(i Qi)
with (18) and (20), which means thdy is the ratio of total expenditure in place

i for each M-sector product produced in plgd® the expenditure for a domestic
product. With the use of (19) and (22)in (10) is related ta by

r = exp[- (o — 1)L]. (23)
We have<r <1fort>0

3.2.2. Market equilibrium
In the short run, skilled workers are immobile between places, i.e., their spatial
distributionA = (4;) is assumed to be given. The market equilibrium conditions

21The function(aw; + Bx;(£)) is the cost function by Flam and Helpman (1987) [11].
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consist of the M-sector goods market clearing condition and the zero-profit con-
dition because of the free entry and exit of firms.

The market equilibrium wage; (4, 7) is determined by the equation (see, Aka-
matsu, Takayama, and Ikeda, 2012 [1])

Wi(4,7) =

SHRS

o A 1 24
;Aj(m(wj( DA+ 1), (24)

Here, Aj(4,7) = S dkj A denotes the market size of the M-sector in place
The indirect utilityv;(4, 7), given the spatial distribution of the skilled workers, is
obtained as

£ log Ay(4.7) + loglwi (4. 7). (25)

w@ﬂ=a

The equation (24) is solvable far as follows. We set

{W:mm D =(dj), A=diag@s,...,Ax),

. (26)
A =diagy,..., ), 1=(L...,1).

Then (24) becomes
w= X DA t(Aaw+ 1),
a

which is solvable with respect tw as
-1
W:EO—EDAﬂQ DAL
a o
Then the use of this equation in (25) gives the indirect utility function vector
v = V(4, 1) (cf., (13)).

3.2.3. Spatial equilibrium conditions
In the description of spatial (long-run) equilibrium of the economic state for
mobile workers, we assume a specific functional form

F(A4,1) = HP\V(4,7)) -1 (27)

of the governing equation (3). HerB(v) = (P4, ..., Pk)" is the choice function
vector that satisfieg,<, P = 1. We haveH = 1, as a normalization.

As the choice function, we employ the logit choice functfo® = P;(v) given
by
exp@vi)

PV = <o
)= 3K expvy

(28)

22The skilled workers are assumed to be heterogeneous in their preferences for location choice
(e.g., Tabuchi and Thisse, 2002 [35]; Murata, 2003 [29]).
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whereé is a positive parameté?. The adjustment process described by (2) with
(27) and (28) is the logit dynamics (e.g., Fudenberg and Levine, 1998 [13]).

Z3parametes in (28) denotes the inverse of variance of the idiosyncratic taste, which is assumed
to follow the Gumbel distribution that is identical across places (e.g., Anderson, de Palma, and
Thisse, 1992 [3]). In the limit of — oo, this form reduces to the standard replicator dynamics.
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4. Break point triggering spatial agglomeration

For the two-place economy, thieak pointof the transport cost, at which
symmetric places change catastrophically into a core—periphery pattern, is high-
lighted as a key concept (Fujita, Krugman, and Venables, 1999 [15]). For the
hexagonal lattice, break points fob&ch’s hexagons leading to centralization are
of most economic interest. In this section, these break points are investigated by
exploiting both spatial properties and microeconomic properties. Major results
are presented, while details of derivation are given in Appendix B.

The analytically solvable core—periphery model is employed (Section 3.2) and
the sizen of the lattice is chosen as = 6 so as to encompass hexagons with
various sizesl) = 3,4,9, 12 36(1), 36(1)) (cf., Proposition 1 in Section 2.3.2).
Nonetheless, the methodology employed herein is general and is extendable to
other spatial economy models (Section 3.1) and to the hexagonal lattice for any
sizen.

Theoretical formulas for the break points are derived in Section 4.1, and the
order of emerging hexagons is studied in Section 4.2.

4.1. Laws for break point

When the transport cost parameteis reduced continuously froraco to O,
two break points are encountered for each hexagon under certain conditions on
the values of:, o and6 for n = 6.

Proposition 2. For each Losch’s hexagon, two break pointsandr_ with 7, >
7_ > 0 exist when the following conditioffsare satisfied:

u
oc-1

JER ]2_49—1(“—2+1)>o (30)
H o o-1 o(oc-1) '

<1+671, (29)

Since these conditions for the existence of break points are common for all
hexagons witlD = 3,4,9, 12 36(1), 36(1l), the violation of either of these condi-
tions leads to the disappearance of all hexagons. This is the worst case scenario
in downtown development through social investment in that no agglomeration
emerges at whatever cost.

A formula for the break points is given below.

24n the limit of 8 — oo (Footnote 23), the second condition (30) is always satisfied and the
first condition (29) reduces to the no-black-hole condifig(o- — 1) < 1 in Forslid and Ottaviano
(2003) [12].
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Proposition 3. Break pointst™ and+® for Losch’s hexagon with the size k are
given by

= - —Zolog@¥(e), T = -~ log@¥(e),
oc-1 oc-1
k=234091236(),36(). (31)

Here,
L _brVP—dap T | b VP —dap!
T 2a T 2a
with 5
H H -1 U
a=—+1 b==(01+96
da—D+’ a(+ )+G—f
and r = ®M(e) is a function defined implicitly from the relation
€= () K =3,4,9, 12 36(I), 36(Il)
C146r +12r2 + 153 + 2r¥ ST ’ ’
where
1-3r+3r2-3r3+2r* fork=3,
1-2r+4r2-534+2r*  fork=4,
2 3 4 —
E(k)(r)z 1-3rc+3r°—r fork =9,
1+r—-5r2+r3+2r* fork =12
1+4r +r2-5r3—r4 for k = 36(),
1-2r+r2+r3-r4 for k = 36(11).

Although the formula (31) is rigorous, the following approximate formula is
more convenient in the discussion of parameter dependence of the break point for
Losch’s hexagon witld = 3.

Proposition 4. Under the conditions
0> (o/u)® > 1, (32)

the larger break point’® for Losch’s hexagon with B 3 is given approximately
as
1/3
®3) _ o13 M
7/ =18-2 I
The approximate formula (33) indicates that the onset of agglomeration is
accelerated by a lower substitutionbetween any two varieties and a higher ex-
penditure sharg of manufactured goods. This is in line with economic intuition

and the present numerical examples in Sections 5.4 and 6.2.

(33)
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4.2. Order of emerging hexagons

As we have seen in Section 2, there are several bifurcations engendering
hexagons of various kinds. The first bifurcation engendering a hexagon, when
7 is reduced from a large value, is an important bifurcation breaking uniformity.
In contrast, the last bifurcation is another important one related to a mature stage
of economic agglomeration. It is possible to predetermine the order of the emer-
gence of hexagons as expounded in the following proposition, which is applicable
to a family of spatial economy models introduced in Section 3.1.

Proposition 5. The flat earth equilibrium is stable for a large(> 7*¥). Whenr
is reduced continuously fromco to O [or r is increased continuously froidto 1]
and bifurcations take place, these bifurcations occur in the following order.

(i) Bifurcation producing Losch’s hexagon with-D3 occurs first atr = 7.

(i) Bifurcation producing the megalopolis with B 36(l) occurs last atr =
(36()
T_ .

The smallest hexagon with = 3 is the most important one that breaks the
uniformity. Itis no wonder that this hexagon was highlighted as Christakef'S
system. Another hexagon wilh = 36(I), which is beyond the scope of central
place theory, is also important as this hexagon comes at the tail of agglomeration
expressing centralization leading to a megalop@lis.

25This megalopolis formation is inherent for the logit dynamics employed herein, but is absent
for the replicator dynamics.
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Figure 10: Equilibrium curves related to hexagons and associated population distributions dis-

played in the hexagonal windows containing 36 places. Solid curves represent stable equilibria
and dashed ones represent unstable ones.

5. Stable agglomeration patterns on a hexagonal lattice without boundary

Using theoretically possible agglomeration patterns presented in Section 2.4,
this section tackles the main objective of this paper to elucidate which patterns
are stable and, therefore, of economic interest. For this purpose, equilibria of
the 6x 6 hexagonal lattice are studied by comparative static analysis with re-
spect to the transport cost of the core—periphery model of Forslid and Ottaviano
(2003) [12] (Section 3.2). Stable equilibria related to central place formation, de-
centralization leading to decay of downtown, and formation of megalopolis are
shown to exist.

Stable bifurcating equilibria are observed in Section 5.1, and progress of sta-
ble equilibria under decreasing transport costs is studied in Section 5.2. Market
areas of the first-level places are investigated in Section 5.3, and robustness of the
progress of stable equilibria against parameter values is confirmed computation-
ally in Section 5.4.

The distance between two neighboring places is chosénr=ak/6. Parame-
ter values are chosen as, fi) = (5.0,0.4), as in Fujita, Krugman, and Venables,
1999b [15]. The parametérin (28) is chosen a8 = 1000 and the fixed in-
put requirement is chosen as= 1.0. This set of parameter values satisfies the
conditions (29) and (30) for the existence of break points.
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5.1. Bifurcating stable equilibria

The flat earth equilibriuml = 3i6(1,...,1)T in (4) exist for any value of
the transport cost parameter This equilibrium is shown as the horizontal line
Acenter = 1/36 in the equilibrium curves in Fig. 10, which plots the relations be-
tween the transport cost parameteand the populatioi.n,Of the place at the
center of the hexagonal window. There exist bifurcation points A through L on
the equilibrium?®

Bifurcating equilibria branching from these bifurcation points are found with
reference to the theoretical prediction in Section 2.4. Bifurcating hexagons are
shown in Fig. 10, whereas stable bifurcating equilibria other than hexagons are
summarized in Appendix C. Stable population distributions found in this manner
are shown in Fig. 11 using the hexagonal window containing 36 places. The place
at the center of this window can be interpreted as the downtown of a city area
and, accordingly, the progress of agglomeration at this place is of most economic
interest.

Durations of the transport cost parametdpor stable equilibria are depicted
in Fig. 12, in which the ordinaté&l;s; means the number of the first-level places
(with the largest population). Whenis reduced, the numbeé¥, tends to be
reduced and, in turn, to expand the market area. This is due to a tfidoketween
transportation cost and scale econoniies.

The hexagonswith D = 3, 4, 9, and 12 become stable in this orderras
decreases from a large value. Thus, these hexagons play an important role in the
progress of centralized agglomeration, thereby showing the foresight of central
place theory, which proposed these hexagons by the geometrical consideration.

In contrast, there are other stable patterns introduced below, which have not
been obtained in central place theory, but are found by bifurcation theory (Sec-
tion 2).

e Megalopolis(point & in Fig. 10) andatomic mono-centefpoint a) associ-
ated with the hexagon witb = 36(1) become stable for smail

e Racetrack patternswith D = 12 andD = 36 (Figs. 11(g) and (h)) are
stable for very short ranges of the transport cost paramei#&t {r < 1.74

26The existence of bifurcations on the flat earth equilibrium is investigated by the eigenanalysis

of the Jacobian matrid(4, 7) = dF /94 (Footnote 15).
2’Firms at a place with a small market area enjoy the merit of a reduction of transportation cost

at the expense of small scale economies. In contrast, firms at a place with a large market area
enjoy the merit of scale economies at the expense of large transportation cost.
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Figure 11: Market areas of the first-level centers for stable equilibiach’s hexagon with = 7
in Fig. 11(c) does not exist on the6 hexagonal lattice but is included here for comparison.
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Figure 12: Durations of the transport cost parametéar stable equilibria.N;g is the number

of first-level places in the hexagonal window; a first-level place at the corner of the hexagonal
window is counted as/3 and that at the midpoint of two neighboring corners is counted2as 1

the estimation o

and 066 < 7 < 0.76, respectively). These patterns are interpreted as de-
centralization leading to downtown decay or extinction and play a major
role in the discussion of economic implications.

e Deformed hexagon(point d) is stable for a wide range8l < 7 < 1.91.

e Two places and semi-square patterrfFigs. 11(i) and (j)) have been found
on the same curve of equilibriuf.Yet these two patterns are stable in very
short ranges .89 < 7 < 0.67 and 072 < 7 < 0.75 and play a small role in
the discussion on stable agglomeration.

e Long narrow patterns are unstable except for the discrete long narrow pat-
tern shown in Fig. 11(k), which is stable for a short randg#06< v < 0.70.
Although these patterns resemble an industrial belt, such as the Atlantic
seaboard of the United States, they would play a limited role in the agglom-

28The transition from the semi-square pattern to the two places (see Fig. C.3) is quite close to
the one found in the racetrack economy, in which four identical first-level places were transformed
into two identical places (Ikeda, Akamatsu, and Kono, 2012a [18]; and Akamatsu, Takayama, and
Ikeda, 2012 [1]).

27



eration in wide two-dimensional space, such as southern Germany.

The hexagonal lattice without boundary employed herein can encompass sev-
eral agglomeration features that have been observed fragmentarily in a long nar-
row economy (one-dimensional economy) as follows: Highly regular hierarchical
systema la Christaller (Fujita, Krugman, and Mori, 1999a [14]), mono-center
(Fujita and Mori, 1997 [16]; and Fujita, Krugman, and Mori, 1999a [14]), and
megalopolis consisting of a continuous industrial zone around the center (Mori,
1997 [26]). However, there are still other stable equilibria, such as the racetrack,
that cannot be deduced in one-dimensional economies but are found here for the
hexagonal lattice.

5.2. Progress of stable equilibria

We now shift our attention to an issue of great economic interest, i.e., the
progress of stable equilibria under decreasing transport costs. Possible progress is
deduced from Fig. 12 as

Dawn stage: Flat eart» Hexagon D = 3) =
Hexagon D = 4)
RacetrackD = 12)
Deformed hexagon
Chaotic stage: Hexagon D = 9) =
Hexagon D = 12)
Triangle
RacetrackD = 36)

Mature stage: Atomic mono-center Megalopolis= Flat earth (34)

Thus there are three major stages of agglomeration.

e Dawn stageis the one which was predicted by central place theory. When
7 is reduced from a large value~ 2.4, the flat earth renders the role of the
unique stable equilibrium to the hexagon widh= 3 (r ~ 2.0). Then a state
of dual stable equilibria of the hexagons with= 3 andD = 4 comes into
existence (I7 < 7 < 2.0).

e Chaotic stagegoes beyond the scope of central place theory. When the
hexagon withD = 3 becomes unstable at~ 1.7, there comes a state of
multiple stable equilibria, such as hexagons with= 4, 9, and 12, the
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racetracks, and the deformed hexagon. The existence of the stable racetrack
patterns means that there is a possibility of the decay or extinction of the
downtown.

e Mature stageis the final stage of economic agglomeration for a sma
which the atomic mono-center, the megalopolis, and the flat earth become
stable in this order.

If only hexagons in central place theory were considered, progress of sta-
ble equilibria asr decreases would lead to continuous progress of centralization
through the increase of the size of hexagons (Fig. 10). This, however, is not a
true scenario and there is a competition between centralization by hexagons and
de-centralization by racetrack patterns. This demonstrates the importance of the
present study, the scope of which goes beyond central place theory and encom-
passes diverse patterns other than hexagons.

5.3. Market areas of first-level places

The market areas depicted in Fig. 11 for stable equilibria display various
shapes: hexagons, deformed hexagons, rectangles, diamonds, and trapezoids. In
particular, Losch’s hexagons have superior stability in that they remain stable in
wide ranges ofr (Fig. 12). Thus, these hexagons, which were advanced as ge-
ometrically superior shapes of market areas in central place theory, are also en-
dowed with stability. The deformed hexagon with semi-hexagonal market areas
also has superior stability. Other shapes, such as triangles, diamonds, and trape-
zoids are inferior in stability.

Let us briefly review central place theory. The ratio of the nuniesf the
first-level places to the numbés of the second-level places is a key concept in
central place theory (Dicken and Lloyd, 1990 [8]), and is given by

1:2 forD=3(k=23),
kitkob=1:(k-1)=5 1:3 forD=4(=4), (35)
1:6 forD=7(k=7).

This formula is extendible to other hexagons in Fig. 11 by settirgD.

For the deformed hexagon, four second-level places are contained inside the
market area of the first-level place and two second-level ones at the border are
shared by two neighboring first-level places. Therefore, the ratio is given by

ki:ko=1:k—1=1:5(=4+2/2),
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and the deformed hexagon can be interpreted ak £h6 system in view of (35).

A first-level place is connected to two first-level places by zigzag roads, as in the
k = 3 system with market principf&, and to four first-level places by straight
roads, as in th& = 4 system in line with tréiic principle. This deformed hexagon

is nearly endowed with the administrative principle of the 7 system because
four among six second-level places are contained within the market area of the
first-level place. Each first-level place is surrounded by six second-level places,
asinthek = 3,k = 4, andk = 7 systems. Thus, the deformed hexagon is indeed a
mixture of these three systems. Thigtses to show the need for reconsideration

of the framework of central place theory, even from a geometrical standpoint.

5.4. Robustness against parameter values

The robustness of the existence of stable equilibria is demonstrated against
the change of the elasticity of substitution between any two varieties. Figure 13
shows durations of stable equilibria for = 4.0 and 100, where 5.0 is used as
the standard value in this section. &sdecreases to 4.0 (Fig. 13(a)), not much
difference is observed in comparison with Fig. 12 for the standard valuer As
increases to a large value of 10.0 and the economic balance shifts in favor of dis-
persion (Fig. 13(b)), the racetrack patterns become unstable. Yet the hexagons
(D = 3, 4,9, and 12), the deformed hexagon, the atomic mono-center, and the
megalopolis all exist as stable equilibria. Moreover, when the transport cost de-
creases from a large value, the hexagon itk 3 is formed first, followed by
several stable equilibria, en route to the atomic mono-center, the megalopolis, and
the flat earth. This dtices to demonstrate the robustness of the present discussion
on stable equilibria.

2Christaller’sk = 3, 4, and 7 systems correspond respectivelyisdh’s hexagon witld = 3,
4,and 7.
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Figure 13: Durations of the transport cost paramefer stable equilibria for several values @f

Nist is the number of first-level places in the hexagonal window; a first-level place at the corner
of the hexagonal window is counted g8 And that at the midpoint of two neighboring corners is
counted as/P in the estimation oNis;.
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6. Agglomeration patterns on a hexagonal lattice with boundary

The hexagonal lattice without boundary studied in Sections 2 and 5 realizes an
infinite plain (homogeneous space) in central place theory and allows theoretical
prediction of agglomeration patterns (Section 2.4). Yet there may be a criticism
that a realistic economic space has a boundary which makes the space asymmet-
ric. In this section, in search of realistic agglomeration patterns, we employ a
hexagonal lattice with boundary in Fig. 14. Because places near border are not
as competitive as places inside, this lattice has inhomogeneity (asymmetry) and
theoretical prediction on agglomeration patterns is absent. In order to compensate
for this absence, agglomeration of the lattice with boundary is described based on
the theoretical prediction of the lattice without boundary in Section 2.

Progress of stable equilibria under decreasing transport costs is studied in Sec-
tion 6.1. Parameter dependence is studied in Section 6.2.
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Figure 14: Hexagonal lattice with boundary with 91 places.

6.1. Progress of stable equilibria

Equilibrium curves and associated population distributions at points a to f
shown in Fig. 15 for the lattice with boundary have been obtained for parame-
ter values ¢, 1) = (5.0,0.4) andl = 1/6, which are also used in Section 5. The
stable equilibria progress as

Dawn stage: Flat earty Hexagon D = 3) =
Chaotic stage: = Hexago(= 4) = Racetrackp = 36)= Hexagon D = 9) =

Mature stage: Atomic mono-center Megalopolis= Flat earth (36)

As in the hexagonal lattice without boundary (Section 5), there are three stages.

¢ In the dawn stager(> 2.0), after the flat earth equilibrium at point a, a
hexagon withD = 3 is formed near the center of the lattice at poirt b.

30This formation of the hexagon witD = 3 is due to the uniformity, but this hexagon is
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Figure 15: Equilibrium curves and associated population distributions for the standard case with
(o, ) = (5.0,0.4).
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¢ In the chaotic stage (1 < 7 < 2.0), a state of dual stable equilibria of the
hexagon withD = 3 and that withD = 4 (point d) come into existence at
T =~ 2. Thereafter the racetrack (point €) and a hexagon With9 (point f)
emerge stably. In addition, there are a number of unstable equilibria shown
by dashed curves in Fig. 15.

¢ Inthe mature stage (@ v < 1.1), the atomic mono-center, the megalopolis,
and the flat earth occur stably in this order.

As compared in Fig. 16, the durations of stable equilibria for the hexagon with
D = 3 for the lattices of two kinds shown by the solid and dashed lines display an
amazing quantitative agreement. Those of other equilibria exhibit a fair agreement
qualitatively. This sffices to show the validity of the “infinite hexagonal lattice
analogy” of this paper to extract theoretical information from the lattice without
boundary and to describe agglomeration of the lattice with boundary based on this
information.

The place at the center of the lattice can be interpreted as the downtown of a
city area. The racetrack (point €), which is interpreted as de-centralization leading
to downtown decay, is observed as a characteristic economic agglomeration that
was overlooked by central place theory but is predicted in the present study. Fig-
ure 15 shows recurrences of de-centralization (points ¢ and e) and centralization
(point 1), i.e., downtown decay and revitalization.

6.2. Parameter dependence

Agglomeration is known to be parameter dependéfarameter dependence
of agglomeration is investigated for two parameters: (1) the elastioitf/substi-
tution between any two varieties and (2) the expenditure shafenanufactured
goods. The formula (33) predicts that agglomeration is accelerated by adower
and a highep.

6.2.1. Progress of stable equilibria

The progress of stable equilibria has been investigated fer 0.4 and for
various values of the parameter (= 3,4,5,6,8,10), and can be classified as
detailed below (see Section 6.1 and Appendix D for examples of these behaviors):

blurred away from the center by the spatial asymmetry (inhomogeneity) due to the boundary (see

Footnote 5).
31For example, Berliant and Yu (2014) [5] demonstrated the dependence of agglomeration on

the cost of living.
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Figure 16: Comparison of progress of stable equilibria for the lattice with boundary (dashed lines)
with associated stable equilibria for the lattice without boundary (solid lines).

e Strong agglomeration (X o < 4): hexagons wittD = 3, 4, 9 and 12
emerge stably and agglomeration progresses as

Flat earth= Hexagon D = 3) = Hexagon D = 4) =

Hexagon D = 12)

Hexagon D = 9)

Racetrack _ =
Triangle

Triangle
Atomic mono-cente> Megalopolis= Flat earth.

¢ Intermediate agglomeration (§ o < 8): hexagons wittD = 3, 4, and 9
emerge stably and agglomeration progresses as

Flat earth= Hexagon D = 3) =
Hexagon D = 4) = Racetrack= Hexagon D = 9) =

Atomic mono-cente> Megalopolis= Flat earth

e Weak agglomerations{ = 10): no hexagons emerge and agglomeration
progresses as

Flat earth= Racetrack= Triangle= Racetrack>

Atomic mono-cente> Megalopolis= Flat earth.

In all cases, the agglomeration starts from the flat earth equilibrium and ends up
with formation of an atomic mono-center, en route to a megalopolis and the flat
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earth equilibrium. A racetrack pattern emerges in almost all cases and often trans-
forms into a triangle patterff. More hexagons emerge for a larger agglomeration
force.

The influence of parameter is investigated fow- = 5.0 and foru = 0.1,
0.2,0.4, 0.5, 0.6, 0.8. These agglomeration can be classified similarly as: strong
agglomeration (® < u < 0.8), intermediate agglomeration.20< u < 0.4), and
weak agglomerationu(= 0.1).

6.2.2. Break points

In the investigation of agglomeration under reduced transport costs, it is of
economic interest to observe theeak point which is defined as the value ofat
the beginning of an increase of downtown population. When investment in trans-
portation infrastructure is committed continuously to enhance downtown popula-
tion, the break point indexes the functioning of this investment. For the lattice
without boundary, this value is given by of the hexagon wittD = 3 for the
first bifurcation breaking uniformity (Proposition 5(ii) in Section 4.2).

Figures 17(a) and (b) depict the dependence of break pﬁ?mn the values
of parameters- andu, respectively. Asr increases, the economic balance shifts
in favor of dispersion and’® decreases. Ag increases, the economic balance
shifts in favor of agglomeration and® increases.

The break points for the present analysis shownebyafe in good agreement
with those for the lattice without boundary shown by.(In addition, these break
points are in agreement with the dashed curve of the theoretical law in (31) and
in fair agreement with the approximate law in (33). Such agreement ensures the
validity of the basic strategy employed in this paper to extract theoretical informa-
tion from the lattice without boundary and interpret and describe agglomeration
characteristics of the lattice with boundary based on this information.

As made clear in Proposition 2 in Section 4.1, the existence of the break point
Is conditional on the values of parameters. &cf 5.0 andd = 1000 in Fig. 17(b),
the formula (30) gives a conditiom > 0.141 for the existence of break point.
Although this condition is violated only for exceptional cases, due regard is paid
to the existence of such cases, in which investment in transportation is wasted
without leading to economic agglomeration.

32This transformation was found in the racetrack economy (Ikeda, Akamatsu, and Kono, 2012a
[18]; and Akamatsu, Takayama, and Ikeda, 2012 [1]).
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denotes the break point for the present numerical analysis for the lattice with bourdasno6tes
that for the lattice without boundary, the dashed curve means that for the theoretical law in (31),

and the solid curve means that for the approximate law in (33).
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7. Conclusion

In this paper, to elucidate the nature of the spatial economic agglomeration,
we employed a basic strategy to distinguish spatial properties and microeconomic
properties. The former properties are model independent, whereas the latter prop-
erties are not.

By the study of spatial properties of a hexagonal lattice without boundary,
possible agglomeration patterns on this lattice are found to be hexagtms
Christaller and bsch, racetrack patterns, long narrow patterns, and so on. In par-
ticular, racetracks are advanced as a source of de-centralization leading to down-
town decay. Agglomeration patterns other than hexagons have not been obtained
by the geometrical consideration in central place theory, which demonstrates the
usefulness of the theoretical prediction in this paper that goes beyond the scope
of central place theory. It is to be emphasized that this theoretical prediction is
model independent and applicable to economic models of various kinds.

The stability of equilibria is dependent on microeconomic properties. In order
to deepen discussion on the stability, we refered to a specific economic geography
model. When the transport cost is reduced from a large value, it was proved that
the smallest hexagon is the first non-uniform agglomeration pattern that breaks
uniformity. Although this proof was carried out for this specific model, it is ex-
tendable to a family of spatial economy models, for which the spatial interaction
between places is distant decaying.

There may be a widespread pessimism that stable equilibria in two dimensions
are literally infinite and, therefore, cannot be exhausted. Nonetheless, stable equi-
libria are endowed with geometrically rational forms with rich economic impli-
cations and the variety of these forms is quite limited. To fiethis pessimism,
stable equilibria for a specific NEG model were traced under reduced transport
costs. Hexagons associated with central place formation have turned out to be
most stable and, in turn, to demonstrate the insight of central place theory. Atomic
mono-center and megalopolis are stable for small transport costs, whereas race-
track patterns representing de-centralization are sometimes stable. Other patterns
are mostly unstable.

An amazing resemblance was observed for the progress of stable agglomer-
ations for the lattice with boundary and that without boundary. This shows the
validity and usefulness of the basic strategy employed in this paper to extract the-
oretical information from the lattice without boundary and interpret and describe
agglomeration characteristics of the lattice with boundary based on this informa-
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tion.

If only hexagons were considered in favor of central place theory, possible
progress of stable equilibria would be an optimistic one: a continuous increase
of the size of hexagons (Fig. 10), leading to continuous growth of the downtown.
This, however, is not a true scenario and there is a competition between central-
ization by hexagons and de-centralization by racetrack patterns. The downtown
would recurrently undergo a setback during a short period of the racetrack pattern.
In downtown development by investment in transportation, a possible course im-
plied by this study is a bumpy one undergoing several short periods of downtown
decay (stable racetrack pattern). Nonetheless, one should not be too pessimistic
about such decay as it is just transient and the downtown is destined to be revi-
talized, en route to development of a megalopolis, if a continuous investment is
maintained.

The search for stable economic equilibria in two dimensions iffi@ali task.

In this paper, such a search was conducted using a core—periphery model that ad-
mittedly employs bold assumptions about microeconomy. A future task will be to
search for stable equilibria for microeconomic models of various kinds. Nonethe-
less, the methodology presented in this paper is general and is applicable to other
models. For example, possible bifurcating equilibria presented herein would exist
universally in the models and, hence, the knowledge of these equilibria would be
most useful in search of stable economic equilibria.
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Appendix A. Theoretical details

Several theoretical details are contained in this appendix.

Appendix A.1l. Eigenvectors of the Jacobian matrix

Eigenvectors of the Jacobian mattxof the governing equation (3) for the
6 x 6 hexagonal lattice are presented as a summary of Ikeda and Murota (2014)
[20]. To begin with, we define a matrix

Q= (Q(l), Q(3), Q(4), Q(9), Q(12)’ Q(36(')), Q(SS(”))),
where
QW =(ql, q¥,..), k=1,34,912 36(I),36(ll). (A.1)

The matrixQ® in this equation consists of the eigenvectqf ¢, . .. given in
this appendix (cf., Remark 1).
The coordinate of a place on thex n hexagonal lattice is given by

X=nbl+ntp, n;,n,=01....n-1

with n = 6 for the present casé, = I(1,0)7, andf, = 1(-1/2, V3/2)". Thus,
the K = n? places are indexed by, n,). The vectord expressing population
distribution is defined as

A= (.. )7

= (o0s--->An-10; A01s-++>An-11; --+ 3 Aon-1r---»>An-1n-1)"
= (ﬂnlnz [n,n,=0,...,n—1),

where Qnn, | N1,z = 0,...,n— 1) is aK-dimensional column vector. A vector
on this lattice with therg,, ny)-componeng(n,, n,) is normalized as

|_\

n-1 n-1

(9(n1, n2)) = (g(Nn, nz)/( a(i, DAY In,n,=0,...,n-1). (A.2)
j=0

Ty
o
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Then a concrete form of ea® in (A.1) is given below.

QW = é(1 ..... 1)7, (A.3)
Q¥ = (g2,

= [(cos(Z(ny — 2ny)/3)), (sin(2r(ny — 2n2)/3))], (A.4)
QY = [¢® ¥, g

= [(cosfrny)), (cosfry)), (cosf(ny — )], (A.5)
Q¥ = [d¥.....q¢]

= [(cos(Zr ny/3)), (sin(2r ny/3)),
(cos(Z(—nz)/3)), (sin(2r(-nz)/3)),
(cos(Z(=ny + nz)/3)), (sin(2r(—ny + ny)/3))], (A.6)
Q(lZ) _ [q(llz) ..... (12)]
= [(cosf(n + n2)/3)), (sin(r(ns + nz)/3)),
(cosfr(ny — 2n2)/3)), (sin(r(ny — 2n2)/3)),

(cosfr(—2n; + ny)/3)), (sin(r(-2n, + ny)/3)) 1, (A.7)
Q(36(I)) _ [q(l36(l)) (36(I))]

.....

= [(cos@ ny/3)), (sin(r ny/3)),
(cosfr(—n2)/3)), (sin(x(-ny)/3)),

(cos@(—ny + ny)/3)), (sin@r(—ny + ny)/3)], (A.8)
Q(36(II)) _ [q(136(ll)) q(326(II))]

.....

= [(cos(Z(2n; + nz)/n)), (sin(2r(2ny + nz)/n)),
(cos(Z(m — 3np)/n)), (sin(Zr(ny — 3nz)/N)),
(cos(2r(—3ny + 2ny)/N)), (sin(2r(—3ny + 2ny)/n)),
(cos(Z(2ny — 3ny)/n)), (sin(2r(2ny — 3nz)/n)),
(cos(Z(m + 2np)/n)), (sin(2r(ny + 2nz)/N)),
(cos(2r(—3ny + 2ny)/NY), (sin(2r(—=3ny + 2ny)/n)y].  (A.9)

By the so called group-theoretic analysis, the eigenvectorsiscii’'s hexagons
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are obtained as

q® = o = (cos(&(n - 2n,)/3)), (A.10)
d¥ = o+ + o
= (cosfrn,)) + (cosfrn,)) + (cosfr(ny — y))), (A.11)

9 9 9
4@ = @+¢9+®

= (cos(Zr ny/3)) + (cos(2r(—ny)/3)) + (cos(2z(—ny + ny)/3)), (A.12)
(12) , 4(12) , 4(12)

q*? = P+ a5+ g5
= cos(ny + np)/3)) + cosr(ny — 2n2)/3)) + (cosfr(—2ny + nz)/3)),
(A.13)
q(36(l)) — q(136(|)) + q(336(l)) + qé36(l))
= (cos@ m/3)) +{cosfr(-ny)/3)) + (cosfr(—ny + Nn2)/3)),  (A.14)
q(36(ll)) — q(136(II)) + q(336(II)) + q(536(II)) + q(736(II)) + qé36(|l)) + q(ﬁG(”»
= (cos(Zr(2ny + ny)/n)) + (cos(Z(ny — 3ny)/n))
+ (cos(Zr(—3ny + 2ny)/n)) + (cos(Zr(2n; — 3ny)/N))
+ (cos(z(ny + 2ny)/N)) + (cos(2Zr(—3ny + 2ny)/n)). (A.15)

Remark 1. In consulting Ikeda and Murota (2014) [20], note the correspondence:

1,3,4,9,12 36(1), 36(11)
= (1;+.4),(2;+),(3;+,+).(6;20,+),(6; L, 1,+),(6; 1 0,+),(12; 2 1)

between the notations in the present study and lkeda and Murota (2014)[[20].

Appendix A.2. Group-theoretic analysis of a bifurcation point of multiplicity 12

A bifurcating solution for the deformed hexagon is obtained. Let us consider
the equilibrium equation
F(4,7)=0 (A.16)

for the 6x 6 hexagonal lattice without boundary. This equation has the pre-
bifurcation flat earth equilibrid = 6—12(1, LT
Let (1c, 7c) be a critical point of multiplicity 12 on the flat earth equilibria.

This point is related to the eigenvectai&™”, ..., ¢ in (6) with k = 36(1I).
By Liapunov—Schmidt reduction, the full system of equilibrium equation (A.16) is
reduced, in a neighborhood of the critical poig, (), to a system of bifurcation
equations

F(w,7) =0 (A.17)

45



inw = (Wy,...,wip)", wherew is defined bya = . + 3 w g™, Fis a 12-
dimensional vector of functions, and= t — 7. denotes the increment af In
this reduction process the symmetry of the full system is inherited by the reduced
system (A.17). Moreover, the existence of bifurcating solutions can be determined
by analysis of the reduced system as eaamiquely determines a solutiohto
the full system (A.16).

The bifurcation equation (A.17) for the critical point of multiplicity 12 is a 12-
dimensional equation ové&. This equation can be expressed as a 6-dimensional
complex-valued equation in complex variabkes- Wyj_1 +iw,; (j = 1,...,6) as

Fi(Zl,...,Z6,21,...,76,ﬂ:O, i:].,...,6, (A18)

where
(21,...,26,21,...,26,?):(O,...,O,O,...,O,O)

Is assumed to correspond to the critical point. For notational simplicity we write
(A.18) as
Fi(z,...,2)=0, i=1,...,6 (A.19)

by omittingz, ..., Zs andt in the subsequent derivation.
We expand-; as

Fi(z1, 2, 23, 2, Z5, %)
= Z Z Tt Z Aabcdeghijst@zizgzgzizgzgﬂ?ézézzifﬁig' (A'ZO)

a=0 b=0 u=0

Since @, 2, 23,24, 25,25, 7) = (0,0,0,0,0,0,0) corresponds to the critical point of
multiplicity 12, we have

Aooooo000000(0) = O, (A.21)
A1000000000060) = Ao100000000060) = - - - = Agoooooooooof0) = 0. (A.22)

By virtue of the symmetry of the lattic&,, ..., F¢ are obtained fronk; as

Fo(z1, 22,23, 2, 25, 25) = Fi(2o, 23, 21, Z, 2, Z5), (A.23)
Fo(21,2, 23,2, 25, 2) = Fi(zs, 21,22, 25, 2, 24), (A.24)
Fa(z1.22. 23, 2, 25, 25) = Fi(2. 25, 2. 21, 2, Z3), (A.25)
Fo(z1, 22,23, 2, 25, 25) = Fi(Zs, 26, 2, 23, 21, 20), (A.26)
Fe(z1, 22,23, 24,25, 25) = F1(Z6, 2,25, 2, 23, 21), (A.27)
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the codficients Aancdegnijsi) In (A.20) are real, and the indicesg,p, . .., t, u) of
nonvanishing caicientsAqy..«(7) in (A.20) must satisfs?

2@-h)+(b-i)-3Cc—-j)+2d-9+(e—-t)-3(-u =2 mod @
(A.28)

@-h-3b-i)+2(c-j)-3d-9s)+2e-t)+(g—u =1 mod6
(A.29)

We denote byS the set of nonnegative indices, b, .. ., t, u) that satisfy the
above conditions, i.e.,

S={(ab,...,t,u) € Z¥| (A.28) and (A.29), (A.30)

whereZ, represents the set of nonnegative integers. Tlheh {(..,t,u) must
belong toS if Ag.1w(7) # 0, and hence (A.20) can be replaced by

Fi1(z1, 2, 23, 24, Z5, ) = Z Aabcdeghijst@zi‘zgzgz‘jzgzgﬂ?éiéﬁigig. (A.31)
S

We haveAq,.w(7) # 0 (generically) for §,b,...,t,u) € S. The expanded form
(A.31), forn = 6, takes a special form

Fi = Aizi + AZoZs + (AsBZy + Auza2oZo + AsZiZ5Z3 + AsZiZaZs + Ar2aZ575
+ AgZ1 2676 + AoZoZsZs + A1025Z4Z5 + A112125Z6 + A1oZ3Zs + A13217§)
+ [A14Z47é + AysZs7Zs + A16257(33 +e ]+ (A.32)

for some constantg; (i = 1,2,...); see Example 9.1 of Ikeda and Murota (2014)
[20].
We search for bifurcating solutions of the forms

Z1=X, L=L=%=Z=2%=0,

with x € R andx # 0. Using (A.23)—(A.27) and (A.31) with (A.28) and (A.29) to

33equations (A.28) and (A.29), respectively, correspond to (9.100) and (9.101)kuitmY =
(2,1, 6) in Ikeda and Murota (2014) [20].
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(A.30), we obtain a set of equations

F1(x,0,0,0,0,0)

h h
0000h0000! = 0000h0000! " >
Aa T)X" = Aa )X
S

a—h=1 mod 6

F2(%,0,0,0,0,0) = F1(0,0,%0,0,0)=>" Aoxoooogooo®)x") = 0,
S

F3(%0,0,0,0,0) = F1(0,%0,0,0,0)= > Auooo0s000d®X**' = 0,
S

F4(x0,0,0,0,0) = F1(0,0,0,%0,0)= >" Agoasooooaoo(™X*** = 0,
S

F5(x0,0,0,0,0) = F1(0,0,0,0,%0)= > Agooxooo0ao(X" = O,
S

Fe(x,0,0,0,0,0) = F1(0,0,0,0,0,%) = > Agoooaooo0a(®X* = 0.
S

Sincea+ h > 1 for each § h) witha—h =1 mod 6, it is possible to divide the
first equation byx to arrive at

1
X F1(x,0,0,0,0,0) = Z Aaoooomoooocﬁ)xam_l,
a—h=1 mod 6

and the bifurcating solution is determined from

Asoo00m0000dT) X = 0. (A.33)

a-—h=1 mod 6

The leading terms of (A.33) are given as
AT+BX =0

with generically nonzero céigcientsA = A’ 1,0000000060) @NAB = Ag00001000000),
where ('} denotes the derivative with respectitoBy the implicit function theo-
rem, the equation (A.33) can be solved foais

X =y (1),

where
A_
(1) = = “B7: 7T—-0

with —A/B # 0. Hence, we obtain a bifurcating solution
z=y(1), Z=28=2=2=2=0.

This equation indicates the existence of a bifurcating solution in the direction of
(Wa,..., W) = (1,0,...,0), i.e.,, g™ This solution corresponds to the de-
formed hexagon introduced in Fig. 9.
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Appendix B. Derivation of formulas for the break point

Formulas for the break point presented in Section 4 are derived. The method
in Akamatsu, Takayama, and Ikeda (2012) [1] is adapted to thé& Bexagonal
lattice without boundary.

Appendix B.1. Eigenanalysis of spatial discounting matrix

Recall the spatial discounting matiix = (d;;) in (10) with
dj = r ™D (B.1)

and
r = exp[- (o — 1)L] (B.2)

in (23). The nominal length of the road is chosen ds= 1/n = 1/6.
The spatial discounting matrR for the 6x 6 hexagonal lattice takes the form:

D, D, D, D; D, Ds
Ds Do D, D, D; D,
D, Ds Do D; D, D
D; D, Ds Dy D; D
D, D; D, Ds D, D;
D, D, D3 D, Ds Dy

which is a block-circulant matrix made up of circulant matrices:

(1 r r2 3 2 ] [r r or2 33 2

r 1 r r2 r3 r2 r2 r r r2 3 o3

S L e e i LA S L S
M T O T O £ M (R R I S S &
22 or 1 2ol et
ror2 32 1 v rd oo

r2 2 2 (3 4 3 111111

(B r2 2 g2 g3 gh 111111
N i 3 (2 2 (2 3 D. -3 111111
2T T s s 3 p2 g2 20 2T 0 101101 1
r2 3 4 3 (2 y2 111111

r2 r2 r3 r4 r3 r2 11111 1
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The direct bifurcation from the flat earth equilibriuih = %(1, LL1D)T(K =
n? = 62) in the direction of the eigenvector

n=0q¥, k=3,4,9,12 36(1), 36(1l) (B.3)

of J(1*) is investigated, wherg® is given in (A.10)—(A.15).
It is easy to verify that the vectoy is also an eigenvector of the spatial dis-
counting matrixD, i.e.,

Dnp =&Yy, k=3,4,9,12 36(I), 36(l) (B.4)
with
1-3r+3r2-3r3+2r*  fork=3,
1-2r+4r2-5r34+2r*  fork=4,
1-3r2+3r3-r4 fork =9,
29 = 209(r) = + (B.5)
1+r—-5r2+r3+2rt fork =12
1+4r +r2-5r3—r4 for k = 36(),
1-2r+r2+r3-r4 for k = 36(l).

Denote byd the sum of the entries of a column Bf which is given by

K
d= Z rmD =14+ 6r +12r% + 153 + 2r4, (B.6)

i=1

Then, for the vectog in (B.4), we have

D _
d '7 - 6']
with e .
€ = F, ( . )
where (B.4), (B.5) and (B.6) are used. Since 0 < 1, we have
€ <1, (B.8)
as shown in Fig. B.1. By the implicit function theorem, (B.7) yields
r =o®(e) (B.9)

for some functionb®.
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k£ 36(11) fe=360)

0 0.5 1
Figure B.1: Curves of plotted against (0 < r < 1).

Appendix B.2. Break point for hexagons
From the governing equatidain (27) withH = 1, we have

oF; K\ 9F; Vi K N oV,
— = K _s5i=—0) PP — + 0P — _5:. (B.10
6/7.1' kZ:; aVk (9/11' N kzzll ! ka/lj M '8/1,- & ( )

whereg;; is the Kronecker delta. This shows that the Jacobian matrices

oF [dF ov _ (ov
JA) = —=[— V) = — =|—
@ (6/11-)’ @ 04 (6/11-)
are related as
P1 Py
JA) =0 : |[Pr---Pe]| V() +0 V() -1, (B.11)
Pk Pk
wherel is the identity matrix.
In regard toV (1) we recall (25):

V(A7) = —F log A(A. 7) + logwi(4, 7)] (B.12)
as well as (24):
H di
Wi(d.7) = = Zk: i ; 5 (Wi(A, T) A + 1), (B.13)

where «
Ak(/l, T) = Ak = Z djk/lj.

=1
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The diferentiations of (B.12) and (B.13) with respectttoyield, respectively,

Y, dji l oW,
-2 - =2 ! B.14
ay A Twoay (B.14)
M _ KZK:% —a T Wi | Ak — (Wi + 1)d (B.15)
ax, £y Akz k kOkj | DAk kAk ik | .
where
K= ﬁ, W= (B.16)
o oc-1
We have (< k < 1 and«’ > 0 becauser > 1, 0< u < 1.
At the flat earth equilibriunm* = %(1, ...,1)", (B.11) yields
9
J) = llTV(/l*) —V(/l*) —1, (B.17)

wherel = (1,...,1)". The matrixV(2*) in (B.17) can be evaluated as follows. At
A= 2%, we have

K

d

Aj= A7) = ) dejdi = =

j (A5, 7) kZ:; kitk = i

Sincew; is independent of, we may putw; = w, and then (B.13) becomes
K
K
W= K;E "(W+1)—K(W+ K),

which yields
(B.18)

At A = A%, (B.15) becomes

01 &

which in matrix form reads

K? d(1 w+ K
W_KED[R(RW-FWI)_ K D

with W = (0w;/d4;). With the use of (B.18), this equation can be rewritten as

(BB

which is further rewritten as

W= KW(I —K%)_l : E(Kl - 9).



Then the partial derivatives in (B.14) can be evaluated in matrix form as

V) = K [K'% ; (l - K%)_l . %(M - %)]. (B.19)
Then (B.19) shows that
V() -n=vny (B.20)
with
y = K[Ke+ (1-ke)™ - e(k - €)]. (B.21)

Multiplying (B.17) by the vectow in (B.4) from the right and using
1'V(A)-p=y1"p=0,

we obtain

€(k —€) 1

l-xe 6 1

Then the eigenvalug of the Jacobian matrid(A*) for the eigenvectoy is ex-

pressed in terms afas

J(A)-p = H(K’E +

B =Y(e) (B.22)
with a function¥ defined as
_ ’ X(K - X) _ 1‘
Y(X) =0[«'x+ 1~ ox 9). (B.23)

The break pointy.qkiS determined from the condition that the eigenvggue
for T = TpreakVanishes. Recall the dependence of the variables:

(822) (B7) (B.2)
P — € —TI «— 1

The valuee* satisfying¥(e*) = 0 is a solutionx = €* of the quadratic equation
6(bx—ax’) —1=0, (B.24)

where
a=k+1>0, b=k+«+6%>0, (B.25)

which are constants. Of the two solutions of (B.24), the larger

. b+ vb2-4a9?!
¢ = - (B.26)

Is related to the first bifurcation whemnis reduced from a large value, and the

smaller
b- Vb? - 4a-1
= B.27
e 5a (B.27)
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is related to the last bifurcation. We have<@* < ¢;.

By € < 1in (B.8), we haves; < 1, which gives the condition (29). Another
(discriminant) conditiorb? — 4a9~* > 0 with (B.16) and (B.25) gives (30), thereby
proving Proposition 2 in Section 4.1.

The value ofr = r¥ corresponding te = € is given as®® = o®(e) by
(B.9). Then, front = exp[- r(c- — 1)[] in (B.2) with L = 1/n = 1/6, 7 is given
as

W= 6 logr® = — 6 log(@®¥(&))). (B.28)
oc-1 oc-1

This proves (31).

Appendix B.3. Approximate formula for hexagon withk-[3
We search for an approximate formulatﬂj’) for the hexagon witth = 3
under the conditions

0> (o/p)® > 1, (B.29)
which yield
b 2
a~1, sz+K'zO_2ill, Eizaza_fl«l. (B.30)

Sincee’ > 0 and the numerataf® of (B.7) is equal to (£ r)(1— 2r)(1 +r?),
we have

0<r®< % (B.31)

By (B.31), itis possible to introduce a fairly accurate assumption
9 <« 1. (B.32)

From (B.7) fork = 3, we have

- (A-3r+3r2-r¥)—-2r3+2r*  (1-r)3*-2r31-r)
A+ 6r+ 122483+ T3+ 24 L+ 2134137+ 2r)

Then forr = r® satisfying (B.32), we have

3
€~ |—=] .

1+2r®
which yields
. 1-(e)?
3) _ 5B *\ +
r~=ao N —
+ (6+) 1+ Z(E_T_)l/?’

Then from (B.28) with (B.30), we obtain

n 1= (& 1/3
TS?) X - = |Og( (€+*) 13)
L(c-1) 1+ 2(ex)Y
1/3

u

18- 213 —
(- 1)¥3°

(B.33)

&
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Table B.1: Relative error of the approximation (B.33)f§ﬁ).

r® 00 01 02 03 04 05
True value ofr® (o = 5.0) 0.00 0.687 0.726 0.704 0.664 0.620
Approximate value of-ff) (c=5.0)|0.00 0.692 0.748 0.749 0.733 0.710
Error (%) 00 075 3.01 640 104 144

which proves Proposition 4 in Section 4.1. This formula (B.33) is fairly accurate
as shown in Table B.1, which lists the relative error of tf&

Error = |[(Approximate value}- (Exact value)](Exact value)x 100 (%)

Appendix B.4. Order of emerging hexagons

Whenr (or 7) is changed continuously, the first and the last bifurcations en-
gendering hexagons are most important bifurcations. Itis possible to predetermine
the order of the emergence of such hexagons as expounded below.

To begin with, under the condition (B.8), the flat earth equilibrium is stable
for a larger (= +o0) because = + entailse = 1 via (B.2) and (B.7) and then
the eigenvalug in (B.22) with (B.23) becomes negative under the condition (29).

The functionse(r) = €¥(r)/d for k = 3,4, 9,12 36(1), 36(ll) in the range O<
r < 1 are plotted in Fig. B.1. Then, fora= €, the associated = r® = o®(e")
of (B.9) satisfies inequalities

r® < r® B0 @) 0 GO )= 49,12 36(l1).
Then from (B.2), for the associated transport cost paramétewe have
& 5 700 5 G60) 208 5 205 2B K = 49,12 36(Il).

Hence, wherr is reduced from a large value, the first bifurcation is associated
with 7 (> ) for D = 3 and the last one t6**" (< 73" for D = 36()).
This proves Proposition 5 in Section 4.2.
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Figure C.1: Equilibrium curves related td&ch’s hexagons other than those given in Fig. 10.
Solid curves represent stable equilibria and dashed ones represent unstable ones.

Appendix C. Bifurcating equilibria on a hexagonal lattice without boundary

For the 6x 6 hexagonal lattice, the equilibrium curves for stabliesth’s
hexagons are given in Fig. 10, while other equilibrium curves are given in this

appendix.

e Equilibria for hexagons other than those given in Fig. 10 are shown in

Fig. C.1.

e The equilibrium curves for racetracks and associated agglomeration pat-

terns are shown in Fig. C.2.

e The semi-square pattern (point n) and the two places (point I) are shown in

Fig. C.3.

e Several long narrow patterns have been found to branch from the flat earth
equilibria, as shown in Fig. C.4, which are all unstable except for the dis-

crete long narrow pattern at point m.
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Figure C.2: Equilibrium curves related to racetracks and associated population distributions dis-

played in the hexagonal windows. Solid curves represent stable equilibria and dashed ones repre-
sent unstable ones.
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Appendix D. Agglomeration behaviors of the hexagonal lattice with bound-

ary
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Figure D.1: Equilibrium curves and associated population distributiongfes) (= (5.0, 0.1). (x)
denotes a simple bifurcation point and a bifurcated curve between two simple bifurcation points is

stable.
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Figure D.2: Equilibrium curves and associated population distributionsf{gs) (= (4.0,0.4). (x)
denotes a simple bifurcation point.
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Figure D.3: Bifurcated equilibrium curves and associated population distributions-foy &
(4.0,0.4). (x) denotes a simple bifurcation point.

A case with ¢, u) = (5.0,0.1) has a weaker agglomeration force in compari-
son with the standard case witdn, (1) = (5.0,0.4). As shown by the equilibrium
curves and associated population distributions in Fig. D.1, no hexagonal agglom-
erations are observed.

Another case withd,u) = (4.0,0.4) has a stronger agglomeration force in
comparison with the standard case with ) = (5.0,0.4). Figure D.2 shows
equilibrium curves with two bifurcation points) and Fig. D.3 shows equilibrium
curves branching from these bifurcation points. These curves are looping and
multiple stable equilibria are present due to the increase of agglomeration force.
The hexagons witld = 3 andD = 4 coexist as stable equilibria duringb® <
T < 297.
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