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Abstract

This paper elucidates which agglomeration patterns are stable in two-dimensional

uniform economic space and how such patterns appear under decreasing transport

costs. Hexagonal lattices with and without boundary are advanced respectively

as suitable theoretical and practical spatial platforms of economic activities. Ag-

glomeration patterns on these lattices contain hexagons in central place theory, but

also encompass megalopolis and racetrack-shaped de-centralization, which are

beyond the scope of central place theory. When the transport cost decreases, sta-

ble economic agglomeration undergoes the formation of the smallest hexagon and

gradual transition to patterns with larger market areas, often undergoing down-

town decay but finally leading to a megalopolis.
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Long narrow Racetrack Lattice

Figure 1: Spatial platforms for economic activities. Circles represent places and lines denote

roads.

1. Introduction

Economic agglomeration displays various spatial patterns serving as a cra-

dle of development and prosperity. Cities and towns in southern Germany are

spread out and led to the finding of hexagonal distributions in central place the-

ory (Christaller, 1933 [6]). In North America, a chain of cities is distributed from

Boston to Washington, DC in a closed long narrow zone between the Atlantic

Ocean and the Appalachian Mountains. Some spatial agglomerations are unsta-

ble and transient but several spatial agglomerations that develop and prosper sta-

bly exist worldwide. Nowadays downtowns are revitalized through investment in

transportation.

It is desirable to know what kinds of stable economic agglomeration patterns

exist in two-dimensional economic space. Yet there may be a widespread pes-

simism that such stable equilibria are literally infinite and, therefore, cannot be

exhausted. In this paper, to rebuff this pessimism, two questions about existence

and stability are considered:

• What kinds of agglomeration patterns doexistin two dimensions?

• Among these patterns, which arestable?

A key to answer these two questions is to distinguish spatial and microeconomic

properties and, as well as, model dependent and independent properties in eco-

nomic agglomeration. The former question is answered in relation to spatial prop-

erties that are model independent and the latter to microeconomic properties of

individual models.5

5Anas (2004) [2] stated “Of course, when the number of cities or the geographic space itself

is limited or asymmetric, then agglomeration can arise as an artifact of the constraints imposed by

geography as demonstrated by numerous NEG models. This reveals that the central agglomeration

force in the NEG is space itself and not the underlying economic relations.”
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A preliminary and mandatory step to answer these questions is another ques-

tion: “What are suitable spatial platforms of spatial economic activities?” Sev-

eral spatial platforms have been developed, including two-place economy, long

narrow economy,6 racetrack economy,7 and lattice economy8 (Fig. 1). Their ge-

ometries are simple to complex in this order, and there is a tradeoff that a more

complex economy can accommodate more patterns at the expense of increased

analytical task. The lattice economy is apparently capable of accommodating

two-dimensional patterns but involves a large number of degrees of freedom. The

two-place economy is too simple, despite its vital role in the development of NEG

models. Other one-dimensional economies, such as the long narrow and racetrack

economies, are believed to be capable of grasping some essential agglomeration

properties. Evolution of a regular lattice on a racetrack economy was set forth

by Fujita, Krugman, and Venables (1999b) [15], and a “highly regular hierarchi-

cal systema la Christaller” on a long narrow economy was observed by Fujita,

Krugman, and Mori (1999a) [14]. Tabuchi and Thisse (2011) [36] studied the

racetrack economy for a multi-industry model to produce Christaller-like spatial

patterns. Yet studies of these spatial platforms have been conducted somewhat

independently9 and several agglomeration patterns have been observed fragmen-

tarily. It would be desirable to possess a synthetic view of spatial patterns on these

platforms.

Hexagonal distributions have been advanced as the most geometrically fea-

sible forms of agglomeration in central place theory. Yet there is a criticism:

Although “it [central place theory] is a powerful idea too good for being left as

an obscure theory” (Fujita, Krugman, and Mori, 1999a [14]), this theory is based

only on a normative and geometrical approach and is not derived from market

equilibrium conditions. As an early attempt to provide central place theory with

a microeconomic foundation, Eaton and Lipsey (1975, 1982) [9, 10] showed the

6The long narrow economy was used by Fujita and Mori (1997) [16], Mori (1977) [26], and

Fujita, Krugman, and Mori (1999a) [14].
7Agglomeration patterns of the racetrack economy were studied by Krugman (1993) [24],

Fujita, Krugman, and Venables (1999b) [15], Picard and Tabuchi (2010) [32], Ikeda, Akamatsu,

and Kono (2012a) [18], and Akamatsu, Takayama, and Ikeda (2012) [1].
8The dynamics of an urban spatial structure on a square lattice was studied by Clarke and Wil-

son (1985) [7] and numerical simulation of settlement formation on a square lattice was achieved

by Munz and Weidlich (1990) [28]. Stelder (2005) [33] conducted a simulation of agglomeration

for cities in Europe using a grid of points.
9A rare comparative study of the long narrow economy and the racetrack economy was con-

ducted by Mossay and Picard (2011) [27] in a continuous space.
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existence of a hexagonal distribution of mobile production factors (e.g., firms and

workers) by a partial equilibrium approach without referring to the stability of

hexagonal agglomeration. The hexagonal lattice has come to be acknowledged

as a discretized counterpart of theinfinite plain in central place theory. Hexag-

onal agglomeration on this lattice (without boundary) for core–periphery models

was found by bifurcation theory and its stability was investigated by numerical

analysis.10

This paper aims to answer the aforementioned questions about thechoiceof

pertinent spatial platform and theexistenceand thestabilityof agglomeration pat-

terns in two-dimensional economic space. To begin with, in view of the foregoing

study (Footnote 10), it would be a logical sequel to choose a hexagonal lattice as

a spatial platform of economic activities that can accommodate extensive patterns

ranging from hexagons to racetracks and long narrow patterns. In this paper, two

kinds of hexagonal lattices with and without boundary are considered. There is

a tradeoff that the former is suitable for theoretical study and the latter is more

realistic.

The question of theexistenceof agglomeration patterns can be answered by

the theoretical study of the hexagonal lattice without boundary. This study resort

to only spatial properties, and, therefore, is endowed with much-desired model in-

dependency. Agglomeration patterns of interest, such as hexagonsa la Christaller

and L̈osch for centralization, racetracks expressing de-centralization, long narrow

patterns, are shown to exist as equilibria by bifurcation theory. Unlike the previ-

ous studies that focused on hexagons (Footnote10), patterns other than hexagons

are also considered in this paper. Market areas of the first-level centers for sta-

ble equilibria are shown to take various shapes, such as triangles, diamonds, and

trapezoids, in addition to hexagons in central place theory, thereby going beyond

the scope of central place theory.

The hexagonal lattice with boundary has asymmetry (inhomogeneity) as places

near the boundary are not as competitive as places near the center. This is a more

realistic spatial platform due to the presence of the boundary, but lacks a theo-

retical background to describe its agglomeration behavior. To compromise this

lack, this paper employs a basic strategy to describe and understand agglomera-

tion characteristics of the lattice with boundary based on theoretical information

drawn from the lattice without boundary.

10See Ikeda, Murota, and Akamatsu (2012b) [21], Ikeda and Murota (2014) [20], and Ikeda et

al. (2014) [22].
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(a) Hexagon (b) Mono-center (c) Megalopolis (d) Racetrack

Figure 2: Agglomeration patterns of economic interest. Circles denote population size.

The answer to another question of thestability is dependent on models. While

real economic activities allow models of various kinds, in order to deepen discus-

sion on the stability, we refer to a specific economic geography model: Forslid and

Ottaviano (2003) [12] version of modeling of Krugman (1991) [23].11 When the

transport cost is reduced from a large value, it is proved that the smallest hexagon

(Fig. 2(a)) is the first non-uniform agglomeration pattern that breaks uniformity.12

Although this proof is carried out for this specific model, it is extendable to a fam-

ily of spatial economy models, for which the spatial interaction between places is

distant decaying. By numerical comparative static analysis, the most likely sta-

ble progress of agglomeration patterns is shown as the formation of the smallest

hexagon and gradual transition to patterns with larger market areas finally leading

to an atomic mono-center en route to a megalopolis (Figs. 2(b) and (c)). Racetrack

patterns (Fig. 2(d)), which are stable for very short durations, express the decay

of the center of the domain (downtown), whereas hexagons are related downtown

development.

This paper is organized as follows. Bifurcating agglomeration patterns for a

two-dimensional economy are theoretically predicted in Section 2. Spatial econ-

omy models of interest are explained and the governing equation for the ana-

lytically solvable core–periphery model is presented in Section 3. Formulas for

the value of transport cost at the emergence of downtown agglomeration are pre-

sented in Section 4. Stable agglomeration patterns in the hexagonal lattice without

boundary are investigated numerically in Section 5 and the patterns in the lattice

with boundary are examined in Section 6.

11There are two kinds of workers: unskilled workers are immobile and equally distributed along

places, whereas skilled ones (footloose entrepreneurs) are mobile and choose the place to maxi-

mize wage. The immobile workers can be interpreted as a population attached to certain amenities.
12This proof is conducted by extending the strategy in Akamatsu, Takayama, and Ikeda

(2012) [1], which utilizes the concept of spatial discounting.
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(a) 3× 3 hexagonal lattice (b) Spatially repeated
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Figure 3: A system of places on a 3× 3 hexagonal lattice with periodic boundary.

2. Bifurcating hexagons on a hexagonal lattice without boundary

In this paper, spatial properties and microeconomic properties are highlighted

as independent sources of spatial agglomeration (Footnote 5). In this section,

spatial properties, which are model independent, are studied.

A hexagonal lattice without boundary, which serves as a discretized counter-

part of the isotropic infinite plain in central place theory, is introduced as a two-

dimensional spatial platform suited for theoretical treatment. Possible bifurcating

patterns on a hexagonal lattice without boundary are classified as a summary and

reorganization of the theoretical studies of Lösch’s hexagons (Ikeda and Murota,

2014 [20]; and Ikeda et al., 2014 [22]). In addition to these hexagons, we advance

patterns of economic interest related to central place formation, de-centralization

leading to decay of downtown, and formation of megalopolis.

Lösch’s hexagons on a hexagonal lattice without boundary are introduced in

Section 2.1. General form of spatial equilibrium conditions is presented in Sec-

tion 2.2. Bifurcating hexagons are investigated in Section 2.3, and bifurcating

equilibria are classified in Section 2.4.

2.1. Lösch’s hexagons on a hexagonal lattice without boundary

As two-dimensional economic space, a hexagonal lattice comprising uniformly

spreadn×n places with periodic boundary13 is considered (see Fig. 3(a) forn = 3).

Goods are transported along the homogeneous transportation link of this lattice

connecting neighboring places by roads of the same length.

13By virtue of this periodic boundary, this lattice can be repeated spatially to cover infinite

two-dimensional space, and every place is linked to six hexagonal neighboring places (Fig. 3(b)).
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(a) D = 1 (flat earth) (b)D = 3 (c) D = 4 (d) D = 7

Figure 4: L̈osch’s hexagons on a hexagonal lattice. These patterns are obtained by spatially re-

peatingn×n hexagonal lattices and cutting out hexagonal windows; circles represent the first-level

places.

Lösch’s hexagons (L̈osch, 1940 [25]) were advanced as geometrically feasible

agglomeration patterns in an infinite plain in central place theory. The spatial

periodL between spatially repeated hexagons takes some specific values, such as

L/l =
√

D, D = 1,3,4,7,9,12, 13,16,19,21,25, . . . , (1)

wherel is the nominal distance between two neighboring places and
√

D is pro-

portional to the shortest Euclidean distance14 between the first-level centers, i.e.,

the spatial periodL of these centers. Figure 4 depicts some of these hexagons with

D = 1, 3, 4, and 7. The smallest valueD = 1 corresponds to the flat earth equi-

librium (uniform distribution). The next three smallest values ofD = 3, 4, and 7,

respectively, are associated with Christaller’sk = 3, 4, and 7 systems (Christaller,

1933 [6]).

2.2. General form of spatial equilibrium conditions

Although diverse spatial equilibrium models have been developed on the basis

of an ensemble of economic principles and assumptions, it is possible to present a

general form of spatial equilibrium. Letλi denote the population at theith place,

and defineλ = (λ1, . . . , λK)⊤, whereK is the number of places, being equal ton2

for then× n hexagonal lattice.

The adjustment dynamics

dλ(t)
dt
= F(λ(t), τ) (2)

14In the application to spatial economy models (Section 3.2.1), the distance between placesi

and j for the transportation of goods on the hexagonal lattice is measured along the shortest link

of the lattice. On the other hand, the spatial periodL between neighboring first-level centers is

measured by the Euclidean distance.
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is considered with an appropriate functionF(λ, τ) in λ and some parameterτ. A

stationary point of this adjustment dynamics (2) is defined asλ that satisfies the

spatial equilibrium condition

F(λ, τ) = 0. (3)

The stability of solutionλ to (3) and the occurrence of bifurcation can be investi-

gated via eigenanalysis of the Jacobian matrix15 J(λ, τ) = ∂F/∂λ.

For spatial economy models with observer-independence,16 the flat earth equi-

librium

λ∗ =
1
n2

(1, . . . , 1)⊤ (4)

exists on the hexagonal lattice for any value of the parameterτ and are preserved

until bifurcation.

2.3. Bifurcating hexagons

Bifurcating equilibria from the flat earth equilibriumλ∗ in (4) were studied

theoretically to assess the emergence of Lösch’s hexagons (Ikeda and Murota,

2014 [20]). These theoretical results are given below.

2.3.1. Lösch’s hexagon with D= 3: simple example

Lösch’s hexagon withD = 3, which plays the most important role in the

present study, is investigated in detail as a simple example. This hexagon is associ-

ated with a bifurcation point with twice repeated zero eigenvalues of the Jacobian

matrix J(λ, τ). These eigenvalues are associated with two linearly independent

eigenvectors. For the 6× 6 hexagonal lattice, for example, the two eigenvectors

are given explicitly as

q1 =
1

3
√

2
(cos(2π(n1 − 2n2)/3) | n1,n2 = 0, . . . ,5)

=
1

6
√

2
( 2 −1 −1 2 −1 −1 − 1 −1 2 −1 −1 2 − 1 2 −1 −1 2 −1

2 −1 −1 2 −1 −1 − 1 −1 2 −1 −1 2 − 1 2 −1 −1 2 −1 )⊤,

15The solution is termed linearly stable if every eigenvalue of the Jacobian matrixJ(λ, τ) has a

negative real part, and linearly unstable if at least one eigenvalue has a positive real part. Bifurca-

tion takes place when one or more eigenvalues become zero.
16The observer-independence is represented by the equivariance condition in nonlinear math-

ematics (e.g., Ikeda and Murota, 2010 [19]). This condition was proved for the core–periphery

model (Section 3.2) in Ikeda, Murota, and Akamatsu (2012b) [21].
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(a) q1 (hexagon withD = 3) (b) q2 (c) −q1 (racetrack)

Figure 5: Spatial patterns expressed by the vectors ofq1, q2, and−q1 on the 6×6 hexagonal lattice.

A white circle denotes a positive component and a black circle denotes a negative component.

q2 =
1

3
√

2
(sin(2π(n1 − 2n2)/3) | n1,n2 = 0, . . . , 5)

=
1

6
√

2
( 0

√
3 −

√
3 0

√
3 −

√
3
√

3 −
√

3 0
√

3 −
√

3 0 −
√

3 0
√

3 −
√

3 0
√

3

0
√

3 −
√

3 0
√

3 −
√

3
√

3 −
√

3 0
√

3 −
√

3 0 −
√

3 0
√

3 −
√

3 0
√

3 )⊤,

where the coordinates are defined in accordance with Fig. 3. These eigenvectors

are depicted in Figs. 5(a) and (b).

At the bifurcation point (repeated twice), the associated eigenvectors

c1q1 + c2q2

with constantsc1 andc2 span a two-dimensional space. Bifurcating solutions of

interest exist in the directionsq1 and−q1. Herein,q1 represents L̈osch’s hexagon

with D = 3, as shown by the dashed lines in Fig. 5(a), in which the first-level place

with a white circle with increasing population is surrounded by six second-level

places with black circles with decreasing populations. Vector−q1 represents a

spatially-repeated racetrack pattern as depicted by the dashed circles in Fig. 5(c),

in which the second-level place with decreasing population shown by (•) is sur-

rounded by six first-level places with increasing populations shown by (◦).

2.3.2. Lösch’s hexagons: general issue

Theoretical results for these hexagons are summarized in the proposition be-

low. Since smaller hexagons are of more economic interest, we focus hereafter on

the five smallest hexagons with sizesD = 3, 4, 7, 9, and 12, as well as those with

D = 36 appearing in the numerical analysis in Section 5.

Proposition 1. Bifurcations from the flat earth equilibrium on the hexagonal lat-

tice have the following properties:

• Property 1 (existence): Bifurcating equilibria associated with Lösch’s hexagons

with sizes D= 3, 4, 7, 9, 12, and36exist if and only if the size n of the lattice

9



is equal, respectively, to

n =


3m, for D = 3 and D= 9,

2m, for D = 4,

7m, for D = 7,

6m, for D = 12and D= 36

(5)

(m= 1,2, . . .).

• Property 2 (bifurcating patterns): Each of the bifurcating paths for Lösch’s

hexagons with sizes D= 3, 4, 7, 9, 12, and36 has a unique symmetry and

this symmetry is preserved until further bifurcation takes place.

2.4. Classification of bifurcating equilibria

Bifurcating equilibria are classified as a summary and extension of the theo-

retical analysis in Ikeda and Murota (2014) [20]. Bifurcation points are classified

in accordance with the multiplicityM of the associated zero eigenvalues of the

Jacobian matrixJ(λ, τ) = ∂F/∂λ and the associated eigenvectors:

q(k)
1 , . . . , q

(k)
M (6)

with the correspondence betweenk andM given by17

k 1 3 4 7 9 36(I) 36(II)

M 1 2 3 12 6 6 12
(7)

Here the superscript (k) implies the sizeD of possible hexagons and there are two

kinds of hexagons forD = 36, which are calledD = 36(I) andD = 36(II). The

eigenvectors in (6) are given by discrete Fourier series in two dimensions and their

concrete forms are given in (A.3)–(A.9) in Appendix A.1.

The superposed eigenvectors

M∑
i=1

ci q
(k)
i

for some constantsc1, . . . , cM are possible candidates for the directions of bi-

furcating equilibria. By group-theoretic bifurcation analysis (Ikeda and Murota,

17In (7), the lattice size 7 is associated withk = 1 and 7 and the lattice size 6 withk = 1, 3, 4, 9,

36(I), and 36(II).
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(a) Hexagon withD = 4 (q(4)) (b) Hexagon withD = 7 (q(7))

(c) Hexagon withD = 9 (q(9)) (d) Hexagon withD = 12 (q(12))

(e) Megalopolis withD = 36(I) (q(36(I))) (f) Megalopolis withD = 36(II) (q(36(II)))

Figure 6: Hexagon and megalopolis patterns on a hexagonal window expressed by eigenvectors

on 6× 6 and 7× 7 hexagonal lattices. These patterns are obtained by spatially repeatingn × n

hexagonal lattices and cutting out hexagonal windows; a white circle denotes a positive component

and a black circle denotes a negative component.
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(a)−q(4) (b) −q(7)

(c) −q(9) (d) −q(12)

(e)−q(36(I)) (f) −q(36(II))

Figure 7: Racetrack patterns on hexagonal windows expressed by eigenvectors on 6× 6 and 7× 7

hexagonal lattices. A white circle denotes a positive component and a black circle denotes a

negative component.
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2014 [20]), the eigenvectors for the directions of hexagons for the 6×6 hexagonal

lattice were obtained as
q(3) = q(3)

1 ,

q(4) = q(4)
1 + q(4)

2 + q(4)
3 ,

q(k) = q(k)
1 + q(k)

3 + q(k)
5 , k = 9,12,36(I),

q(36(II)) = q(36(II))
1 + q(36(II))

3 + q(36(II))
5 + q(36(II))

7 + q(36(II))
9 + q(36(II))

11 ,

(8)

which are given explicitly in (A.10)–(A.15) in Appendix A.1, whereasq(7) can

be consulted with Ikeda and Murota (2014,Chap.7) [20]. These hexagons are

illustrated in Figs. 5(a) and 6.

There are possible bifurcating patterns of economic interest, which are beyond

the scope of central place theory.18

• Megalopolis patternsare associated with eigenvectors:q(36(I)) andq(36(II)).

As shown in Figs. 6(e) and (f), satellite places with small population are

scattered around the center of the hexagonal window (downtown) to form

a megalopolis. In particular,q(36(I)) expresses a bump-shaped population

distribution near the center expressing centralization.

• Racetrack patternsare associated with eigenvectors with the reversed sign:

−q(k), k = 3,4,7, 9,12,36(I),36(II), (9)

which display racetracks of several kinds, which express de-centralization

and are interpreted as the decay of downtown. ForD = 3,4, and 7, one place

decaying into the second level center is surrounded by six places developing

into the first level centers (Figs. 5(c) and 7(a),(b)). Semi-circular zones of

growing places are observed forD = 12,36(I),36(II) (Figs. 7(d)–(f)).

• Long narrow patterns are given by the eigenvectorsq(4)
2 , q(9)

3 , q(12)
5 , and

q(36(I))
3 . First-level places are located along spatially repeated narrow stripes

and represent a chain of cities forming an industrial belt in a two-dimensional

infinite space (Fig. 8).

• Deformed hexagonis associated withq(36(II))
1 (Appendix A.2). The first-

level places form spatially repeated deformed hexagons (Fig. 9).

18The existence of the deformed hexagon is proved in Appendix A.2 as a theoretical contribu-

tion of this paper, while the existence of hexagons, racetrack patterns, and long narrow patterns

was proved in Ikeda and Murota (2014) [20].

13



(a) q(4)
2 (b) q(9)

3

(c) q(12)
5 (d) q(36(I))

3

Figure 8: Long narrow patterns on the hexagonal lattice expressed by eigenvectors on the 6×
6 hexagonal lattice. A white circle denotes a positive component and a black circle denotes a

negative component.

q(36(II))
1

Figure 9: Deformed hexagon on the hexagonal window expressed by an eigenvector on the 6×
6 hexagonal lattice. A white circle denotes a positive component and a black circle denotes a

negative component.

14



3. Modeling of spatial economy

After the description of spatial properties in Section 2, modeling of spatial

economy is presented in this section. After the explanation of a family of spatial

economy models in Section 3.1, an analytically solvable core–periphery model

that is put to use later in the analysis is presented in Section 3.2.

3.1. Spatial economy models

In many spatial economy models, the spatial interaction between placesi and

j is distance decaying and its effect is expressed by the spatial discounting factor

di j representing the friction of distance,19

di j = r m(i, j), (10)

wherem(i, j) is an integer proportional to the shortest distance between the places

i and j, andr is a parameter satisfying 0< r < 1. With the use of a matrix form

of di j ,

D = (di j ), (11)

the indirect utility (or profit) vectorv is expressed

v = v(λ,D), (12)

whereλ is the vector expressing distribution of population (or firms).

In social interaction models,r is given as a monotonically increasing function

of the parameterτ expressing accessibility between places (see, e.g., Fujita and

Ogawa, 1982 [17]; and Tabuchi, 1986 [34]).

In contrast, in NEG models (see, e.g., Oyama, 2009 [31]; and Akamatsu,

Takayama, and Ikeda 2012 [1]),r is given as a monotonically decreasing func-

tion of the transport cost parameterτ satisfying

r(0) = 1, r(+∞) = 0.

Here r(0) = 1 represents the state of no transport cost andr(+∞) = 0 means

the state of infinite transport cost. Whenτ is decreased from a large value, the

progress of agglomeration in populationλ is studied by investigating the indirect

utility function vector of the form (see Section 3.2.2)

v̂(λ, τ) = v(λ,D(r(τ))). (13)

19The present discussion is applicable with minor modifications to models using a linear trans-

port cost (e.g., Beckmann, 1976 [4]; Ottaviano, Tabuchi, and Thisse, 2002 [30]; and Mossay and

Picard, 2011 [27]).
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It is proved in Section 4 for a hexagonal lattice without boundary and a spatial

economy model (Section 3.2) that the flat earth equilibrium is stable for a very

largeτ (→ +∞) and that, whenτ is reduced from+∞, the agglomeration pattern

breaking uniformity is the smallest hexagon withD = 3.

3.2. Core–periphery model

As a representative of spatial economy models, an analytically solvable core–

periphery model by Forslid and Ottaviano (2003) [12] is employed, whereas the

methodology presented in this paper, in principle, is applicable to other models.

The fundamental logic and governing equation of this model, which replaces the

production function of Krugman with that of Flam and Helpman (1987) [11], are

presented.

3.2.1. Basic assumptions

The economy of this model is composed ofK places (labeledi = 1, . . . ,K),

two factors of production (skilled and unskilled labor) and two sectors (manu-

facturing, M, and agriculture, A). BothH skilled andL unskilled workers con-

sume two types of final goods: manufacturing sector goods and agricultural sec-

tor goods. Workers supply one unit of each type of labor inelastically. Skilled

workers are mobile among places, and the number of skilled workers in placei is

denoted byλi (
∑K

i=1 λi = H). The total numberH of skilled workers is normal-

ized asH = 1. Unskilled workers are immobile and equally distributed across all

places with unit density (i.e.,L = 1× K).

PreferencesU over the M- and A-sector goods are identical across individuals.

The utility of an individual in placei is

U(CM
i ,C

A
i ) = µ logCM

i + (1− µ) logCA
i (0 < µ < 1), (14)

whereµ is a constant parameter expressing the expenditure share of manufacturing

sector goods,CA
i is the consumption of the A-sector product in placei, andCM

i is

the manufacturing aggregate in placei, which is defined as

CM
i ≡

∑
j

∫ n j

0
qji (ℓ)

(σ−1)/σdℓ


σ/(σ−1)

,

whereqji (ℓ) is the consumption in placei of a varietyℓ ∈ [0,nj] produced in place

j, nj is the number of available varieties, andσ > 1 is the constant elasticity of

substitution between any two varieties. The budget constraint is given as

pA
i CA

i +
∑

j

∫ n j

0
pji (ℓ)qji (ℓ)dℓ = Yi , (15)
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wherepA
i is the price of A-sector goods in placei, pji (ℓ) is the price of a variety

ℓ in placei produced in placej andYi is the income of an individual in placei.

The incomes (wages) of skilled workers and unskilled workers are represented,

respectively, bywi andwL
i .

An individual in placei maximizes the utility in (14) subject to the budget

constraint in (15). This yields the following demand functions:

CA
i = (1− µ)

Yi

pA
i

, CM
i = µ

Yi

ρi
, qji (ℓ) = µ

ρσ−1
i Yi

pji (ℓ)σ
, (16)

whereρi denotes the price index of the differentiated products in placei, which is

ρi =

∑
j

∫ n j

0
pji (ℓ)

1−σdℓ


1/(1−σ)

. (17)

Since the total income and population in placei arewiλi + wL
i andλi + 1, respec-

tively, we have the total demandQ ji (ℓ) in placei for a varietyℓ produced in place

j:

Q ji (ℓ) = µ
ρσ−1

i

pji (ℓ)σ
(wiλi + wL

i ), (18)

The A-sector is perfectly competitive and produces homogeneous goods under

constant-returns-to-scale technology, which requires one unit of unskilled labor in

order to produce one unit of output. For simplicity, we assume that the A-sector

goods are transported between places without transportation cost and that they are

chosen as the nuḿeraire. These assumptions mean that, in equilibrium, the wage

of an unskilled workerwL
i is equal to the price of A-sector goods in all places (i.e.,

pA
i = wL

i = 1 for eachi = 1, . . . ,K).

The M-sector output is produced under increasing-returns-to-scale technology

and Dixit-Stiglitz monopolistic competition. A firm incurs a fixed input require-

ment20 of α units of skilled labor and a marginal input requirement ofβ units of

unskilled labor. That is, a linear technology in terms of unskilled labor is assumed

in the profit function. Given the fixed input requirementα, the skilled labor mar-

ket clearing impliesni = λi/α in equilibrium. An M-sector firm located in placei

chooses (pi j (ℓ) | j = 1, . . . ,K) that maximizes its profit

Πi(ℓ) =
∑

j

pi j (ℓ)Qi j (ℓ) − (αwi + βxi(ℓ)) ,

20Given the fixed input requirementα, the skilled labor market clearing impliesni = λi/α in

equilibrium.
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wherexi(ℓ) is the total supply.21

The transportation costs for M-sector goods are assumed to take the iceberg

form. That is, for each unit of M-sector goods transported from placei to place

j (, i), only a fraction 1/Ti j < 1 actually arrives (Tii = 1). More concretely, the

transport costTi j between placesi and j is defined as

Ti j = exp(τm(i, j) L̃), (19)

whereτ is the transport cost parameter andL̃ is the nominal distance, which is

chosen as 1/n for then× n hexagonal lattice. (We defineTii = 1.) Consequently,

the total supplyxi(ℓ) is given asxi(ℓ) =
∑

j Ti j Qi j (ℓ).

Since we have a continuum of firms, each firm is negligible in the sense that

its action has no impact on the market (i.e., the price indices). Therefore, the

first-order condition for profit maximization yields

pi j (ℓ) =
σβ

σ − 1
Ti j . (20)

This expression implies that the price of the M-sector products does not depend

on varietyℓ, so thatQi j (ℓ) andxi(ℓ) do not depend onℓ. Therefore, argumentℓ is

suppressed in the sequel. Substituting (20) into (17), we have the price index

ρi =
σβ

σ − 1

1
α

∑
j

λ jdji


1/(1−σ)

, (21)

where

dji = T1−σ
ji (22)

is a spatial discounting factor between placesj andi; dji is obtained as (pji Q ji )/(pii Qii )

with (18) and (20), which means thatdji is the ratio of total expenditure in place

i for each M-sector product produced in placej to the expenditure for a domestic

product. With the use of (19) and (22),r in (10) is related toτ by

r = exp[− τ(σ − 1)L̃]. (23)

We have 0< r < 1 for τ > 0

3.2.2. Market equilibrium

In the short run, skilled workers are immobile between places, i.e., their spatial

distributionλ = (λi) is assumed to be given. The market equilibrium conditions

21The function(αwi + βxi(ℓ)) is the cost function by Flam and Helpman (1987) [11].
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consist of the M-sector goods market clearing condition and the zero-profit con-

dition because of the free entry and exit of firms.

The market equilibrium wagewi(λ, τ) is determined by the equation (see, Aka-

matsu, Takayama, and Ikeda, 2012 [1])

wi(λ, τ) =
µ

σ

K∑
j=1

di j

∆ j(λ, τ)
(w j(λ, τ)λ j + 1). (24)

Here,∆ j(λ, τ) =
∑K

k=1 dk jλk denotes the market size of the M-sector in placej.

The indirect utilityvi(λ, τ), given the spatial distribution of the skilled workers, is

obtained as

vi(λ, τ) =
µ

σ − 1
log∆i(λ, τ) + log[wi(λ, τ)]. (25)

The equation (24) is solvable forwi as follows. We set w = (wi), D = (di j ), ∆ = diag(∆1, . . . ,∆K),

Λ = diag(λ1, . . . , λK), 1 = (1, . . . ,1)⊤.
(26)

Then (24) becomes

w =
µ

σ
D∆−1(Λw+ 1),

which is solvable with respect tow as

w =
µ

σ

(
I − µ

σ
D∆−1Λ

)−1

D∆−11.

Then the use of this equation in (25) gives the indirect utility function vector

v = v(λ, τ) (cf., (13)).

3.2.3. Spatial equilibrium conditions

In the description of spatial (long-run) equilibrium of the economic state for

mobile workers, we assume a specific functional form

F(λ, τ) = HP(v(λ, τ)) − λ (27)

of the governing equation (3). Here,P(v) = (P1, . . . ,PK)⊤ is the choice function

vector that satisfies
∑K

i=1 Pi = 1. We haveH = 1, as a normalization.

As the choice function, we employ the logit choice function22 Pi = Pi(v) given

by

Pi(v) =
exp(θvi)∑K
j=1 exp(θvj)

, (28)

22The skilled workers are assumed to be heterogeneous in their preferences for location choice

(e.g., Tabuchi and Thisse, 2002 [35]; Murata, 2003 [29]).
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whereθ is a positive parameter.23 The adjustment process described by (2) with

(27) and (28) is the logit dynamics (e.g., Fudenberg and Levine, 1998 [13]).

23Parameterθ in (28) denotes the inverse of variance of the idiosyncratic taste, which is assumed

to follow the Gumbel distribution that is identical across places (e.g., Anderson, de Palma, and

Thisse, 1992 [3]). In the limit ofθ → ∞, this form reduces to the standard replicator dynamics.
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4. Break point triggering spatial agglomeration

For the two-place economy, thebreak pointof the transport costτ, at which

symmetric places change catastrophically into a core–periphery pattern, is high-

lighted as a key concept (Fujita, Krugman, and Venables, 1999 [15]). For the

hexagonal lattice, break points for Lösch’s hexagons leading to centralization are

of most economic interest. In this section, these break points are investigated by

exploiting both spatial properties and microeconomic properties. Major results

are presented, while details of derivation are given in Appendix B.

The analytically solvable core–periphery model is employed (Section 3.2) and

the sizen of the lattice is chosen asn = 6 so as to encompass hexagons with

various sizes (D = 3,4,9,12,36(I),36(II)) (cf., Proposition 1 in Section 2.3.2).

Nonetheless, the methodology employed herein is general and is extendable to

other spatial economy models (Section 3.1) and to the hexagonal lattice for any

sizen.

Theoretical formulas for the break points are derived in Section 4.1, and the

order of emerging hexagons is studied in Section 4.2.

4.1. Laws for break point

When the transport cost parameterτ is reduced continuously from+∞ to 0,

two break points are encountered for each hexagon under certain conditions on

the values ofµ, σ andθ for n = 6.

Proposition 2. For each Lösch’s hexagon, two break pointsτ+ andτ− with τ+ >

τ− > 0 exist when the following conditions24 are satisfied:

µ

σ − 1
< 1+ θ−1, (29)

µ2

[
1
σ

(1+ θ−1) +
1

σ − 1

]2

− 4θ−1

(
µ2

σ(σ − 1)
+ 1

)
> 0. (30)

Since these conditions for the existence of break points are common for all

hexagons withD = 3, 4,9,12,36(I),36(II), the violation of either of these condi-

tions leads to the disappearance of all hexagons. This is the worst case scenario

in downtown development through social investment in that no agglomeration

emerges at whatever cost.

A formula for the break points is given below.

24In the limit of θ → ∞ (Footnote 23), the second condition (30) is always satisfied and the

first condition (29) reduces to the no-black-hole conditionµ/(σ − 1) < 1 in Forslid and Ottaviano

(2003) [12].
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Proposition 3. Break pointsτ(k)
+ andτ(k)

− for Lösch’s hexagon with the size k are

given by

τ(k)
+ = −

6
σ − 1

log(Φ(k)(ϵ∗+)), τ(k)
− = −

6
σ − 1

log(Φ(k)(ϵ∗−)),

k = 3,4,9,12,36(I),36(II). (31)

Here,

ϵ∗+ =
b+
√

b2 − 4aθ−1

2a
, ϵ∗− =

b−
√

b2 − 4aθ−1

2a
with

a =
µ2

σ(σ − 1)
+ 1, b =

µ

σ
(1+ θ−1) +

µ

σ − 1
,

and r= Φ(k)(ϵ) is a function defined implicitly from the relation

ϵ =
ϵ̃(k)(r)

1+ 6r + 12r2 + 15r3 + 2r4
, k = 3,4,9,12, 36(I), 36(II),

where

ϵ̃(k)(r) =



1− 3r + 3r2 − 3r3 + 2r4 for k = 3,

1− 2r + 4r2 − 5r3 + 2r4 for k = 4,

1− 3r2 + 3r3 − r4 for k = 9,

1+ r − 5r2 + r3 + 2r4 for k = 12,

1+ 4r + r2 − 5r3 − r4 for k = 36(I),

1− 2r + r2 + r3 − r4 for k = 36(II).

Although the formula (31) is rigorous, the following approximate formula is

more convenient in the discussion of parameter dependence of the break point for

Lösch’s hexagon withD = 3.

Proposition 4. Under the conditions

θ ≫ (σ/µ)2 ≫ 1, (32)

the larger break pointτ(3)
+ for Lösch’s hexagon with D= 3 is given approximately

as

τ(3)
+ = 18 · 21/3 µ1/3

(σ − 1)4/3
. (33)

The approximate formula (33) indicates that the onset of agglomeration is

accelerated by a lower substitutionσ between any two varieties and a higher ex-

penditure shareµ of manufactured goods. This is in line with economic intuition

and the present numerical examples in Sections 5.4 and 6.2.
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4.2. Order of emerging hexagons

As we have seen in Section 2, there are several bifurcations engendering

hexagons of various kinds. The first bifurcation engendering a hexagon, when

τ is reduced from a large value, is an important bifurcation breaking uniformity.

In contrast, the last bifurcation is another important one related to a mature stage

of economic agglomeration. It is possible to predetermine the order of the emer-

gence of hexagons as expounded in the following proposition, which is applicable

to a family of spatial economy models introduced in Section 3.1.

Proposition 5. The flat earth equilibrium is stable for a largeτ (> τ(3)
+ ). Whenτ

is reduced continuously from+∞ to 0 [or r is increased continuously from0 to 1]

and bifurcations take place, these bifurcations occur in the following order.

(i) Bifurcation producing Lösch’s hexagon with D= 3 occurs first atτ = τ(3)
+ .

(ii) Bifurcation producing the megalopolis with D= 36(I) occurs last atτ =

τ(36(I))
− .

The smallest hexagon withD = 3 is the most important one that breaks the

uniformity. It is no wonder that this hexagon was highlighted as Christaller’sk = 3

system. Another hexagon withD = 36(I), which is beyond the scope of central

place theory, is also important as this hexagon comes at the tail of agglomeration

expressing centralization leading to a megalopolis.25

25This megalopolis formation is inherent for the logit dynamics employed herein, but is absent

for the replicator dynamics.
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Figure 10: Equilibrium curves related to hexagons and associated population distributions dis-

played in the hexagonal windows containing 36 places. Solid curves represent stable equilibria

and dashed ones represent unstable ones.

5. Stable agglomeration patterns on a hexagonal lattice without boundary

Using theoretically possible agglomeration patterns presented in Section 2.4,

this section tackles the main objective of this paper to elucidate which patterns

are stable and, therefore, of economic interest. For this purpose, equilibria of

the 6× 6 hexagonal lattice are studied by comparative static analysis with re-

spect to the transport cost of the core–periphery model of Forslid and Ottaviano

(2003) [12] (Section 3.2). Stable equilibria related to central place formation, de-

centralization leading to decay of downtown, and formation of megalopolis are

shown to exist.

Stable bifurcating equilibria are observed in Section 5.1, and progress of sta-

ble equilibria under decreasing transport costs is studied in Section 5.2. Market

areas of the first-level places are investigated in Section 5.3, and robustness of the

progress of stable equilibria against parameter values is confirmed computation-

ally in Section 5.4.

The distance between two neighboring places is chosen asl = 1/6. Parame-

ter values are chosen as (σ, µ) = (5.0,0.4), as in Fujita, Krugman, and Venables,

1999b [15]. The parameterθ in (28) is chosen asθ = 1000 and the fixed in-

put requirement is chosen asα = 1.0. This set of parameter values satisfies the

conditions (29) and (30) for the existence of break points.
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5.1. Bifurcating stable equilibria

The flat earth equilibriumλ = 1
36(1, . . . ,1)⊤ in (4) exist for any value of

the transport cost parameterτ. This equilibrium is shown as the horizontal line

λcenter = 1/36 in the equilibrium curves in Fig. 10, which plots the relations be-

tween the transport cost parameterτ and the populationλcenterof the place at the

center of the hexagonal window. There exist bifurcation points A through L on

the equilibrium.26

Bifurcating equilibria branching from these bifurcation points are found with

reference to the theoretical prediction in Section 2.4. Bifurcating hexagons are

shown in Fig. 10, whereas stable bifurcating equilibria other than hexagons are

summarized in Appendix C. Stable population distributions found in this manner

are shown in Fig. 11 using the hexagonal window containing 36 places. The place

at the center of this window can be interpreted as the downtown of a city area

and, accordingly, the progress of agglomeration at this place is of most economic

interest.

Durations of the transport cost parameterτ for stable equilibria are depicted

in Fig. 12, in which the ordinateN1st means the number of the first-level places

(with the largest population). Whenτ is reduced, the numberN1st tends to be

reduced and, in turn, to expand the market area. This is due to a trade-off between

transportation cost and scale economies.27

The hexagonswith D = 3, 4, 9, and 12 become stable in this order asτ

decreases from a large value. Thus, these hexagons play an important role in the

progress of centralized agglomeration, thereby showing the foresight of central

place theory, which proposed these hexagons by the geometrical consideration.

In contrast, there are other stable patterns introduced below, which have not

been obtained in central place theory, but are found by bifurcation theory (Sec-

tion 2).

• Megalopolis(point a′ in Fig. 10) andatomic mono-center(point a) associ-

ated with the hexagon withD = 36(I) become stable for smallτ.

• Racetrack patterns with D = 12 andD = 36 (Figs. 11(g) and (h)) are

stable for very short ranges of the transport cost parameter (1.71< τ < 1.74

26The existence of bifurcations on the flat earth equilibrium is investigated by the eigenanalysis

of the Jacobian matrixJ(λ, τ) = ∂F/∂λ (Footnote 15).
27Firms at a place with a small market area enjoy the merit of a reduction of transportation cost

at the expense of small scale economies. In contrast, firms at a place with a large market area

enjoy the merit of scale economies at the expense of large transportation cost.
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(a) Lösch hexagon (D = 3) (b) Lösch hexagon (D = 4) (c) Lösch hexagon (D = 7)

(d) Lösch hexagon (D = 9) (e) Lösch hexagon (D = 12) (f) Deformed hexagon

or

(g) Racetrack (D = 12) (h) Racetrack (D = 36) or triangle

(i) Two places (j) Semi-square (k) Discrete long narrow

pattern

Figure 11: Market areas of the first-level centers for stable equilibria. Lösch’s hexagon withD = 7

in Fig. 11(c) does not exist on the 6× 6 hexagonal lattice but is included here for comparison.
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Figure 12: Durations of the transport cost parameterτ for stable equilibria.N1st is the number

of first-level places in the hexagonal window; a first-level place at the corner of the hexagonal

window is counted as 1/3 and that at the midpoint of two neighboring corners is counted as 1/2 in

the estimation ofN1st.

and 0.66 < τ < 0.76, respectively). These patterns are interpreted as de-

centralization leading to downtown decay or extinction and play a major

role in the discussion of economic implications.

• Deformed hexagon(point d) is stable for a wide range 0.81< τ < 1.91.

• Two places and semi-square pattern(Figs. 11(i) and (j)) have been found

on the same curve of equilibrium.28 Yet these two patterns are stable in very

short ranges 0.59 < τ < 0.67 and 0.72 < τ < 0.75 and play a small role in

the discussion on stable agglomeration.

• Long narrow patterns are unstable except for the discrete long narrow pat-

tern shown in Fig. 11(k), which is stable for a short range 0.60< τ < 0.70.

Although these patterns resemble an industrial belt, such as the Atlantic

seaboard of the United States, they would play a limited role in the agglom-

28The transition from the semi-square pattern to the two places (see Fig. C.3) is quite close to

the one found in the racetrack economy, in which four identical first-level places were transformed

into two identical places (Ikeda, Akamatsu, and Kono, 2012a [18]; and Akamatsu, Takayama, and

Ikeda, 2012 [1]).
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eration in wide two-dimensional space, such as southern Germany.

The hexagonal lattice without boundary employed herein can encompass sev-

eral agglomeration features that have been observed fragmentarily in a long nar-

row economy (one-dimensional economy) as follows: Highly regular hierarchical

systema la Christaller (Fujita, Krugman, and Mori, 1999a [14]), mono-center

(Fujita and Mori, 1997 [16]; and Fujita, Krugman, and Mori, 1999a [14]), and

megalopolis consisting of a continuous industrial zone around the center (Mori,

1997 [26]). However, there are still other stable equilibria, such as the racetrack,

that cannot be deduced in one-dimensional economies but are found here for the

hexagonal lattice.

5.2. Progress of stable equilibria

We now shift our attention to an issue of great economic interest, i.e., the

progress of stable equilibria under decreasing transport costs. Possible progress is

deduced from Fig. 12 as

Dawn stage: Flat earth⇒ Hexagon (D = 3)⇒

Chaotic stage:



Hexagon (D = 4)

Racetrack (D = 12)

Deformed hexagon

Hexagon (D = 9)

Hexagon (D = 12)

Triangle

Racetrack (D = 36)
...



⇒

Mature stage: Atomic mono-center⇒Megalopolis⇒ Flat earth. (34)

Thus there are three major stages of agglomeration.

• Dawn stageis the one which was predicted by central place theory. When

τ is reduced from a large valueτ ≈ 2.4, the flat earth renders the role of the

unique stable equilibrium to the hexagon withD = 3 (τ ≈ 2.0). Then a state

of dual stable equilibria of the hexagons withD = 3 andD = 4 comes into

existence (1.7 < τ < 2.0).

• Chaotic stagegoes beyond the scope of central place theory. When the

hexagon withD = 3 becomes unstable atτ ≈ 1.7, there comes a state of

multiple stable equilibria, such as hexagons withD = 4, 9, and 12, the
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racetracks, and the deformed hexagon. The existence of the stable racetrack

patterns means that there is a possibility of the decay or extinction of the

downtown.

• Mature stage is the final stage of economic agglomeration for a smallτ, in

which the atomic mono-center, the megalopolis, and the flat earth become

stable in this order.

If only hexagons in central place theory were considered, progress of sta-

ble equilibria asτ decreases would lead to continuous progress of centralization

through the increase of the size of hexagons (Fig. 10). This, however, is not a

true scenario and there is a competition between centralization by hexagons and

de-centralization by racetrack patterns. This demonstrates the importance of the

present study, the scope of which goes beyond central place theory and encom-

passes diverse patterns other than hexagons.

5.3. Market areas of first-level places

The market areas depicted in Fig. 11 for stable equilibria display various

shapes: hexagons, deformed hexagons, rectangles, diamonds, and trapezoids. In

particular, L̈osch’s hexagons have superior stability in that they remain stable in

wide ranges ofτ (Fig. 12). Thus, these hexagons, which were advanced as ge-

ometrically superior shapes of market areas in central place theory, are also en-

dowed with stability. The deformed hexagon with semi-hexagonal market areas

also has superior stability. Other shapes, such as triangles, diamonds, and trape-

zoids are inferior in stability.

Let us briefly review central place theory. The ratio of the numberk1 of the

first-level places to the numberk2 of the second-level places is a key concept in

central place theory (Dicken and Lloyd, 1990 [8]), and is given by

k1 : k2 = 1 : (k− 1) =


1 : 2 for D = 3 (k = 3),

1 : 3 for D = 4 (k = 4),

1 : 6 for D = 7 (k = 7).

(35)

This formula is extendible to other hexagons in Fig. 11 by settingk = D.

For the deformed hexagon, four second-level places are contained inside the

market area of the first-level place and two second-level ones at the border are

shared by two neighboring first-level places. Therefore, the ratio is given by

k1 : k2 = 1 : k− 1 = 1 : 5(= 4+ 2/2),
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and the deformed hexagon can be interpreted as thek = 6 system in view of (35).

A first-level place is connected to two first-level places by zigzag roads, as in the

k = 3 system with market principle,29 and to four first-level places by straight

roads, as in thek = 4 system in line with traffic principle. This deformed hexagon

is nearly endowed with the administrative principle of thek = 7 system because

four among six second-level places are contained within the market area of the

first-level place. Each first-level place is surrounded by six second-level places,

as in thek = 3, k = 4, andk = 7 systems. Thus, the deformed hexagon is indeed a

mixture of these three systems. This suffices to show the need for reconsideration

of the framework of central place theory, even from a geometrical standpoint.

5.4. Robustness against parameter values

The robustness of the existence of stable equilibria is demonstrated against

the change of the elasticityσ of substitution between any two varieties. Figure 13

shows durations of stable equilibria forσ = 4.0 and 10.0, where 5.0 is used as

the standard value in this section. Asσ decreases to 4.0 (Fig. 13(a)), not much

difference is observed in comparison with Fig. 12 for the standard value. Asσ

increases to a large value of 10.0 and the economic balance shifts in favor of dis-

persion (Fig. 13(b)), the racetrack patterns become unstable. Yet the hexagons

(D = 3, 4, 9, and 12), the deformed hexagon, the atomic mono-center, and the

megalopolis all exist as stable equilibria. Moreover, when the transport cost de-

creases from a large value, the hexagon withD = 3 is formed first, followed by

several stable equilibria, en route to the atomic mono-center, the megalopolis, and

the flat earth. This suffices to demonstrate the robustness of the present discussion

on stable equilibria.

29Christaller’sk = 3, 4, and 7 systems correspond respectively to Lösch’s hexagon withD = 3,

4, and 7.

30



 

 

 

 

Racetrack 

 

Deformed hexagon 

Two places

Racetrack 

(Triangle)

Discrete long narrow

Transport cost parameter
0 0.5 1.0 1.5 2.0 2.5

N1st

1

2

3

4

6

9

12

Flat earth

Flat earth
36

3.0 3.5 4.0

(I)Atomic mono-center and megalopolis 

(a)σ = 4.0

 

 

 

 

 

Two places 

Semi-square 

T ransport cost parameter 
0 0.2 0.4 

N 1st 

1 

2 

3 

4 

6 

9 

12 

0.6 0.8 1.0 

36 
Flat earth Flat earth 

Deformed hexagon 

(I)Atomic mono-center and megalopolis 

(b)σ = 10.0

Figure 13: Durations of the transport cost parameterτ for stable equilibria for several values ofσ.

N1st is the number of first-level places in the hexagonal window; a first-level place at the corner

of the hexagonal window is counted as 1/3 and that at the midpoint of two neighboring corners is

counted as 1/2 in the estimation ofN1st.

31



6. Agglomeration patterns on a hexagonal lattice with boundary

The hexagonal lattice without boundary studied in Sections 2 and 5 realizes an

infinite plain (homogeneous space) in central place theory and allows theoretical

prediction of agglomeration patterns (Section 2.4). Yet there may be a criticism

that a realistic economic space has a boundary which makes the space asymmet-

ric. In this section, in search of realistic agglomeration patterns, we employ a

hexagonal lattice with boundary in Fig. 14. Because places near border are not

as competitive as places inside, this lattice has inhomogeneity (asymmetry) and

theoretical prediction on agglomeration patterns is absent. In order to compensate

for this absence, agglomeration of the lattice with boundary is described based on

the theoretical prediction of the lattice without boundary in Section 2.

Progress of stable equilibria under decreasing transport costs is studied in Sec-

tion 6.1. Parameter dependence is studied in Section 6.2.

=   5.000

Figure 14: Hexagonal lattice with boundary with 91 places.

6.1. Progress of stable equilibria

Equilibrium curves and associated population distributions at points a to f

shown in Fig. 15 for the lattice with boundary have been obtained for parame-

ter values (σ, µ) = (5.0, 0.4) andl = 1/6, which are also used in Section 5. The

stable equilibria progress as

Dawn stage: Flat earth⇒ Hexagon (D = 3)⇒
Chaotic stage: Hexagon (D = 4)⇒ Racetrack (D = 36)⇒ Hexagon (D = 9)⇒
Mature stage: Atomic mono-center⇒ Megalopolis⇒ Flat earth. (36)

As in the hexagonal lattice without boundary (Section 5), there are three stages.

• In the dawn stage (τ > 2.0), after the flat earth equilibrium at point a, a

hexagon withD = 3 is formed near the center of the lattice at point b.30

30This formation of the hexagon withD = 3 is due to the uniformity, but this hexagon is
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Figure 15: Equilibrium curves and associated population distributions for the standard case with

(σ, µ) = (5.0,0.4).
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• In the chaotic stage (1.1 < τ < 2.0), a state of dual stable equilibria of the

hexagon withD = 3 and that withD = 4 (point d) come into existence at

τ ≈ 2. Thereafter the racetrack (point e) and a hexagon withD = 9 (point f)

emerge stably. In addition, there are a number of unstable equilibria shown

by dashed curves in Fig. 15.

• In the mature stage (0< τ < 1.1), the atomic mono-center, the megalopolis,

and the flat earth occur stably in this order.

As compared in Fig. 16, the durations of stable equilibria for the hexagon with

D = 3 for the lattices of two kinds shown by the solid and dashed lines display an

amazing quantitative agreement. Those of other equilibria exhibit a fair agreement

qualitatively. This suffices to show the validity of the “infinite hexagonal lattice

analogy” of this paper to extract theoretical information from the lattice without

boundary and to describe agglomeration of the lattice with boundary based on this

information.

The place at the center of the lattice can be interpreted as the downtown of a

city area. The racetrack (point e), which is interpreted as de-centralization leading

to downtown decay, is observed as a characteristic economic agglomeration that

was overlooked by central place theory but is predicted in the present study. Fig-

ure 15 shows recurrences of de-centralization (points c and e) and centralization

(point f), i.e., downtown decay and revitalization.

6.2. Parameter dependence

Agglomeration is known to be parameter dependent.31 Parameter dependence

of agglomeration is investigated for two parameters: (1) the elasticityσ of substi-

tution between any two varieties and (2) the expenditure shareµ of manufactured

goods. The formula (33) predicts that agglomeration is accelerated by a lowerσ

and a higherµ.

6.2.1. Progress of stable equilibria

The progress of stable equilibria has been investigated forµ = 0.4 and for

various values of the parameterσ (= 3,4, 5,6,8,10), and can be classified as

detailed below (see Section 6.1 and Appendix D for examples of these behaviors):

blurred away from the center by the spatial asymmetry (inhomogeneity) due to the boundary (see

Footnote 5).
31For example, Berliant and Yu (2014) [5] demonstrated the dependence of agglomeration on

the cost of living.
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Figure 16: Comparison of progress of stable equilibria for the lattice with boundary (dashed lines)

with associated stable equilibria for the lattice without boundary (solid lines).

• Strong agglomeration (3≤ σ ≤ 4): hexagons withD = 3, 4, 9 and 12

emerge stably and agglomeration progresses as

Flat earth⇒ Hexagon (D = 3)⇒ Hexagon (D = 4)⇒
Hexagon (D = 12)

Racetrack

Triangle

⇒
 Hexagon (D = 9)

Triangle

⇒
Atomic mono-center⇒Megalopolis⇒ Flat earth.

• Intermediate agglomeration (5≤ σ ≤ 8): hexagons withD = 3, 4, and 9

emerge stably and agglomeration progresses as

Flat earth⇒ Hexagon (D = 3)⇒
Hexagon (D = 4)⇒ Racetrack⇒ Hexagon (D = 9)⇒
Atomic mono-center⇒Megalopolis⇒ Flat earth.

• Weak agglomeration (σ = 10): no hexagons emerge and agglomeration

progresses as

Flat earth⇒ Racetrack⇒ Triangle⇒ Racetrack⇒
Atomic mono-center⇒Megalopolis⇒ Flat earth.

In all cases, the agglomeration starts from the flat earth equilibrium and ends up

with formation of an atomic mono-center, en route to a megalopolis and the flat
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earth equilibrium. A racetrack pattern emerges in almost all cases and often trans-

forms into a triangle pattern.32 More hexagons emerge for a larger agglomeration

force.

The influence of parameterµ is investigated forσ = 5.0 and forµ = 0.1,

0.2, 0.4, 0.5, 0.6, 0.8. These agglomeration can be classified similarly as: strong

agglomeration (0.5 ≤ µ ≤ 0.8), intermediate agglomeration (0.2 ≤ µ ≤ 0.4), and

weak agglomeration (µ = 0.1).

6.2.2. Break points

In the investigation of agglomeration under reduced transport costs, it is of

economic interest to observe thebreak point, which is defined as the value ofτ at

the beginning of an increase of downtown population. When investment in trans-

portation infrastructure is committed continuously to enhance downtown popula-

tion, the break point indexes the functioning of this investment. For the lattice

without boundary, this value is given byτ(3)
+ of the hexagon withD = 3 for the

first bifurcation breaking uniformity (Proposition 5(ii) in Section 4.2).

Figures 17(a) and (b) depict the dependence of break pointτ(3)
+ on the values

of parametersσ andµ, respectively. Asσ increases, the economic balance shifts

in favor of dispersion andτ(3)
+ decreases. Asµ increases, the economic balance

shifts in favor of agglomeration andτ(3)
+ increases.

The break points for the present analysis shown by (•) are in good agreement

with those for the lattice without boundary shown by (+). In addition, these break

points are in agreement with the dashed curve of the theoretical law in (31) and

in fair agreement with the approximate law in (33). Such agreement ensures the

validity of the basic strategy employed in this paper to extract theoretical informa-

tion from the lattice without boundary and interpret and describe agglomeration

characteristics of the lattice with boundary based on this information.

As made clear in Proposition 2 in Section 4.1, the existence of the break point

is conditional on the values of parameters. Forσ = 5.0 andθ = 1000 in Fig. 17(b),

the formula (30) gives a conditionµ > 0.141 for the existence of break point.

Although this condition is violated only for exceptional cases, due regard is paid

to the existence of such cases, in which investment in transportation is wasted

without leading to economic agglomeration.

32This transformation was found in the racetrack economy (Ikeda, Akamatsu, and Kono, 2012a

[18]; and Akamatsu, Takayama, and Ikeda, 2012 [1]).
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Figure 17: Dependence of break pointτ(3)
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denotes the break point for the present numerical analysis for the lattice with boundary, (+) denotes

that for the lattice without boundary, the dashed curve means that for the theoretical law in (31),

and the solid curve means that for the approximate law in (33).
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7. Conclusion

In this paper, to elucidate the nature of the spatial economic agglomeration,

we employed a basic strategy to distinguish spatial properties and microeconomic

properties. The former properties are model independent, whereas the latter prop-

erties are not.

By the study of spatial properties of a hexagonal lattice without boundary,

possible agglomeration patterns on this lattice are found to be hexagonsa la

Christaller and L̈osch, racetrack patterns, long narrow patterns, and so on. In par-

ticular, racetracks are advanced as a source of de-centralization leading to down-

town decay. Agglomeration patterns other than hexagons have not been obtained

by the geometrical consideration in central place theory, which demonstrates the

usefulness of the theoretical prediction in this paper that goes beyond the scope

of central place theory. It is to be emphasized that this theoretical prediction is

model independent and applicable to economic models of various kinds.

The stability of equilibria is dependent on microeconomic properties. In order

to deepen discussion on the stability, we refered to a specific economic geography

model. When the transport cost is reduced from a large value, it was proved that

the smallest hexagon is the first non-uniform agglomeration pattern that breaks

uniformity. Although this proof was carried out for this specific model, it is ex-

tendable to a family of spatial economy models, for which the spatial interaction

between places is distant decaying.

There may be a widespread pessimism that stable equilibria in two dimensions

are literally infinite and, therefore, cannot be exhausted. Nonetheless, stable equi-

libria are endowed with geometrically rational forms with rich economic impli-

cations and the variety of these forms is quite limited. To rebuff this pessimism,

stable equilibria for a specific NEG model were traced under reduced transport

costs. Hexagons associated with central place formation have turned out to be

most stable and, in turn, to demonstrate the insight of central place theory. Atomic

mono-center and megalopolis are stable for small transport costs, whereas race-

track patterns representing de-centralization are sometimes stable. Other patterns

are mostly unstable.

An amazing resemblance was observed for the progress of stable agglomer-

ations for the lattice with boundary and that without boundary. This shows the

validity and usefulness of the basic strategy employed in this paper to extract the-

oretical information from the lattice without boundary and interpret and describe

agglomeration characteristics of the lattice with boundary based on this informa-
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tion.

If only hexagons were considered in favor of central place theory, possible

progress of stable equilibria would be an optimistic one: a continuous increase

of the size of hexagons (Fig. 10), leading to continuous growth of the downtown.

This, however, is not a true scenario and there is a competition between central-

ization by hexagons and de-centralization by racetrack patterns. The downtown

would recurrently undergo a setback during a short period of the racetrack pattern.

In downtown development by investment in transportation, a possible course im-

plied by this study is a bumpy one undergoing several short periods of downtown

decay (stable racetrack pattern). Nonetheless, one should not be too pessimistic

about such decay as it is just transient and the downtown is destined to be revi-

talized, en route to development of a megalopolis, if a continuous investment is

maintained.

The search for stable economic equilibria in two dimensions is a difficult task.

In this paper, such a search was conducted using a core–periphery model that ad-

mittedly employs bold assumptions about microeconomy. A future task will be to

search for stable equilibria for microeconomic models of various kinds. Nonethe-

less, the methodology presented in this paper is general and is applicable to other

models. For example, possible bifurcating equilibria presented herein would exist

universally in the models and, hence, the knowledge of these equilibria would be

most useful in search of stable economic equilibria.
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Appendix A. Theoretical details

Several theoretical details are contained in this appendix.

Appendix A.1. Eigenvectors of the Jacobian matrix

Eigenvectors of the Jacobian matrixJ of the governing equation (3) for the

6 × 6 hexagonal lattice are presented as a summary of Ikeda and Murota (2014)

[20]. To begin with, we define a matrix

Q = (Q(1),Q(3),Q(4),Q(9),Q(12),Q(36(I)),Q(36(II))),

where

Q(k) = (q(k)
1 , q

(k)
2 , . . .), k = 1,3,4,9,12,36(I), 36(II). (A.1)

The matrixQ(k) in this equation consists of the eigenvectorsq(k)
1 , q

(k)
2 , . . . given in

this appendix (cf., Remark 1).

The coordinate of a place on then× n hexagonal lattice is given by

x = n1ℓ1 + n2ℓ2, n1,n2 = 0,1, . . . , n− 1

with n = 6 for the present case,ℓ1 = l(1,0)⊤, andℓ2 = l(−1/2,
√

3/2)⊤. Thus,

the K = n2 places are indexed by (n1,n2). The vectorλ expressing population

distribution is defined as

λ = (λ1, . . . , λK)⊤

= (λ00, . . . , λn−1,0; λ01, . . . , λn−1,1; . . . ; λ0,n−1, . . . , λn−1,n−1)
⊤

= (λn1n2 | n1,n2 = 0, . . . , n− 1),

where (λn1n2 | n1,n2 = 0, . . . , n − 1) is aK-dimensional column vector. A vector

on this lattice with the (n1,n2)-componentg(n1,n2) is normalized as

⟨g(n1, n2)⟩ = (g(n1,n2)/
( n−1∑

i=0

n−1∑
j=0

g(i, j)2)1/2 | n1,n2 = 0, . . . ,n− 1). (A.2)
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Then a concrete form of eachQ(k) in (A.1) is given below.

Q(1) =
1
6

(1, . . . , 1)⊤, (A.3)

Q(3) = [q(3)
1 , q(3)

2 ]

= [⟨cos(2π(n1 − 2n2)/3)⟩, ⟨sin(2π(n1 − 2n2)/3)⟩], (A.4)

Q(4) = [q(4)
1 , q(4)

2 , q(4)
3 ]

= [⟨cos(πn1)⟩, ⟨cos(πn2)⟩, ⟨cos(π(n1 − n2))⟩], (A.5)

Q(9) = [q(9)
1 , . . . , q(9)

6 ]

= [ ⟨cos(2π n1/3)⟩, ⟨sin(2π n1/3)⟩,
⟨cos(2π(−n2)/3)⟩, ⟨sin(2π(−n2)/3)⟩,
⟨cos(2π(−n1 + n2)/3)⟩, ⟨sin(2π(−n1 + n2)/3)⟩], (A.6)

Q(12) = [q(12)
1 , . . . , q(12)

6 ]

= [ ⟨cos(π(n1 + n2)/3)⟩, ⟨sin(π(n1 + n2)/3)⟩,
⟨cos(π(n1 − 2n2)/3)⟩, ⟨sin(π(n1 − 2n2)/3)⟩,
⟨cos(π(−2n1 + n2)/3)⟩, ⟨sin(π(−2n1 + n2)/3)⟩ ], (A.7)

Q(36(I)) = [q(36(I))
1 , . . . , q(36(I))

6 ]

= [ ⟨cos(π n1/3)⟩, ⟨sin(π n1/3)⟩,
⟨cos(π(−n2)/3)⟩, ⟨sin(π(−n2)/3)⟩,
⟨cos(π(−n1 + n2)/3)⟩, ⟨sin(π(−n1 + n2)/3)⟩], (A.8)

Q(36(II)) = [q(36(II))
1 , . . . , q(36(II))

12 ]

= [ ⟨cos(2π(2n1 + n2)/n)⟩, ⟨sin(2π(2n1 + n2)/n)⟩,
⟨cos(2π(n1 − 3n2)/n)⟩, ⟨sin(2π(n1 − 3n2)/n)⟩,
⟨cos(2π(−3n1 + 2n2)/n)⟩, ⟨sin(2π(−3n1 + 2n2)/n)⟩,
⟨cos(2π(2n1 − 3n2)/n)⟩, ⟨sin(2π(2n1 − 3n2)/n)⟩,
⟨cos(2π(n1 + 2n2)/n)⟩, ⟨sin(2π(n1 + 2n2)/n)⟩,
⟨cos(2π(−3n1 + 2n2)/n)⟩, ⟨sin(2π(−3n1 + 2n2)/n)⟩]. (A.9)

By the so called group-theoretic analysis, the eigenvectors for Lösch’s hexagons
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are obtained as

q(3) = q(3)
1 = ⟨cos(2π(n1 − 2n2)/3)⟩, (A.10)

q(4) = q(4)
1 + q(4)

2 + q(4)
3

= ⟨cos(πn1)⟩ + ⟨cos(πn2)⟩ + ⟨cos(π(n1 − n2))⟩, (A.11)

q(9) = q(9)
1 + q(9)

3 + q(9)
5

= ⟨cos(2π n1/3)⟩ + ⟨cos(2π(−n2)/3)⟩ + ⟨cos(2π(−n1 + n2)/3)⟩, (A.12)

q(12) = q(12)
1 + q(12)

3 + q(12)
5

= cos(π(n1 + n2)/3)⟩ + cos(π(n1 − 2n2)/3)⟩ + ⟨cos(π(−2n1 + n2)/3)⟩,
(A.13)

q(36(I)) = q(36(I))
1 + q(36(I))

3 + q(36(I))
5

= ⟨cos(π n1/3)⟩ + ⟨cos(π(−n2)/3)⟩ + ⟨cos(π(−n1 + n2)/3)⟩, (A.14)

q(36(II)) = q(36(II))
1 + q(36(II))

3 + q(36(II))
5 + q(36(II))

7 + q(36(II))
9 + q(36(II))

11

= ⟨cos(2π(2n1 + n2)/n)⟩ + ⟨cos(2π(n1 − 3n2)/n)⟩
+ ⟨cos(2π(−3n1 + 2n2)/n)⟩ + ⟨cos(2π(2n1 − 3n2)/n)⟩
+ ⟨cos(2π(n1 + 2n2)/n)⟩ + ⟨cos(2π(−3n1 + 2n2)/n)⟩. (A.15)

Remark 1. In consulting Ikeda and Murota (2014) [20], note the correspondence:

1,3,4,9,12,36(I),36(II)

⇐⇒ (1;+,+), (2;+), (3;+,+), (6; 2,0,+), (6; 1,1,+), (6; 1,0,+), (12; 2, 1)

between the notations in the present study and Ikeda and Murota (2014) [20].□

Appendix A.2. Group-theoretic analysis of a bifurcation point of multiplicity 12

A bifurcating solution for the deformed hexagon is obtained. Let us consider

the equilibrium equation

F(λ, τ) = 0 (A.16)

for the 6× 6 hexagonal lattice without boundary. This equation has the pre-

bifurcation flat earth equilibriaλ = 1
62 (1, . . . , 1)⊤.

Let (λc, τc) be a critical point of multiplicity 12 on the flat earth equilibria.

This point is related to the eigenvectorsq(36(II))
1 , . . . , q(36(II))

12 in (6) with k = 36(II).

By Liapunov–Schmidt reduction, the full system of equilibrium equation (A.16) is

reduced, in a neighborhood of the critical point (λc, τc), to a system of bifurcation

equations

F̃(w, τ̃) = 0 (A.17)
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in w = (w1, . . . ,w12)⊤, wherew is defined byλ = λc +
∑12

i=1 wi q
(36(II))
i , F̃ is a 12-

dimensional vector of functions, and̃τ = τ − τc denotes the increment ofτ. In

this reduction process the symmetry of the full system is inherited by the reduced

system (A.17). Moreover, the existence of bifurcating solutions can be determined

by analysis of the reduced system as eachw uniquely determines a solutionλ to

the full system (A.16).

The bifurcation equation (A.17) for the critical point of multiplicity 12 is a 12-

dimensional equation overR. This equation can be expressed as a 6-dimensional

complex-valued equation in complex variableszj = w2 j−1 + iw2 j ( j = 1, . . . ,6) as

Fi(z1, . . . , z6, z1, . . . , z6, τ̃) = 0, i = 1, . . . ,6, (A.18)

where

(z1, . . . , z6, z1, . . . , z6, τ̃) = (0, . . . ,0,0, . . . , 0,0)

is assumed to correspond to the critical point. For notational simplicity we write

(A.18) as

Fi(z1, . . . , z6) = 0, i = 1, . . . ,6 (A.19)

by omittingz1, . . . , z6 andτ̃ in the subsequent derivation.

We expandF1 as

F1(z1, z2, z3, z4, z5, z6)

=
∑
a=0

∑
b=0

· · ·
∑
u=0

Aabcdeghi jstu(̃τ)z
a
1z

b
2z

c
3z

d
4z

e
5z

g
6z

h
1z

i
2z

j
3z

s
4z

t
5z

u
6. (A.20)

Since (z1, z2, z3, z4, z5, z6, τ̃) = (0,0,0, 0,0,0,0) corresponds to the critical point of

multiplicity 12, we have

A000000000000(0) = 0, (A.21)

A100000000000(0) = A010000000000(0) = · · · = A000000000001(0) = 0. (A.22)

By virtue of the symmetry of the lattice,F2, . . . , F6 are obtained fromF1 as

F2(z1, z2, z3, z4, z5, z6) = F1(z2, z3, z1, z6, z4, z5), (A.23)

F3(z1, z2, z3, z4, z5, z6) = F1(z3, z1, z2, z5, z6, z4), (A.24)

F4(z1, z2, z3, z4, z5, z6) = F1(z4, z5, z6, z1, z2, z3), (A.25)

F5(z1, z2, z3, z4, z5, z6) = F1(z5, z6, z4, z3, z1, z2), (A.26)

F6(z1, z2, z3, z4, z5, z6) = F1(z6, z4, z5, z2, z3, z1), (A.27)
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the coefficientsAabcdeghi jstu(̃τ) in (A.20) are real, and the indices (a, b, . . . , t,u) of

nonvanishing coefficientsAab···tu(̃τ) in (A.20) must satisfy33

2(a− h) + (b− i) − 3(c− j) + 2(d − s) + (e− t) − 3(g− u) ≡ 2 mod 6,

(A.28)

(a− h) − 3(b− i) + 2(c− j) − 3(d − s) + 2(e− t) + (g− u) ≡ 1 mod 6.

(A.29)

We denote byS the set of nonnegative indices (a,b, . . . , t,u) that satisfy the

above conditions, i.e.,

S = {(a,b, . . . , t, u) ∈ Z12
+ | (A.28) and (A.29)}, (A.30)

whereZ+ represents the set of nonnegative integers. Then (a, b, . . . , t,u) must

belong toS if Aab···tu(̃τ) , 0, and hence (A.20) can be replaced by

F1(z1, z2, z3, z4, z5, z6) =
∑

S

Aabcdeghi jstu(̃τ)z
a
1z

b
2z

c
3z

d
4z

e
5z

g
6z

h
1z

i
2z

j
3z

s
4z

t
5z

u
6. (A.31)

We haveAab···tu(̃τ) , 0 (generically) for (a,b, . . . , t, u) ∈ S. The expanded form

(A.31), forn = 6, takes a special form

F1 = A1z1 + A2z2z3 + (A3z
2
1z1 + A4z1z2z2 + A5z1z3z3 + A6z1z4z4 + A7z1z5z5

+ A8z1z6z6 + A9z2z4z6 + A10z3z4z5 + A11z1z2z6 + A12z
2
3z4 + A13z1z

2
5)

+ [A14z4z
2
6 + A15z5z

3
6 + A16z5z

3
6 + · · · ] + · · · (A.32)

for some constantsAi (i = 1,2, . . .); see Example 9.1 of Ikeda and Murota (2014)

[20].

We search for bifurcating solutions of the forms

z1 = x, z2 = z3 = z4 = z5 = z6 = 0,

with x ∈ R andx , 0. Using (A.23)–(A.27) and (A.31) with (A.28) and (A.29) to

33Equations (A.28) and (A.29), respectively, correspond to (9.100) and (9.101) with (k, ℓ, n) =

(2,1,6) in Ikeda and Murota (2014) [20].
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(A.30), we obtain a set of equations

F1(x,0,0,0,0,0) =
∑

S

Aa00000h00000(̃τ)x
a+h =

∑
a−h≡1 mod 6

Aa00000h00000(̃τ)x
a+h,

F2(x,0,0,0,0,0) = F1(0,0, x,0,0,0) =
∑

S

A00c00000j000(̃τ)x
c+ j = 0,

F3(x,0,0,0,0,0) = F1(0, x, 0,0,0,0) =
∑

S

A0b00000i0000(̃τ)x
b+i = 0,

F4(x,0,0,0,0,0) = F1(0,0,0, x,0,0) =
∑

S

A000d00000s00(̃τ)x
d+s = 0,

F5(x,0,0,0,0,0) = F1(0,0,0,0, x,0) =
∑

S

A0000e00000t0(̃τ)x
e+t = 0,

F6(x,0,0,0,0,0) = F1(0,0,0,0,0, x) =
∑

S

A00000g00000u(̃τ)x
g+u = 0.

Sincea+ h ≥ 1 for each (a,h) with a− h ≡ 1 mod 6, it is possible to divide the

first equation byx to arrive at

1
x

F1(x, 0,0,0,0,0) =
∑

a−h≡1 mod 6

Aa00000h00000(̃τ)x
a+h−1,

and the bifurcating solution is determined from∑
a−h≡1 mod 6

Aa00000h00000(̃τ)x
a+h−1 = 0. (A.33)

The leading terms of (A.33) are given as

Ãτ + Bx2 = 0

with generically nonzero coefficientsA = A′100000000000(0) andB = A200000100000(0),

where ( )′ denotes the derivative with respect toτ. By the implicit function theo-

rem, the equation (A.33) can be solved forx as

x = ψII (̃τ),

where

ψII (̃τ) ≈ ±
√
− A

B
τ̃ , τ̃→ 0

with −A/B , 0. Hence, we obtain a bifurcating solution

z1 = ψII (̃τ), z2 = z3 = z4 = z5 = z6 = 0.

This equation indicates the existence of a bifurcating solution in the direction of

(w1, . . . ,w12) = (1,0, . . . ,0), i.e., q(36(II))
1 . This solution corresponds to the de-

formed hexagon introduced in Fig. 9.
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Appendix B. Derivation of formulas for the break point

Formulas for the break point presented in Section 4 are derived. The method

in Akamatsu, Takayama, and Ikeda (2012) [1] is adapted to the 6× 6 hexagonal

lattice without boundary.

Appendix B.1. Eigenanalysis of spatial discounting matrix

Recall the spatial discounting matrixD = (di j ) in (10) with

di j = r m(i, j) (B.1)

and

r = exp[− τ(σ − 1)L̃] (B.2)

in (23). The nominal lengtĥL of the road is chosen aŝL = 1/n = 1/6.

The spatial discounting matrixD for the 6×6 hexagonal lattice takes the form:

D =



D0 D1 D2 D3 D4 D5

D5 D0 D1 D2 D3 D4

D4 D5 D0 D1 D2 D3

D3 D4 D5 D0 D1 D2

D2 D3 D4 D5 D0 D1

D1 D2 D3 D4 D5 D0


,

which is a block-circulant matrix made up of circulant matrices:

D0 =



1 r r 2 r3 r2 r

r 1 r r 2 r3 r2

r2 r 1 r r 2 r3

r3 r2 r 1 r r 2

r2 r3 r2 r 1 r

r r 2 r3 r2 r 1


, D1 = D5

⊤ =



r r r 2 r3 r3 r2

r2 r r r 2 r3 r3

r3 r2 r r r 2 r3

r3 r3 r2 r r r 2

r2 r3 r3 r2 r r

r r 2 r3 r3 r2 r


,

D2 = D4
⊤ =



r2 r2 r2 r3 r4 r3

r3 r2 r2 r2 r3 r4

r4 r3 r2 r2 r2 r3

r3 r4 r3 r2 r2 r2

r2 r3 r4 r3 r2 r2

r2 r2 r3 r4 r3 r2


, D3 = r3



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1


.
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The direct bifurcation from the flat earth equilibriumλ∗ = 1
K (1, . . . ,1)⊤ (K =

n2 = 62) in the direction of the eigenvector

η = q(k), k = 3, 4,9,12,36(I),36(II) (B.3)

of J(λ∗) is investigated, whereq(k) is given in (A.10)–(A.15).

It is easy to verify that the vectorη is also an eigenvector of the spatial dis-

counting matrixD, i.e.,

Dη = ϵ̃(k)η, k = 3,4,9,12,36(I),36(II) (B.4)

with

ϵ̃(k) = ϵ̃(k)(r) =



1− 3r + 3r2 − 3r3 + 2r4 for k = 3,

1− 2r + 4r2 − 5r3 + 2r4 for k = 4,

1− 3r2 + 3r3 − r4 for k = 9,

1+ r − 5r2 + r3 + 2r4 for k = 12,

1+ 4r + r2 − 5r3 − r4 for k = 36(I),

1− 2r + r2 + r3 − r4 for k = 36(II).

(B.5)

Denote byd the sum of the entries of a column ofD, which is given by

d =
K∑

i=1

r m(i, j) = 1+ 6r + 12r2 + 15r3 + 2r4. (B.6)

Then, for the vectorη in (B.4), we have

D
d
η = ϵη

with

ϵ =
ϵ̃(k)

d
, (B.7)

where (B.4), (B.5) and (B.6) are used. Since 0< r < 1, we have

ϵ < 1, (B.8)

as shown in Fig. B.1. By the implicit function theorem, (B.7) yields

r = Φ(k)(ϵ) (B.9)

for some functionΦ(k).
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Figure B.1: Curves ofϵ plotted againstr (0 < r < 1).

Appendix B.2. Break point for hexagons

From the governing equationF in (27) with H = 1, we have

∂Fi

∂λ j
=

K∑
k=1

∂Fi

∂vk

∂vk

∂λ j
− δi j = −θ

K∑
k=1

PiPk
∂vk

∂λ j
+ θPi

∂vi

∂λ j
− δi j , (B.10)

whereδi j is the Kronecker delta. This shows that the Jacobian matrices

J(λ) =
∂F
∂λ
=

(
∂Fi

∂λ j

)
, V(λ) =

∂v
∂λ
=

(
∂vi

∂λ j

)
are related as

J(λ) = −θ


P1
...

PK


[
P1 · · ·PK

]
V(λ) + θ


P1

. . .

PK

 V(λ) − I , (B.11)

whereI is the identity matrix.

In regard toV(λ) we recall (25):

vi(λ, τ) =
µ

σ − 1
log∆i(λ, τ) + log[wi(λ, τ)] (B.12)

as well as (24):

wi(λ, τ) =
µ

σ

∑
k

dik

∆k(λ, τ)
(wk(λ, τ)λk + 1), (B.13)

where

∆k(λ, τ) = ∆k =

K∑
j=1

djkλ j .
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The differentiations of (B.12) and (B.13) with respect toλ j yield, respectively,

∂vi

∂λ j
= κ′

dji

∆i
+

1
wi

∂wi

∂λ j
, (B.14)

∂wi

∂λ j
= κ

K∑
k=1

dik

∆k
2

[(
∂wk

∂λ j
λk + wkδk j

)
∆k − (wkλk + 1)djk

]
, (B.15)

where

κ =
µ

σ
, κ′ =

µ

σ − 1
. (B.16)

We have 0< κ < 1 andκ′ > 0 becauseσ > 1, 0< µ < 1.

At the flat earth equilibriumλ∗ = 1
K (1, . . . , 1)⊤, (B.11) yields

J(λ∗) = − θ

K2
11⊤V(λ∗) +

θ

K
V(λ∗) − I , (B.17)

where1 = (1, . . . , 1)⊤. The matrixV(λ∗) in (B.17) can be evaluated as follows. At

λ = λ∗, we have

∆ j = ∆ j(λ
∗, τ) =

K∑
k=1

dk jλk =
d
K
.

Sincew j is independent ofj, we may putw j = w, and then (B.13) becomes

w = κ
K∑

j=1

K
d

di j

(w
K
+ 1

)
= κ (w+ K) ,

which yields

w =
κK

1− κ . (B.18)

At λ = λ∗, (B.15) becomes

∂wi

∂λ j
= κ

K∑
k=1

K2

d2
dik

[(
1
K
∂wk

∂λ j
+ wδk j

)
d
K
−

(w
K
+ 1

)
djk

]
,

which in matrix form reads

W = κ
K2

d2
D

[
d
K

(
1
K

W+ wI

)
− w+ K

K
D

]
with W = (∂wi/∂λ j). With the use of (B.18), this equation can be rewritten as(

I − κD
d

)
W = Kw

D
d

(
κI − D

d

)
,

which is further rewritten as

W = Kw
(
I − κD

d

)−1

· D
d

(
κI − D

d

)
.

52



Then the partial derivatives in (B.14) can be evaluated in matrix form as

V(λ∗) = K

[
κ′

D
d
+

(
I − κD

d

)−1

· D
d

(
κI − D

d

)]
. (B.19)

Then (B.19) shows that

V(λ∗) · η = γη (B.20)

with

γ = K[κ′ϵ + (1− κϵ)−1 · ϵ(κ − ϵ)]. (B.21)

Multiplying (B.17) by the vectorη in (B.4) from the right and using

1⊤V(λ∗) · η = γ1⊤η = 0,

we obtain

J(λ∗) · η = θ
(
κ′ϵ +

ϵ(κ − ϵ)
1− κϵ −

1
θ

)
η.

Then the eigenvalueβ of the Jacobian matrixJ(λ∗) for the eigenvectorη is ex-

pressed in terms ofϵ as

β = Ψ(ϵ) (B.22)

with a functionΨ defined as

Ψ(x) = θ

(
κ′x+

x(κ − x)
1− κx −

1
θ

)
. (B.23)

The break pointτbreak is determined from the condition that the eigenvalueβ

for τ = τbreakvanishes. Recall the dependence of the variables:

β
(B.22)←− ϵ

(B.7)←− r
(B.2)←− τ.

The valueϵ∗ satisfyingΨ(ϵ∗) = 0 is a solutionx = ϵ∗ of the quadratic equation

θ(bx− ax2) − 1 = 0, (B.24)

where

a = κκ′ + 1 > 0, b = κ + κ′ + θ−1κ > 0, (B.25)

which are constants. Of the two solutions of (B.24), the larger

ϵ∗+ =
b+
√

b2 − 4aθ−1

2a
(B.26)

is related to the first bifurcation whenτ is reduced from a large value, and the

smaller

ϵ∗− =
b−
√

b2 − 4aθ−1

2a
(B.27)
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is related to the last bifurcation. We have 0< ϵ∗− < ϵ
∗
+.

By ϵ < 1 in (B.8), we haveϵ∗± < 1, which gives the condition (29). Another

(discriminant) conditionb2−4aθ−1 > 0 with (B.16) and (B.25) gives (30), thereby

proving Proposition 2 in Section 4.1.

The value ofr = r (k)
± corresponding toϵ = ϵ(k)

± is given asr (k)
± = Φ

(k)(ϵ∗±) by

(B.9). Then, fromr = exp[− τ(σ − 1)L̃] in (B.2) with L̃ = 1/n = 1/6, τ(k)
± is given

as

τ(k)
± = −

6
σ − 1

log r (k)
± = −

6
σ − 1

log(Φ(k)(ϵ∗±)). (B.28)

This proves (31).

Appendix B.3. Approximate formula for hexagon with D= 3

We search for an approximate formula ofτ(3)
+ for the hexagon withD = 3

under the conditions

θ ≫ (σ/µ)2 ≫ 1, (B.29)

which yield

a ≈ 1, b ≈ κ + κ′ ≈ 2µ
σ − 1

, ϵ∗+ ≈
b
a
≈ 2µ
σ − 1

≪ 1. (B.30)

Sinceϵ∗+ > 0 and the numerator ˜ϵ(3) of (B.7) is equal to (1− r)(1− 2r)(1+ r2),

we have

0 < r (3)
+ <

1
2
. (B.31)

By (B.31), it is possible to introduce a fairly accurate assumption

(r (3)
+ )3 ≪ 1. (B.32)

From (B.7) fork = 3, we have

ϵ =
(1− 3r + 3r2 − r3) − 2r3 + 2r4

(1+ 6r + 12r2 + 8r3) + 7r3 + 2r4
=

(1− r)3 − 2r3(1− r)
(1+ 2r)3 + r3(7+ 2r)

.

Then forr = r (3)
+ satisfying (B.32), we have

ϵ∗+ ≈
(

1− r (3)
+

1+ 2r (3)
+

)3

,

which yields

r (3)
+ = Φ

(3)(ϵ∗+) ≈
1− (ϵ∗+)

1/3

1+ 2(ϵ∗+)1/3
.

Then from (B.28) with (B.30), we obtain

τ(3)
+ ≈ − n

L̂(σ − 1)
log

(
1− (ϵ∗+)

1/3

1+ 2(ϵ∗+)1/3

)
≈ 18 · 21/3 µ1/3

(σ − 1)4/3
, (B.33)
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Table B.1: Relative error of the approximation (B.33) forτ(3)
+ .

r (3)
+ 0.0 0.1 0.2 0.3 0.4 0.5

True value ofτ(3)
+ (σ = 5.0) 0.00 0.687 0.726 0.704 0.664 0.620

Approximate value ofτ(3)
+ (σ = 5.0) 0.00 0.692 0.748 0.749 0.733 0.710

Error (%) 0.0 0.75 3.01 6.40 10.4 14.4

which proves Proposition 4 in Section 4.1. This formula (B.33) is fairly accurate

as shown in Table B.1, which lists the relative error of theτ(3)
+ :

Error= |[(Approximate value)− (Exact value)]/(Exact value)| × 100 (%).

Appendix B.4. Order of emerging hexagons

Whenr (or τ) is changed continuously, the first and the last bifurcations en-

gendering hexagons are most important bifurcations. It is possible to predetermine

the order of the emergence of such hexagons as expounded below.

To begin with, under the condition (B.8), the flat earth equilibrium is stable

for a largeτ (= +∞) becauseτ = +∞ entailsϵ = 1 via (B.2) and (B.7) and then

the eigenvalueβ in (B.22) with (B.23) becomes negative under the condition (29).

The functionsϵ(r) = ϵ̃(k)(r)/d for k = 3, 4,9,12,36(I),36(II) in the range 0<

r < 1 are plotted in Fig. B.1. Then, for aϵ = ϵ∗±, the associatedr = r (k)
± = Φ

(k)(ϵ∗±)

of (B.9) satisfies inequalities

r (3)
+ < r (k)

+ < r (36(I))
+ , r (3)

− < r (k)
− < r (36(I))

− , k = 4,9,12,36(II).

Then from (B.2), for the associated transport cost parameterτ(k)
± , we have

τ(3)
+ > τ(k)

+ > τ(36(I))
+ , τ(3)

− > τ(k)
− > τ(36(I))

− , k = 4,9,12,36(II).

Hence, whenτ is reduced from a large value, the first bifurcation is associated

with τ(3)
+ ( > τ(3)

− ) for D = 3 and the last one toτ(36(I))
− ( < τ(36(I))

+ ) for D = 36(I).

This proves Proposition 5 in Section 4.2.
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Figure C.1: Equilibrium curves related to Lösch’s hexagons other than those given in Fig. 10.

Solid curves represent stable equilibria and dashed ones represent unstable ones.

Appendix C. Bifurcating equilibria on a hexagonal lattice without boundary

For the 6× 6 hexagonal lattice, the equilibrium curves for stable Lösch’s

hexagons are given in Fig. 10, while other equilibrium curves are given in this

appendix.

• Equilibria for hexagons other than those given in Fig. 10 are shown in

Fig. C.1.

• The equilibrium curves for racetracks and associated agglomeration pat-

terns are shown in Fig. C.2.

• The semi-square pattern (point n) and the two places (point l) are shown in

Fig. C.3.

• Several long narrow patterns have been found to branch from the flat earth

equilibria, as shown in Fig. C.4, which are all unstable except for the dis-

crete long narrow pattern at point m.
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Figure C.2: Equilibrium curves related to racetracks and associated population distributions dis-

played in the hexagonal windows. Solid curves represent stable equilibria and dashed ones repre-

sent unstable ones.
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Figure C.3: Equilibrium curves related to two places and semi-square pattern and associated pop-

ulation distributions displayed in the hexagonal windows. The ordinateλmax means the maximum

population among 36 places on the hexagonal lattice, solid curves represent stable equilibria, and

dashed ones represent unstable ones.
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Figure C.4: Equilibrium curves related to long narrow patterns and associated population distri-

butions displayed in the hexagonal windows. Solid curves represent stable equilibria and dashed

ones represent unstable ones.
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Appendix D. Agglomeration behaviors of the hexagonal lattice with bound-

ary

Transport cost parameter
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point a (τ = 2.000) point b (τ = 1.200) point c (τ = 0.900) point d (τ = 0.809)
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point e (τ = 0.717) point f (τ = 0.300) point g (τ = 0.012) point h (τ = 0.000)
(Atomic mono-center) (Megalopolis) (Flat earth)

Figure D.1: Equilibrium curves and associated population distributions for (σ, µ) = (5.0,0.1). (×)

denotes a simple bifurcation point and a bifurcated curve between two simple bifurcation points is

stable.
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Figure D.2: Equilibrium curves and associated population distributions for (σ, µ) = (4.0,0.4). (×)

denotes a simple bifurcation point.
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Figure D.3: Bifurcated equilibrium curves and associated population distributions for (σ, µ) =

(4.0,0.4). (×) denotes a simple bifurcation point.

A case with (σ, µ) = (5.0,0.1) has a weaker agglomeration force in compari-

son with the standard case with (σ, µ) = (5.0,0.4). As shown by the equilibrium

curves and associated population distributions in Fig. D.1, no hexagonal agglom-

erations are observed.

Another case with (σ, µ) = (4.0,0.4) has a stronger agglomeration force in

comparison with the standard case with (σ, µ) = (5.0,0.4). Figure D.2 shows

equilibrium curves with two bifurcation points (×) and Fig. D.3 shows equilibrium

curves branching from these bifurcation points. These curves are looping and

multiple stable equilibria are present due to the increase of agglomeration force.

The hexagons withD = 3 andD = 4 coexist as stable equilibria during 2.59 <

τ < 2.97.
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