MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Fast Alternating Least Squares Method

for Third-Order Tensors Based on
a Compression Procedure

Tomonori MURAKOSHI and Takayasu MATSUO

METR 201426 October 2014

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.

A Fast Alternating Least Squares Method

for Third-Order Tensors Based on
a Compression Procedure

Tomonori MURAKOSHI and Takayasu MATSUO

Department of Mathematical Informatics
Graduate School of Information Science and Technology
The University of Tokyo

{tomonori murakoshi, matsuo}@mist.i.u-tokyo.ac.jp

October, 2014

Abstract

The alternating least squares (ALS) method is frequently used for
the computation of the canonical polyadic decomposition (CPD) of
tensors. It generally gives accurate solutions, but demands much time.
A strong alternative to this is the alternating slice-wise diagonalization
(ASD) method. It limits its targets only to third-order tensors, and
in exchange for this restriction, it fully utilizes a compression tech-
nique based on matrix singular value decomposition and consequently
achieves high efficiency. In this paper, we propose a new simple algo-
rithm, Reduced ALS, which lies somewhere between ALS and ASD; it
employs a similar compression procedure to ASD, but applies it more
directly to ALS. Numerical experiments show that Reduced ALS runs
as fast as ASD, avoiding instability ASD sometimes exhibits.

1 Introduction

Tensors (i.e. data arrays with multiple indices) are frequently used in a wide
range of applications such as computer vision, signal processing, and data
mining. There, often “tensor decompositions” are utilized to analyze and/or
compress tensors.

One of the tensor decompositions is the canonical polyadic decomposi-
tion (CPD; also known as CANDECOMP /PARAFAC), first proposed in [9]
(see also [11] and the references therein). Due to its theoretical and practi-
cal importance, there have been vast amount of studies on the computation
of CPD. The alternating least squares (ALS) method, proposed in [3, 7],
is the oldest and still strongest algorithm for computing CPD. It generally

enjoys high accuracy, but demands many iterations to converge. To over-
come this difficulty, many variants of ALS (modification of the algorithm
itself, or combinations with other techniques for speeding up) have been
proposed (see, for example, [6, 12, 14, 4] and their references). Other itera-
tive methods for CPD includes, for example, [1] which employed nonlinear
least squares approach. Recently, direct methods utilizing matrix singular
value decomposition (SVD) have been also studied (see, for example, [5]).

In this paper, we focus on the alternating slice-wise diagonalization
(ASD) method by [10], which is an efficient variant of ALS. It limits its
targets only to third-order tensors, which still cover many practical applica-
tions, and then incorporates a compression technique based on SVD. Thanks
to this, the sizes of the matrices appearing in the iterative process are greatly
reduced, and the overall computational complexity is decreased. In several
review papers, the practical efficiency of ASD was confirmed [6, 14]. It was
also pointed out, however, that sometimes ASD exhibited instability and
provided unacceptable results.

The goal of this paper is to deliver a new algorithm which lies some-
where between ALS and ASD. There, the essential part of the compression
technique in ASD is extracted, and then more simply applied to ALS. The
new, simple algorithm is confirmed to work as well as ASD by numerical
experiments, and interestingly, sometimes avoid the instability that ASD
suffers.

We define T € RI*/XK a5 a real I x J x K tensor. The frontal slices
of T are K matrices T1,...,Tx. Let @1,...,zr € R, y,,... . yp € RY,

z1,...,2r € RE be column real vectors. Then CPD is expressed as
R
T~ Zazroyrozr, (xoyoz)jr = xyjz. (1)
r=1

Determining the “exact” rank, the minimum R which realizes (1) with strict
equality, is NP-hard [8]. In practice, the expression (1) is used in such a
way that we first fix a small R, and seek for x,,y, and z, that satisfy
the equality as good as possible. In what follows, we suppose R < I,J,
following ASD, with the application to the low-rank approximation of large
third-order tensors in mind.

2 Existing works

2.1 ALS

Let X =(x1--xRr), Y = (Y1 Yp), Z=(21---2r) be I xR, J X R, and
K x R matrices respectively. The idea of ALS is to solve the least squares

problem:

B 2
. 2
Xr,nllfr,lZ T - ;xr oy, oz , [[Tl= Zk (tij)”
- 2¥8
In this paper, by || - || we mean the vector 2-norm, or the matrix/tensor

Frobenius norms depending on its context. If Y and Z are fixed, this
problem is equivalent to

2

n}i(nHT(l) —X(Z@Y)T’ , 2)

where T'(,y (n = 1,2,3) is the mode-n matricization of 7, and “©” is the
matrix Khatri-Rao product (see [11]). At this point, Ty is just an I x JK
matrix, and Z © Y is a JK x R matrix. Then the optimal solution of (2)
can be easily found to be

X=Tyl(ZoY) =Ty (ZoY)(Z"Z2+Y YY), (3)

where T is the Moore—Penrose inverse, and “x” is the Hadamard product.
Similarly, Y (fixing X and Z) and Z (fixing X and Y') can be updated.

The above procedure, incorporated with a balancing process of the sizes
of | X, []Y]|, and || Z||, can be summarized as follows.

1. Update X, Y, and Z in turn.
2. Calculate A\, = ||z |||y, ||llz+]] (r=1,...,R).

Normalize the columns of X, Y, and Z.

Ll

Multiply ., y,., and z, by +/\, respectively.
5. Repeat 1-4.

ALS monotonically reduces the squared error in each iteration, and even-
tually provides an accurate decomposition. Numerical examples in [6, 14]
confirm this, but at the same time reveal that ALS requires many itera-
tions. Moreover, ALS involves calculations with large matrices; recall that
the sizes of T'(;) and Z ©Y in (3) are I x JK and JK x R, which can
be huge for large I,J. In this way, ALS does not fit practical applications
which demand speed rather than accuracy.

2.2 ASD

ASD focuses on the fact that third-order tensors can be viewed as a collection
of matrices, by slicing. Then it utilizes a standard compression procedure
to the sliced matrices. By this compression, the matrices appearing in the

iterative process are greatly simplified, and in fact, the numerical examples
in [6, 14] confirm the efficiency of ASD.

2
Let L = ‘T—Zleazroyrozr
squared error is transformed as follows:

K R
L= ZZ HTk — 2k TY,

k=1r=1

be the squared error. First, the

2 K 2
-y HTk — Xdiag(z(k))YTH , (4
k=1

where z(;) denotes the k-th row vector of Z. Next, supposing we can find
such matrices P (size I x R) and Q (J x R) that satisfy P' X = I and
Y 'Q = Iy, we modify the expression in (4) as follows.

K
2 2 2
LzE:HPTTkQ—diag(z(k))H +>\HPTX—IRH +AHYTQ—IRH .
k=1

(5)
The latter two terms are the penalty terms enforcing the existence of P and
Q;)\ > 0 is the strength of the penalties.

Finally, we introduce a compression procedure. Let U, V be the I x R
and J X R matrices whose column vectors are the R left singular vectors
of Z§=1 T, T, and Zszl T} T}, respectively. Then we consider the com-
pressed expressions using U and V: X = UA,Y = VB, P = UG,
Q =VH, and T, = U'T,V. There, A,B,G,H, and T}, are R x R
matrices, which are much smaller than XY, P, Q, and T, (recall the as-
sumption R < I,J). Note that such matrices do not necessarily exist, and
the “compression” is an approximation. Substituting the compressed ex-
pressions into (5), we obtain a new objective function, Lgp, involving only
smaller matrices:

K
L~ Lsp =Y ||G'TH —diag(z()|*+ |G A—Ig|*+\|B"H—1Ig|’.
k=1
ASD updates A, B, Z, G, and H, employing Lgp instead of L. Due to
the penalty terms, the updates are not as easy as ALS; it instead considers
the derivatives of Lgp. For example, the update of A is realized based on
the condition 0Lgp/0A = 0. In this sense, ASD does not necessarily strictly
minimizes the objective function Lgp, and accordingly, the original error L.
In fact, in some preliminary numerical experiments, we observed that the
value of Lgp could sometimes go up, and also that the behaviors of Lgp and
L did not necessarily agree. The reason of the occasional instability of ASD
can be attributed to these natures.

3 Proposed Method

Based on the above observation, we here propose a simpler approach. Our
strategy is summarized as follows.

I. We start with the same matrix form (4)
(thus we limit ourselves to third-order tensors).

II. We employ a similar compression procedure to ASD.

III. But we try to keep the objective function as close as possible to the
original L.

The resulting algorithm, which we call Reduced ALS, is expected to be as
fast as ASD, and to have a better stability due to the third requirement.

We commence by substituting the compressed expressions into (4) di-
rectly. Note that T is approximated as Ty =~ uT,Vv' =uUu'T,VV'.
In this way, the approximation of L, denoted as Lge, is expressed as

L~ Ly = i HUTkVT - UAdiag(z(k))BTVTHQ . (6)
k=1

Next, we remove U and V' from (6) in order to reduce our algorithm
to ALS. It is easy to see that for an R x M matrix M = (myq,...,myy), it
holds

M
oM =3 |[@m) U = a2 7)
=1

This is also true for V. Based on these observations, we see, by appropriately
considering transposes,

Lie = f: HUTkVT _ UAdiag(z(k))BTVTH2
’f;l 2 K 2
= Z HVTk - VBdiag(Z(k))ATH = Z HTk - Adiag(Z(k))BTH .
k=1 k=1

Then Lge can be rewritten back to the original form

K R 9
Z HTk - Adiaug(z(k))BTH2 = H'i'— Z arob, oz,
=1 r=1

This implies that we have reduced the size of the original problem, and we
can simply apply the standard ALS to Lge. There, ALS decomposes T
(compressed T) into A (compressed X), B (compressed Y'), and Z. Then
we can obtain the desired decomposition in terms of 7 by X = U A, and so
on.

4 Numerical experiments

Before starting experiments, we further simplify the calculation of U and
V to reduce the overall computational complexity; we calculate 25:1 Ty
and let U (V') be the matrix whose column vectors are its R left (right)
singular vectors. If the common singular matrices Ugy and Vg exist for
T,,...,Tk simultaneously (i.e., T = UfunZ'ng;H, k=1,...,K), U and
V defined above coincide with the original U and V in section 2.2.

In order to set each stopping criterion, we considered L/||T||? for ALS,
Lsp/||T]? for ASD, and Lge/||T||? for Reduced ALS. Then ALS, ASD, and
Reduced ALS were stopped when the update of each value fell below 1073.

Initial matrices of A, B, and Z were generated by uniform random
numbers on [0,1]. After U and V were calculated using a given tensor T,
weset X =UA,Y =VB,G=(A")"" and H = (B")"!. The strength A
in ASD was set to 1073 following [6, 14, 10].

Every experiment was conducted on a laptop computer with a quad-core
2.4GHz Intel Core i7-3630QM processor and 16GB memory. The operat-
ing system was Windows 7 Home Premium 64bit, and MATLAB 8.1.0.604
(R2013a) was used. We employed Matlab tensor toolbox 2.5 produced by [2],
and ASD was implemented following [6].

4.1 Generated data

We used the generated random tensors proposed in [14] (this was also used
in [4]). Parameters were set to I = J = K = 500, R = 10, [= 5, and
lo = 10. Ten trials were run changing both a random tensor 7 and initial
matrices, for ¢ = 0.5, and ¢ = 0.9. On every trial, we measured the time
to converge, the number of iterations, and the relative error in the obtained
CPD.

Table 1: The results for generated data.

c=0.5 time (s) | relative errors | iterations
ALS 42.7£8.47 | 0.153 £0.0109 | 13.5 £2.76
ASD 3.9+£0.20 | 0.296 £0.2149 | 6.9+2.13
Re ALS | 4.0+0.20 | 0.220 +£0.0396 | 11.7 £ 3.16

c=0.9 time (s) | relative errors | iterations
ALS 9.9£0.16 | 0.146 4 0.0001 | 3.0+0.00
ASD 3.8+0.17 | 0.171 £0.0505 | 5.2+£1.99
Re ALS | 3.6+0.06 | 0.169 £0.0506 | 2.0+ 0.00

Table 1 shows the results. Each average and standard deviation on 10
trials are described. First, we see that ASD and Reduced ALS ran faster

than ALS in both cases (¢ = 0.5,0.9); in particular, Reduced ALS ran as
fast as ASD as expected. The compression procedure commonly employed
in ASD and Reduced ALS certainly improved the efficiency. Second, ALS
achieved the best accuracy. The other two algorithms provided worse ac-
curacies, which should be attributed to the introduction of the compression
procedure. The difference was, however, not quite big and acceptable. We
also observe that Reduced ALS was slightly superior to ASD; there is no
clear theoretical explanation for this, but it is in some sense likely since
in Reduced ALS, many approximation processes in ASD are dropped. In
the case of ¢ = 0.5, Reduced ALS gave smaller deviation than ASD. This
confirms the instability of ASD mentioned above.

4.2 Real data

Next we consider more realistic data; we employ the ORL face database [13].

First, we prepared two 112 x 92 x 10 tensors consisting of 10 pictures
in the database (the set in the folders “s1” and “s11”). Figure 1 shows the
pictures compressed with CPD created by ALS, ASD, and Reduced ALS
(all R = 72). Reduced ALS gave clear pictures in the same level as ALS.
The compression ratio of the data was % ~ 6.687. On the other
hand, ASD failed to catch a proper face picture; in fact, even after 10,000
iterations (i.e. even if we continue the iteration after the stopping criterion),
the pictures by ASD were still blurred. This points out another qualitative

instability of ASD.

Figure 1: The results for the picture data (K = 10). From left: the original,
ALS, Reduced ALS, and ASD results. The first row corresponds to one of
the dataset 1, and the second to one of the dataset 2.

Next, we considered a 112 x 92 x 110 tensor consisting of 110 pictures (in
the folders “s1”, “s2”, ..., and “s11”). Figure 2 shows the results by ALS
(R =72), Reduced ALS (R = 72), and ALS (R = 500). When R = 72, the
compression ratio was quite high, about 50.13. The pictures were, however,

so blurred that only the shape of the faces could be identified. In our
experiment, we observed that for example R = 500 was necessary to recover
good pictures (see the ALS with R = 500 column). Even for this big R, the
compression ratio was 7.21, and thus CPD can make sense. This example
illustrates the limitation of Reduced ALS (and ASD); in some cases, we need
big R in CPD. In this example, R = 500 for I = 112 and J = 92. However,
Reduced ALS (and ASD) intrinsically demands the assumption R < I, J for
the compression being able to work, and the algorithm ceases to work when
the assumption is broken.

Figure 2: The result for the picture data (K = 110). From left: the original,
ALS (R = 72), Reduced ALS (R = 72), and ALS (R = 500). Only four
pieces of 110 pictures are shown here.

5 Concluding Remarks

We proposed Reduced ALS that utilizes the compression procedure of ASD
more directly to ALS. Although the idea is quite simple, numerical experi-
ments showed that Reduced ALS had the expected property: high efficiency
and accuracy at a same time. It has the limitation, however, that it can
work only for third-order tensors and its CPD with the small rank R < I, J.

Our future works include the application of Reduced ALS to various real
data, and comparison with other CPD algorithms. It should be also interest-
ing to theoretically investigate the mathematical structure of the optimiza-
tion problems with respect to L and Lre; we expect these two problems are
not so far apart, but its theoretical explanation is hoped. Finally, at this
moment, it is left open if the compression technique employed in ASD and
Reduced ALS can be extended to fourth- or higher-order tensors.

6 Acknowledgments

We really appreciate Prof. Hans. De Sterck, the author of [4], who provided
us with some codes, and also many helpful advices.

References

[1] E. Acar, D. M. Dunlavy and T. G. Kolda. A scalable optimization
approach for fitting canonical tensor decompositions, J. Chemometrics,
25 (2011), 67-86.

[2] B. W. Bader and T. G. Kolda. Matlab tensor toolbox version
2.5, http://www.sandia.gov/~tgkolda/TensorToolbox/
index-2.5.html, released in 2012.

[3] J. D. Carroll and J. J. Chang. Analysis of individual differences in mul-
tidimensional scaling via an N-way generalization of “Eckart—Young”
decomposition, Psychometrika, 35 (1970), 283-319.

[4] H. De Sterck. A nonlinear GMRES optimization algorithm for canonical
tensor decomposition, SIAM J. Sci. Comput., 34 (2012), A1351-A1379.

[5] I. Domanov and L. De Lathauwer. Canonical polyadic decomposition of
third-order tensors: reduction to generalized eigenvalue decomposition,
SIAM J. Matrix. Anal. Appl., 35 (2014), 636—660.

[6] N. M. Faber, R. Bro and P. K. Hopke. Recent developments in CAN-
DECOMP/PARAFAC algorithms: a critical review, Chemometr. Intell.
Lab. Sys., 65 (2003), 119-137.

[7] R. A. Harshman. Foundations of the PARAFAC procedure: models
and conditions for an “explanatory” multimodal factor analysis, UCLA
Working Papers in Phonetics, 16 (1970), 1-84.

[8] J. Hastad. Tensor rank is NP-complete, J. Algorithms, 11 (1990), 644
654.

[9]

[10]

[11]

[12]

[13]

[14]

F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of
products, J. Math. Phys., 6 (1927), 164-189.

J. Jiang, H. Wu, Y. Li and R. Yu. Three-way data resolution by alter-
nating slice-wise diagonalization (ASD) method, J. Chemometrics, 14
(2000), 15-36.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications,
STAM Review, 51 (2009), 455-500.

N. Li, S. Kindermann and C. Navasca. Some convergence results on the
regularized alternating least-squares method for tensor decomposition,
Linear Algebra Appl., 438 (2013), 796-812.

Olivetti Research Laboratory. The ORL face database,
http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html.

G. Tomasi and R. Bro. A comparison of algorithms for fitting the
PARAFAC model, Comput. Stat. Data. Anal., 50 (2006), 1700-1734.

10

