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Total dual integrality

of the linear complementarity problem

Hanna SUMITA∗ Naonori KAKIMURA† Kazuhisa MAKINO‡

September 2014

Abstract

In this paper, we introduce total dual integrality of the linear complementarity problem
by analogy with the linear programming problem. The main idea of defining the notion is to
propose the LCP with orientation, a variant of the LCP whose feasible complementary cones
are specified by an additional input vector. This allows us to define naturally its dual problem
and the total dual integrality of the LCP. We show that if the LCP is totally dual integral,
then all basic solutions are integral. If the input matrix is sufficient or rank-symmetric, then
this implies that the LCP always has an integral solution whenever it has a solution.

1 Introduction

Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the linear complementarity problem (LCP) is to
find a vector z ∈ Rn such that

Mz + q ≥ 0, z ≥ 0, z⊤(Mz + q) = 0. (1)

We denote a problem instance of the LCP with M and q by LCP (M, q). We say that n is the order
of LCP (M, q). The LCP, introduced by Cottle [5], Cottle and Dantzig [6], and Lemke [16], is one of
the most widely studied mathematical programming problems, which, for example, contains linear
and convex quadratic programming problems. The decision version of the LCP (i.e., deciding
whether (1) has a solution z ∈ Rn) is NP-complete [4]. For details of the LCP and related topics,
see the books of Cottle, Pang, and Stone [7] and Murty [17].

In this paper, we focus on integral solutions to the LCP. Integral solutions to the LCP were first
considered by Chandrasekaran [2] in the context of the least element theory. A class of the LCP
having integral solutions was considered earlier by Pardalos and Nagurney [18], with some applica-
tions which need integral solutions. For example, the problem of finding a market equilibrium can
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be represented as the LCP [20], and its integral solution corresponds to an integral equilibrium.
Another example is the polymatrix game in game theory. Computing a Nash equilibrium in the
polymatrix game can be reduced to the LCP [14], and, if it has an integral solution, then the game
has a pure-strategy Nash equilibrium.

We say that a square integral matrix M is principally unimodular if all principal submatrices
have determinants 0 or ±1. Principal unimodularity, introduced by Bouchet [1], arises as a gen-
eralization of total unimodularity. As total unimodularity characterizes integrality in the linear
programming (see e.g., [19]), principal unimodularity is related to integrality in the LCP. Chan-
drasekaran, Kabadi and Sridhar [3], and Cunningham and Geelen [9] independently showed that
a matrix M is principally unimodular if and only if all basic solutions in LCP (M, q) are integral
for every integral vector q. Note that a basic solution does not always exist even if a solution
exists. However, when a matrix M belongs to some special classes such as column sufficient ma-
trices or rank-symmetric matrices, principal unimodularity of M guarantees that LCP (M, q) has
an integral solution [3, 9].

In this paper, we introduce the notion of total dual integrality of the LCP in order to discuss
a wider class of the LCP having an integral solution. Recall that total dual integrality of linear
systems, introduced by Edmonds and Giles [11], gives a unified framework for linear programming
problems having an integral optimal solution arising in combinatorial optimization. It is known
that an integral matrix A is totally unimodular if and only if the linear system Ax ≤ b, x ≥ 0 is
totally dual integral for every vector b. As this notion is defined using the LP dual problem, toward
defining the total dual integrality of the LCP, we need the LCP dual problem. We remark that a
dual problem of the LCP was introduced by Fukuda and Terlaky [12]. They provided a theorem
of the alternative: exactly one of primal and dual LCP problems has a solution. However, their
duality of the LCP is not suitable to define total dual integrality. In this paper, we introduce the
LCP with orientation: the problem of finding a solution to the LCP whose feasible complementary
cones are specified by an additional input vector. Then we can naturally define its dual problem
and total dual integrality of the LCP by analogy with that of linear systems.

Our main result is to show that total dual integrality of the LCP implies that any basic
solution is integral. When a matrix M is sufficient or rank-symmetric, we also show that total
dual integrality certifies integrality of the LCP in the sense that, for any solution z, there exists
an integral solution with basis identical to z. In that case, our results imply that M is principally
unimodular if and only if LCP (M, q) is totally dual integral for every integral vector q. This
gives an alternative proof of previous works [3, 9] as mentioned above. In addition, we reveal the
computational complexity of testing the total dual integrality of a given LCP instance. We show
that it is coNP-hard to decide if a given LCP instance is totally dual integral.

The rest of the paper is organized as follows. Section 2 defines the linear programming and
complementarity problems, and fix notation needed in the subsequent sections. Section 3 proposes
the LCP with orientation and total dual integrality of the LCP. Section 4 discusses integrality of
the LCP by using the total dual integrality. In Section 5, we characterize integrality of the LCP
in terms of principal unimodularity and total dual integrality for sufficient and rank-symmetric
matrices. Section 6 shows that it is intractable to recognize total dual integrality of the LCP.
Finally, Section 7 clarifies the relationship of matrix classes appearing in related works and this
paper.
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2 Preliminaries

In this section, we define the linear programming and complementarity problems, and review
existing results on them.

For a positive integer n, let [n] = {1, . . . , n}. Let A be an m × n real matrix, where A has a
row index set [m] and a column index set [n]. For S ⊆ [m] and T ⊆ [n], we denote by AST the
submatrix of A such that S and T are row and column index sets, respectively. We also define A·T
and AS· by A·T = A[m]T and AS· = AS[n], respectively. If T = {j}, we simply write ASj and A·j
instead of AS{j} and A·{j}, respectively. We similarly define AiT and Ai·. Let z denote a vector in
Rn with index set [n]. In this paper, we assume that all vectors are column. For index set B ⊆ [n],
let zB denote the subvector of z with elements corresponding to B, i.e., zB in RB. For i in [n], we
also denote by zi the ith element of z.

2.1 Linear systems and linear programming problems

Let Ax ≤ b be a system of linear inequalities, and P be a polyhedron defined by Ax ≤ b, i.e.,
P = {x | Ax ≤ b}. The affine hyperplane {x | c⊤x = δ} is called a supporting hyperplane of P if
c is nonzero and δ = max{c⊤x | x ∈ P}. A subset F of P is called a face of P if F = P or F is
the intersection of P with some supporting hyperplane of P . Alternatively, F is a face of P if and
only if F is nonempty and F = P ∩ {x | A′x = b′} for some subsystem A′x ≤ b′ of Ax ≤ b. In
particular, a face is minimal if it contains no other face. It is known that a minimal face of P can
be represented as {x | A′x = b′} for some subsystem A′x ≤ b′ of Ax ≤ b. A zero-dimensional face
is called a vertex.

A polyhedron P is called integral if P is the convex hull of the integral vectors in P . A
polyhedron P is integral if and only if any face of P contains an integral vector, or equivalently,
max{c⊤x | x ∈ P} has an integral optimal solution for each vector c such that the maximum
exists.

Recall that a matrix is totally unimodular if all square submatrices have determinants 0 or ±1.
Totally unimodular matrices are well studied, since they characterize integral polyhedra.

Theorem 2.1 ([13]). Let A be an integral matrix. Then A is totally unimodular if and only if the
polyhedron {x | Ax ≤ b, x ≥ 0} is integral for each integral vector b.

Total dual integrality is a weaker concept than total unimodularity for integral polyhedra.

Definition 2.2. Let A be a rational matrix, and let b be a rational vector. A system Ax ≤ b is
totally dual integral if the dual problem of max{c⊤x | Ax ≤ b}, that is,

min{b⊤y | A⊤y = c, y ≥ 0} (2)

has an integral optimal solution for each integral vector c such that (2) is finite.

Theorem 2.3 ([11]). Let A be a rational matrix, and let b be an integral vector. If Ax ≤ b is a
totally dual integral system, then the polyhedron {x | Ax ≤ b} is integral.

It is known that if a matrix A is totally unimodular, then a linear system Ax ≤ b is totally
dual integral for every vector b. Hence, we can restate Theorem 2.1 as follows.
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Corollary 2.4 ([13]). Let A be an integral matrix. Then A is totally unimodular if and only if
the system Ax ≤ b, x ≥ 0 is totally dual integral for each vector b.

2.2 Linear complementarity problems

For a subset B ⊆ [n], let B denote the complement of B, i.e., B = [n]\B. For an n×n real matrix
M (with row and column index sets [n]) and index set B ⊆ [n], define an n× n matrix CM (B) by

CM (B)·i =

{
−M·i if i ∈ B,

I·i if i ̸∈ B,

where I is the identity matrix. For a matrix A, let posA denote a positive cone spanned by column
vectors of A, i.e., posA = {Ax | x ≥ 0}. posCM (B) is called the complementary cone of B relative
to M . We say that a solution z to LCP (M, q) has a basis B ⊆ [n] if it holds that (Mz + q)B = 0
and zB = 0. Note that a vector q in Rn is contained in posCM (B) for some B ⊆ [n] if and only if
LCP (M, q) has a solution z with basis B. To see this, suppose that q is in posCM (B), i.e., there
exists a vector x in Rn with CM (B)x = q and x ≥ 0. Then a vector z defined by zB = xB and
zB = 0 is a solution to LCP (M, q), since it holds that z ≥ 0, zB = 0, (Mz+q)B = MBBxB+qB = 0,
and (Mz+ q)B = MBBxB + qB ≥ 0. On the other hand, if LCP (M, q) has a solution z with basis
B, then a vector x defined by xB = zB and xB = MBBzB + qB is contained in posCM (B). Let
K(M) =

∪
B⊆[n] posCM (B). We define two polyhedra associated with LCP (M, q) by

P (M, q) = {z | Mz + q ≥ 0, z ≥ 0}, and

PB(M, q) = {z ∈ P (M, q) | (Mz + q)B = 0, zB = 0} for B ⊆ [n].

Note that PB(M, q) is a face of P (M, q).
∪

B⊆[n] PB(M, q) represents the set of solutions to
LCP (M, q). Thus LCP (M, q) is equivalent to finding a nonempty set PB(M, q) for some B.

A solution z to LCP (M, q) is called a basic solution (with respect to B) if z is of the form

zB = −M−1
BBqB, zB = 0. (3)

Let us notice that LCP (M, q) has a basic solution with respect to B if and only if q ∈ posCM (B)
and MBB is nonsingular. Moreover, this is equivalent to the condition that PB(M, q) is a vertex
of P (M, q).

Principally unimodular matrices play an important role in integrality of the LCP, which is
analogous to totally unimodular matrices for integrality of the linear programming problem.

Theorem 2.5 ([3, 9]). A square integral matrix M is principally unimodular if and only if any
basic solution to LCP (M, q) is integral for any integral vector q.

3 Linear complementarity problems with orientation

In this section, we introduce the LCP with orientation. We define the problem as follows: given
a square matrix M ∈ Rn×n and two vectors q, r ∈ Rn, the LCP with orientation is the problem
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of finding a solution z ∈ Rn to LCP (M, q) with basis identical to the one of some solution to
LCP

(
−M⊤, r

)
, i.e., a vector z ∈ Rn satisfying for some vector y ∈ Rn and B ⊆ [n],

Mz + q ≥ 0, z ≥ 0, (4)

−M⊤y + r ≥ 0, y ≥ 0, (5)

(Mz + q)B = zB = 0, (−M⊤y + r)B = yB = 0. (6)

We denote by LCP(M, q, r) a problem instance of the LCP with orientation, and (z, y) is called a
solution pair if z and y satisfy (4), (5), and (6). Similarly to the LCP, we say that a solution z to
LCP(M, q, r) is a basic solution with respect to B if z is of the form (3).

Recall that LCP (M, q) is to find an index set B ⊆ [n] such that q ∈ posCM (B). LCP(M, q, r) is
equivalent to finding an index set B such that q ∈ posCM (B) and r ∈ posC−M⊤(B). Thus, in the
LCP with orientation, we have an additional constraint that the vector r defines complementary
cones which we can use.

You might see that the LCP with orientation is more difficult than the LCP, since it holds
that LCP(M, q, 0) = LCP (M, q) for any matrix M and vector q. However, they are polynomially
equivalent, since LCP(M, q, r) can be reduced to the LCP (M ′, q′) for M ′ and q′ given by

M ′ =


z y u v

M −M⊤ O O
M −M⊤ O O
M O O O
O −M⊤ O O

 ∈ R4n×4n, q′ =


q + r
q + r
q
r

 ∈ R4n.

Indeed, LCP (M ′, q′) is equivalent to finding vectors z and y ∈ Rn that satisfy

Mz −M⊤y + q + r ≥ 0, (7)

Mz + q ≥ 0, −M⊤y + r ≥ 0, z ≥ 0, y ≥ 0, (8)

z⊤(Mz −M⊤y + q + r) = y⊤(Mz −M⊤y + q + r) = 0. (9)

Note that (7) is implied by (8), and (8) and (9) imply

z⊤(Mz + q) = z⊤(−M⊤y + r) = 0, (10)

y⊤(Mz + q) = y⊤(−M⊤y + r) = 0. (11)

Therefore, we have (8), (10) and (11), which prove that LCP (M ′, q′) is equivalent to LCP(M, q, r).
We here claim that the LCP with orientation characterizes integrality of LCP (M, q) in the

following sense. LCP (M, q) is said to be integral if for any B ⊆ [n] such that LCP (M, q) has a
solution with basis B, LCP (M, q) has an integral solution with basis B. In other words, LCP (M, q)
is integral if and only if for any B ⊆ [n] with PB(M, q) ̸= ∅, PB(M, q) contains an integral vector.

Proposition 3.1. Let M be an integral matrix, and let q be an integral vector. LCP (M, q) is
integral if and only if LCP(M, q, r) has an integral solution for each integral vector r such that
LCP(M, q, r) has a solution.
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To prove the proposition, we first observe that a solution to LCP(M, q, r) is represented as an
optimal solution to a linear programming problem over P (M, q).

Lemma 3.2. A pair (z, y) is a solution pair of LCP(M, q, r) if and only if it satisfies the following
three conditions:

(a) z is optimal to
max{−r⊤z | Mz + q ≥ 0, z ≥ 0}, (12)

(b) y is optimal to the dual problem of (12), i.e.,

min{q⊤y | −M⊤y + r ≥ 0, y ≥ 0}, (13)

(c) z⊤(Mz + q) = 0 and y⊤(−M⊤y + r) = 0. (14)

Proof. For the only-if part, let (z, y) be a solution pair to LCP(M, q, r), i.e., (4), (5), and (6)
are satisfied for some B ⊆ [n]. Then (6) immediately implies (14), and by (4) and (5), z and y
are feasible to (12) and (13), respectively. Moreover, (6) implies the complementarity conditions
(Mz+q)⊤y = 0 and z⊤(−M⊤y+r) = 0 for (12) and (13). Therefore, z and y are optimal solutions
to (12) and (13), respectively.

For the if part, let (z, y) satisfy (a), (b), and (c). Then it implies (4) and (5). Moreover, since
z and y are optimal, it holds that z⊤(−M⊤y + r) = 0 and y⊤(Mz + q) = 0. In order to show
that z and y satisfy (6) for some B, let B = {i ∈ [n] | (Mz + q)i = 0 and (−M⊤y + r)i = 0}.
For each index i /∈ B, at least one of (Mz + q)i > 0 and (−M⊤y + r)i > 0 is satisfied. By
z⊤(−M⊤y + r) = y⊤(Mz + q) = 0 and (14), we have zi = yi = 0. Therefore, it holds that
(Mz + q)B = 0, (−M⊤y + r)B = 0, zB = 0 and yB = 0, and thus B satisfies (6).

Proof of Proposition 3.1. First we assume that LCP (M, q) is integral. Let r be an integral vector
such that LCP(M, q, r) has a solution. Then there exist a set B ⊆ [n] and a solution pair (z, y)
to LCP(M, q, r) satisfying (4), (5), and (6). We can see that PB(M, q) is nonempty since z is in
PB(M, q). By the assumption, PB(M, q) has an integral vector. Since any vector in PB(M, q) can
be a solution to LCP(M, q, r), this implies that LCP(M, q, r) has an integral solution.

Conversely, assume that LCP(M, q, r) has an integral solution for each integral vector r such
that LCP(M, q, r) has a solution. Let B be an index set such that PB(M, q) is nonempty. Define

r =
∑

i∈B(Mi·)
⊤ +

∑
i/∈B e(i), where e(i) is the ith unit vector, i.e., e

(i)
i = 1 and e

(i)
j = 0 for j ̸= i.

Then, any vector in PB(M, q) is a solution to LCP(M, q, r), and hence it has an integral solution
z∗ by the assumption.

Let Q be the set of optimal solutions to max{−r⊤z | z ∈ P (M, q)}. By Lemma 3.2, z∗ is
contained in Q, and also PB(M, q) ⊆ Q holds. We claim that Q = PB(M, q).

Suppose that we have a vector x in Q\PB(M, q). Then there exists an index j such that either
(j ∈ B and (Mx+ q)j > 0), or (j /∈ B and xj > 0). Hence, since Mx+ q ≥ 0 and x ≥ 0, we have

−r⊤x = −
∑
i∈B

(Mi·)x−
∑
i/∈B

e⊤i x <
∑
i∈B

qi,
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where the last strict inequality follows from the existence of j. On the other hand, for any
z ∈ PB(M, q), it holds that

−r⊤z = −
∑
i∈B

(Mi·)z −
∑
i/∈B

e⊤i z =
∑
i∈B

qi > −r⊤x,

which contradicts that x is contained in Q. Thus Q = PB(M, q).
From our claim, the vector z∗ is contained in PB(M, q), which means that PB(M, q) has an

integral vector. Therefore, LCP (M, q) is integral.

4 Integrality of the linear complementarity problem

Given LCP(M, q, r), we define the dual LCP with orientation to be LCP(−M⊤, r, q). In other
words, the dual problem is the problem of finding a vector y satisfying (4), (5), and (6) for some
z and B. We now introduce the total dual integrality of the LCP as follows.

Definition 4.1. Let M be a rational matrix, and let q be a rational vector. LCP (M, q) is to-
tally dual integral if LCP(−M⊤, r, q) has an integral solution for each integral vector r such that
LCP(−M⊤, r, q) has a solution.

As we mentioned in the introduction, Fukuda and Terlaky [12] proposed another definition of
duality for the LCP with sufficient matrices. They showed a theorem of the alternative: exactly
one of primal and dual LCP problems has a solution. We note that our definition of the duality is
quite different from theirs.

The following theorem is the main result of this section.

Theorem 4.2. Let M be an integral matrix, and let q be an integral vector. If LCP (M, q) is
totally dual integral, then any basic solution to LCP(M, q, r) is integral for any integral vector r.

When setting r to be zero, we have the following corollary for LCP (M, q).

Corollary 4.3. Let M be an integral matrix, and let q be an integral vector. If LCP (M, q) is
totally dual integral, then all basic solutions to LCP (M, q) are integral.

By definition, if Mz+ q ≥ 0, z ≥ 0 is totally dual integral in terms of linear systems, then the
linear programming problem (13) of (b) in Lemma 3.2 has an integral optimal solution for each
integral vector r such that (13) is finite, and hence LCP (M, q) is totally dual integral. However,
total dual integrality of LCP (M, q) does not necessarily imply that of Mz + q ≥ 0, z ≥ 0. Indeed
by Lemma 3.2, if LCP (M, q) is totally dual integral, then (13) has an integral optimal solution
for each integral vector r such that LCP(−M⊤, r, q) has a solution. It does not imply total dual
integrality of Mz+q ≥ 0, z ≥ 0, since all vectors such that (13) has optimal solutions are not taken
as r. This motivates us to weaken the total dual integrality of linear systems to prove Theorem
4.2.

In Section 4.1, we introduce a weaker variant of the total dual integrality of linear systems,
and then provide the proof of Theorem 4.2 in Section 4.2.

7



4.1 S-dual integrality of linear systems

In this subsection, we define S-dual integrality of linear systems for a given cone S.

Definition 4.4. Let A be a rational matrix, and let b be a rational vector. For a cone S, a system
of linear inequalities Ax ≤ b is called S-dual integral if the dual problem of max{c⊤x | Ax ≤ b},
that is,

min{b⊤y | A⊤y = c, y ≥ 0}

has an integral optimal solution for each integral vector c in S such that the minimum exists.

We then show the following proposition, which is useful in the proof of Theorem 4.2. Recall
that posA = {Aα | α ≥ 0} for a matrix A.

Proposition 4.5. Let A be a rational matrix, and let b be an integral vector. Let P = {x | Ax ≤ b}
and F = {x | A′x = b′} be a minimal face of P , where A′x ≤ b′ is a subsystem of Ax ≤ b. If
Ax ≤ b is pos (A′)⊤-dual integral, then the face F contains an integral vector.

Remark 4.6. Rn-dual integrality coincides with the total dual integrality. Hence, Proposition 4.5
leads to Theorem 2.3.

To prove Proposition 4.5, we make use of the following lemma.

Lemma 4.7 ([15]). Let A be a rational matrix, and let b be a rational vector. A linear equation
Ax = b has an integral solution if and only if y⊤b is an integer for each rational vector y such that
y⊤A is integral.

We show the following two lemmas, where the first one is a well-known fact on optimal solutions
to max{c⊤x | x ∈ P}.

Lemma 4.8. Let A be a real matrix, and let b be a real vector. Let P = {x | Ax ≤ b}, and let
F = P ∩ {x | A′x = b′} be a nonempty face of P , where A′x ≤ b′ is a subsystem of Ax ≤ b. For
any vector c in pos (A′)⊤, any vector in F is an optimal solution to max{c⊤x | Ax ≤ b}.

Proof. Choose c in pos (A′)⊤ arbitrarily. Since c = (A′)⊤α for some α ≥ 0, for any vectors x in P ,
we have

c⊤x = α⊤A′x ≤ α⊤b′.

Note that the last inequality above becomes equal only when x is contained in F , which completes
the proof.

Lemma 4.9. Let A be a rational matrix, and let b be an integral vector. Let P = {x | Ax ≤ b},
and let F = P ∩{x | A′x = b′} be a face of P , where A′x ≤ b′ is a subsystem of Ax ≤ b. If Ax ≤ b
is pos (A′)⊤-dual integral, then the supporting hyperplane H = {x | c⊤x = δ} of P contains an
integral vector for each integral vector c in pos (A′)⊤.

Proof. Suppose to the contrary that supporting hyperplane H = {x | c⊤x = δ} of P contains no
integral vector for some integral vector c in pos (A′)⊤. From pos (A′)⊤-dual integrality, min{b⊤y |
A⊤y = c, y ≥ 0} has an integral optimal solution. Since δ is the optimal value of max{c⊤x |
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Ax ≤ b} = min{b⊤y | A⊤y = c, y ≥ 0} by Lemma 4.8, δ is integral. Since c⊤x = δ has no
integral solution, there exists a rational number α such that αc is integral and αδ is not an integer
by Lemma 4.7. We may assume that α > 0 by adding a positive integer to α. Then we have
αc ∈ pos (A′)⊤. We can see that

max{αc⊤x | Ax ≤ b} = αmax{c⊤x | Ax ≤ b} = αδ

is not an integer. This contradicts pos (A′)⊤-dual integrality.

We are now ready to prove Proposition 4.5.

Proof of Proposition 4.5. Suppose that F contains no integral vector to derive a contradiction.
By Lemma 4.7, there exists a vector y such that (A′)⊤y is an integral vector and y⊤b′ is not an
integer. We may assume that y > 0 by adding a large positive integer γ to each element of y
for which (A′)⊤(γ1) is integral. Let c = (A′)⊤y and δ = y⊤b′. Then c is contained in pos (A′)⊤.
Hyperplane H = {x | c⊤x = δ} contains no integral vector, since c is an integer vector whereas δ
is not an integer. Since H = {x | c⊤x = δ} is a supporting hyperplane of P with c in pos (A′)⊤,
this contradicts Lemma 4.9. Thus F contains an integral vector.

We note that Proposition 4.5 requires the minimality of F . Suppose that F = P∩{x | A′x = b′}
is a non-minimal face of P . Then, even if Ax ≤ b is pos (A′)⊤-dual integral, and c is an integral
vector in pos (A′)⊤, max{c⊤x | Ax ≤ b} does not always have an integral optimal solution. For
example, let

A =

2 −1
1 1
0 −6

 , and b =

 0
1
−1

 ,

and let A′ and b′ be the first row of A and b, respectively, i.e., A′ =
[
2 −1

]
and b′ = 0. Then

we have max{c⊤x | Ax ≤ b} = 0 for any integral vector c in pos (A′)⊤ =
{[

2 −1
]⊤

α | α ≥ 0
}
,

since, as seen in Figure 1, the optimal solution set is represented as the convex combination of[
1/3 2/3

]⊤
and

[
1/6 1/3

]⊤
, which contains no integral vector. On the other hand, for any

integral vector c =
[
2 −1

]⊤
α with α ≥ 0, the dual problem min{b⊤y | A⊤y = c, y ≥ 0} has

an optimal solution y =
[
α 0 0

]⊤
. Thus Ax ≤ b is pos (A′)⊤-dual integral, while any integral c

in pos (A′)⊤ provides linear programming problem max{c⊤x | Ax ≤ b} with no integral optimal
solution.

4.2 Proof of Theorem 4.2

Lemma 4.10. Let M be an integral matrix in Zn×n, and let q be an integral vector in Zn. Let B
be a subset of [n] such that posCM (B) contains q. Let S = pos (−C−M⊤(B)). If LCP (M, q) is
totally dual integral, then the linear system Mz + q ≥ 0, z ≥ 0 is S-dual integral.

Proof. Take an integral vector r in S arbitrarily. Then LCP(−M⊤,−r, q) has a solution with
respect to B. Since LCP (M, q) is totally dual integral, LCP(−M⊤,−r, q) has an integral solution
y∗. By Lemma 3.2, y∗ is an optimal solution to the linear programming problem

min{q⊤y | −M⊤y − r ≥ 0, y ≥ 0}.

9



Figure 1: An example for Proposition 4.5.

This implies that Mz + q ≥ 0, z ≥ 0 is an S-dual integral system.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Assume that LCP (M, q) is totally dual integral. Take an integral vector r
such that LCP(M, q, r) has a solution. Let z∗ be a basic solution to LCP(M, q, r) with respect to
some B, that is, z∗ satisfies that (Mz∗ + q)B = 0, z∗

B
= 0, and MBB is nonsingular. Since z∗ is

also a basic solution to LCP (M, q) with respect to B, PB(M, q) is a vertex of polyhedron P (M, q)
such that PB(M, q) = {z∗}.

Let A = −
[
M⊤ I

]⊤
and b =

[
q⊤ 0

]⊤
. We also define a matrix A′ and a vector b′ by

A′ = −C−M⊤(B)⊤, b′B = qB and b′
B

= 0. Then we can write P (M, q) = {z | Az ≤ b} and
PB(M, q) = {z | A′z = b′}, where A′z ≤ b′ is a subsystem of Az ≤ b.

Since LCP (M, q) is totally dual integral, the system Mz + q ≥ 0, z ≥ 0 is a pos (A′)⊤-dual
integral system from Lemma 4.10. Therefore, since PB(M, q) = {z∗}, it follows from Proposition
4.5 that PB(M, q) contains an integral vector, and thus z∗ is integral.

5 Sufficient and rank-symmetric matrices

In this section, we restrict our attention to (column) sufficient matrices and rank-symmetric ma-
trices, and show that total dual integrality of LCP (M, q) characterizes that LCP (M, q) is integral.
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5.1 Sufficient matrices

A square matrix M is called column sufficient if for all vectors x, it holds that

[xi(Mx)i ≤ 0 (∀i)] ⇒ [xi(Mx)i = 0 (∀i)].

A matrix M is row sufficient if M⊤ is column sufficient, and sufficient if it is both column and row
sufficient. The class of (column) sufficient matrices contains positive semi-definite matrices and
P-matrices (i.e., all principal minors are positive). It is not difficult to see that column sufficiency
of a matrix M implies the one of principal submatrices. The LCP with sufficient matrices possesses
several important properties. For instance, any such LCP instances LCP (M, q) have a (possibly
empty) convex solution set, and have a solution whenever P (M, q) is not empty [8].

Chandrasekaran, Kabadi and Sridhar [3] showed that principal unimodular matrices are crucial
for integral solutions to the LCP with column sufficient matrices.

Theorem 5.1 ([3]). Let M be an integral, column sufficient matrix. Then M is principally
unimodular if and only if LCP (M, q) has an integral solution for each integral vector q such that
LCP (M, q) has a solution.

In this section, we show that the total dual integrality implies integrality for the LCP with
column sufficient matrices, which provides an alternative proof of Theorem 5.1 in the case of
sufficient matrices as Theorem 5.5 below.

Our proof uses the following fundamental property for column sufficient matrices. For a matrix
A, let rankA denote the rank of A.

Lemma 5.2 ([21]). Let A be a column sufficient matrix of order n, and let R ⊆ [n] be an index
set such that |R| = rankA·R = rankA. Then ARR is nonsingular.

Lemma 5.3. Let M be a column sufficient matrix of order n. For each B ⊆ [n] such that PB(M, q)
is nonempty, PB(M, q) contains a basic solution to LCP (M, q) with respect to some B′ ⊆ [n].

Proof. Assume that PB(M, q) is nonempty. If MBB is nonsingular, then PB(M, q) consists of a
basic solution with respect to B. On the other hand, if MBB is singular, then let z be a vector
in PB(M, q) with the smallest |{i | zi > 0}| + |{i | (Mz + q)i > 0}|. Define S = {i | zi > 0} and
T = {i | (Mz + q)i = 0}. We note that S ⊆ B ⊆ T . We claim that MTS has full column rank.

Assume a contrary that there exists a nonzero vector x in RS such that MTSx = 0. We may
suppose that x has a negative element by multiplying −1 if necessary. Define x′ to be an vector
in Rn such that x′S = x and x′

S
= 0. Then consider the maximum number δ such that z + δx′

is in PB(M, q). By definition of x′, we have δ > 0, and at least one element of zS + δx and
MTS(zS + δx) + qT is zero. This contradicts the minimality of |S|+ |T |.

Since MTS has full column rank, we can choose a column index set R such that S ⊆ R ⊆ T ,
and |R| = rankMTR = rankMTT . Then by applying Lemma 5.2 to MTT and R, we see that MRR

is nonsingular. Therefore, z is a basic solution to LCP (M, q) with respect to R.

Theorem 5.4. Let M be an integral, column sufficient matrix, and let q be an integral vector. If
LCP (M, q) is totally dual integral, then LCP (M, q) is integral.
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Proof. By Lemma 5.3, each nonempty set PB(M, q) contains some basic solution z. This together
with Theorem 4.2 completes the proof.

Let us remark that the statement in Lemma 5.3 holds also for the negation of column sufficient
matrices M , that is, for each B ⊆ [n] such that PB(−M, q) is nonempty, PB(−M, q) contains some
basic solution to LCP (−M, q). Using this observation, together with Theorem 2.5, we obtain the
following necessary and sufficient condition for a principally unimodular matrix, provided that the
coefficient matrix is sufficient (cf. Corollary 2.4).

Theorem 5.5. Let M be an integral sufficient matrix. Then the following three statements are
equivalent:

(a) M is principally unimodular.
(b) LCP (M, q) is totally dual integral for each integral vector q.
(c) LCP (M, q) is integral for each integral vector q.

Proof. (a) ⇒ (b): Assume that LCP(−M⊤, r, q) has a solution. Let B be a subset in [n] with
q ∈ posCM (B) and r ∈ posC−M⊤(B). Then PB(−M⊤, r) is nonempty. Since M⊤ is column
sufficient, Lemma 5.3 and the discussion before the theorem imply that PB(−M⊤, r) contains
some basic solution y to LCP

(
−M⊤, r

)
. This y is integral by Theorem 2.5, and is also a solution

to LCP(−M⊤, r, q).

(b) ⇒ (c): This follows from Theorem 5.4.

(c) ⇒ (a): Since a basic solution to LCP (M, q) with respect to B ⊆ [n] corresponds to a
zero-dimensional face PB, every basic solution is integral by (c). Thus by Theorem 2.5, M is
principally unimodular.

5.2 Rank-symmetric matrices

A square matrix M of order n is called rank-symmetric if rankMJK = rankMKJ for all K,J ⊆
[n]. For a rank-symmetric matrix M , any principal submatrix MBB is rank-symmetric from the
definition. Symmetric and skew-symmetric matrices are examples of rank-symmetric matrices.
Rank-symmetric matrices appear in the LCP associated with the linear programming, the convex
quadratic programming, and the market equilibrium [7, 18]. Cunningham and Geelen [9] showed
that for each vector q, if M is rank-symmetric and LCP (M, q) has a solution, then LCP (M, q)
always has a basic solution. By combining the fact and Theorem 2.5, the following theorem holds.

Theorem 5.6 ([9]). Let M be an integral rank-symmetric matrix. If M is principally unimodular,
then LCP (M, q) has an integral solution for each integral vector q such that LCP (M, q) has a
solution.

The converse of Theorem 5.6 does not necessarily hold. For example, consider a rank-symmetric
matrix

M =

[
2 1
−1 −1

]
.
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It is observed that K(M) =
∪

B⊆[n] posCM (B) coincides with posCM ({2}) ∪ posCM ({1, 2}). We
also see that detCM ({2}) = 1 and detCM ({1, 2}) = −1. Then LCP (M, q) has an integral solution
for each integral vector q in K(M). However, M is not principally unimodular.

For rank-symmetric matrices, we obtain similar results to (column) sufficient matrices in Sec-
tion 5.1 by a similar argument to the proof of Theorem 5.4. For the proof, we use the following
lemmas.

Lemma 5.7 ([9]). Let A be a rank-symmetric matrix of order n, and S ⊆ [n] be an index set. If
the principal submatrix ASS of A is nonsingular, then the Schur complement of ASS in A, i.e.,

ASS −ASSA
−1
SSASS

is a rank-symmetric matrix whose rank is rankA− |S|.

By using Lemma 5.7, we show that rank-symmetric matrices have a similar property to column
sufficient matrices stated in Lemma 5.2, which implies Lemma 5.9.

Lemma 5.8. Let A be a rank-symmetric matrix of order n, and let R ⊆ [n] be an index set such
that |R| = rankA·R = rankA. Then ARR is nonsingular.

Proof. We show the lemma by induction on rankA. For a matrix A with rankA = 1, let R = {j}.
Then Aij ̸= 0 holds for some i. If i ̸= j, then Aji ̸= 0 by rank-symmetry, and consequently
rankA > 1, which is a contradiction. Thus we have Ajj ̸= 0, meaning that Ajj is nonsingular.

We assume that the lemma holds for matrices of rank < r. Let A be a rank-symmetric matrix
of rank r, and R ⊆ [n] be an index set such that |R| = rankA·R = r. Suppose to the contrary
that rankARR = k < r. Let S ⊆ R be an index set such that |S| = rankARS = k. We assume
without loss of generality that R = {1, . . . , r} and S = {1, . . . , k}. By the induction hypothesis,
ASS is nonsingular, and thus CA(S) is nonsingular. Consider a matrix

Â = CA(S)
−1A =

[ S S

S −Ik −A−1
SSASS

S O ASS −ASSA
−1
SSASS

]
,

where Ik denotes the identity matrix of order k. LetR′ = R\S. By applying Lemma 5.7 to ARR and
S, we have rank (AR′R′−AR′SA

−1
SSASR′) = rankARR−k = 0. Since ÂR′R′ = AR′R′−AR′SA

−1
SSASR′ ,

Â is of the form

Â =


S R′ R

S −Ik ∗ ∗
R′ O O ÂR′R

R O ÂRR′ ÂRR

.
Since rank Â·R = rankA·R = r, we have rank ÂRR′ = r − k. Moreover, by Lemma 5.7, ÂSS is

rank-symmetric, and hence rank ÂR′R = r − k > 0. Therefore, we have a contradiction

rankA = rank Â = k + rank ÂSS ≥ k + rank ÂRR′ + rank ÂR′R = r + r − k > r.
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Lemma 5.9. Let M be a rank-symmetric matrix. For each B ⊆ [n] such that PB(M, q) is
nonempty, PB(M, q) contains a basic solution to LCP (M, q) with respect to some B′ ⊆ [n].

Therefore, we have the following two theorems, where the proofs are almost same as the ones
for sufficient matrices.

Theorem 5.10. Let M be an integral rank-symmetric matrix, and let q be an integral vector. If
LCP (M, q) is totally dual integral, then LCP (M, q) is integral.

Theorem 5.11. Let M be an integral rank-symmetric matrix. Then the following three statements
are equivalent:

(a) M is principally unimodular.
(b) LCP (M, q) is totally dual integral for each integral vector q.
(c) LCP (M, q) is integral for each integral vector q.

Proof. (a) ⇒ (b): Assume that LCP(−M⊤, r, q) has a solution. Let B be a subset in [n] with
q ∈ posCM (B) and r ∈ posC−M⊤(B). Then PB(−M⊤, r) is nonempty. Since −M⊤ is rank-
symmetric, Lemma 5.9 implies that PB(−M⊤, r) contains some basic solution y to LCP

(
−M⊤, r

)
.

This y is integral by Theorem 2.5, and is also a solution to LCP(−M⊤, r, q).

(b) ⇒ (c): This follows from Theorem 5.10.

(c) ⇒ (a): Since a basic solution to LCP (M, q) with respect to B ⊆ [n] corresponds to a
zero-dimensional face PB, every basic solution is integral by (c). Thus by Theorem 2.5, M is
principally unimodular.

6 Hardness of recognizing the total dual integrality

In this section, we show that it is coNP-hard to recognize that a given LCP instance is totally
dual integral. This is proved by reduction from coNP-completeness of recognizing quasi-bipartite
graphs.

Let G = (V,E) be an undirected graph. We denote by AG the vertex-edge incidence matrix of
G, i.e., AG in {0, 1}V×E such that the column vector A·e for e = (u, v) in E satisfies Aue = Ave = 1
and Awe = 0 for any vertex w ̸= u, v. An undirected graph G is called quasi-bipartite if for any
odd cycle C in G, deleting all vertices in C from G results in at least one isolated vertex. Ding,
Feng and Zang [10] showed that it is coNP-complete to decide whether a given connected simple
graph is quasi-bipartite. It is known that total dual integrality of linear systems associated with
incidence matrices is characterized by quasi-bipartite graphs.

Lemma 6.1 ([10]). Let G be a connected simple undirected graph. The linear system AGx ≥
1, x ≥ 0 is totally dual integral if and only if G is a quasi-bipartite graph that is not K4 (i.e., the
complete graph with four vertices).

By Lemma 6.1, together with the fact that recognizing a quasi-bipartite graph is coNP-
complete, we have Theorem 6.2 below.
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Theorem 6.2 ([10]). It is coNP-complete to decide if the linear system AGx ≥ 1, x ≥ 0 is totally
dual integral for a given connected simple undirected graph G.

For an undirected graph G = (V,E), we define a square matrix MG in R(E∪V )×(E∪V ) and a
vector qG in RE∪V as

MG =

[ E V

E O O
V AG O

]
, qG =

[
E 0
V −1

]
. (15)

Then we will show the following theorem in the subsequent subsection. It should be noted that
the equivalence in Lemma 6.3 may not hold if the coefficient matrix is not an incidence matrix.

Lemma 6.3. Let G be a connected simple undirected graph. The linear system AGx ≥ 1, x ≥ 0
is totally dual integral if and only if LCP (MG, qG) is totally dual integral.

By Theorem 6.2 and Lemma 6.3, we have the following result.

Theorem 6.4. The problem of deciding if a given LCP instance is totally dual integral is coNP-
hard.

6.1 Proof of Theorem 6.3

To prove Theorem 6.3, we use the following characterization for quasi-bipartite graphs. We denote
by d(v) the degree of a vertex v.

Lemma 6.5 ([10]). A connected simple graph G = (V,E) is quasi-bipartite if and only if it is K4

or there exists a partition (X1, X2, Y, Z1, . . . , Zk) (possibly X1 ∪X2 = ∅ or k = 0) of V such that

(a) for each vertex v in X1, it holds that d(v) = 1 and the unique neighbor of v is in X2,
(b) each vertex in X2 is adjacent to at least one vertex in X1, and there is no edge between X2

and Z1 ∪ · · · ∪ Zk,
(c) there exist k distinct unordered pairs {y11, y21}, . . . , {y1k, y2k} of vertices in Y such that

(i) y1i ̸= y2i for i = 1, . . . , k,

(ii) both y1i and y2i are adjacent to all vertices in Zi for i = 1, . . . , k, and

(iii) each odd cycle in G with no vertex in X1 ∪X2 contains both y1i and y2i for some i with
1 ≤ i ≤ k,

(d) |Zi| ≥ 2 for i = 1, . . . , k, and d(v) = 2 for all vertices v in Z1 ∪ · · · ∪ Zk.

For notational convenience, let A = AG, M = MG, and q = qG.
We first claim the following fact.

Claim 6.6. Let r be a vector in RE∪V with nonnegative rV .

(a) For any optimal solution ŷ ∈ RV to

min{−1⊤y | −A⊤y + rE ≥ 0, y ≥ 0}, (16)

t̂ =
[
0 ŷ⊤

]⊤ ∈ RE∪V is an optimal solution to

min{q⊤t | −M⊤t+ r ≥ 0, t ≥ 0}. (17)

15



(b) For any optimal solution t̂ ∈ RE∪V to (17), t̂V is an optimal solution to (16).
(c) For any optimal solution x̂ ∈ RE to

max{−r⊤Ex | Ax− 1 ≥ 0, x ≥ 0}, (18)

ẑ =
[
x̂⊤ 0

]⊤ ∈ RE∪V is an optimal solution to

max{−r⊤z | Mz + q ≥ 0, z ≥ 0}. (19)

(d) For any optimal solution ẑ ∈ RE∪V to (19), ẑE is an optimal solution to (18).

Proof of Claim 6.6. We only show (a) and (b), since (c) and (d) are proven similarly. In (17), we

have q⊤t =
[
0 −1⊤

] [tE
tV

]
= −1⊤tV , and the constraints can be decomposed into −A⊤tV + rE ≥

0, rV ≥ 0, and tE , tV ≥ 0. Since rV is nonnegative, (17) is equivalent to

min{−1⊤tV | −A⊤tV + rE ≥ 0, tE , tV ≥ 0}. (20)

Since tE is redundant, it is equivalent to (16). Thus we have (a) and (b).

We now prove Lemma 6.3.
For the if part, assume that LCP (M, q) is totally dual integral. To show that Ax ≥ 1, x ≥ 0 is

totally dual integral, choose arbitrarily an integral vector b such that max{−b⊤x | Ax ≥ 1, x ≥ 0}
and its dual min{−1⊤y | A⊤y ≤ b, y ≥ 0} have optimal solutions x̂ and ŷ, respectively. Define a
vector r ∈ RE∪V to be rE = b and rV = 0. We first show that LCP(−M⊤, r, q) has a solution.

Let t̂ be a vector in RE∪V defined by t̂E = 0 and t̂V = ŷ. By Claim 6.6 (a), t̂ is an optimal
solution to (17). In addition, t̂ satisfies that t̂⊤(−M⊤t̂+ r) = 0⊤ · (−A⊤ŷ + b) + ŷ⊤ · 0 = 0. Also
define a vector ẑ in RE∪V to be ẑE = x̂ and ẑV = 0. Then ẑ is an optimal solution to (19) by
Claim 6.6 (c). Moreover, it holds that ẑ⊤(Mẑ + q) = x̂⊤ · 0 + 0⊤ · (Ax̂ − 1) = 0. Therefore, it
follows from Lemma 3.2 that (t̂, ẑ) is a solution pair to LCP(−M⊤, r, q).

Since LCP (M, q) is totally dual integral, LCP(−M⊤, r, q) has an integral solution t∗. This t∗

is an optimal solution to (17) by Lemma 3.2, and hence t∗V is an integral optimal solution to (16)
by Claim 6.6 (b). Thus Ax ≥ 1, x ≥ 0 is totally dual integral.

For the only-if part, assume that Ax ≥ 1, x ≥ 0 is totally dual integral. Let r be an integral
vector such that LCP(−M⊤, r, q) has a solution pair (t, z). Note that r is nonnegative, since r can
be expressed as a nonnegative linear combination of column vectors of two nonnegative matrices
M⊤ and I. By Lemma 3.2, t is an optimal solution to (17), and z is an optimal solution to (19).
Moreover, we have t⊤V rV = 0. By Claim 6.6 (b) and (d), tV and zE are optimal solutions to (16)
and (18), respectively.

We show that

(16) has an integral optimal solution y∗ which satisfies y∗⊤rV = 0 (21)

by proving the following three claims for partitions (X1, X2, Y, Z1, . . . , Zk) of V satisfying the
four conditions in Lemma 6.5, since total dual integrality implies existence of such a partition

by Lemmas 6.1 and 6.5. Then (21) and Claim 6.6 (a) imply that t∗ =
[
0 y∗⊤

]⊤
is an integral

optimal solution to (17). This together with Lemma 3.2 implies that t∗ is an integral solution to
LCP(−M⊤, r, q), which completes the proof.
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Claim 6.7. There exists an optimal solution y′ to (16) such that y′⊤rV = 0 and y′X1∪X2
is integral.

Proof of Claim 6.7. Let y = tV . Then y is an optimal solution to (16) that satisfies y⊤rV = 0. We
define a vector y′ ∈ RV from y as follows. Let y′u = yu if u ̸∈ X1 ∪X2. To define y′u (u ∈ X1 ∪X2),
let E1 be the set of edges incident to X1. Since d(v) = 1 for any vertex v in X1, it is observed
that AX1E1 becomes the identity matrix by appropriately rearranging rows and columns, and
AX1E1

= O. Let x be an optimal solution to the dual problem of (16), that is, (18). AX1·x ≥ 1
implies xE1 > 0. By the complementary slackness of (16) and (18), for each e = (u, v) in E1, we
have

yu + yv = re. (22)

Let v be a vertex in X2, and let u1, . . . , up denote neighbors of v in X1. By Lemma 6.5 (b),
we have p ≥ 1. If rui > 0 for some i, then we define y′v = yv and y′uj

= yuj for j = 1, . . . , p. Note
that yui = 0, yv = r(ui,v), and yuj = r(uj ,v) − r(ui,v) for j ̸= i, by yuirui = 0 and (22). Hence these
y′v and y′ui

(i = 1, . . . , p) are all integers. On the other hand, if rui = 0 for all i, then we define
y′v = 0 and y′ui

= r(ui,v) for all i. Note that −1⊤y′ ≤ −1⊤y, and y′ is feasible to (16). This y′ is an
optimal solution to (16). Since y′X1∪X2

is integral, the claim is proven.

Claim 6.8. There exists an optimal solution y to (16) such that y⊤rV = 0, yX1∪X2 is integral,
and each odd cycle C in G contains a vertex v in C for which yv is integral.

Proof of Claim 6.8. Let y be a vector such that y⊤rV = 0 and yX1∪X2 is integral. We denote
Z = Z1 ∪ · · · ∪ Zk, and let U = {v ∈ V | yv is integral} \ Z. Let C be an odd cycle with no
vertex in U . Since yX1∪X2 is integral, C has no vertex in X1 ∪X2. By Lemma 6.5, C contains two
vertices v1 and v2 in Y (which correspond to y1i and y2i in Lemma 6.5) such that any vertex in Zi

is adjacent only to v1 and v2. Assume that yv1 ≤ yv2 without loss of generality, and we arbitrarily
choose vertices u1 and u2 in Zi, since |Zi| ≥ 2.

We first observe that rv = 0 for any vertex v in C \Z, because otherwise rv > 0 for some vertex
v in C \ Z, implying yv = 0, that is, v is in U . Moreover, it holds that ru1 = ru2 = 0. Indeed,
suppose to the contrary that at least one of ru1 and ru2 , say ru1 , is positive. Since yu1ru1 = 0, we
have yu1 = 0. Let e1 = (v1, u1) and e2 = (v2, u1). Since d(u1) = 2, the row vector Au1· has ones
at position e1 and e2, and zeros at the other positions. Take an optimal solution x to (18) (i.e.,
the dual of (16)). Then x satisfies (Ax)u1 = xe1 + xe2 ≥ 1, and hence at least one of xe1 and xe2
is positive. By complementarity slackness, at least one of yv1 + yu1 ≤ re1 and yv2 + yu1 ≤ re2 , is
satisfied with equality. By yu1 = 0, we have yv1 = re1 or yv2 = re2 . At least one of yv1 and yv2 is
integer, which contradicts that C has no vertex in U .

We then modify y so that

yu1 := yu1 + yv1 , yu2 := yu2 + yv1 , yv2 := yv2 − yv1 , yv1 := 0.

Since yv1 is zero, we can replace U with U ∪ {v1}. Note that the resulting y remains optimal to
(16), and satisfies y⊤rV = 0.

By repeatedly applying the above modification, we obtain a desired y of the claim.

Claim 6.9. Let y be an optimal solution to (16) that satisfies three conditions in Claim 6.8. Let
U = {i ∈ V | yi is integral }. Then there exists an integral optimal solution y∗ to (16) such that
y∗⊤rV = 0 and y∗U = yU .
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Proof of Claim 6.9. Let d = rE − (A⊤)·UyU . Note that d is an integral vector. We consider a
linear programming problem

min{−1⊤ξ | (A⊤)·Uξ ≤ d, ξ ≥ 0}, (23)

where ξ represents the vectors of variables in RU . We first show that (23) has an integral optimal
solution ξ.

We rewrite AU · as [A′ E], where A′ has two 1’s in each column and E has at most one 1 in
each column. Let G′ be the subgraph of G whose vertex-edge incidence matrix is A′. Then G′ has
the vertex set U . Since any odd cycle in G contains a vertex in U by Claim 6.8, G′ has no odd
cycle, i.e., G′ is bipartite. Hence A′ is totally unimodular, and so is AU ·. Therefore, (23) has an
integral optimal solution ξ.

Let y∗ be an integral vector with y∗U = yU and y∗
U

= ξ. Note that y∗ is an optimal solution

to (16). In addition, it holds that y∗⊤rV = 0. Indeed, if rv > 0 for some v in V , then we
have yv = 0 by yvrv = 0. Hence, for any i not in U , we have ri = 0. This implies that
y∗⊤rV = y⊤U rU + ξ⊤rU = 0.

7 Matrix classes

Before concluding this paper, we discuss matrix classes studied in the LCP literature, where Figure
2 shows their relationship.

Strongly

principally unimodular

Column sufficient

Rank-symmetric

Figure 2: Matrix classes studied in the integral LCP.

Let PU be the set of principally unimodular matrices, and let I be the set of integral matrices
M such that LCP (M, q) has an integral solution for each integral vector q such that it has a
solution. We define J as the set of integral matrices M such that LCP (M, q) is totally dual
integral for each integral vector q such that it has a solution. Let also K be the set of integral
matrices M such that LCP (M, q) is integral for each integral vector q such that it has a solution.

Matrix class I is defined by Chandrasekaran, Kabadi and Sridhar [3]. It is known [3] that if
we restrict matrices M to be column sufficient, then I coincides with PU . By definition, K is
contained in I.

18



Chandrasekaran, Kabadi and Sridhar introduced strongly principally unimodular matrices as
matrices in I. An integral matrix M is called strongly principally unimodular if for each submatrix
MKJ of full column rank where ∅ ̸= J ⊆ K, the greatest common divisor (g.c.d) of the determinants
of all |J | × |J | submatrices of MKJ is one. The concept of strong principal unimodularity is based
on the following lemma.

Lemma 7.1 ([19, Chapter 4]). Let A be an n × k integral matrix of full column rank. Then the
g.c.d of k×k subdeterminants of A is one if and only if for any vector x such that Ax is an integral
vector, x is integral.

By definition, any strongly principally unimodular matrix is principal unimodular. Column
sufficient, principally unimodular matrices are known to be strongly principally unimodular [3].

In addition to these inclusion relationships among matrix classes, we have the following propo-
sition.

Proposition 7.2. For matrix classes defined above, we have the following statement.

(a) J is contained in PU .
(b) K is contained in I ∩ PU .
(c) Strongly principally unimodular matrices are contained in K.
(d) Integral rank-symmetric, principally unimodular matrices are strongly principally unimodu-

lar.

Proof. (a): Let M be a matrix in J . By Corollary 4.3, any basic solution to LCP (M, q) is integral
for any integral vector q. Theorem 2.5 implies that this is equivalent to M ∈ PU .

(b): Let M be a matrix in K. Since M is clearly contained in I, we only show that M is
principally unimodular. Choose arbitrarily an index set B such that MBB is nonsingular. For
any integral vector q, if PB(M, q) is nonempty, then CM (B)x = q has a (unique) integral solution.
This and Lemma 7.1 imply that detMBB = ±1. Thus M is principally unimodular.

(c): Let M be a strongly principally unimodular matrix. By Proposition 3.1, a matrix M
belongs to K if and only if LCP(M, q, r) has an integral solution for each integral vectors q, r such
that it has a solution. We show that a strongly principally unimodular matrix M satisfies the
latter condition.

Take arbitrarily integral vectors q and r such that LCP(M, q, r) has a solution. We choose a
solution z with the smallest |{i | zi > 0}| + |{i | (Mz + q)i > 0}|. Let S = {i | zi > 0} and
T = {i | (Mz + q)i = 0}. We note that zS = 0. Then we can see that MTS has full column rank
as in the proof of Lemma 5.3. Thus zS is a unique solution to the linear system MTSzS + qT = 0.
Moreover, since the g.c.d of the determinants of all |S| × |S| submatrices of MTS is one, Lemma
7.1 implies that zS is integral.

(d): Let M be a rank-symmetric and principally unimodular matrix. Then every basic solution
to LCP (M, q) is integral for any integral vector q by Theorem 2.5.

Suppose to the contrary that M is not strongly principally unimodular. Then there exists a
submatrix MKJ where ∅ ̸= J ⊆ K such that MKJ has full column rank, and the g.c.d α of the
determinants of all |J | × |J | submatrices of MKJ is more than one. We note that MJJ is singular,
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since otherwise, the g.c.d α becomes one by principal unimodularity. By Lemma 7.1, there exists
a non-integral vector x ∈ RJ such that MKJx is integral. By adding a positive integer to each
element of x, we may suppose that x > 0.

Define two vectors z and q by zJ = x, zJ = 0, qK = −MKJx, and qK = −⌊MKJx⌋. Then q
is an integral vector, and z is a solution for LCP (M, q), since it satisfies that Mz + q ≥ 0, z ≥
0, (Mz + q)K = 0, and zJ = 0.

Let T = {i | (Mz+ q)i = 0}. We note that K ⊆ T . Since MKJ has full column rank, MTJ also
has full column rank. If MTT is nonsingular, then z is a basic solution with respect to T , and this
contradicts Theorem 2.5 that every basic solution to LCP (M, q) is integral. On the other hand,
if MTT is singular, then by Lemma 5.8, there exists a set R such that J ⊆ R ⊆ T and MRR is
nonsingular. This again implies that z is a basic solution (with respect to R), which contradicts
Theorem 2.5.

We remark that K is a proper subclass of PU ∩ I. For example, let us consider a matrix

M =

[
0 0
−2 0

]
.

This M is clearly principally unimodular. For any integral vector q, it is observed that LCP (M, q)
has a solution if and only if q ≥ 0, which implies that LCP (M, q) has an integral solution z = 0.

Thus M belongs to I. On the other hand, if q =
[
0 1

]⊤
and B = {1, 2}, then PB(M, q) contains

only one vector
[
1/2 0

]⊤
, which implies M /∈ K. In addition, by the above argument, we can see

that −M⊤ belongs to PU \ J .
In addition, J and K have no inclusion relationship. Let us consider a matrix

M =

 1 2 0
0 1 0
−3 −3 0

 .

This M is strongly principally unimodular, and hence by Proposition 7.2 (c), M belongs to K.

On the other hand, M does not belong to J . To see this, let q =
[
−3 −1 6

]⊤
and let r =[

−1 −1 0
]⊤

. It is observed that q is contained in posCM ({1, 2}) and posCM ({1, 2, 3}). Then
we see that posC−M⊤({1, 2, 3}) contains r, and posC−M⊤({1, 2, 3}) does not contain r. Since

Mz + q = 0, z ≥ 0 has only one solution
[
0 0 1/3

]⊤
, LCP(−M⊤, r, q) has no integral solution.

Thus M is contained in K \ J . This also implies that −M⊤ is contained in J \ K.
We note that −M⊤ belongs to I. It is observed that K(−M⊤) coincides with posC−M⊤(∅) ∪

posC−M⊤({3}). The determinant of C−M⊤(∅) is one, and linear system C−M⊤({3})y = r, y ≥ 0
has an integral solution for each integral vector r such that the system has a solution. Hence,
LCP

(
−M⊤, r

)
has an integral solution for any integral vector r such that it has a solution.

There also exists a matrix in K which is not strongly principally unimodular. For example, let
us consider a matrix

M =

[
0 0
−2 1

]
.

By letting J = {1} and K = {1, 2}, we can see that M is not strongly principally unimodular.
On the other hand, for any index set B ⊆ {1, 2} and any integral vector q, if linear system
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CM (B)x = q, x ≥ 0 has a solution, then the system has an integral solution. Thus LCP (M, q) is
integral for any integral vector q, which means that M ∈ K.

Let us remark that although rank-symmetric matrices and (column) sufficient matrices possess
a similar property, the associated LCP instances have no inclusion relationship.

In the remainder of this paper, we show that the weaker variants of J coincide with PU . Recall
that J is the set of integral matrices M such that LCP(−M⊤, r, q) has an integral solution for
each integral vectors q and r such that it has a solution.

Proposition 7.3. Let M be an integral matrix. Then the following are equivalent.

(a) M belongs to PU .
(b) any basic solution to LCP(−M⊤, r, q) is integral for each integral vectors q and r such that

it has a basic solution.
(c) some basic solution to LCP(−M⊤, r, q) is integral for each integral vectors q and r such that

it has a basic solution.
(d) LCP(−M⊤, r, q) has an integral solution for each integral vectors q and r such that it has a

basic solution.

Proof. By definition, it is not difficult to see that (b) ⇒ (c)⇒ (d). IfM is a principally unimodular
matrix, then since −M⊤ is also principally unimodular, Theorem 2.5 implies that M satisfies (b).
We show that (d) ⇒ (a).

Assume that M satisfies (d), and let q be an integral vector. Then M and q satisfy that
LCP(−M⊤, r, q) has an integral solution for each integral vector r such that it has a basic solution.
By a similar proof to Lemma 4.10, we can show that for any index set B such that q ∈ posCM (B)
and MBB is nonsingular, the linear system Mz + q ≥ 0, z ≥ 0 is pos (−C−M⊤(B))-dual integral.
By using the proof of Theorem 4.2 with this fact instead of Lemma 4.10, we can show that any basic
solution to LCP(M, q, r) is integral for any integral vector r. Note that the proof of Theorem 4.2
considers only bases B such that MBB is nonsingular. Therefore, any basic solution to LCP (M, q)
is integral, which means that M belongs to PU by Theorem 2.5.
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