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Abstract

In deign practice it is often that the structural components are selected from among easily

available discrete candidates and a number of different candidates used in a structure is restricted

to be small. Presented in this paper is a truss topology optimization method for finding the

minimum compliance design in which only a limited number of different cross-section sizes are

employed. The member cross-sectional areas are considered either discrete design variables

that can take only predetermined values or continuous design variables. In both cases it is

shown that the compliance minimization problem can be formulated as a mixed-integer second-

order cone programming problem. The global optimal solution of this optimization problem is

then computed by using an existing solver based on a branch-and-cut algorithm. Numerical

experiments are performed to show that the proposed approach is applicable to moderately

large-scale problems.

Keywords
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1 Introduction

This paper attempts to shed new light on a classical problem in the truss topology optimization.

We consider the minimization problem of the compliance under the volume constraint. Within the

framework of the ground structure approach, the member cross-sectional areas are considered the

continuous design variables. Then we deal with an optimization problem for finding the stiffest

truss design that consists of only a limited number of different member sizes (cross-sectional areas).

It is known that the minimum compliance problem of trusses with continuous design variables

can be recast as a second-order cone programming (SOCP) problem. This SOCP problem plays

a fundamental role in formulating the optimization problems proposed in this paper. Based upon

the minimum principle of complementary energy for the equilibrium analysis, the SOCP problem is

formulated in terms of the member cross-sectional areas, axial forces, and the complementary strain

energies. The second-order cone constraints stem from the definition of the complementary strain

†Address: Department of Mathematical Informatics, Graduate School of Information Science and Technology,

University of Tokyo, Tokyo 113-8656, Japan. E-mail: kanno@mist.i.u-tokyo.ac.jp. Phone: +81-3-5841-6906. Fax:

+81-3-5841-6886.
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energy stored in each member. SOCP is a class of convex optimization and its optimal solution can

be computed efficiently with a primal-dual interior-point method [2, 4].

Formulations based upon the minimum principle of complementary energy have sometimes been

used in studies of compliance minimization problems of continua [3, 9, 21]. This type of formulation

for trusses is due to Bendsøe et al. [8]. There, the problem was not recast as an SOCP problem.

Moreover, one should use positive lower bounds for the member cross-sectional areas, because the

complementary strain energy is inversely proportional to the member cross-sectional area. The

SOCP formulation, however, does not require the positive lower bound; indeed, the cross-sectional

areas are allowed to become equal to zeros in the optimization process. This SOCP formulation,

briefly recalled in section 2.2 of this paper, can be found in Makrodimopoulos et al. [26]. The dual

problem of this SOCP problem may be regarded as a type of minimum compliance problems based

upon the minimum principle of total potential energy. A problem of this type can be found in Jarre

et al. [20]; see also Ben-Tal and Bendsøe [6].

Optimization with the continuous design variables often results in a truss design which is not

practical in several respects. The member cross-sectional areas of the optimal design can possibly

take all different values, which is not acceptable for commercial and manufacturability reasons.

Also, existence of too thin members is not accepted. Therefore, formulations and algorithms for

truss optimization with discrete design variables have been studied extensively; see, e.g., [25] for a

survey on early contributions. One approach is to make use of the continuous optimal solution as a

basis for a discrete design. A simple method is rounding each cross-sectional area of the continuous

optimal solution to a near discrete predetermined candidate value. Several rounding strategies have

been proposed in, e.g., [16, 17, 31, 32]. In general optimality and/or feasibility are not guaranteed by

such a heuristic method. Another approach is to directly deal with a discrete optimization problem

based upon mixed-integer programming (MIP) methodology. Particularly, mixed-integer nonlinear

programming (MINLP) formulations have been studied extensively. Early contributions include the

algorithms in [12, 28], which solve a sequence of subproblems that are formulated as mixed-integer

linear programming (MILP) problems. Schmit and Fleury [32] proposed a dual method to deal with

a separable approximation of the original MINLP problem. The methods [12, 28, 32] cited above

do not guarantee global optimality. For truss optimization problems with discrete cross-sectional

areas, MINLP approaches with the guaranteed global optimality have been developed in [1, 13, 34].

Also, Stolpe and Kawamoto [35] proposed an MINLP approach considering geometrical nonlinearity

in order to solve a design problem of link mechanisms. An outer approximation method for MINLP

has been proposed in [23] for solving a certain class of topology optimization problems. An MILP

formulation for truss topology optimization under the stress constraints is due to Rasmussen and

Stolpe [29]. This formulation, briefly recalled in section 2.3 of this paper, follows naturally from

the MILP formulation developed in [36] for continuum-based topology optimization under the stress

constraints. Bollapragada et al. [11] proposed a mixed-logical linear programming approach for truss

optimization under the displacement constraints. This approach uses a small positive lower bound

for the member cross-sectional areas and considers the elongation constraints for the all members

included in the ground structure. Therefore, truss topology is not optimized in a strict sense. It

should be clear that, in the literature [1, 11–13, 16, 17, 28, 29, 31, 32, 34] cited above, the set of

discrete values available for design variables is predetermined.
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MINLP has also been applied to truss optimization with continuous member cross-sectional

areas. The methods in [27, 30], however, do not guarantee global optimality.

If a number of available discrete sizes and/or a number of members in a ground structure

are large, then it is usual that global optimization methods based upon enumeration of solutions

consume a lot of time. On the other hand, if the available discrete sizes are closely spaced, it

sometimes happens that a solution found by a method without guaranteed global optimality, e.g.,

rounding the continuous optimal solution, is near optimal. However, the obtained discrete design

may use a large number of different available sizes. As pointed out by Templeman [37], such a

design has several disadvantages from a practical point of view and a truss design that uses only a

small number of different sizes would be much more practical. If a quite small number of available

discrete sizes is postulated, then the optimal solution could be expected to use only a limited number

of different sizes. For such a problem, rounding the continuous optimal solution is often far less

efficient [37] and a global optimization approach could be applicable, provided that the number of

design variables is moderately small. However, the optimal solution highly depends on the set of

predetermined available discrete sizes; this dependence is concretely shown through the numerical

experiments presented in section 5.1. Therefore, it is not clear how one can choose values of widely-

spaced sizes, in advance, to assure high quality of mechanical performance of the discrete optimal

solution.

This paper develops a mixed-integer second-order cone programming (MISOCP) approach that

attempts to solve these issues. Namely, to find a truss design that has high performance as far

as possible and uses only a small number of different sizes, we directly address an upper bound

constraint for the number of different cross-sectional areas. The member cross-sectional areas can be

considered either continuous design variables or to be selected among (closely-spaced, if necessary)

predetermined available sizes. MISOCP1 is a class of optimization problems in the form of

min f⊤x+ r⊤y (1a)

s. t. ∥Aix+Giy + bi∥ ≤ d⊤
i x+ e⊤i y + hi, i = 1, . . . , k, (1b)

x ∈ {0, 1}n, (1c)

y ∈ Rp. (1d)

Here, x and y are variables to be optimized, Ai ∈ Rmi×n and Gi ∈ Rmi×p (i = 1, . . . , k) are constant

matrices, f ∈ Rn, r ∈ Rp, bi ∈ Rmi , di ∈ Rn, and ei ∈ Rp (i = 1, . . . , k) are constant vectors, hi ∈ R
(i = 1, . . . , k) are constant scalars, and ∥Aix +Giy + bi∥ denotes the standard Euclidean norm of

Aix+Giy+ bi, i.e., ∥v∥ = (v⊤v)1/2 for vector v. If we replace binary constraints, (1c), with linear

constraints, 0 ≤ xj ≤ 1 (j = 1, . . . , n), then the resulting relaxation problem is SOCP. By virtue

of this property, MISOCP (1) can be solved globally by using, e.g., a branch-and-bound method;

see, e.g., [5, 14, 38] for more account. For solving MISOCP globally, several well-developed software

packages, e.g., CPLEX [19] and Gurobi Optimizer [18], are available. In the field of structural

optimization, MISOCP has recently been applied to a damper placement optimization problem for

supplemental damping of a building structure [22]. The MISOCP formulation proposed in this

paper is based upon the SOCP formulation for the continuous compliance optimization of trusses

1Also called mixed-integer conic quadratic programming.
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mentioned above. Indeed, the former can be viewed as a natural extension of the latter in the sense

that the continuous relaxation of the former coincides with the latter.

Recently, Lavan and Amir [24] have proposed an MINLP formulation for a closely related struc-

tural optimization problem. They considered an optimization problem of the damping coefficients

of viscous dampers that are used for seismic retrofitting of a building and addressed the upper

bound constraint for the number of different damper sizes. Let xe denote the damping coefficient

of damper e and suppose that the upper bound is two. By making use of binary variables se1 and

se2, this constraint can be written as

xe = se1[(1− se2)y1 + se2y2], ∀e, (2a)

se1, se2 ∈ {0, 1} ∀e, (2b)

where y1, y2 ∈ R are additional variables representing the adopted values of the damping coefficients.

In the problem setting considered in this paper, xe is regarded as the cross-sectional area of truss

member e. However, due to nonconvexity of constraint (2a), it seems to be difficult to develop

an algorithm with guaranteed global optimality; formulation (2) yields an MINLP problem, the

continuous relaxation of which is a nonconvex optimization problem. Formulation (2) is originated

from the one for multi-phase material topology optimization of continua [15, 33]. By using the idea

there, the formulation can be extended to any value of the upper bound; for instance, if the upper

bound for different design variables is three, then we obtain

xe = se1[(1− se2)y1 + se2(1− se3)y2 + se2se3y3], ∀e,

se1, se2, se3 ∈ {0, 1}, ∀e.

This case includes a higher-order term, se1se2se3y3, than (2). Thus difficulty of the optimization

problem depends on the upper bound for different design variables. In contrast, with the formula-

tion developed in this paper, the compliance optimization problem can be formulated as MISOCP

irrespective of the upper bound. Again, a remarkable advantage of the MISOCP approach is guar-

anteed convergence to a global optimal solution and no need for developing algorithms specialized

for specific optimization problems.

The paper is organized as follows. Section 2 recalls the two existing formulations, the SOCP

formulation of the compliance optimization with continuous design variables and the MILP formu-

lation of that with discrete design variables. Section 3 presents the MISOCP formulation for the

compliance optimization with the upper bound constraint on the number of different member cross-

sectional areas. Section 4 explores some practical constraints on the member cross-sectional areas

that can be considered within the framework of MISOCP. Section 5 presents numerical experiments.

Conclusions are drawn in section 6.

A few words regarding notation. All vectors are assumed to be column vectors. The (m + n)-

dimensional column vector (z⊤,x⊤)⊤ consisting of z ∈ Rm and x ∈ Rn is often written simply as

(z,x). For a finite set S, we use |S| to denote the cardinality of S, i.e., the number of (different)

elements in S. For instance, if s1 = s2 = 1, s3 = 3, and s4 = s5 = 4, then |{si | i = 1, . . . , 5}| = 3.

For a, b ∈ R with a < b, we denote by [a, b] and ]a, b[ the closed and open intervals between a and
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b, respectively, i.e.,

[a, b] = {x ∈ R | a ≤ x ≤ b},

]a, b[ = {x ∈ R | a < x < b}.

For x ∈ R, we use ⌊x⌋ to denote the largest integer that is not greater than x.

2 Review of exiting formulations for compliance optimization

This section summarizes fundamentals of the compliance optimization of truss structures. Sec-

tion 2.1 defines this optimization problem. Section 2.2 recalls its SOCP formulation, which serves

as a basis for the MISOCP formulations developed in sections 3 and 4. As another relevant problem,

section 2.3 recalls the MILP formulation for the problem in which each cross-sectional area is chosen

among finitely many predetermined available values.

2.1 Compliance minimization problem

Following the conventional ground structure approach, consider a truss consisting of many candidate

members connected by nodes. Throughout the paper we assume small deformation and linear

elasticity. Let m and d denote the number of members and the number of degrees of freedom of the

displacements, respectively. We use xe to denote the cross-sectional area of member e and write

x = (x1, . . . , xm)⊤ which is the vector of design variables to be optimized.

Let u ∈ Rd and ce ∈ R denote the vector of displacements and the elongation of member e,

respectively. The compatibility relation between u and ce is written as

ce = b⊤e u, e = 1, . . . ,m, (3)

where be ∈ Rd is a constant vector. The stiffness matrix, denoted K(x) ∈ Rd×d, is given by

K(x) =
m∑
e=1

Exe
le

beb
⊤
e , (4)

where le is the undeformed length of member e and E is Young’s modulus. Let f ∈ Rd denote the

vector of external forces. The compliance, denoted π(x) ∈ R ∪ {+∞}, is then defined by

π(x) = sup{2f⊤u− u⊤K(x)u | u ∈ Rd}. (5)

Let V̄ and xmax denote the specified upper bounds for the structural volume and for the member

cross-sectional area, respectively. The compliance minimization problem is formulated as

min π(x) (6a)

s. t.

m∑
e=1

lexe ≤ V̄ , (6b)

0 ≤ xe ≤ xmax, e = 1, . . . ,m. (6c)
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2.2 SOCP formulation for continuous design variables

It is known that problem (6) can be recast as an SOCP problem; see, e.g., Makrodimopoulos et al.

[26]. The SOCP problem is formulated in variables xe, we, and qe (e = 1, . . . ,m) as

min 2

m∑
e=1

we (7a)

s. t. we + xe ≥

∥∥∥∥∥
[

we − xe√
2le/Eqe

]∥∥∥∥∥ , e = 1, . . . ,m, (7b)

m∑
e=1

qebe = f , (7c)

m∑
e=1

lexe ≤ V̄ , (7d)

0 ≤ xe ≤ xmax, e = 1, . . . ,m. (7e)

Here, for each e = 1, . . . ,m, the inequality constraint in (7b) is a second-order cone constraint in

terms of we + xe, we − xe, and
√

2le/Eqe. Variables we and qe correspond to the complementary

strain energy and the axial force, respectively, of member e.

Details of derivation of problem (7) appear in appendix A.

2.3 MILP formulation for discrete design variables

We next suppose that the cross-sectional area of each member is to be chosen among some prede-

termined candidate values. That is, we add the constraint

xe ∈ {0, ξ̄1, . . . , ξ̄p}, e = 1, . . . ,m. (8)

to problem (6), where ξ̄1, . . . , ξ̄p are predetermined positive constants.

It is known that this optimization problem can be reformulated as an MILP problem; see e.g.,

[29]. For member e, we introduce binary variables, τe1, . . . , τep, to indicate the adopted candidate

value for xe, in a manner such that τei = 1 means xe = ξ̄i. Constraint (8) can be rewritten as

xe =

p∑
i=1

ξ̄iτei,

p∑
i=1

τei ≤ 1,

τei ∈ {0, 1}, i = 1, . . . , p.

By using this expression, the optimization problem can be reformulated as the following MILP
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problem:

min f⊤u (9a)

s. t.

m∑
e=1

p∑
i=1

Eξ̄i
le

χeibe = f , (9b)

|χei − b⊤e u| ≤ M(1− τei), e = 1, . . . ,m; i = 1, . . . , p, (9c)

|χei| ≤ Mτei, e = 1, . . . ,m; i = 1, . . . , p, (9d)

m∑
e=1

le

( p∑
i=1

ξ̄iτei

)
≤ V̄ , (9e)

p∑
i=1

τei ≤ 1, e = 1, . . . ,m, (9f)

τei ∈ {0, 1}, e = 1, . . . ,m; i = 1, . . . , p. (9g)

Here, M ≫ 0 is a sufficiently large constant. Variables to be optimized are u, χei, and τei (e =

1, . . . ,m; i = 1, . . . , p).

3 Standardization constraints

This section presents MISOCP formulations for truss topology optimization with the upper bound

constraint for the number of different cross-sectional areas. Section 3.1 deals with a simple case in

which a truss should consist of members with uniform cross-sectional areas. This result is generalized

in section 3.2 for the constraint that n different cross-sectional areas can be used in a truss design.

Section 3.3 shows a scale-free property of the optimization problems in sections 3.1 and 3.2.

3.1 Uniformity constraint on member cross-sections

In this section we attempt to find a truss design that minimizes the compliance when the truss

consists of members that have the same cross-sectional areas. The optimal value of the unified

cross-sectional area is explored from a set [0, xmax], where xmax is a specified upper bound. This

topology optimization problem essentially consists of the following two factors:

• Determine whether each member has a positive cross-sectional area or vanishes;

• Determine the common value of cross-sectional areas for existing members.

The formulation developed below make use of m binary design variables for the former decision and

one continuous design variable for the latter decision.

The condition under consideration is satisfied if and only if there exists y ∈ [0, xmax] such that

x1, . . . , xm satisfy

xe ∈ {0, y}. (10)

We rewrite (10) with making use of binary variables te ∈ {0, 1} (e = 1, . . . ,m) that indicate existing

members. Namely, te = 0 means that member e vanishes, i.e., xe = 0, while te = 1 means member
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e exists, i.e., xe > 0. Then condition (10) can be expressed as

xe =

{
y if te = 1,

0 if te = 0.
(11)

In conjunction with xe ∈ [0, xmax] and y ∈ [0, xmax], we can restate (11) as

0 ≤ xe ≤ xmaxte,

|xe − y| ≤ xmax(1− te),

which are linear inequality constraints in terms of xe, y, and te.

The observation above can be stated formally as follows.

Proposition 3.1. Suppose 0 ≤ y ≤ xmax. Then xe satisfies

xe ∈ {0, y} (12)

if and only if there exist te satisfying

0 ≤ xe ≤ xmaxte, (13a)

|xe − y| ≤ xmax(1− te), (13b)

te ∈ {0, 1}. (13c)

Proof. Suppose te = 1 in (13c). Then (13a) and (13b) are reduced to

0 ≤ xe ≤ xmax,

|xe − y| ≤ 0,

which imply xe = y and hence (12) is satisfied. Conversely, if xe = y, then te = 1 satisfies (13).

Alternatively, suppose te = 0 in (13c). Then (13a) and (13b) are reduced to

0 ≤ xe ≤ 0,

|xe − y| ≤ xmax,

which are equivalent to xe = 0 and |y| ≤ xmax and hence (12) is satisfied. Conversely, if xe = 0,

then te = 0 satisfies (13).

Remark 3.2. Since too thin members are not allowed to present from a practical point of view,

the specified lower bound for the cross-sectional areas of existing members, i.e., the slenderness

constraint, are often considered. Let xmin (> 0) denote the specified lower bound. With the

slenderness constraint the member cross-sectional area is now required to satisfy

xe ∈ {0} ∪ [xmin, xmax].

The result in Proposition 3.1 can be extended to this case by replacing (13a) with

xminte ≤ xe ≤ xmaxte

for each e = 1, . . . ,m. ■
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We are now in position to present an MISOCP formulation for truss optimization with uniform

member cross-sectional areas. Recall that the conventional compliance optimization problem has

been formulated as SOCP problem (7). Application of Proposition 3.1 yields the following problem:

min 2
m∑
e=1

we (14a)

s. t. we + xe ≥

∥∥∥∥∥
[

we − xe√
2le/Eqe

]∥∥∥∥∥ , e = 1, . . . ,m, (14b)

m∑
e=1

qebe = f , (14c)

m∑
e=1

lexe ≤ V̄ , (14d)

0 ≤ xe ≤ xmaxte, e = 1, . . . ,m, (14e)

|xe − y| ≤ xmax(1− te), e = 1, . . . ,m, (14f)

te ∈ {0, 1}, e = 1, . . . ,m. (14g)

In this problem, xe, we, qe (e = 1, . . . ,m) and y are continuous design variables and te (e = 1, . . . ,m)

are binary design variables. At the optimal solution, y becomes equal to the unified value of the

cross-sectional areas of the existing members. Inequalities in (14b) are second-order cone constraints.

Constraints (14c), (14d), and (14e) are linear constrains. Inequalities in (14f) can be treated as

second-order cone constraints in the two-dimensional space or, alternatively, can be reduced to

linear inequality constraints as

−xmax(1− te) ≤ xe − y ≤ xmax(1− te).

Thus all the constraints other than (14g) are in the forms of linear or second-order cone constraints.

Also, the objective function is a linear function. Therefore, problem (14) is an MISOCP problem.

Remark 3.3. Problem (7) corresponds to a continuous relaxation of problem (14). To see this, we

show that for any x1, . . . , xm ∈ [0, xmax] there exist t1, . . . , tm ∈ [0, 1] and y satisfying (14e) and

(14f). Indeed, te = xe/x
max (e = 1, . . . ,m) and y = xmax satisfy these conditions. ■

3.2 Upper bound constraint on number of different cross-sections

Suppose that we adopt, not necessarily unique, but a limited number of different values for the

design variables. Let n denote the specified upper bound for the number of different cross-sectional

areas. Then the constraint restricting the variation of cross-sectional areas can be written as

|{xe | e = 1, . . . ,m} \ {0}| ≤ n. (15)

It is worth noting that (15) with n = 1 corresponds to the constraint studied in section 3.1.

Like the discussion in section 3.1, we formulate this condition as a system of linear inequalities

by making use of some 0-1 variables. The key to this reformulation is that the condition under

consideration is satisfied if and only if there exist y1, . . . , yn ∈ [0, xmax] such that x1, . . . , xm satisfy

xe ∈ {0, y1, . . . , yn}. (16)
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For member e, we introduce binary variables se1, . . . , sen ∈ {0, 1} to represent the relations

between xe and y1, . . . , yn. Let sej = 1 imply that cross-sectional area yj is used for member e, i.e.,

xe = yj ⇐ sej = 1. (17)

Also, se1 = · · · = sen = 0 implies that member e is removed, i.e.,

xe = 0 ⇐ se1 = · · · = sen = 0. (18)

Without loss of generality we can assume that at most one of se1, . . . , sen becomes 1, i.e.,

n∑
j=1

sej ≤ 1

Then, in conjunction with xe ∈ [0, xmax] and yj ∈ [0, xmax], condition (17) can be rewritten as

|xe − yj | ≤ xmax(1− sej),

while condition (18) can be rewritten as

0 ≤ xe ≤ xmax
n∑

j=1

sej .

The reformulation sketched above can be stated formally as follows.

Proposition 3.4. Suppose 0 ≤ yj ≤ xmax (j = 1, . . . , n). Then xe satisfies

xe ∈ {0, y1, . . . , yn}, (19)

if and only if there exist te and se1, . . . , sen satisfying

0 ≤ xe ≤ xmaxte, (20a)

|xe − yj | ≤ xmax(1− sej), j = 1, . . . , n, (20b)

te =

n∑
j=1

sej , (20c)

te ≤ 1, (20d)

sej ∈ {0, 1}, j = 1, . . . , n. (20e)

Proof. We begin with the “only if” part, i.e., suppose that (19) holds. If xe > 0, there exists j1 such

that xe = yj1 . Let te = 1, sej1 = 1, and sej = 0 (∀j ̸= j1) to see that (20) is satisfied. Alternatively,

if xe = 0, then te = 0 and se1 = · · · = sen = 0 satisfy (20).

Conversely, suppose that (20) is satisfied. Observe that (20c), (20d), and (20e) imply te ∈ {0, 1}.
If te = 0, then (20a) implies xe = 0. Moreover, (20c) and (20e) imply se1 = · · · = sen = 0. Therefore,

(20b) is reduced to |yj | ≤ xmax, which is a redundant constraint. Alternatively, if te = 1, then (20c)

and (20e) imply that there exists j2 such that sej2 = 1 and sej = 0 for all j ̸= j2. Then (20b) is

reduced to

|xe − yj2 | ≤ 0, (21)

|xe − yj | ≤ xmax, ∀j ̸= j2. (22)

Here, (21) is equivalent to xe = yj2 , which satisfies (22). Moreover, (20a) is reduced to 0 ≤ xe ≤
xmax, which is a redundant constraint. Thus (19) is satisfied.
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In (20) of Proposition 3.4, we can assume that y1, . . . , yn satisfy

xmax ≥ y1 ≥ · · · ≥ yn ≥ 0

without loss of generality. Accordingly, we see that the design optimization problem can be formu-

lated by adding the following constraints to problem (7):

0 ≤ xe ≤ xmaxte, e = 1, . . . ,m, (23a)

xmax ≥ y1 ≥ · · · ≥ yn ≥ 0, (23b)

|xe − yj | ≤ xmax(1− sej), e = 1, . . . ,m; j = 1, . . . , n, (23c)

te =

n∑
j=1

sej , e = 1, . . . ,m, (23d)

te ≤ 1, e = 1, . . . ,m, (23e)

sej ∈ {0, 1}, e = 1, . . . ,m; j = 1, . . . , n. (23f)

In (23), all the constraints other than (23f) are linear constraints. As a result, we obtain an MISOCP

problem, where the continuous variables are xe, we, qe (e = 1, . . . ,m), and y1, . . . , yn and binary

variables are te and se1, . . . , sen (e = 1, . . . ,m).

Remark 3.5. Problem (7) serves as a continuous relaxation of the MISOCP problem formulated

above. To see this, we show that for any xe ∈ [0, xmax] (e = 1, . . . ,m) there exist te, sej ∈ [0, 1]

and yj (e = 1, . . . ,m; j = 1, . . . , n) satisfying (23a)–(23e). For instance, let te = se1 = xe/x
max,

se2 = · · · = sen = 0 (e = 1, . . . ,m), and y1 = · · · = yn = xmax to see that these constraints are

satisfied. ■

Remark 3.6. In (23), constraints (23d), (23e), and (23f) imply that te can become either 0 or 1.

Therefore, we can replace (23e) by

te ∈ {0, 1}, e = 1, . . . ,m

without changing the feasible set. In the numerical experiments presented in section 5, t1, . . . , tm

are treated as 0-1 variables. ■

Remark 3.7. Variable te in (23) serves as a indicator of presence of member e. By using this

variable, various constraints on truss topology can be handled within the framework of MISOCP.

Two examples are forbiddance of the presence of mutually crossing members and restriction of the

number of members connected to a node. These constraints were studied also in, e.g., [13, 27, 34]

within the framework of mixed-integer programming. Suppose that members e and e′ cross each

other in the ground structure. Since te = 1 if and only if member e exists, forbiddance of crossing

means that that te and te′ cannot become one simultaneously. This condition can be written as

te + te′ ≤ 1. (24)

This constraint is considered in the numerical examples presented in section 5.3. Concerning the

degree of a node, i.e., the number of existing members connected to a node, the upper and lower

bound constraints are formulated as follows. Let ρmax denote the specified upper bound. For node
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v, we use E(v) to denote the set of members, in the ground structure, that are connected to node

v. Then the upper bound constraint can be written as∑
e∈E(v)

te ≤ ρmax.

The lower bound constraint requires to use an additional 0-1 variable that indicates whether node

v exists or vanishes; see [13, 34] for details. ■

Remark 3.8. Condition (20) in Proposition 3.4 (and constraint (23) also) allows yj = 0 and/or

yj = yj′ become feasible. It can be also the case that none of x1, . . . , xm take the value of yj > 0.

In such cases, the number of different cross-sectional areas used in the corresponding truss design

is less than n. Consider an example with m = 3 and n = 2. We begin with the case in which the

number of different cross-sectional areas is exactly n = 2. Suppose the member cross-sectional areas

are

x1 = 10, x2 = 6, x3 = 6.

Then yj and sej satisfying (20) are determined uniquely as

y1 = 10, s11 = 1, s21 = 0, s31 = 0,

y2 = 6, s12 = 0, s22 = 1, s32 = 1.

Next, suppose that the member cross-sectional areas are

x1 = 10, x2 = 10, x3 = 0,

i.e., the number of different cross-sectional areas is one (< n). We can see that there exist yj and

sej satisfying (23). Such yj and sej are not determined uniquely. First, when y1 = y2, we see that[
y1

y2

]
=

[
10

10

]
,

[
s11

s12

]
∈

{[
1

0

]
,

[
0

1

]}
,

[
s21

s22

]
∈

{[
1

0

]
,

[
0

1

]}
,

[
s31

s32

]
=

[
0

0

]

satisfy (23). Here, there is no distinguish between adopting y1 and adopting y2 for members e = 1

and 2. Second, when 0 < y2 < y1, (23) is satisfied with

y1 = 10, y2 ∈]0, 10[,

[
s11

s12

]
=

[
1

0

]
,

[
s21

s22

]
=

[
1

0

]
,

[
s31

s32

]
=

[
0

0

]
.

In this case, y2 is not used for any members. Finally, when y2 = 0, we see that[
y1

y2

]
=

[
10

0

]
,

[
s11

s12

]
=

[
1

0

]
,

[
s21

s22

]
=

[
1

0

]
,

[
s31

s32

]
∈

{[
0

1

]
,

[
0

0

]}

also satisfy (23). Here, s32 = 1 means that y2 = 0 is used for member 3. ■
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3.3 Scale-free property

This section establishes a scale-free property of optimal solutions of the problems proposed in

section 3.1 and section 3.2.

The optimization problem studied in section 3.1 is obtained by adding the constraint

xe ∈ {0, y}, e = 1, . . . ,m (25)

to the conventional compliance minimization problem, (6). Due to this constraint, any feasible

solution has uniform cross-sectional areas. On the other hand, a truss design with uniform cross-

sectional areas can be obtained by predetermining a cross-sectional area for existing members, like

the problems reviewed in section 2.3. This corresponds to solving the conventional problem (6) with

adding the constraint

xe ∈ {0, ξ̄1}, e = 1, . . . ,m, (26)

where ξ̄1 is a predetermined positive constant. However, imposing constraint (25) is essentially

different from imposing (26). That is, the optimal solution under constraint (25) has a scale-free

property as shown below, while this is not the case for the optimal solution under (26).

We recall the scale-free property of the conventional compliance minimization problem, (6). Let

x∗ denote the optimal solution of problem (6). Assume that the upper bound constraints for the

cross-sectional areas,

xe ≤ xmax, e = 1, . . . ,m,

are inactive at x∗. Let α be a constant satisfying

α ∈]0, xmax/max{x∗1, . . . , x∗m}]. (27)

It is worth noting that (27) implies αx∗e ≤ xmax (e = 1, . . . ,m). From the linearity of the stiffness

matrix on x, (4), and the definition of the compliance, (5), we obtain

π(αx∗) =
1

α
π(x∗). (28)

Suppose that V̄ in problem (6) is replaced by αV̄ . Then we see that αx∗ is optimal for the problem

after this scaling. Alternatively, if l1, . . . , lm are replaced by αl1, . . . , αlm, then x∗/α becomes

optimal. Therefore, the optimal solution needs only to be computed for one value of V̄ and one

geometric scale. The optimal solution corresponding to different values of these quantities can be

obtained by applying the scaling explained above. This scale-free property of the conventional

compliance optimization of trusses is well known; see, e.g., [8].

In contrast, the optimization problem with constraint (26) does not posses such a scale-free

property. This is because, if x∗ satisfies (26), αx∗ with α ̸= 1 does not satisfy (26). Similarly, even

if we predetermine multiple candidates as

xe ∈ {0, ξ̄1, . . . , ξ̄p}, e = 1, . . . ,m, (29)

αx∗ does not satisfy (29) in general and the problem lacks the scale-free property. For this reason,

when we impose constraint (26) or (29), the optimal truss topology depends on the values of V̄ and
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ξ̄1, . . . , ξ̄p. Concrete examples of this dependence appear in the numerical experiments presented in

section 5.1.

The scale-free property of the optimization problem with constraint (25) can be shown as follows.

Let (x∗, y∗) be an optimal solution. Then the volume constraint is active at x∗. Indeed, if it is

inactive, i.e., if

m∑
e=1

lex
∗
e < V̄

holds, then we see that (x̌, y̌) defined by

x̌ =
V̄∑m

e=1 lex
∗
e

x∗, y̌ =
V̄∑m

e=1 lex
∗
e

y∗ (30)

is feasible for the same problem and that (28) yields

π(x̌) =

∑m
e=1 lex

∗
e

V̄
π(x∗) < π(x∗).

Let α be a constant satisfying (27). Consider an optimization problem obtained by replacing V̄

with αV̄ . Then (αx∗, αy∗) is feasible for this problem; the structural volume of αx∗ is equal to αV̄ .

Suppose for contradiction that it is not optimal, i.e., that there exists a feasible solution, denoted

(x̌, y̌), satisfying

π(x̌) < π(αx∗) = π(x∗)/α.

This implies

π(x̌/α) = απ(x̌) < π(x∗). (31)

Since (x̌/α, y̌/α) is feasible for the original problem with upper bound V̄ , (31) means that (x∗, y∗)

is not optimal for the problem with V̄ , which completes the proof.

Similar consideration can be made for the case in which l1, . . . , lm are replaced by αl1, . . . , αlm.

Also, the optimization problem proposed in section 3.2 has the same scale-free property.

4 More constraints associated with standardization

This section explores three practical constraints on the cross-sectional areas that can be considered

together with the standardization constraint introduced in section 3. These constraints can be

handled within the framework of MISOCP.

4.1 Exploring optimal unit amount

Suppose, for simplicity, that a truss consists of members with only three different cross-sectional

areas, denoted y1, y2, and y3. Such a truss can actually be obtained as the optimal solution of the

MISOCP problem presented in section 3. From a practical point of view, however, not only the

number of different cross-sectional ares but also the values of yj could probably come into an issue.

Suppose, for instance, y3 ≃ 0. It is usual that very thin members are not accepted in practice.
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Therefore, one may need to round y3 toward zero and explore a truss design with only two different

cross-sectional areas. Alternatively, a practically acceptable lower bound would be given for y3

and a truss design with three different cross-sectional areas could be explored. On the other hand,

suppose that y3 is practically large but y1 ≃ y2. In this case, one might be able to explore a truss

design with two different cross-sections, probably an intermediate value of y1 and y2 and a value

close to y3. In short, when we use some different cross-sectional areas, it might be desired that the

values of used cross-sectional areas are distributed almost evenly. This section investigates such a

constraint.

As a remedy, we may determine the member cross-sectional areas such that there exists υ (> 0)

satisfying

xe ∈ {0, υ, 2υ, 3υ}, ∀e = 1, . . . ,m.

Then the cross-sectional areas used in the obtained truss design are, in a sense, equally distributed.

It should be clear that υ is considered a design variable. Therefore, the optimization problem retains

the scale-free property discussed in section 3.3.

In general, letting n denote the upper bound for the number of different cross-sectional areas,

we consider the following constraints:

xe ∈ {0, υ, 2υ, . . . , nυ}, ∀e = 1, . . . ,m. (32)

Here, υ can be interpreted as a unit value of cross-sectional area. In the optimization problem, we

explore the optimal unit value as well as the amount of area used for each member. It is worth

noting that all of υ, 2υ, . . . , nυ are not necessarily used in the optimal design.

Constraint (32) can be treated with the formulation proposed in section 3.2. Namely, constraint

(32) is satisfied if, in (23), y1, . . . , yn−1 are multiples of yn. Thus the optimization problem under

consideration can be formulated by adding the linear equality constraints,

y1/n = y2/(n− 1) = · · · = yn−1/2 = yn,

to the MISOCP problem formulated in section 3.2.

4.2 Selection from predetermined finitely many candidates

In this section we suppose that the cross-sectional area should be chosen from a set of finitely many

predetermined candidates. Due to manufacturing and commercial convenience, it is actually often

in practice that a member cross-section is chosen among available candidates.

Let ξ̄i > 0 (i = 1, . . . , p) denote the predetermined cross-sectional areas, where p is the number

of the available candidates. Then the member cross-sectional area is determined as

xe ∈ {0, ξ̄1, . . . , ξ̄p}. (33)

This constraint can be handled by making use of the concept of multiple-choice constraints in integer

programming. In the following we combine this constraint with the upper bound constraint for the

number of actually adopted candidates.
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In the same manner as [29, 34], we use 0-1 variables, τe1, . . . , τep, to represent the cross-sectional

area used for member e. Let τei = 1 if xe = ξ̄i, otherwise τei = 0. Then constraint (33) can be

rewritten as

xe =

p∑
i=1

ξ̄iτei, (34)

p∑
i=1

τei ≤ 1, (35)

τei ∈ {0, 1}, i = 1, . . . , p. (36)

Note that xe = 0 if and only if τe1 = · · · = τep = 0.

The constraint on the variation of cross-sectional areas can be formulated as follows. First,

suppose that the truss should consist of members with uniform cross-sectional areas. This means

that there exists y ∈ R such that x1, . . . , xm satisfy xe ∈ {0, y} and (33). Like section 3.1, we use

variable te such that te = 1 means xe > 0 and te = 0 means xe = 0. From (34), (35), and (36), te

can be represented in terms of τe1, . . . , τep as

te =

p∑
i=1

τei. (37)

It follows from Proposition 3.1 that the uniformity constraint is satisfied if and only if all the

members satisfy

|xe − y| ≤ xmax(1− te), (38)

where xmax = max{ξ̄1, . . . , ξ̄p}. The upshot is that the optimization problem under consideration

can be formulated as an MISOCP by adding constraints (34), (35), (36), (37), and (38) to problem

(7).

We next consider the case in which at most n different candidates are allowed to be used as

member cross-sectional areas. In the same manner as Proposition 3.4, we use continuous variables

y1, . . . , yn to denote the cross-sectional areas that are actually used in a truss design. For member

e, the selected cross-sectional area is represented by using 0-1 variables se1, . . . , sen so that sej = 1

means xe = yj . This condition can be rewritten as

|xe − yj | ≤ xmax(1− sej), j = 1, . . . , n. (39)

It should be clear that xe is subjected to constraints (34), (35), and (36), which is equivalent to (33).

Hence, sej = 1 in (39) implies yj ∈ {0, ξ̄1, . . . , ξ̄p}, although yj is treated as a continuous variable.

For member e, exactly one of se1, . . . , sen should become 1 if xe > 0, while se1 = · · · = sen = 0 if

xe = 0. This condition can be formulated by using τe1, . . . , τep as

n∑
j=1

sej =

p∑
i=1

τei. (40)

Consequently, the design optimization problem under consideration can be formulated as an MIS-

OCP problem by adding constraints (34), (35), (36), (39), (40), and

sej ∈ {0, 1}, j = 1, . . . , n (41)

to problem (7).
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Remark 4.1. Like the formulations presented in section 3, the continuous relaxations of the MISOCP

problems formulated in section 4 are SOCP problem (7), and hence the continuous compliance

optimization problem in (6). This correspondence might be a particular attribute of the MISOCP

formulations presented in this paper. For comparison, we may consider an alternative formulation of

the problem studied in this section. Indeed, when the set of candidate cross-sectional areas is given,

it is possible to recast the optimization problem as an MILP problem, by adding constraints (39),

(40), and (41) to MILP problem (9). The obtained MILP problem then involves M , a sufficiently

large constant. For this reason, the continuous relaxation of this MILP problem is in general different

from the continuous compliance optimization problem in (6); the feasible set of problem (6) is a

subset of that of the MILP problem. Thus the proposed MISOCP problem has a tighter continuous

relaxation than the MILP formulation. ■

4.3 Selection from predetermined multiples

As a special case of (33) in section 4.2, we next suppose that the cross-sectional area should be

chosen among multiples of a predetermined unit value. In this case the number of integer variables

can be reduced drastically, which may speed up the solution process.

Suppose that the member cross-sectional area is to be determined as

xe ∈ {0, δ̄, 2δ̄, . . . , pδ̄}, (42)

where δ̄ > 0 is a predetermined constant. It is known that (42) can be expressed by using only

⌊log2 p⌋+ 1 binary variables; see, e.g., [10]. Namely, (42) can be rewritten as

xe = δ̄
r∑

l=1

2l−1τ̃el, (43)

τ̃el ∈ {0, 1}, l = 1, . . . , r, (44)

xe ≤ xmax, (45)

where we use r = ⌊log2 p⌋+ 1 and xmax = pδ̄ for notational simplicity.2

The binary expansion in (43), (44), and (45) can be combined with the constraint on the number

of different cross-sectional areas as follows. We begin with the uniformity constraint. The key idea

is again Proposition 3.1. For member e, we use variable te such that te = 0 means xe = 0 and te = 1

means xe > 0. It follows from (43) and (44) that te can be related to τ̃e1, . . . , τ̃er as

te =

{
0 if τ̃e1 = · · · = τ̃er = 0,

1 otherwise.
(46)

Since τ̃e1, . . . , τ̃er are 0-1 variables, relation (46) can be reduced to the following linear inequality

constraints:

te ≤
r∑

l=1

τ̃el, (47)

te ≥ τ̃el, l = 1, . . . , r, (48)

te ≤ 1. (49)

2Constraints (43) and (44) imply xe ∈ {0, δ̄, 2δ̄, . . . , (2r − 1)δ̄}.
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Then xe should take the same value for all e such that te = 1, which can be rewritten as

|xe − y| ≤ xmax(1− te). (50)

Thus we attain an MISOCP formulation by adding constraints (43), (44), (45), (47), (48), (49), and

(50) to problem (7).

Remark 4.2. Constraints (48) and (49) imply te ∈ {0, 1}, because τ̃el ∈ {0, 1} (l = 1, . . . , r). There-

fore, we can replace (49) by te ∈ {0, 1}. Actually we treat te as a binary design variable in the

numerical experiments presented in section 5. ■

We next suppose that at most n different cross-sectional areas can be used in a truss design.

According to Proposition 3.4, we formulate this condition with variables yj ∈ R and sej ∈ {0, 1} as

(20b). Variables se1, . . . , sen are related to variable te, which serves as an indicator of existence of

member e, through (20c). Moreover, relation between te and τ̃e1, . . . , τ̃er is given by (47) and (48).

The upshot is that we add the following constraints to problem (7):

xe =
r∑

l=1

2l−1τ̃el ≤ xmax, e = 1, . . . ,m, (51a)

xmax ≥ y1 ≥ · · · ≥ yn ≥ 0, (51b)

|xe − yj | ≤ xmax(1− sej), e = 1, . . . ,m; j = 1, . . . , n, (51c)

te =
n∑

j=1

sej ≤ 1, e = 1, . . . ,m, (51d)

te ≤
r∑

l=1

τ̃el, e = 1, . . . ,m, (51e)

te ≥ τ̃el, e = 1, . . . ,m; l = 1, . . . , r, (51f)

sej ∈ {0, 1}, e = 1, . . . ,m; j = 1, . . . , n, (51g)

τ̃el ∈ {0, 1}, e = 1, . . . ,m; l = 1, . . . , r. (51h)

Here, all the constraints other than (51g) and (51h) are linear constraints. Therefore, the resulting

optimization problem is still an MISOCP problem.

Remark 4.3. Since (51d) and (51g) imply te ∈ {0, 1}, we can treat te as a 0-1 variable. This is done

in the numerical experiments in section 5. ■

5 Numerical experiments

This section presents numerical experiments on the proposed MISOCP formulations. We exam-

ine computational efficiency and study some properties of optimal solutions with standardization

constraints on design variables. MISOCP problems were solved by using CPLEX ver. 12.6 [19].

The data of the problems were prepared in the CPLEX LP file format with MATLAB ver. 7.13.

Computation was carried out on two 2.66GHz 6-Core Intel Xeon Westmere processors with 64GB

RAM.

The mip strategy miqcpstrat parameter of CPLEX is set to two (solving an LP relaxation of

the MISOCP model at each node) and mip cuts all parameter is set to one (generating all types
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Figure 1: Example (I). (a) The problem setting; and (b) the optimal solution of the continuous

optimization problem.

of cuts moderately). These parameters were determined by preliminary numerical experiments.

The integrality tolerance in CPLEX is set to 0 and the feasibility tolerance in the simplex method

is set to 10−8. The other parameters of CPLEX are set to the default values.

Table 1: Computational results of example (I) in cases A and B. The optimal solutions are shown

in Figure 2.

Areas (mm2)

Case n Obj. (J) y1 y2 y3 Time (s)

A-1 ≡ B-1 1 497.38 1095.15 — — 13.2

A-2 2 469.55 1380.90 736.34 — 16.2

A-3 3 465.63 1403.07 976.98 721.14 33.5

B-2 2 469.94 1404.52 702.26 — 22.7

B-3 3 469.07 1035.71 690.47 345.24 44.3

Table 2: Computational results of example (I) in case C. The optimal solutions are shown in

Figure 3.

Case Cand. areas (mm2) Obj. (J) Vol. (mm3) Time (s)

C1 {0, 1000} 525.69 15.795× 106 8.0

C2 {0, 1050} 518.77 15.340× 106 6.8

C3 {0, 1100} 515.20 15.756× 106 18.5

C4 {0, 700, 1400} 471.45 15.949× 106 12.9

C5 {0, 400, 800, 1200} 475.14 15.982× 106 18.3

C6 {0, 600, 1200, 1800} 475.04 15.941× 106 9.6
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(a)

(b) (c)

(d) (e)

Figure 2: The optimal solutions of example (I) in cases A and B. The solutions in (a) cases A and

B with n = 1 (i.e., A-1 and B-1); (b) case A with n = 2 (A-2); (c) case A with n = 3 (A-3); (d) case

B with n = 2 (B-2); and (e) case B with n = 3 (B-3).

5.1 Example (I)

Consider the design domain shown in Figure 1(a), where only the nodes of a ground structure

are depicted. Any two nodes are connected by a member, but overlapping of members is avoided

by removing the longer member when two members overlap. The ground structure has m = 200

members and d = 46 degrees of freedom of displacements. The leftmost and middle nodes in the

bottom row are pin-supported. A vertical force of 100 kN is applied at the bottom rightmost node.

The specified upper bound for the structural volume is V̄ = 16 × 106mm3. The upper bound for

the member cross-sectional areas is xmax = 2000mm2. The elastic modulus is 200GPa. Similar

examples have been solved in [1, 34].

The optimal solution of the conventional compliance minimization problem, i.e., the continuous

relaxation problem, is shown in Figure 1(b), where the width of each member is proportional to

its cross-sectional area. The optimal value is 462.59 J. The maximum cross-sectional area in this

solution is 1580.53mm2. Since members aligned in a straight line have the same cross-sectional

areas, this solution has 9 different member cross-sectional areas.

As for standardization constraints, we consider four cases:
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Figure 3: The optimal solutions of example (I) in case C. The solutions in (a) case C1; (b) case C2;

(c) case C3; (d) case C4; (e) case C5; and (f) case C6.

• Case A: The adopted values of cross-sectional areas are explored freely. The optimization

problems formulated in sections 3.1 and 3.2 are solved.

• Case B: The adopted values of cross-sectional areas forms a set of multiples of a unit value,

which is also a design variable. The optimization problem formulated in section 4.1 is solved.

• Case C: The cross-sectional areas are selected among a few of predetermined candidates.

The optimization problem formulated in section 4.3 without the constraint on the number of

different cross-sectional areas is solved.

• Case D: The cross-sectional areas are selected among a large number of predetermined candi-

dates. The optimization problem formulated in section 4.3 with the constraint on the number

of different cross-sectional areas is solved.

Note that the volume constraint becomes active at the optimal solutions in cases A and B.

With n = 1, i.e., with the uniformity constraint on the cross-sectional areas, the optimal solutions

in cases A and B certainly coincide. This optimal solution is shown in Figure 2(a). The member

cross-sectional areas and the compliance, together with the computational time required by CPLEX,

are reported in Table 1. It is worth noting that, as seen in Figures 1(b) and 2(a), the optimal solution
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with uniform cross-sectional areas has the same topology as the optimal solution of the continuous

relaxation problem. The increase of the objective value is about 7.5%. Thus, at the expense of

small increase of compliance, we can enjoy the advantage of member standardization.

The optimal solutions in case A with n = 2 (called case A-2) and n = 3 (called case A-3)

are shown in Figure 2(b) and Figure 2(c), respectively. The computational results are listed in

Table 1. As expected, the optimal value decreases as n increases. The set of members used in

case A-2 (shown in Figure 2(b)) is different from the one in the continuous relaxation solution (in

Figure 1(b)). In contrast, the solution in case A-3 (in Figure 2(c)) has the same members as the

continuous relaxation solution.

Figures 2(d) and 2(e) show the optimal solutions in case B with n = 2 (called case B-2) and

n = 3 (called case B-3). The solution in case B-2 has the same structural topology as that in case

A-2. In contrast, the solution in case B-3 is much different from the other solutions. This solution

has two arches that are connected to each other by a thin member. In case A-1, the MISOCP

problem has m = 200 binary variables. In cases A-3 and B-3, we use nm = 600 variables for sej

and m = 200 variables for te (the latter is optional as mentioned in Remark 3.6).

In case C, we assume that the number of predetermined candidate areas is relatively small.

Hence, the upper bound constraint for the number of different cross-sectional areas is not considered.

For comparison with cases A and B, we consider six problems:

• Case C1: xe ∈ {0, 1000} in mm2.

• Case C2: xe ∈ {0, 1050} in mm2.

• Case C3: xe ∈ {0, 1100} in mm2.

• Case C4: xe ∈ {0, 700, 1400} in mm2.

• Case C5: xe ∈ {0, 600, 1200, 1800} in mm2.

• Case C6: xe ∈ {0, 400, 800, 1200} in mm2.

We use r = 2 in (43) for cases C4, C5, and C6, while r = 1 for cases C1, C2, and C3. The

optimal solutions are collected in Figure 3. Problems with single candidate area are examined in

cases C1, C2, and C3. The candidate values of these problems are determined to be close to the

optimal solution in case A-1, i.e., 1095.15mm2. The optimal solutions in cases C1 and C3 (shown

in Figure 3(a) and Figure 3(c), respectively) include some members different from the members

exist in the optimal solution in case A-1 (in Figure 2(a)). In contrast, the optimal solution in case

C2 (shown in Figure 3(b)) has the same topology as case A-1. However, the optimal value in case

C2 is larger than that in case A-1, because the volume constraint is inactive in case C2. Thus the

optimal topology with uniform cross-sectional areas highly depends on the predetermined value of

cross-sectional areas. Therefore, it may not be easy to guess the predetermined value such that the

optimal solution has the same topology as the solution in case A-1, which has a scale-free property.

The optimal solution in case C4 (shown in Figure 3(d)) is very similar to those in cases A-2 and

B-2 (in Figure 2(b) and Figure 2(d)). The optimal solution in case C5 has two arches. The optimal

solution in case C6 has low rise.
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Finally, as case D, we consider a large number of candidate cross-sectional areas and simulta-

neously impose the constraint on the number of different cross-sectional areas. As for the set of

candidate cross-sectional areas, we consider three cases:

• Case D1: δ̄ = 250mm2 and p = 7, i.e., xe ∈ {0, 250, 500, . . . , 1750} in mm2.

• Case D2: δ̄ = 120mm2 and p = 15, i.e., xe ∈ {0, 120, 240, . . . , 1800} in mm2.

• Case D3: δ̄ = 125mm2 and p = 15, i.e., xe ∈ {0, 125, 250, . . . , 1875} in mm2.

Note that we use r = 3 in (43) for case D1 and r = 4 for cases D2 and D3. As for the upper bound

for the number of different cross-sectional areas, we consider three cases: n = 1, 2, and 3. Figure 4

collects the optimal solutions. The computational results are listed in Table 3. Here, for example,

“D2-3” denotes the problem instance in which we select at most n = 3 different cross-sectional areas

from the set considered in case D2. The number of members that have cross-sectional area yj is

also reported in this table. For instance, the solution in case D1-2 consists of eight members with

cross-sectional area y1 = 1500mm2 and four members with cross-sectional area y2 = 750mm2.

For n = 1, the solution in case D2-1 has the best compliance. For n = 2 and 3, the solutions in

cases D3-2 and D3-3 are best. The solution in case D2-2 (shown in Figure 4(e)) essentially consists

of two arches (connected to each other by a single thin member). The solutions in cases D1-1 and

D3-1 (in Figure 4(a) and Figure 4(g)) are same and have very many members. These solutions and

the solution in case D1-2 (in Figure 4(b)) have horizontal members that connect the right support

and the load point. The solutions in D1-3 and D2-3 have the same topology. Also, topologies of

the solutions in cases D2-1, D3-2, and D3-3 are same. Thus the optimal solution highly depends

on the set of candidate cross-sectional areas. It is observed in Table 3 that the computational cost

increases as n increases. The largest computational time is required in case D2-3 and is about 19

minutes. The number of 0-1 variables in cases D2-3 and D3-3 is 8m = 1600.

Table 3: Computational results of example (I) in case D. The optimal solutions are shown in

Figure 4.

Areas (mm2)

Case n Obj. (J) Vol. (mm3) y1 y2 y3 Time (s)

D1-1 1 508.95 15.983× 106 (25@) 500 — — 25.2

D1-2 2 479.50 15.967× 106 (8@) 1500 (4@) 750 — 90.9

D1-3 3 469.70 15.999× 106 (3@) 1500 (3@) 1250 (6@) 750 220.3

D2-1 1 504.36 15.779× 106 (14@) 1080 — — 22.8

D2-2 2 477.47 15.934× 106 (12@) 840 (10@) 360 — 139.3

D2-3 3 469.57 15.956× 106 (3@) 1440 (3@) 1320 (6@) 720 1,113.2

D3-1 1 508.95 15.983× 106 (25@) 500 — — 34.7

D3-2 2 471.69 15.951× 106 (6@) 1375 (8@) 875 — 68.3

D3-3 3 469.35 15.990× 106 (3@) 1375 (6@) 1125 (5@) 750 502.3
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: The optimal solutions of example (I) in case D. The solutions in (a) case D1 with n = 1

(i.e., D1-1); (b) case D1 with n = 2 (D1-2); (c) case D1 with n = 3 (D1-3); (d) case D2 with n = 1

(D2-1); (e) case D2 with n = 2 (D2-2); (f) case D2 with n = 3 (D2-3); (g) case D3 with n = 1

(D3-1); (h) case D3 with n = 2 (D3-2); and (i) case D3 with n = 3 (D3-3).

NX @1m

NY @1m

Figure 5: Example (II). The problem setting for (NX , NY ) = (5, 3).

5.2 Example (II)

We next consider the design domain shown in Figure 5. Only the nodes of a ground structure

are depicted, but any two nodes are connected by a member. Overlapping of members is avoided

by removing the longer members. The leftmost nodes of the ground structure are pin-supported.

As for the size of the ground structure, we consider two cases, (NX , NY ) = (4, 3) and (5, 3). The

number of members, m, and the number of degrees of freedom of displacements, d, are listed in

Table 4. In this example we consider single and multiple load scenarios. A vertical force of 20 kN

is applied at each bottom node. In a single load scenario these external forces are applied to the

nodes simultaneously and the compliance corresponding to this scenario is minimized. In a multiple

load scenario, in contrast, we suppose that each external force is applied to the corresponding node
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(a) (b)

(c) (d)

Figure 6: The optimal solutions of example (II) with (NX , NY ) = (4, 3) in a single load case. (a) The

continuous solution; (b) the solution for n = 1; (c) the solution for n = 2; and (d) the solution for

n = 3.

(a) (b)

(c) (d)

Figure 7: The optimal solutions of example (II) with (NX , NY ) = (5, 3) in a single load case. (a) The

continuous solution; (b) the solution for n = 1; (c) the solution for n = 2; and (d) the solution for

n = 3.
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(a) (b)

(c) (d)

Figure 8: The optimal solutions of example (II) with (NX , NY ) = (4, 3) in a multiple load case.

(a) The continuous solution; (b) the solution for n = 1; (c) the solution for n = 2; and (d) the

solution for n = 3.

separatedly. Hence there exist NX loading scenarios and the maximum compliance is minimized.

The upper bounds for the structural volume are listed in Table 4. The upper bound for the member

cross-sectional areas is xmax = 1000mm2. The elastic modulus is 200GPa. Only the formulations

in section 3 are considered.

Figure 6 and Figure 7 collect the optimal solutions with the single loading scenarios. The

optimal solutions of the continuous relaxation problem are shown in Figure 6(a) and Figure 7(a).

The optimal values of these solutions are reported in the column “cont. opt.” of Table 4. Table 5

reports the computational results with the upper bound constraint for the number of different cross-

sectional areas. The optimal solution with (NX , NY ) = (4, 3) and n = 1 is shown in Figure 6(b).

The load-bearing mechanism of this solution is essentially similar to that of the continuous solution

in Figure 6(a); indeed, the set of existing members of the solution with n = 1 is a subset of that of the

Table 4: Characteristics of the problem instances in examples (II) and (III).

Ex. (NX , NY ) m d V̄ (mm3) Cont. opt. (J)

(II) (4, 3) 131 32 12.0× 106 142.59

(II) (5, 3) 188 40 15.0× 106 289.33

(III) (6, 2) 140 36 12.0× 106 3504.17

(III) (7, 2) 181 42 14.0× 106 4889.29

(III) (6, 4) 386 60 24.0× 106 720.75

(III) (7, 4) 503 70 28.0× 106 969.45

(III) (5, 6) 559 70 30.0× 106 214.07

(III) (6, 6) 748 84 36.0× 106 300.71
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NX @1m

NY @1m

Figure 9: Example (III). The problem setting for (NX , NY ) = (6, 2).

continuous solution. The optimal solution with n = 2, shown in Figure 6(c), has one member that

does not exist in the continuous optimal solution. The optimal solution with n = 3 in Figure 6(d)

is very close to the continuous one, although the latter has five extra thin members.

In the case of (NX , NY ) = (5, 3), the set of nodes used in the optimal solution with n = 1

(in Figure 7(b)) is apparently different from that in the continuous solution in Figure 7(a). The

topology of the solution with n = 3 (in Figure 7(d)) is similar to that of the solution with n = 1.

The computational time required to solve the problem with n = 3 is about half an hour.

Figure 8 collects the optimal solutions in the multiple load scenarios. The optimal value of

the continuous solution, shown in Figure 8(a), is 27.564 J. It is observed in Figure 8 that, as n

increases, the optimal solution becomes close to the continuous one. Actually the set of existing

members in each of Figure 8(c) and Figure 8(d) is a subset of that in Figure 8(a). Since NX = 4

loading conditions are considered, the MISOCP formulation involves 4m = 524 second-order cone

constraints. It is observed from Table 5 that very large computational costs are required compared

to the single load problems. Particularly, the computational time required to solve the problem

with n = 3 is more than 30 hours.

Table 5: Computational results of example (II). The optimal solutions are shown in Figure 6,

Figure 7, and Figure 8.

Areas (mm2)

(NX , NY ) n Load Obj. (J) y1 y2 y3 Time (s) # of nodes

(4, 3) 1 single 150.85 454.31 — — 5.8 2,291

(4, 3) 2 single 144.75 466.13 208.09 — 10.6 18,775

(4, 3) 3 single 143.61 690.99 455.74 262.73 101.1 126,466

(5, 3) 1 single 307.78 375.55 — — 23.3 14,738

(5, 3) 2 single 295.05 383.38 165.85 — 213.2 204,316

(5, 3) 3 single 291.38 522.75 366.08 185.53 1,709.8 970,011

(4, 3) 1 multiple 32.448 325.09 — — 4,310.9 93,897

(4, 3) 2 multiple 29.141 577.50 268.51 — 83,657.4 614,074

(4, 3) 3 multiple 28.380 656.46 334.29 142.40 112,934.3 2,005,090
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(a) (b)

(c) (d)

(e) (f)

Figure 10: The optimal solutions of example (III) for (NX , NY ) = (6, 2) and (NX , NY ) = (7, 2). The

solutions for (a) (6, 2) without the standardization constraint; (b) (7, 2) without the standardization

constraint; (c) (6, 2) with n = 1; (d) (7, 2) with n = 1; (e) (6, 2) with n = 2; and (f) (7, 2) with

n = 2.

Table 6: Computational results of example (III). The optimal solutions are shown in Figure 10,

Figure 11, and Figure 12.

Areas (mm2)

(NX , NY ) n Cross. const. Obj. (J) y1 y2 Time (s) # of nodes

(6, 2) 1 off 3677.69 554.91 — 7.3 2,092

(6, 2) 2 off 3542.58 632.28 403.10 29.9 31,555

(7, 2) 1 off 5453.24 596.31 — 38.5 8,798

(7, 2) 2 off 4996.59 935.74 357.90 77.6 31,803

(6, 4) 1 off 742.79 967.77 — 202.1 48,222

(6, 4) 2 off 723.48 1540.90 438.49 137.7 29,884

(7, 4) 1 off 1014.09 1041.11 — 278.2 31,751

(7, 4) 2 off 987.22 934.24 328.66 1,015.8 97,708

(7, 4) 2 on 988.40 1116.07 665.28 700.8 30,662

(5, 6) 1 off 231.12 846.63 — 2,778.5 281,388

(5, 6) 1 on 240.52 1261.95 — 4,177.6 115,551

(6, 6) 1 off 323.20 885.02 — 24,850.6 849,940

(6, 6) 1 on 328.74 1320.58 — 25,679.9 379,267
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 11: The optimal solutions of example (III) for (NX , NY ) = (6, 4) and (NX , NY ) = (7, 4). The

solutions for (a) (6, 4) without the standardization constraint; (b) (7, 4) without the standardization

constraint; (c) (6, 4) with n = 1; (d) (7, 4) with n = 1; (e) (6, 4) with n = 2; (f) (7, 4) with n = 2;

and (g) (7, 4) with n = 2 and the constraints prohibiting presence of mutually crossing members.

5.3 Example (III)

Consider the cantilever problem in Figure 9. In this example we consider the constraint prohibiting

the presence of mutually crossing members when the optimal solution without this constraint has

mutually crossing members. As for problem size, we consider six cases, (NX , NY ) = (6, 2), (7, 2),

(6, 4), (7, 4), (5, 6), and (6, 6). Table 4 lists the number of members, the number of degrees of

freedom of displacements, the upper bound for the structural volume, and the optimal value of the

continuous relaxation problem. A vertical force of 100 kN is applied at the rightmost middle node.
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(a) (b)

(c) (d)

(e) (f)

Figure 12: The optimal solutions of example (III) for (NX , NY ) = (5, 6) and (NX , NY ) = (6, 6). The

solutions for (a) (5, 6) without the standardization constraint; (b) (6, 6) without the standardization

constraint; (c) (5, 6) with n = 1; (d) (6, 6) with n = 1; (e) (5, 6) with n = 1 and the constraints

disallowing crossing members; and (f) (6, 6) with n = 1 and the constraints disallowing crossing

members.
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The leftmost nodes are pin-supported. The upper bound for the member cross-sectional areas is

xmax = 2000mm2. The optimization results are listed in Table 6, where the column “cross. const.”

shows if the constraint avoiding existence of crossing members is imposed or not.

For (NX , NY ) = (6, 2) and (7, 2), the optimal solutions are collected in Figure 10. With n = 1,

the two optimal solutions, shown in Figure 10(c) and Figure 10(d) are very similar. The increase

of compliance from the continuous relaxation problem is about 5% for (NX , NY ) = (6, 2) and more

than 10% for (NX , NY ) = (7, 2). The optimal solution for (NX , NY ) = (6, 2) with n = 2 has the

same topology as the optimal solution with n = 2. For (NX , NY ) = (7, 2), the optimal solution with

n = 2 has more members than that with n = 1. The compliance of this solution is only 2% larger

than the optimal solution of the continuous relaxation problem.

For (NX , NY ) = (6, 4) and (7, 4), the optimal solutions are collected in Figure 11. For (NX , NY ) =

(6, 4), the middle node of the optimal solution of the continuous problem (in Figure 11(a)) is moved

rightward in the optimal solution with n = 1 (in Figure 11(c)). In contrast, the optimal solution

with n = 2 (in Figure 11(e)) is very similar to the continuous one. The optimal value for n = 2

is also very close to the one of the continuous optimization. For (NX , NY ) = (7, 4), the optimal

solution with n = 1 (in Figure 11(d)) is much different from the continuous one (in Figure 11(b)).

However, the solution for n = 2 (in Figure 11(f)) is very similar to the continuous one. Since the

solution for n = 2 has two pairs of mutually crossing members, we solved the problem with the con-

straints prohibiting presence of crossing members. The obtained solution is shown in Figure 11(g).

This solution has the same topology as that in Figure 11(d), but the increase of compliance from

the solution in Figure 11(f) is very small.

For (NX , NY ) = (5, 6) and (6, 6), the optimal solutions are collected in Figure 12. The optimal

solutions with n = 1 (in Figure 12(c) and Figure 12(d)) are much different from the optimal solutions

of the continuous problems (in Figure 12(a) and Figure 12(b)). Since the solutions with n = 1 have

two pairs of mutually crossing members, we examined the constraints prohibiting the presence of

crossing members. The optimal solutions are shown in Figure 12(e) and Figure 12(f). The set

of existing member of each solution is a subset of that of the solution with crossing members.

Nonetheless, increase of compliance is quite small.

It is observed in Table 6 that about 7 hours were required to solve the problem with (NX , NY ) =

(6, 6), which involves m = 748 binary variables. In contrast, the number of binary variables of the

problem with (NX , NY ) = (7, 4) and n = 2 is about twice, i.e., 3m = 1,509, but only 17 minutes

were required. The constraint prohibiting the presence of mutually crossing members is considered

for (NX , NY ) = (7, 4), (5, 6), and (6, 6). Compared with the case allowing crossing members, the

number of enumeration nodes explored by the MISOCP solver is relatively small, although the

computational time is comparably large. Prohibiting crossing members is formulated as a number

of linear inequalities and this causes increase of computational time for solving a relaxation problem

at each enumeration node. Indeed, 24,668 extra linear inequalities are used for (NX , NY ) = (7, 4),

30,638 for (5, 6), and 54,480 for (6, 6).
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6 Conclusions

Attention of this paper has been focused on finding an optimal truss design with only a limited

number of different member cross-sections. It is often that the compliance optimization with con-

tinuous design variables results in a truss design with a large number of different cross-sections.

Such a design may have several disadvantages from a practical point of view. The optimization

method proposed in this paper simultaneously determines the groups of members which share the

same cross-sections and the value of cross-sectional area used for each group.

Notion of the upper bound constraint for the number of different cross-sectional areas has been

introduced. It has been shown that the compliance minimization problem with this constraint can

be formulated as a mixed-integer second-order cone programming (MISOCP) problem. Several

software packages are available for finding the global optimal solution of an MISOCP problem. The

continuous relaxation of the proposed MISOCP problem corresponds to the conventional compliance

minimization problem with continuous design variables.

The proposed method can handle the grouping constraint without resorting to any approxima-

tion. Guaranteed convergence to a global optimal solution is a distinguished attribute. Besides,

this approach can deal with various kinds of practical constraints on existing members, e.g., the

constraint avoiding presence of mutually crossing members.

A potential disadvantage of the method is that computational cost may possibly increase dras-

tically as the number of variables increases. The largest ground structure solved in the numerical

experiments consists of 748 members. The MISOCP solver requires about 7 hours to solve this

problem when the number of different cross-sectional areas is limited to one. Also, a problem with

1600 binary variables was solved within 20 minutes. On the other hand, some smaller problems,

particularly including some of multiple-load examples, require much more computational time. Dis-

tinction between time-consuming problems and easy problems is still blurred and prediction of

computational cost for a particular problem is not easy. Nevertheless, it is worth noting that the

proposed method can provide benchmark examples for evaluating performance of the other local or

heuristic optimization algorithms.

This paper has addressed only compliance optimization of truss structures. Extensions to the

other mechanical performance and the other structural models remain to be explored.
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A Derivation of SOCP formulation for continuous compliance op-

timization

We show that problem (6) in section 2.1 can be rewritten equivalently as problem (7) in section 2.2.

By using (3) and (4), definition of the compliance in (5) can be written as

π(x) = 2 sup
u,c

{
f⊤u−

m∑
e=1

1

2

Exe
le

c2e | ce = b⊤e u (e = 1, . . . ,m)
}
. (52)

In the following we shall derive the dual problem of the optimization problem on the right-hand

side of (52). The Lagrangian of this problem can be formulated as

L(u, c; q) = f⊤u−
m∑
e=1

1

2

Exe
le

c2e +
m∑
e=1

qe(ce − b⊤e u), (53)

with which (52) can be represented as

π(x) = 2 sup
u,c

{
inf
q
{L(u, c; q) | q ∈ Rm}

}
. (54)

It follows from the strong duality of convex quadratic programming that (54) can be replaced by

the Lagrangian dual problem, i.e.,

π(x) = 2 inf
q

{
sup
u,c

{L(u, c; q) | (u, c) ∈ Rd × Rm}
}
. (55)
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By using the stationarity conditions of L with respect to u and ce, we obtain

sup{L(u, c; q) | (u, c) ∈ Rd × Rm}

=


m∑
e=1

1

2

Exe
le

c2e if

m∑
e=1

qebe = f , qe =
Exe
le

ce (e = 1, . . . ,m),

+∞ otherwise.

(56)

Observe that, when qe = (Exe/le)ce is satisfied, xe = 0 implies qe = 0 and

1

2

Exe
le

c2e =


1

2

le
Exe

q2e if xe > 0,

0 if xe = 0,

and hence we can write

1

2

Exe
le

c2e = inf
we

{
we | wexe ≥

1

2

le
E
q2e

}
. (57)

By substituting (57) into (56), we see that (55) is reduced to

π(x) = 2 inf
w,q

{ m∑
e=1

we | wexe ≥
1

2

le
E
q2e (e = 1, . . . ,m),

m∑
e=1

qebe = f
}
. (58)

Substitution of (58) into problem (6) yields

min
m∑
e=1

2we (59a)

s. t. wexe ≥
le
2E

q2e , e = 1, . . . ,m, (59b)

m∑
e=1

qebe = f , (59c)

m∑
e=1

lexe ≤ V̄ , (59d)

0 ≤ xe ≤ xmax, e = 1, . . . ,m, (59e)

where xe, we, and qe (e = 1, . . . ,m) are variables to be optimized. Furthermore, the inequality

constraints in (59b) can be rewritten equivalently as

we + xe ≥

∥∥∥∥∥
[

we − xe√
2le/Eqe

]∥∥∥∥∥ .
Thus problem (6) can be recast as problem (7).
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