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Abstract

Choice functions are common tools in many-to-one or many-to-
many matching models. They can represent more general preferences
of agents than the classical form that consists of a list and a quota.
Choice functions are usually assumed to satisfy the substitutability,
which is an essential condition for the existence of stable matchings.

In this paper, we introduce “matroidal choice functions” as a class
of choice functions which satisfy a kind of matroid constraints in addi-
tion to the substitutability. We show that matroidal choice functions
admit succinct representations, with which one can find a stable match-
ing efficiently utilizing a greedy algorithm for matroids.

Furthermore, we show that matroidal choice functions afford nice
properties of stable matchings such as the strategy-proofness of the
deferred acceptance algorithm, and the distributive lattice structure of
the set of stable matchings.
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1 Introduction

In the classical college admissions model of Gale–Shapley [18], the preference
of a college is represented by a list and a quota. That is, a college has
a complete ordering on individuals, and a fixed number q ∈ N. Among
available applicants, the college takes top q applicants if there are more
than q applicants, and takes all of them if there are less than the quota.

To represent more general preferences, choice functions are introduced
to the matching literature by Roth [35]. He found that if each agent’s choice
function enjoys the “substitutability” (or the “substitutes condition”), then
the set of stable matchings is nonempty and the so-called deferred acceptance
algorithm finds a stable matching. This class of choice functions is so general
that it does not necessarily refer to any ordering on individuals nor quota.
Since then, the substitutability has been a common assumption on choice
functions in the matching literature.

However, with only the substitutability, many distinctive properties of
the classical model [3, 8] cannot be extended. For example, the set of stable
matchings is not necessarily a distributive lattice, and the lattice operations
are complicated [9]. This implies the difficulty of extending algorithms to
enumerate or optimize stable matchings [19]. Also, the strategy-proofness
of the deferred acceptance algorithm [1, 13, 34] cannot be guaranteed only
by the substitutability.

Furthermore, the choice function approach has another problem from
the viewpoint of implementation. Since they are functions defined on pow-
ersets, naive representations of them need exponential space complexity.
This makes it hard to deal with general choice functions in implementation.

There have been proposed intermediate choice function classes between
the classical choices in the Gale-Shapley model and the substitutable choice
functions as follows.

Quotafilling preferences In [4], Alkan generalized classical choices by
removing orderings on individuals. Here, choice functions are imposed to be
substitutable and “quotafilling.”1Alkan showed that, for such choice func-
tions, stable matchings form a distributive lattice and many other structural
properties of the classical model can be extended.

Here is an example given in [6] to represent the difference between this
class and the classical choice: The college can admit two applicants. The
applicants are men m, m′ and women w, w′. The college prefers m(w) to
m′(w′), and also the college admits members of both sexes as equally as
possible. Hence, college’s first choice is mw. However if the available set is

1The property such that “A college takes q applicants if there are more than q appli-
cants, otherwise takes all of them.”
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m′ww′(mm′w′), then the choice is m′w(mw′). In the case of m′ww′, man
m′ is preferred to woman w′, contrary to the case of mm′w′, in which w′ is
preferred to m′. Thus we cannot define an ordering on individuals.

Totally Ordered Matroids The choices in Fleiner’s model [14] can be
obtained by relaxing quota restrictions of the classical model to matroid
constraints. That is, a preference of a college is represented by a pair of a
total order on individuals and a matroid on them. Among available appli-
cants, the college takes ones from the highest to the lowest preserving the
matroid constraint.

Fleiner showed that for this class of choice functions, the set of stable
matchings retains properties of the classical model such as the distributive
lattice structure. Also, he exhibited a polyhedral description for the set of
stable matchings [14].

Aside from the classical model, this choice function class can represent
laminar classified model, for example. For this model with additional lower
quotas, Huang [23] gave a polynomial time algorithm to find a stable match-
ing (or report the nonexistence). Fleiner and Kamiyama [16] solved a gen-
eralized version of Huang’s model by a matroid approach.

In this paper, we introduce a new class of choice functions, “matroidal
choice functions,” as a common generalization of the above two classes. A
choice function in this class is imposed to be substitutable and to satisfy a
matroid constraint. There is no ordering on individuals nor quota. As will
be shown in Sections 4 and 5, this class has the following properties.

1. Matroidal choice functions include both of the above two classes of choice
functions. Furthermore, there exist matroidal choice functions contained
in neither of them (Examples 4.4 and 7.8).

2. Matroidal choice functions satisfy the “size-monotonicity” (or the “law
of aggregate demand”), investigated in [5, 15, 22]. Using their results, we
can assert that the many-to-one matching model with matroidal choice
functions retains the following properties: the deferred acceptance algo-
rithm is strategy-proof for agents of one side, the set of stable matchings
is a distributive lattice, and the “rural hospital theorem”2 holds (Propo-
sitions 5.8, 5.15, and 5.16, respectively).

3. Matroidal choice functions are preferable for implementation. We show
that each matroidal choice function admits a succinct representation with
the aid of the “de-cycle function,” from which we can efficiently recon-
struct the original choice function by a greedy algorithm for matroids

2This states that each hospital is assigned to the same number of contracts across all
stable matchings. Also, if a hospital is assigned to less contracts than its quota, then it is
assigned to the same set across all stable matchings [22, 26, 36].
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(Propositions 4.6 and 4.8). Moreover, a stable matching can be found ef-
ficiently by using de-cycle functions instead of choice functions (Theorem
5.10). These properties help us to reduce the storage size in implementa-
tion.

De-cycle functions, introduced in this paper, are functions defined on
circuit families of matroids. For each circuit, a de-cycle function returns one
of its element. Assume that a de-cycle function indicates the worst element
of each circuit, and consider the situation where we are given a subset of the
ground set as a sequence of elements. To obtain an acceptable independent
set, we can naturally conceive the following greedy algorithm: Start with
the emptyset and add elements of the sequence from the first to the last,
but whenever some circuit comes up, eliminate the element indicated by the
de-cycle function.

In fact, this algorithm works well for some kind of de-cycle functions. For
example, if there exist positive weights on elements and the de-cycle function
returns the minimum weight element in each circuit, then the output of the
above algorithm is the maximum weight independent subset of the given set
no matter what the order of the sequence is. For general de-cycle functions,
however, the output of the algorithm differs depending on the order of the
sequence.

The “coherency” is the key property of de-cycle functions to character-
ize the independence of outputs from orders. See Section 6.2 for the precise
definition. We show that the algorithm returns the unique output for each
subset regardless of the order of the sequence if and only if the de-cycle
function is coherent (Lemma 6.9). Furthermore, we show that a de-cycle
function is coherent if and only if it gives a succinct representation of a
matroidal choice function (Theorem 6.7). Equivalently, a choice function is
matroidal if and only if it can be represented by outputs of the above algo-
rithm for a certain coherent de-cycle function (Theorem 6.10). As a result,
we obtain a one-to-one correspondence between matroidal choice functions
and coherent de-cycle functions.

The above greedy algorithm shows a marked similarity to the known
maximization algorithm for valuated matroids. Section 7 describes the rela-
tionship between matroidal choice functions and valuated matroids. Valu-
ated matroids, introduced by Dress and Wenzel [10, 12], are matroids accom-
panied with valuations satisfying a special axiom. They are an extension of
weighted matroids, but valuations are not limited to be modular. We show
that the choice function defined by the maximizers of a valuated matroid is a
matroidal choice function (Proposition 7.3). Then, we can realize that some
known facts of valuated matroids, such as the validity of a greedy algorithm
and the equivalence between local and global optimality, are obtained as
special cases of our results in Section 4 (Remark 7.5).
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The rest of this paper is organized as follows. In Sections 2 and 3, we
provide preliminaries on choice functions and matroids, respectively. Our
contribution starts with Section 4, in which we introduce matroidal choice
functions and show their expressiveness as well as succinct representations
with “de-cycle functions.” In Section 5, we formulate a matching model with
matroidal choice functions based on the model of Hatfield and Milgrom [22].
We give a variant of the deferred acceptance algorithm which uses de-cycle
functions instead of choice functions, and show its strategy-proofness and
efficiency. Section 6 is devoted to the characterization of matroidal choice
functions via de-cycle functions. We show that matroidal choice functions
can be characterized as choice functions which can be calculated validly by
a natural greedy algorithm for matroids. In Section 7, we investigate the
relationships between matroidal choice functions and valuated matroids.
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2 Choice Functions

A choice function on a finite set E is a function F : 2E → 2E such that
F (X) ⊆ X for any X ⊆ E. We interpret F (X) as the most preferred subset
of X. A choice function F is said to be substitutable if it satisfies

(Sub) X ⊆ Y =⇒ F (Y ) ∩X ⊆ F (X).

This property was introduced to the matching literature3 by Kelso–Crawford
[24] and Roth [35]. It is now known as an essential condition for the existence
of a stable matching [37]. One can easily confirm that the condition (Sub)
is equivalent to

(Sub*) X ⊆ Y =⇒ X \ F (X) ⊆ Y \ F (Y ).

This says that an item rejected in some set will also be rejected if the set
is expanded. We refer to both (Sub) and (Sub*) as the substitutability.
It is easily seen that the substitutability implies the idempotence, i.e., a
substitutable choice function F satisfies

F (F (X)) = F (X) (∀X ⊆ E).

A choice function F is said to be size-monotone if it satisfies

(Size) X ⊆ Y =⇒ |F (X)| ≤ |F (Y )|,

which says that the number of chosen items does not decrease when avail-
able items increase. This property is also called “increasing property” or
“law of aggregate demand.” Its importance has been emphasized in several
works such as [5, 15, 22]. The size-monotonicity yields, in conjunction with
the substitutability, some favorable properties of stable matchings such as
the strategy-proofness of the deferred acceptance algorithm [22], and the
distributive lattice structure of the set of stable matchings [5, 15].

A substitutable and size-monotone choice function F is consistent,4 i.e.,

F (X) ⊆ Y ⊆ X =⇒ F (Y ) = F (X),

and path-independent,5 i.e.,

F (F (X) ∪ F (Y )) = F (X ∪ Y ) (∀X,Y ⊆ E).

3This property was originally studied outside the matching literature, and known as
Chernoff’s condition or Sen’s α [28].

4See [7]. The consistency is also called “irrelevance of rejected contracts.”
5The equivalence between the path-independence and the combination of the substi-

tutability and the consistency was first noted in [2].
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3 Matroids

This section provides preliminaries on matroids. See Oxley [33] for more
information.

Let E be a finite set. For a family I ⊆ 2E , a pair M = (E, I) is called
a matroid if it satisfies the following (I1)–(I3):

(I1) ∅ ∈ I.

(I2) If I1 ⊆ I2 ∈ I, then I1 ∈ I.

(I3) If I1, I2 ∈ I and |I1| < |I2|, then there exists an element e ∈ I2 \ I1
such that I1 + e ∈ I.

We call the family I the independent set family of M. We say that a set
X ⊆ E is independent if X ∈ I. Otherwise, we say that X is dependent.

For a set X ⊆ E, a maximal independent subset of X is called a base of
X. We denote by B(X) the set of bases of X, i.e.,

B(X) = {B ⊆ X | B ∈ I, B + e ̸∈ I (∀e ∈ X \B) } .

In particular, we write B for B(E).
The circuit family C ⊆ 2E of M is defined by

C = {C ⊆ E | C ̸∈ I, C − e ∈ I (∀e ∈ C) } ,

and each member is called a circuit. That is, a circuit is a minimal dependent
set. It is known that C satisfies the following (C1)–(C3):

(C1) ∅ ̸∈ C.

(C2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

(C3) If C1, C2 ∈ C and C1 ̸= C2, then for all e ∈ C1∩C2 there exists Ce ∈ C
such that Ce ⊆ (C1 ∪ C2)− e.

The rank function of M is a function r : 2E → Z defined by

r(X) = max{ |I| : I ∈ I, I ⊆ X} (X ⊆ E).

It is known that r satisfies the following (R1)–(R3):

(R1) ∀X ⊆ E, 0 ≤ r(X) ≤ |X|.

(R2) If X ⊆ Y , then r(X) ≤ r(Y ).

(R3) ∀X,Y ⊆ E, r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ).

We call r(E) the rank of M, and write it r(M).
In this paper, we often use the following properties of matroids.

Proposition 3.1. For an independent set I and an element e ∈ E \ I, the
subset I + e contains a unique circuit if I + e ̸∈ I.

We write C(I|e) for such a unique circuit contained in I + e.

Proposition 3.2. For any X ⊆ E, every B ∈ B(X) satisfies |B| = r(X).
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4 Matroidal Choice Functions

In this section, we introduce a new class of choice functions as a common gen-
eralization of Alkan’s quotafilling preferences [4] and the choices in Fleiner’s
totally ordered matroid model [14].

Alkan’s quotafilling preference is a substitutable choice function which
chooses as many elements as possible up to a quota q ∈ N. Note that this
quota restriction can be regarded as the matroid constraint with a uniform
matroid of rank q.

Fleiner’s totally ordered matroid model represents a preference of an
agent by a matroid M = (E, I) and a total order ≻ on E. Given a sub-
set X ⊆ E, the agent chooses a base of X by the greedy algorithm with
respect to ≻. One can confirm that such a choice function satisfies the
substitutability.

4.1 Definition

Here is the definition of “matroidal choice functions.”

Definition 4.1. For a matroid M = (E, I), a function F : 2E → 2E is said
to be a matroidal choice function on M if it satisfies the substitutability and
F (X) ∈ B(X) for each X ⊆ E.

We simply say F is a matroidal choice function if there is such a matroid
M, which is called the underlying matroid of F .

The condition F (X) ∈ B(X) says that the function chooses a maximal
independent set included in the given set X. Since this implies |F (X)| =
r(X), the axiom of rank function (R2) yields the following.

Observation 4.2. Amatroidal choice function satisfies the size-monotonicity
in addition to the substitutability.

For any X ⊆ E, we see that X ∈ I implies B(X) = {X} and that X ̸∈ I
implies B(X) ̸∋ X. This leads to the following.

Observation 4.3. For a matroidal choice function F on M = (E, I), a
subset X ⊆ E satisfies F (X) = X if and only if X ∈ I.

Given a matroidal choice function F , we can obtain its underlying ma-
troid by setting I = {X ⊆ E | F (X) = X }.

We see that both of quotafilling preferences and the choice functions
defined by totally ordered matroids are subsumed in matroidal choice func-
tions. Moreover, this new class is properly broader than the union of these
two classes. The following example gives a matroidal choice function which
is contained in neither of them. (Example 7.8 gives another example of such
a matroidal choice function.)
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Example 4.4. We give a choice function which represents a criterion of
selecting students of some college.

The college has two courses, “architecture” and “business.” Let A and B
denote the disjoint sets of possible applicants for these courses, respectively,
and E denote the union of them (i.e., E = A ∪ B and A ∩ B = ∅). The
capacities of the courses are qA and qB, respectively. Also, the college can
accept at most qE students in total. Here, qE naturally satisfies qE ≤ qA+qB.
The college also has the ideal proportion, i.e., the numbers pA and pB with

pA + pB = qE , pA ≤ qA, pB ≤ qB.

We write M and W for the sets of men and women (i.e., E = M ∪W
and M ∩W = ∅). Each course wants to accept members of both sexes as
equally as possible. Also each course has a total ordering ≻A on A and ≻B

on B, respectively.
Assume that the applicants in X ⊆ E apply for the college. Denote

XA = X ∩A and XB = X ∩B, respectively. Then the college decides whom
to accept according to the following two steps.

Step 1. First, the college determines nA(X) and nB(X), the numbers of
students the college will accept for each course, respectively. Let NA(X) =
min{|XA|, qA} and NB(X) = min{|XB|, qB}. If NA(X)+NB(X) ≤ qE , then
let nA(X) = NA(X) and nB(X) = NB(X). Otherwise, let (nA(X), nB(X))
be the optimal solution of the following problem, which minimizes the gap
from the ideal proportion keeping the sum of two variables being qE :

minimize |nA(X)− pA|+ |nB(X)− pB|
subject to nA(X) ≤ NA(X),

nB(X) ≤ NB(X),

nA(X) + nB(X) = qE .

(1)

Note that an optimal solution of this problem is unique.

Step 2. Next, two courses choose applicants from XA and XB, respec-
tively. Here is a criterion of the architecture course which chooses nA(X)
applicants from XA. (Similar for business course.) Let k = ⌊12 · nA(X)⌋.

1. The case |XA ∩M | ≥ k+1, |XA ∩W | ≥ k+1. Take top k men and top
k women with respect to ≻A. When nA(X) is odd, i.e., nA(X) = 2k+1,
add the better of the (k + 1)-th man and the (k + 1)-th woman with
respect to ≻A.

2. The case |XA∩M | ≤ k. Take all men and top nA(X)−|XA∩M | women
with respect to ≻A.

3. The case |XA ∩W | ≤ k. Take all women and top nA(X) − |XA ∩W |
men with respect to ≻A.
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Let F (X) be the union of the choices of two courses. By the definition,
F (X) ⊆ X holds for any X ⊆ E obviously, so F is a choice function. As is
shown in Appendix A, this F is actually a matroidal choice function.

4.2 Representation and construction

In this section, we show that each matroidal choice function has a kind of
compressed representation, which we call a “de-cycle function,” and that one
can reconstruct the choice function from the de-cycle function efficiently.

Consider a matroidal choice function F : 2E → 2E on a matroid M =
(E, I) and let C denote the circuit family of M.

Definition 4.5. A function δ : C → E is called a de-cycle function if it
satisfies δ(C) ∈ C for each C ∈ C.

Since F is a matroidal choice function, we have F (C) ∈ B(C) for each
C ∈ C, and hence |F (C)| = r(C) = |C| − 1. Then, the set C \ F (C) is a
singleton. Define a de-cycle function δF : C → E by letting δF (C) be the
only element in C \ F (C) for each C ∈ C. That is, identifying a singleton
with its element, a de-cycle function δF is defined by

δF (C) = C \ F (C) (C ∈ C).

We call δF the associated de-cycle function of F .

Proposition 4.6. For any X ⊆ E, we have

F (X) = X \ { δF (C) | C ∈ C, C ⊆ X } . (2)

Proof. Let R(X) := { δF (C) | C ∈ C, C ⊆ X }. For any e ∈ R(X), there
exists C ∈ C such that δF (C) = e and C ⊆ X. Then {δF (C)} = C \ F (C)
holds by the definition of δF . By (Sub*), this implies e = δF (C) ∈ X \F (X).
Therefore, we have R(X) ⊆ X \ F (X) which implies F (X) ⊆ X \R(X).

Since R(X) contains at least one element of each circuit, the setX\R(X)
does not include any circuit, and so is independent. Then |X \ R(X)| ≤
r(X) = |F (X)| holds by F (X) ∈ B(X). With F (X) ⊆ X \ R(X), this
implies F (X) = X \R(X) which means (2).

Note that a circuit C is a minimal subset from which F discards some
element, and δF (C) is the unique discarded element. The formula (2) says
that F (X) can be obtained by eliminating all such elements from X.

Proposition 4.7. Let Y be an arbitrary subset of E. A subset X ⊆ Y
satisfies X = F (Y ) if and only if the following two conditions hold:
(i) X ∈ I, (ii) ∀e ∈ Y \X, [ X + e ̸∈ I, δF (C(X|e)) = e ].
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Proof. Since F (Y ) ∈ B(Y ), the condition F (Y ) = X implies X ∈ I and
X+e ̸∈ I (∀e ∈ Y \X). Then, the “only if” part is implied by Proposition 4.6.
We now show the “if” part. By (ii), every e ∈ Y \X satisfies e = δF (C(X|e)).
As C(X|e) ⊆ Y , this implies e ̸∈ F (Y ) by Proposition 4.6. Hence, we obtain
Y \X ⊆ Y \F (Y ), and so X ⊇ F (Y ). Since F (Y ) is a maximal independent
set included in Y , (i) implies X = F (Y ).

We design an algorithm MCF(δ) as follows for any de-cycle function
δ : C → E. Here, Sk means the set of all permutations on {1, 2, . . . , k}.

Algorithm: MCF(δ)
Input: X = {e1, e2, . . . , ek} ⊆ E and π ∈ Sk.

1. J ← ∅.
2. For i = 1 to k, do:

(a) If J + eπ(i) ∈ I, then J ← J + eπ(i).
(b) Otherwise, J ← J + eπ(i) − δ(C(J |eπ(i))).

3. Return J .

This algorithm simulates the matroidal choice function F when the as-
sociated de-cycle function δF is used.

Proposition 4.8. The algorithm MCF(δF ) returns F (X) for any X ⊆ E
and any π ∈ Sk.

Proof. Let us denote Ji for J in the algorithm just after i-th Step 2. Note
that the output is Jk. By the algorithm, we see that Ji is independent for any
i ∈ {0, 1, . . . , k}. This implies |Jk| ≤ r(X) = |F (X)| since F (X) ∈ B(X).

By the algorithm, e ∈ X \ Jk means that there is some i ∈ {1, 2, . . . , k}
such that δF (C(Ji−1|eπ(i))) = e. Then, e ∈ X \ F (X) by Proposition 4.6.
Thus we have X \ Jk ⊆ X \ F (X), and so Jk ⊇ F (X). With |Jk| ≤ |F (X)|,
this implies Jk = F (X).

11



5 Matching model with matroidal choice functions

Here we introduce a many-to-one matching model with matroidal choice
functions based on the model of Hatfield and Milgrom [22].

In our model, there are two types of agents, “doctors” and “hospitals”
(they correspond to “students” and “colleges” of the classical model [18]),
and preferences of hospitals are represented by matroidal choice functions.

We give an algorithm which finds the so-called doctor-optimal stable
matching using de-cycle functions. We also present results on the strategy-
proofness and the lattice structure of the set of stable matchings.

5.1 Matching model

An instance of our matching model is provided as a tuple (D,H,E, {≻d}d∈D,
{Fh}h∈H) with finite sets D and H which represent sets of doctors and
hospitals, respectively. A finite set E denotes a set of contracts. Each
contract e ∈ E is bilateral, i.e., it is associated with one doctor eD ∈ D and
one hospital eH ∈ H. We write Ed = { e ∈ E | eD = d } for each d ∈ D and
Eh = { e ∈ E | eH = h } for each h ∈ H. Also, for any X ⊆ E, we use the
notation Xd = X ∩ Ed and Xh = X ∩ Eh for each agent.

Each doctor d ∈ D is assigned to at most one contract, and so his
preference is represented by a total order ≻d on Ed ∪ {⊥}. The symbol ⊥
represents unemployment and is placed at the bottom of the order6. For
example, a preference of d is like e ≻d e′ ≻d e′′ ≻d ⊥, and e ≻d e′ means
that d prefers e to e′. We use the notation e ⪰d e′ to mean e ≻d e′ or e = e′.

Each hospital h ∈ H can be assigned to multiple contracts, but to at
most one with each doctor. His preference is represented by a matroidal
choice function Fh : 2Eh → 2Eh satisfying |Fh(Xh) ∩Ed| ≤ 1 for each d ∈ D
and Xh ⊆ Eh.

Definition 5.1. A set of contracts X ⊆ E is said to be doctor-feasible if
|Xd| ≤ 1 (∀d ∈ D), and hospital-feasible if Fh(Xh) = Xh (∀h ∈ H). We call
X a matching if it is both doctor-feasible and hospital-feasible.

For a doctor-feasible set X ⊆ E and a doctor d ∈ D, we write xd for the
unique element in Xd if Xd ̸= ∅, and otherwise we let xd = ⊥.

Definition 5.2. A matching X ⊆ E is said to be (pairwise7) stable if there
is no contract e ∈ E \X such that

e ≻d xd and e ∈ Fh(Xh + e) (3)

with d = eD and h = eH .
6In the model of [22], there may exist contracts which are worse than unemployment.

However, we can remove such contracts without changing the stable matchings.
7There is also the notion of “setwise stability,” however, it is equivalent to the pairwise

stability in this setting. See [22, 38].
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Recall that Fh is a matroidal choice function for each h ∈ H. Let Mh

be the underlying matroid and δh be the associated de-cycle function of Fh.
For any doctor-feasible set X ⊆ E, let

D
X be the set of contracts which are

preferable to the current ones for doctors, i.e.,

D
X = { e ∈ E | e ≻d xd for d = eD } .

Then, the stability defined above can be rephrased as follows.

Lemma 5.3. A doctor-feasible set X ⊆ E is a stable matching if and only
if it satisfies the following two conditions for each h ∈ H:

(i) Xh ∈ Ih,

(ii) ∀e ∈ Eh \Xh, e ∈ D
Xh =⇒ [ Xh + e ̸∈ Ih, δh(C(Xh|e)) = e ].

Also, a combination of (i) and (ii) is equivalent to Fh(Xh ∪
D
Xh) = Xh.

Proof. By Observation 4.3, Fh(Xh) = Xh is equivalent to Xh ∈ Ih. Hence
X is hospital-feasible if and only if (i) holds for any h ∈ H. Also, for
Xh ∈ Ih and e ∈ Eh \ Xh, the condition Fh(Xh + e) ̸∋ e is equivalent to
[Xh + e ̸∈ Ih, δh(C(Xh|e)) = e] by Proposition 4.6. Hence, the negation of
(3) is equivalent to the condition in (ii), and the first claim is shown.

The second claim follows from Proposition 4.7.

5.2 Matroidal deferred acceptance algorithm

One can find a stable matching by using {(Mh, δh)}h∈H instead of {Fh}h∈H .
The following algorithm is a variant of the deferred acceptance algorithm
[18]. In our algorithm, X ⊆ E represents a temporary matching and R ⊆ E
represents the set of contracts rejected by hospitals until then.

Algorithm: MDA
Input: (D,H,E, {≻d}d∈D, {(Mh, δh)}h∈H}).

1. X ← ∅, R← ∅.
2. While there exists d ∈ D such that xd = ⊥ and Ed − Rd ̸= ∅, repeat

the following:

(a) Take such d and e← max≻d
(Ed −Rd), h← eH .

(b) If Xh + e ∈ Ih, then X ← X + e.
(c) Otherwise, X ← X+e−δh(C(Xh|e)) and R← R+δh(C(Xh|e)).

3. Return X.

Remark 5.4. This algorithm is a generalization of the “recursive algorithm”
of McVitie–Wilson [27], and also a variant of the “cumulative offer process”
of Hatfield–Kojima [21]. Similarly to these algorithms, our algorithm lets
only one doctor offer to a hospital in each step.
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Let X∗ and R∗ denote X and R, respectively, at the termination of the
algorithm.

Claim 5.5. DX∗ = R∗.

Proof. By the algorithm, there is no doctor d ∈ D which satisfies both
x∗d = ⊥ and Ed − R∗

d ̸= ∅. Hence, x∗d = ⊥ holds only when Ed = R∗
d. Also,

observe that the algorithm takes contracts of Ed from the top to the bottom.
Then, for any e ∈ Ed, the condition e ≻d x∗d is equivalent to e ∈ R∗. Thus,

we have
D
X∗

d = R∗
d for any d ∈ D, and hence

D
X∗ = R∗.

Theorem 5.6. The output X∗ is a stable matching.

Proof. We can observe that X is doctor-feasible throughout the algorithm.
Hence, by Lemma 5.3, it suffices to show that Fh(X

∗
h ∪

D
X∗

h) = X∗
h for any

h ∈ H. Note that the way to update Xh in Step 2 can be identified with
Step 2 of MCF(δh). Hence we have Fh(X

∗
h ∪ R∗

h) = X∗
h by Proposition 4.8.

By Claim 5.5, this means Fh(X
∗
h ∪

D
X∗

h) = X∗
h.

Define a relation ⪰D on matchings by X ⪰D Y ⇐⇒ xd ⪰d yd (∀d ∈ D).
Then, it is clearly a partial order.

Theorem 5.7. The output X∗ is a doctor-optimal stable matching. That
is, X∗ satisfies X∗ ⪰D Y for every stable matching Y .

Proof. Let Y be an arbitrary stable matching. Note that X∗ ⪰D Y is
equivalent to

D
X∗ ∩ Y = ∅, and also this is equivalent to R∗ ∩ Y = ∅ by

Claim 5.5. Hence it suffices to show that the condition (⋆) R ∩ Y = ∅ holds
at any time of the algorithm. We prove this by induction on R. Assume
that (⋆) holds for the current R. To prove that the next updated R still
satisfies (⋆), we show that Xh + e ̸∈ Ih implies δh(C(Xh|e)) ̸∈ Yh for every
h ∈ H and e ∈ Eh \Rh.

By the algorithm, any d ∈ D and any e′, e′′ ∈ Ed satisfy

[ e′ ∈ X + e, e′′ ≻d e′ ] =⇒ e′′ ∈ R. (4)

Then, any e′ ∈ (X + e)∩Ed satisfies e′ ⪰d yd, because otherwise (4) implies

yd ∈ R which contradicts (⋆). Thus, we obtain X + e ⊆ Y ∪ D
Y . Then,

Xh + e ̸∈ Ih implies C(Xh|e) ⊆ Yh ∪
D
Yh. By Proposition 4.6, this implies

δh(C(Xh|e)) ̸∈ Fh(Yh ∪
D
Y h). (5)

On the other hand, since Y is a stable matching, we have Fh(Yh∪
D
Yh) = Yh

by Lemma 5.3. Then, (5) means δh(C(Xh|e)) ̸∈ Yh.
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For an algorithm which returns a matching for any instance, we call
it strategy-proof for doctors if no doctor can improve his assignment by
reporting a false preference. That is, for a strategy-proof algorithm, there is
no doctor d ∈ D and preference ≻′

d such that the algorithm assigns a better
contract (w.r.t. ≻d) to d if the instance is modified by replacing ≻d with ≻′

d.

Proposition 5.8. The algorithm MDA is strategy-proof for doctors.

Proof. This is shown by an adaptation of the results of Hatfield and Milgrom
[22]. For any algorithm which returns the doctor-optimal stable matching,
they proved that it is strategy-proof if choice functions are substitutable and
size-monotone. Since matroidal choice functions satisfy these properties by
Observation 4.2, the proof is completed by Theorems 5.6 and 5.7.

Remark 5.9. There is also the notion of “group strategy-proofness” for
matching algorithms. This represents the nonexistence of a group of doctors
such that each of them can improve their assignment by jointly misreporting
their preferences. By [20], we can show that the algorithmMDA is also group
strategy-proof.

5.3 Time complexity

Assume that matroidal choice functions {Fh}h∈H are represented by cor-
responding {(Mh, δh)}h∈H and that each Mh is given by an independence
oracle Oh. Given a subset X ⊆ Eh, the oracle Oh returns “yes” if X is inde-
pendent, and otherwise it returns some circuit included in X as a certificate
of the dependency.

Theorem 5.10. The algorithm MDA finds a doctor-optimal stable match-
ing in O(|E|) time, provided that each oracle call takes constant time.

Proof. In the algorithm, each e ∈ E is chosen in Step 2 at most once, and so
Step 2 is repeated at most |E| times. Also, Step 2 needs only constant time.
Hence the algorithm needs O(|E|) in total. Note that Oh(Xh + e) is either
“yes” or the circuit C(Xh|e), since Xh + e includes at most one circuit.

Theorem 5.11. For a subset X ⊆ E, one can determine whether X is a
stable matching or not in O(|E|) time.

Proof. To determine the stability of X, it suffices to check doctor-feasibility
and whether (i) and (ii) of Lemma 5.3 hold for each h ∈ H. These need
O(|E|) time in total.

Remark 5.12. It may be more common that an independence oracle re-
turns only “no” for a dependent set without giving a certificate circuit. Even
with such an oracle, MDA needs only O(|E| · rmax) time, where rmax :=
maxh∈H r(Mh). This is because C(Xh|e) = { e′ ∈ Xh + e | Xh + e− e′ ∈ Ih }
which can be obtained by at most rmax + 1 oracle calls.
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Remark 5.13. We have presented the algorithm to find a stable matching
using independence oracles and de-cycle functions, and shown its efficiency.
Using de-cycle functions is also superior in terms of space complexity since
the domain of a de-cycle function (i.e., the circuit family) is substantially
smaller than that of the choice function (i.e., the powerset of the ground
set).

5.4 Structure of the set of stable matchings

Alkan [5] and Fleiner [14, 15] studied the structure of the set of stable
matchings for models with substitutable and size-monotone choice functions.
Since matroidal choice functions satisfy these two properties (Observation
4.2), the following three propositions immediately follow from their results
(see [5, 15] for the proofs).

Proposition 5.14. Stable matchings X and Y satisfy X ⪰D Y if and only
if they satisfy Fh(Xh ∪ Yh) = Yh for each h ∈ H.

Proposition 5.15. The set of all stable matchings forms a distributive
lattice under the order ⪰D. Moreover, for stable matchings X and Y , their
join X ∨D Y and meet X ∧D Y can be obtained by

(X ∨D Y )d = max
⪰d

{xd, yd}, (X ∧D Y )d = min
⪰d

{xd, yd} (d ∈ D).

Proposition 5.16. Stable matchings X and Y satisfy xd = ⊥ ⇐⇒ yd = ⊥
for each d ∈ D and |Xh| = |Yh| for each h ∈ H.

These propositions imply the following corollary.

Corollary 5.17. Let U be the union of all stable matchings. Then, every
stable matching X satisfies Xh ∈ Bh(Uh) for each h ∈ H, where Bh(Uh)
denotes the set of bases of Uh in Mh.

Proof. By Proposition 5.15, there is a minimum stable matching with re-
spect to ⪰D. Let us denote it by V . Take h ∈ H arbitrarily and let Ih
and rh respectively denote the independent set family and the rank function
of Mh. For any stable matching X, since it satisfies X ⪰D V , we have
Fh(Xh ∪ Vh) = Vh by Proposition 5.14. Then, the substitutability implies

Xh \ Vh = (Xh ∪ Vh) \ Fh(Xh ∪ Vh) ⊆ Uh \ Fh(Uh).

Since this holds for every stable matching, we obtain Uh \Vh ⊆ Uh \Fh(Uh),
and hence Vh ⊇ Fh(Uh). By Vh ∈ Ih, Vh ⊆ Uh and Fh(Uh) ∈ Bh(Uh), this
implies Vh = Fh(Uh). Thus, we have |Vh| = rh(Uh).

For every stable matching X and every h ∈ H, we have Xh ⊆ Uh and
Xh ∈ Ih by the definition, and |Xh| = |Vh| = rh(Uh) by Proposition 5.16.
These imply Xh ∈ Bh(Uh).
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If Mh is a uniform matroid of rank q ∈ N, Corollary 5.17 implies that:
If some stable matching X satisfies |Xh| < q, then every stable matching Y
satisfies Xh = Yh. Combined with Proposition 5.16, this means the so-called
“rural hospital theorem.”
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6 Characterization

In this section, we introduce an axiom of de-cycle functions called “co-
herency” with which we can characterize matroidal choice functions. We
give a one-to-one correspondence between coherent de-cycle functions and
matroidal choice functions. We also characterize matroidal choice functions
via the algorithm MCF described in Section 4.

6.1 Minimal Pair of Circuits

We first introduce the concept of “minimal pair of circuits.”8 LetM = (E, I)
be a matroid and C be its circuit family.

Definition 6.1. A pair of circuits (C1, C2) ∈ C × C is said to be minimal if
it satisfies the following two conditions:

1. C1 ̸= C2.

2. There exists no pair of circuits (C ′
1, C

′
2) ∈ C × C such that C ′

1 ̸= C ′
2

and (C ′
1 ∪ C ′

2) ⊊ (C1 ∪ C2).

For a uniform matroid, a pair of circuits (C1, C2) is minimal if and only
if |C1 \ C2|(= |C2 \ C1|) = 1. For a graphic matroid, a pair of circuits (i.e.,
cycles) (C1, C2) is minimal if and only if it satisfies one of the following two
conditions: (a) C1 and C2 are disjoint; (b) C1∪C2 forms a theta graph, i.e.,
a graph which consists of three internally disjoint simple paths that have
the same two distinct end vertices.

In Proposition 6.3, we show that this minimality can also be represented
by the rank function using the following lemma.

Lemma 6.2. A subset X ⊆ E includes two or more circuits if and only if
it satisfies r(X) ≤ |X| − 2.

Proof. The “if” part is clear since we have r(X) = |X| if X includes no
circuit, and r(X) = |X| − 1 if X includes only one circuit.

For the“only if” part, assume X includes two distinct circuits C1 and
C2. We prove r(X) ≤ |X| − 2 by showing that X − e includes a circuit for
any e ∈ X. The case e /∈ C1 or e /∈ C2 is trivial. If e ∈ C1 ∩ C2, then there
is a circuit C ⊆ (C1 ∪ C2)− e ⊆ X − e by the axiom (C3) of circuits.

Proposition 6.3. Any two distinct circuits C1 and C2 satisfy

r(C1 ∪ C2) ≤ |C1 ∪ C2| − 2, (6)

and the equality holds if and only if the pair (C1, C2) is minimal.
8A similar concept is used in [11, 31] to characterize valuated matroids.
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Proof. Lemma 6.2 immediately implies (6). Then we show that the equality
of (6) holds if and only if (C1, C2) is minimal.

The “if” part: If (C1, C2) is minimal, then C1 ̸= C2. Take e1 ∈ C1 \ C2

and e2 ∈ C2 \ C1 arbitrarily. Then, there is no circuit C such that C ⊆
(C1∪C2)\{ e1, e2 } since such C satisfies C1 ̸= C and (C1∪C) ⊊ (C1∪C2)
which contradicts the minimality of (C1, C2). Hence (C1 ∪ C2) \ { e1, e2 } is
independent, so r(C1 ∪ C2) ≥ |C1 ∪ C2| − 2. With (6), the equality holds.

The “only if” part: Assume r(C1 ∪ C2) = |C1 ∪ C2| − 2. For any e ∈
C1∪C2, we have r((C1∪C2)−e) = r(C1∪C2), and hence r((C1∪C2)−e) =
|(C1 ∪ C2) − e| − 1. By Lemma 6.2, this implies that (C1 ∪ C2) − e cannot
include two distinct circuits. Therefore (C1, C2) is minimal.

The following proposition is used in the subsequent section.

Proposition 6.4. For two distinct circuits C1 and C0, there exists a circuit
C2 ⊆ C1 ∪ C0 such that (C1, C2) is minimal. In addition, for any e ∈ C1,
there exists such a circuit C2 which satisfies e /∈ C2.

Proof. Among all circuits which are included in C1 ∪ C0 and distinct from
C1, let C2 be the one that minimizes |C1 ∪ C2|.

First, we show that (C1, C2) is minimal. Suppose, to the contrary, it is
not minimal. Then, r(C1 ∪ C2) ≤ |C1 ∪ C2| − 3 by Proposition 6.3. Take
f ∈ C2 \C1 arbitrarily. Then r(C1 ∪C2− f) = r(C1 ∪C2) ≤ |C1 ∪C2| − 3 =
|C1 ∪ C2 − f | − 2. Hence, there is a circuit C ′

2 ⊆ C1 ∪ C2 − f with C ′
2 ̸= C1

by Lemma 6.2. Such C ′
2 satisfies |C1 ∪ C ′

2| ≤ |C1 ∪ C2 − f | < |C1 ∪ C2|, a
contradiction.

Next, we show that, for each e ∈ C1, there is a circuit Ce ⊆ C1 ∪ C0

such that (C1, Ce) is minimal and e ̸∈ Ce. This is obvious if the above C2

satisfies e /∈ C2. If not, then we have e ∈ C1 ∩ C2, and hence (C1 ∪ C2)− e
includes a circuit by the axiom (C3). Let Ce be such a circuit. Then, the
pair (C1, Ce) satisfies C1 ∪ Ce ⊆ C1 ∪ C2, and hence it is minimal, because
otherwise the minimality of (C1, C2) fails.

6.2 Characterization via de-cycle functions

We now introduce an axiom of de-cycle functions which characterizes ma-
troidal choice functions.

Definition 6.5. A de-cycle function δ : C → E is said to be coherent if it
satisfies the following condition:

(D) For a minimal pair (C1, C2) ∈ C × C and C3 ∈ C with C3 ⊆ C1 ∪ C2,

|{δ(C1), δ(C2), δ(C3)}| ≤ 2.
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The inequality in (D) says that, among δ(C1), δ(C2), and δ(C3), at least
two of them coincide. Since the minimality of a pair of circuits represents a
kind of closeness, this axiom can be translated as follows: If three circuits
are close to each other, then the same element is selected from at least two
of them.

Lemma 6.6. For a matroidal choice function F : 2E → 2E on M, its
associated de-cycle function δF : C → E is coherent.

Proof. Suppose, to the contrary, that there is a minimal pair (C1, C2) and
a circuit C3 ⊆ C1 ∪ C2 such that δ(C1), δ(C2), and δ(C3) are all distinct.
By Proposition 4.6, this implies |F (C1 ∪ C2)| ≤ |C1 ∪ C2| − 3. However, we
have F (C1 ∪C2) ∈ B(C1 ∪C2) and this implies |F (C1 ∪C2)| = r(C1 ∪C2) =
|C1 ∪ C2| − 2 by Proposition 6.3, a contradiction.

By Lemma 6.6 and Proposition 4.6, we see that matroidal choice func-
tions can be represented by coherent de-cycle functions. Actually, this prop-
erty characterizes matroidal choice functions.

Theorem 6.7. A function F : 2E → 2E is a matroidal choice function on
M if and only if it can be represented as

F (X) = X \ { δ(C) | C ∈ C, C ⊆ X } (X ⊆ E) (7)

by some coherent de-cycle function δ : C → E. In particular, for a given
matroidal choice function F , such a coherent de-cycle function δ is unique.

Proof. The“only if” part: For a matroidal choice function F , the associated
de-cycle function δF satisfies (7) as δ by Proposition 4.6 and it is coherent
by Lemma 6.6. Also, δF is the only de-cycle function which satisfies (7)
since (7) forces δ(C) to be the unique element in C \ F (C) for each C ∈ C.

The “if” part: We show that if d is coherent, then the function F defined
by (7) satisfies (Sub*) and F (X) ∈ B(X) (∀X ⊆ E). The condition (Sub*),
i.e., X ⊆ Y =⇒ X \ F (X) ⊆ Y \ F (Y ) immediately follows from the form
of (7), and the rest is shown by Lemma 6.8 below.

Lemma 6.8. For a coherent de-cycle function δ : C → E and any X ⊆ E,
the subset F (X) defined by (7) satisfies F (X) ∈ B(X).

Proof. By (7), at least one element of each circuit is eliminated from F (X),
and hence F (X) is independent. We now show |F (X)| = r(X) (∀X ⊆ E)
which completes the proof. We use an induction. Clearly |F (∅)| = r(∅) = 0.
Then it suffices to show that

|F (X)| = r(X) (8)

implies
|F (X + e)| = r(X + e) (9)

for each e ∈ E \X.
There are two cases: (i) r(X + e) = r(X) + 1, and (ii) r(X + e) = r(X).
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Case (i) As r(X + e) = r(X) + 1, there is no circuit C such that e ∈ C ⊆
X+e. Hence, we have { δ(C) | C ∈ C, C ⊆ X + e } = { δ(C) | C ∈ C, C ⊆ X }
which implies F (X + e) = F (X) + e by (7). As we have (8), this yields
|F (X + e)| = |F (X)|+ 1 = r(X) + 1 = r(X + 1).

Case (ii) When r(X + e) = r(X), the equation (9) is equivalent to

| { δ(C) | C ∈ C, C ⊆ X + e } | = | { δ(C) | C ∈ C, C ⊆ X } |+ 1.

by (7) and (8). Hence, it suffices to show that the set

D := { δ(C) | C ∈ C, C ⊆ X + e } \ { δ(C) | C ∈ C, C ⊆ X }

is a singleton. As F (X) ∈ B(X) and r(X) = r(X + e), the set F (X) + e
includes the unique circuit C(F (X)|e) ∈ C. Let us denote it by C0. Then,

δ(C0) ∈ { δ(C) | C ∈ C, C ⊆ X + e } . (10)

Also, by C0 ⊆ F (X) + e = X \ { δ(C) | C ∈ C, C ⊆ X }+ e and e ∈ E \X,

C0 ∩ { δ(C) | C ∈ C, C ⊆ X } = ∅ (11)

holds, which implies δ(C0) /∈ { δ(C) | C ∈ C, C ⊆ X }. With (10), this yields
δ(C0) ∈ D.

Next, we show that there is no other element in D. Suppose, to the
contrary, that there is a circuit C1 such that

δ(C1) ∈ D, (12)

δ(C1) ̸= δ(C0). (13)

Note that (12) implies e ∈ C1 by the definition of D. If multiple circuits
satisfy (12) and (13), let C1 be the one which minimizes

|C1 ∩ { δ(C) | C ∈ C, C ⊆ X } |. (14)

In what follows, we show that when δ satisfies the axiom (D), there is another
circuit which satisfies (12) and (13) in place of C1 and makes (14) strictly
smaller, a contradiction.

Because of (13), C1 and C0 are distinct. Hence, we can apply Proposition
6.4 to C1, C0 and e ∈ C1. Then there exists a circuit C2 ⊆ C1∪C0 such that
(C1, C2) is minimal and e /∈ C2. In addition, since C2 ⊆ C1 ∪ C0 ⊆ X + e,
we have C2 ⊆ X, which implies

δ(C2) ∈ { δ(C) | C ∈ C, C ⊆ X } . (15)

Also, since (12) implies δ(C1) ̸∈ { δ(C) | C ∈ C, C ⊆ X }, we have

δ(C1) ̸= δ(C2). (16)
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By (11) and (15), we obtain δ(C2) ̸∈ C0. As δ(C2) ∈ C2 ⊆ C1 ∪ C0, this
implies

δ(C2) ∈ C1. (17)

Thus δ(C2) ∈ C1 ∩C2 holds, and then, by the axiom of circuit family (C3),
there is a circuit C3 such that

δ(C2) ̸∈ C3 ⊆ C1 ∪ C2. (18)

Since (C1, C2) is minimal and C3 ⊆ C1 ∪ C2, the axiom (D) yields

|{δ(C1), δ(C2), δ(C3)}| ≤ 2.

Then, by (16) and (18), we obtain δ(C3) = δ(C1). Therefore, (12) and (13)
hold with C1 replaced by C3. Also, |C3∩{ δ(C) | C ∈ C, C ⊆ X } | is strictly
smaller than (14) as below: By C3 ⊆ C1 ∪ C2 and C2 ⊆ C1 ∪ C0, we have
C3 ⊆ C1 ∪ C0. Then, (11) implies

C3 ∩ { δ(C) | C ∈ C, C ⊆ X } ⊆ C1 ∩ { δ(C) | C ∈ C, C ⊆ X } . (19)

Also, as we have (15), (17) and (18), the element δ(C2) is contained only in
the right-hand side of (19). Thus, |C3 ∩ { δ(C) | C ∈ C, C ⊆ X } | is strictly
smaller than (14).

6.3 Characterization via the greedy algorithm

In Section 4, we have shown that a matroidal choice function can be calcu-
lated by the algorithm MCF(δ) if δ is its corresponding de-cycle function.
In fact, this property characterizes matroidal choice functions.

The following lemma clarifies the equivalence between the coherency and
the independence of outputs from permutations.

Lemma 6.9. A de-cycle function δ : C → E is coherent if and only if the
output of MCF(δ) for (X,π) does not depend on π for each X ⊆ E.

For a given coherent de-cycle function δ, the output of MCF(δ) for (X,π)
coincides with F (X), which is the subset defined by (7).

Proof. The “only if” part and the second claim: If δ is coherent, then The-
orem 6.7 implies that F defined by (7) is a matroidal choice function, and
we can see that its associated de-cycle function δF coincides with δ. Then,
by Proposition 4.8, the output of MCF(δ) for (X,π) is F (X) regardless of
the permutation π for each X ⊆ E.

The “if” part: Assume that the output of MCF(δ) does not depend on
the permutation for each input. Take a minimal pair (C1, C2) and a circuit
C3 ⊆ C1 ∪ C2 arbitrarily. Set X = C1 ∪ C2 = {e1, e2, . . . , e|X|}. For each
i ∈ {1, 2, 3}, let πi ∈ S|X| be a permutation such that

{ ek | k = πi(1), πi(2), . . . , πi(|Ci|) } = Ci.
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Let J be the common output of MCF(δ) for (X,πi) (i ∈ {1, 2, 3}). For each
i ∈ {1, 2, 3}, the element δ(Ci) is eliminated at the |Ci|-th Step 2 of the algo-
rithm, and hence J ̸∋ δ(Ci). Then we have J ⊆ X − {δ(C1), δ(C2), δ(C3)}.

On the other hand, as (C1, C2) is minimal, X − δ(Ci) = C1 ∪ C2 −
δ(Ci) contains only one circuit, and hence only one element is eliminated
after |Ci|-th Step 2. Thus, we have |J | = |X| − 2. Therefore, we obtain
{δ(C1), δ(C2), δ(C3)} ≤ 2.

The following theorem easily follows from Theorem 6.7 and Lemma 6.9.

Theorem 6.10. A function F : 2E → 2E is a matroidal choice function
if and only if there is a coherent choice function such that the output of
MCF(δ) for X is F (X) for each X ⊆ E. In particular, for a given matroidal
choice function, such a coherent de-cycle function δ is unique.

Remark 6.11. By Theorem 6.7 (or Theorem 6.10), we see that, for any
matroid M, there is a one-to-one correspondence between matroidal choice
functions on M and coherent de-cycle functions on the circuit family of M.
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7 Relationships with valuated matroids

Valuated matroids are matroids accompanied with valuations satisfying the
“exchange axiom” (defined below) [10, 12]. On this structure, many combi-
natorial properties of matroids can be generalized naturally. For example,
we can maximize a valuation by the greedy algorithm. (Their properties
and applications are discussed in detail by Murota [29].)

In this section, we show that the choice function defined by a valuated
matroid in a reasonable way is a matroidal choice function. Then, we see
that some known facts about valuated matroids (the validity of a greedy
algorithm and the equivalence between local and global optimality) follow
from our results in Section 4.

7.1 Inducing matroidal choice functions from valuations

Let M = (E, I) be a matroid and B be its base set. A pair (B, ω) is called a
valuated matroid on M if ω : B → R satisfies the following exchange axiom:

(VM) For any B1, B2 ∈ B and e2 ∈ B2 \B1, there exists e1 ∈ B1 \B2 such
that B1 − e1 + e2 ∈ B, B2 + e1 − e2 ∈ B and

ω(B1) + ω(B2) ≤ ω(B1 − e1 + e2) + ω(B2 + e1 − e2).

We call such a function ω a valuation on B.

Fact 7.1. For a set X ⊆ E, take a set I ⊆ E \X such that

|I| = r(E)− r(X), r(X ∪ I) = r(E). (20)

Then, B ⊆ X satisfies I ∪B ∈ B if and only if B ∈ B(X).

We denote by B/X the family of subsets I ⊆ E \X that satisfies (20).
Then B/X forms the base family of the contraction of M by X. With Fact
7.1, one can define a restriction of valuated matroid as follows.

Fact 7.2. (Dress and Wenzel [12]) Let ω be a valuation on B. For a set
X ⊆ E and I ∈ B/X, define a function ωI : B(X)→ R by

ωI(B) = ω(B ∪ I) (B ∈ B(X)).

Then, (B(X), ωI) is a valuated matroid. Also, for any J ∈ B/X, the valu-
ation ωJ is equal to ωI , up to addition by a constant (i.e., there is α ∈ R
such that ωI(B) = ωJ(B) + α for every B ∈ B(X)).

By virtue of the last claim of Fact 7.2, the set of maximizers of ωI in
B(X), which we denote by F(X), is determined independently of the choice
of I ∈ B/X. Then, it depends only on X ⊆ E.
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Proposition 7.3. For a valuated matroid (B, ω) on M such that F(X) is a
singleton for each X ⊆ E, we let F (X) be the only member of F(X). Then
F : 2E → 2E forms a matroidal choice function on M.

Proof. By the definition, F (X) ∈ B(X) clearly holds for any X ⊆ E. Then,
it suffices to show that F satisfies (Sub).

For X,Y ⊆ E with X ⊆ Y , take IX ∈ B/X and IY ∈ B/Y . By the
definition of F , we have

ω(F (X) ∪ IX) > ω(B ∪ IX) (∀B ∈ B(X) \ {F (X)}), (21)

ω(F (Y ) ∪ IY ) > ω(B ∪ IY ) (∀B ∈ B(Y ) \ {F (Y )}). (22)

Suppose, to the contrary, that we have F (Y ) ∩X ̸⊆ F (X). Then, there is
some eY ∈ (F (Y ) \ F (X)) ∩X, and such eY satisfies eY ∈ BY \ BX where
BX = F (X) ∪ IX and BY = F (Y ) ∪ IY . Let us apply the exchange axiom
(VM) to BX , BY and eY . Then, there is some eX ∈ BX \BY such that

BX − eX + eY ∈ B, (23)

BY + eX − eY ∈ B, (24)

ω(BX) + ω(BY ) ≤ ω(BX − eX + eY ) + ω(BY + eX − eY ). (25)

Because F (X) ∈ B(X) and eY ∈ X \ F (X), the condition (23) implies
eX ∈ F (X) and F (X)− eX + eY ∈ B(X). Hence (21) yields

ω(BX) = ω(F (X) ∪ IX) > ω((F (X)− eX + eY ) ∪ IX) = ω(BX − eX + eY ).

By a similar argument, (22) and (24) imply

ω(BY ) = ω(F (Y ) ∪ IY ) > ω((F (Y ) + eX − eY ) ∪ IY ) = ω(BY + eX − eY ).

These two inequalities contradict (25).

We say that F is induced from (B, ω) for such F and (B, ω).

Proposition 7.4. For a choice function F induced from a valuated matroid
(B, ω), its associated de-cycle function δF satisfies

ω(B + e− δF (C)) > ω(B + e− e′)
(
∀e′ ∈ C − δ(C)

)
. (26)

for every B ∈ B and e ∈ E \B with C = C(B|e).

Proof. For B ∈ B and e ∈ E \ B, let C = C(B|e). Since B \ C ∈ B/C, the
choice function F induced from (B, ω) satisfies

ω(F (C) ∪ (B \ C)) > ω(B′ ∪ (B \ C)) (∀B′ ∈ B(C) \ {F (C)}).

Because F (C) = C − δF (C) and B(C) = {C − e′ | e′ ∈ C }, this means the
condition (26).
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Remark 7.5. It is written in [10] that the following algorithm finds the
maximizer B ∈ B of a valuation ω: Let B be an arbitrary base B0 ∈ B, and
then for each e ∈ E \ B0, update B by swapping e with e′ ∈ B + e which
maximizes w(B + e− e′).

By Proposition 7.4, this algorithm can be identified with MCF(δF ) for
the input E and π such that { eπ(i) | i = 1, 2, . . . , |B0| } = B0. The validity
of above algorithm follows from Proposition 4.8. Even if F(X) is not a
singleton for some X ⊆ E, we can apply this argument through appropriate
perturbations of ω.

The equivalence between the local optimality and the global optimality
[10, 12] of valuated matroids also follows from Proposition 4.7.

Remark 7.6. Murota and Tamura [31] characterized valuated matroids
in terms of axioms of real vectors defined on circuit families. From these
axioms, we can show the coherency of a de-cycle function which satisfies
(26) for some valuated matroid. This gives another proof of Proposition 7.3
through Theorem 6.7.

7.2 Matroidal choice function uninducible from valuations

As shown in Proposition 7.3, valuated matroids induce matroidal choice
functions. One may wonder if every matroidal choice function is obtained
in such a way. This is not true in general. We give a counter example using
the following proposition.

Proposition 7.7. (Dress and Wenzel [12]) For a valuated matroid (B, ω)
on M, if M is a binary matroid, then ω can be represented as

ω(B) = α+
∑
e∈B

η(e) (B ∈ B)

for some α ∈ R and η : E → R.

Example 7.8. We give an example of matroidal choice function which can-
not be induced from any valuated matroid. Let M = (E, I) be a matroid
such that E = {e1, e2, . . . , e6} and C consists of the following seven circuits:

C1 = {e1, e2, e3, e4}, C2 = {e1, e3, e5, e6}, C3 = {e2, e4, e5, e6},
C4 = {e1, e2, e6}, C5 = {e2, e3, e5}, C6 = {e3, e4, e6}, C7 = {e1, e4, e5}.

This is a graphic matroid. (Figure 1 shows its graphical representation.)
Define a de-cycle function δ : C → E as

δ(C1) = e4,

δ(C2) = δ(C4) = δ(C6) = e6,

δ(C3) = δ(C5) = δ(C7) = e5.
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Figure 1: A graphical representation of M

Then, we can see that d is coherent. Hence, F : 2E → 2E defined by δ
via (7) is a matroidal choice function on M. We now show that there is no
valuation on B which induces this F .

Suppose, to the contrary, that there is a valuation ω such that (B, ω)
induces F . Apply Proposition 7.4 to B := {e1, e3, e5} and e := e6. Then,
by δ(C(B|e)) = δ(C2) = e6, we obtain

ω({e1, e3, e5}) > ω({e1, e3, e6}). (27)

Similarly, applying Proposition 7.4 to B := {e2, e4, e6}, e := e5, we obtain

ω({e2, e4, e6}) > ω({e2, e4, e5}). (28)

Since M is graphic, and hence binary, by Proposition 7.7, there exists α ∈ R
and η : E → R such that ω(B) = α +

∑
e∈B η(e). Then, (27) implies

η(e5) > η(e6) while (28) implies η(e6) > η(e5), a contradiction.

We can observe that the choice function in Example 7.8 is neither quotafill-
ing nor representable by a totally ordered matroid. Note that we cannot
define the order of priority between e5 and e6.

Remark 7.9. Recently, the stable matching model with M♮-concave [30]
value functions has been investigated [17, 25, 32]. It has been shown that
choice functions induced from M♮-concave functions satisfy the substitutabil-
ity and the size-monotonicity. However, such choice functions are not nec-
essarily matroidal. Conversely, not all matroidal choice functions can be
induced from M♮-concave functions.
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A Complement to Example 4.4

We prove that the choice function F : 2E → 2E described in Example 4.4 is in
fact matroidal. Let I = {X ⊆ E : |X ∩A| ≤ qA, |X ∩B| ≤ qB, |X| ≤ qS}.
Then, M = (E, I) is a laminar matroid. For any X ⊆ E, by Step 1 of
the process, the chosen set does not exceed any quota, i.e., F (X) ∈ I.
Also, F (X) + e exceeds some quota for every e ∈ X \ F (X), and hence
F (X) ∈ B(X). Then, it suffices to show the substitutability of F . We use
the following claim.

Claim A.1. If (X \ F (X)) ∩A ̸= ∅ and X ⊆ Y , then nA(X) ≥ nA(Y ).

Proof. The condition (X \F (X))∩A ̸= ∅ implies that someone in XA is re-
jected, i.e., nA(X) < |XA|. Since the claim is obvious if nA(X) = qA, assume
nA(X) < qA. Then, nA(X) < NA(X) follows from NA(X) = min{|XA|, qA}.
By Step 1 of the process, this means that (nA(X), nB(X)) is determined as
the optimal solution of (1). Because nA(X) < NA(X), the optimality of
(nA(X), nB(X)) implies that one of the following two conditions holds:

(nA(X), nB(X)) = (pA, pB),

NA(X) > nA(X) > pA and NB(X) = nB(X) < pB.

Note that X ⊆ Y implies NA(X) ≤ NA(Y ) and NB(X) ≤ NB(Y ). Then,
the feasible domain of (1) is enlarged when (nA(Y ), nB(Y )) is determined.
Hence (nA(Y ), nB(Y )) is not farther from (pA, pB) than (nA(X), nB(X)).
Therefore, we have nA(X) ≥ nA(Y ) ≥ pA.

To show the substitutability, it suffices to show that X ⊆ Y implies

(X \ F (X)) ∩A ∩M ⊆ (Y \ F (Y )) ∩A ∩M. (29)

Let us write nA,M (X) for |F (X) ∩ A ∩M |. Then, it is easy to check that
X ⊆ Y along with nA,M (X) ≥ nA,M (Y ) implies (29). Hence, in what follows
we consider only the case nA,M (X) < nA,M (Y ).

Assume (X \F (X))∩A∩M ̸= ∅, since otherwise (29) is obvious. Then,
we have nA(X) ≥ nA(Y ) by Claim A.1. With XA ⊆ YA, this implies

max{ ⌊nA(X)/2⌋, nA(X)−|XA∩W | } ≥ max{ ⌊nA(Y )/2⌋, nA(Y )−|YA∩W | }.

By Step 2, this implies that nA,M (X) < nA,M (Y ) holds only if

nA(X) = nA(Y ) = 2k + 1, nA,M (X) = k, nA,M (Y ) = k + 1

where k = ⌊nA(X)/2⌋.
This means that the (k+1)-th man is worse than the (k+1)-th woman

in XA, but it is the other way round in YA. This implies that some man
in YA \ XA precedes the man who is (k + 1)-th in XA. Then, each man
in (X \ F (X)) ∩ A ∩M moves down on the list, and hence he cannot be
contained in top k + 1 men in YA. Thus we obtain (29).
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