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Abstract

The asymptotic behavior of continuous dissipative systems and dissipative numerical integrators
with fixed time-stepping can be fully investigated by Lyapunov-type theorem on continuous and
discrete dynamical systems, respectively. However, once adaptive time-stepping is involved, such
theories cease to work, and usually the dynamics should be investigated in a backward way, such as
in terms of pullback attractors. In this paper, we present a different approach—we stick to a forward
definition of limit sets, and show that still we can establish a Lyapunov-type theorem, which reveals
the precise asymptotic behavior of adaptive time-stepping integrators in the presence of a discrete
Lyapunov functional.

1 Introduction

In this paper, we consider the numerical integration of the evolutionary differential equation on a Banach
space X:

d

dt
x = f(x), x(0) = x0, (1)

where x0 ∈ X, x : R+ → X, f : X → X, and we assume it has the following “dissipation” property
with respect to a functional G : X → R:

d

dt
G(x(t)) ≤ 0. (2)

In this paper, such systems are refered to as “dissipative systems.” This is a subclass of general dis-
sipative systems in dynamical systems theory; see, for example, [15, 32]. Still it includes wide variety
of practical applications. The Cahn–Hilliard equation describing phase separation problems [2] (see
also [37, §4.2], [33, §5.5]), the time-dependent Ginzburg–Landau equation describing superconductiv-
ity [24] (see also [37, §5]), and the Swift–Hohenberg equation describing thermal convection [36], among
others. Also, their appropriate spatial discretizations would yield corresponding finite-dimensional,
dissipative ordinary differential equations.

The system (1) can be treated as a continuous dynamical system, which is a pair (X,S), where X is
a Banach space and S is a family of continuous operators (we state the complete definition later). We
can treat its asymptotic behavior via its ω-limit set defined by

ω(x0) =
∩
t≥0

∪
s≥t

S(s)x0 (x0 ∈ X). (3)
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Roughly speaking, it is a set of such points that are visited infinitely many times (see, e.g., [15, 32]). For
the system (1) with (2), the energy function G can serve as a Lyapunov functional, and the Lyapunov-
type theorem reveals the following fact: if the level set of G is compact, then the ω-limit set of an
arbitrary chosen x0 ∈ X is a subset of the fixed points. In other words, for any bounded initial value
x0, the solution of (1) eventually tends to the fixed points.

In view of this significant nature, a numerical integrator for such a dissipative system should keep
the same property as exactly as possible. Let us consider an abstract one step numerical integrator of
(1) in the following form:

x(n+1) − x(n)

∆t
= f̂

(
x(n+1), x(n)

)
, (4)

where ∆t > 0 is a time-stepping width, and x(n) ≃ x(n∆t) (n = 0, 1, . . .) is the approximate solution.

The function f̂ : X ×X → X, which represents a numerical integrator, is assumed to satisfy f̂(x, x) =
f(x) for any x ∈ X. We also introduce a continuous operator F (∆t) : X → X that gives another
expression of the integrator: x(n+1) = F (∆t)x(n). Let ∆T ⊆ (0,+∞) denote the set of feasible time-
steppings. In view of the continuous dissipation property (2), a numerical integrator in the form (4)
is called a dissipative integrator with respect to ∆T if G (F (∆t)x) ≤ G (x) holds for any x ∈ X and
∆t ∈ ∆T .

As far as the time step size ∆t is fixed, we can regard the one-step numerical integrator (4) as a
discrete dynamical system, which is a pair (X,F (∆t)). For this system, we can analyze its asymptotic
behavior by the concept of ω-limit set, which is, in this case, defined by

ω(x0) =
∩
n≥0

∪
m≥n

F (∆t)mx0 (x0 ∈ X). (5)

Again, the function G can serve as a Lyapunov functional, and Lyapunov-type theorem on discrete
dynamical systems (see, e.g., Humphries–Stuart [16]; see also [34, 35], and the seminal paper Kloeden–
Lorenz [18] which discussed the asymptotic behavior of numerical integrators) reveals a similar fact
regarding the asymptotic behavior: if the level set of G is compact, then the ω-limit set of an arbitrarily
chosen point x0 ∈ X is a subset of the fixed points.

For example, let us consider the case that X = Rd and the equation (1) is in the linear-gradient
form, i.e., f(z) = L(z)∇G(z) (z ∈ Rd), where L(z) ∈ Rd×d is such an operator that d

dtG(z) < 0 holds for
any z ∈ Rd except for the fixed points of (1); for example, it is sufficient if L(z) is negative definite. (In
this paper, we try to distinguish general Banach space setting on X and concrete numerical integrator
setting on Rd; “x” denotes the former, while “z” implies the latter.) Note that a dissipative system can
be rewritten in a linear-gradient form (McLachlan–Quispel–Robidoux [27, 28]). In this case, there is a
well known class of dissipative integrators, “discrete gradient method” (Quispel–Capel [29], Quispel–
Turner[31], Gonzalez [13], see also recent developments in [30, 4]). For an energy function G, its discrete
gradient ∇dG : Rd × Rd → Rd is a map satisfying the following properties:

1. G(z1)−G(z2) = ∇dG(z1, z2) · (z1 − z2) for any z1, z2 ∈ Rd,

2. ∇dG(z, z) = ∇G(z) for any z ∈ Rd,

where the symbol ‘·’ denotes the standard inner product in Rd. The former property is called the discrete
chain rule, which is the essential property of discrete gradients. The latter demands that the discrete
gradient is actually an approximation of the original gradient. The discrete gradient for a specified
function is not necessarily unique. If we once have a ∇dG, we can systematically construct a numerical
integrator that strictly replicates the dissipation property of (1):

z(n+1) − z(n)

∆t
= L̂

(
z(n+1), z(n)

)
∇dG

(
z(n+1), z(n)

)
. (6)
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We assume L̂ is such an approximation that L̂(z, z) = L(z) holds for all z ∈ Rd. Furthermore, since

G
(
z(n+1)

)
−G

(
z(n)

)
= ∇dG

(
z(n+1), z(n)

)
·
(
z(n+1) − z(n)

)
= ∆t (∇dG)

⊤
L̂ (∇dG)

holds, we assume that (∇dG(z, ζ))
⊤
L̂(z, ζ)∇dG(z, ζ) < 0 holds except for the fixed points of (6). The

latter assumption implies the dissipation property.
Now let us turn our attention to an important fact that the dissipative integrator (4), and its special

case (6), can make sense, even if we employ some adaptive time-stepping technique; the integrator is a
one-step method, and the energy dissipation property holds even if we change ∆t ∈ ∆T in each time step.
In this case as well, we naturally expect that the energy function G would serve as a Lyapunov functional,
and thus it would tell us the asymptotic behavior. This, however, turns out not so simple unfortunately.
If we execute a dissipative integrator of the form (4) with adaptive time-stepping, it cannot be viewed
as an either discrete or continuous dynamical system. This issue has already been noticed in the
literature—see Kloeden–Schmalfuß [20] and its followers, for example, [22, 21, 12, 6, 23, 17, 19].

Let us be more specific about the difficulty. The continuous dynamical systems have the following
semigroup properties (see, e.g., [15, 32]):

1. S(0) is an identity operator;

2. S(t)S(s) = S(t+ s) = S(s)S(t) holds for all s, t ≥ 0.

The second property is crucial in the analysis of asymptotic behavior. For example, this property allows
the definition of ω-limit set to make sense. Recall the definition (3), which refers to a set of all the
points visited after some time t; but for this being able to make sense, the state at time t, x(t) = S(t)x0,
should be uniquely defined for any initial value x0 ∈ X, so that we can consider the position at time s
(after time t) by S(s− t)S(t)x0. The same applies to the discrete case with the constant time step ∆t;
recall (5). This will be, however, destroyed as soon as we employ adaptive time-stepping. The position
at time t should vary depending on the time-stepping employed until t, and accordingly, the definition
of ω-limit set itself becomes a mathematical challenge.

Let us illustrate this through several examples. First, we consider the following (reduced form of
the) Lotka–Volterra equation:

d

dt

(
p
q

)
= J∇H(p, q); J =

(
0 1
−1 0

)
, H(p, q) = pq(p+ q − 1).

Although this is a conservative system, which is outside the direct scope of this paper, it is helpful
to understand the strange behavior of ω-limit set under adaptive time-stepping. We can construct a
discrete gradient numerical integrator:

z(n+1) − z(n)

∆t
= J∇dH

(
z(n+1), z(n)

)
, z(n) =

(
p(n)

q(n)

)
, (7)

which strictly preserves the Hamiltonian H. The discrete gradient ∇dH
(
z(n+1), z(n)

)
is given by

∇dH
(
z(n+1), z(n)

)
=

 (q(n+1))
2
+(q(n))

2

2 +
(

q(n+1)+q(n)

2

) (
p(n+1) + p(n) − 1

)
(p(n+1))

2
+(p(n))

2

2 +
(

p(n+1)+p(n)

2

) (
q(n+1) + q(n) − 1

)
 .

We denote this integrator again by F (∆t). Let us first consider to choose a special set of time steppings
∆t1,∆t2,∆t3 such that z(0) = F (∆t3)F (∆t2)F (∆t1)z

(0) holds. In this case, obviously the behavior is
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Figure 1: Numerical solutions: the solid line denotes the true solution of the Lotka–Volterra equation.
The marks denote the solution of the numerical integrator (7) with each time-stepping (the left panel
corresponds to the first choice, and the right to the second). The initial point is z(0) = (0.5, 0.15), and
the number of steps is 300.

cyclic (the left panel of Fig. 1) and the ω-limit set should consist only of the three points. Now let us
change the schedule and execute the integrator (7) with the time-steppings ∆t3,∆t1,∆t2,∆t3,∆t1,∆t2,
∆t3, . . .. Although this is just a reordering and still keeps the time length ∆t1 + ∆t2 + ∆t3, due to
the lack of the semigroup property, F (∆t2)F (∆t1)F (∆t3)z

(0) does not return to z(0) in general (the
right panel of Fig. 1). In such a case, we expect that the ω-limit set is the entire closed orbit. This
example clearly shows that the asymptotic behavior should be discussed depending on the employed
time-steppings.

Next, let us consider a dissipative case, with the toy problem:

d

dt
z = −∇G(z), G(z) =

1

2
z2.

One might expect in such a simple system, the solution should tend to the only fixed point z = 0
(which is also the global attractor) whatever the time-stepping schedule is. With the discrete gradient
∇dG(x, y) = (x+ y)/2, let us consider the dissipative numerical integrator

z(n+1) − z(n)

∆tn
= −∇dG

(
z(n+1), z(n)

)
.

If we execute the integrator with

∆tn = 2 coth

(
1

(n+ 1)2

)
,

we obtain

z(n+1) = (−1)n+1 exp

(
−

n∑
i=0

2

(i+ 1)2

)
z(0).

Obviously, this sequence asymptotically oscillates: z∗ = ± exp
(
−π2/3

)
z(0), whereas the numerical

integrator with a fixed time-step width ∆t converges to the correct fixed point 0 for all ∆t > 0. This,
again, claims that things are not so straightforward when we employ a varying time-stepping.

In this paper, to circumvent this difficulty, we consider a class of dynamical systems that no longer
fully enjoy the semigroup properties. We call them “non-semigroup dynamical systems” here. It is a
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generalization of discrete dynamical systems, and suitable for analyzing adaptive time-stepping numer-
ical integrators. Then we will show that a Lyapunov-type theorem can be successfully established on
non-semigroup dynamical systems. As its consequence, we will be able to discuss the behaviors of the
dissipative numerical integrators.

Before getting to the main part, let us mention closely related studies. As described above, the issue
of adaptive time-stepping has already been considered in several studies. It seems such investigations
had begun in the seminal papers by Kloeden–Schmalfuß [20, 22, 21], which introduced the concept of
cocycles. Roughly speaking, cocycle is a weaker concept of semigroup, in the sense that it only assumes
the weaker action: C(t, s) = C(t, τ)C(τ, s) for all t ≥ τ ≥ s, where C(t, s) denotes the map that
moves x(s) to x(t). Of course a semigroup S(t) (or an integrator F (∆t) with constant time-stepping)
satisfies this with C(t, s) = S(t − s) (or C(m∆t, n∆t) = (F (∆t))(m−n), where m > n). Notice that
adaptive time-steppings do not form semigroups, but they do cocycles for each time-stepping schedule:
C(tm, tn) = C(tm, tµ)C(tµ, tn) for all m ≥ µ ≥ n, where tn’s denote the time grids. The concept of
cocycles has been also employed in random dynamical systems [1, 7]. Similar studies can be found in
the area of nonautonomous dynamical systems, which deals with the same topic in a different language;
see, for example, [3, 5, 14, 19].

Most of the above researches have focused on attractors. The difficulty there is that for cocycles
(or nonautonomous systems), the standard definition of attractors in terms of the behaviors in t → ∞,
which we call here the “forward” definition, is no longer valid, since even if we can find an attracting
set, it is generally not invariant. A better solution for a cocycle C(t, s) is to consider the limit s → −∞
instead. This gives a way to consider time-dependent asymptotic behaviors, and it has been proved that
in this sense invariant attractors can be defined (see, for example, [3, §1.4]). They are called “pullback”
attractors. The studies along this line include, in addition to the references above, [12, 6].

Unfortunately, the concept of pulling back seems not quite useful for the present study; we hope to
establish a Lyapunov-type theorem, which demands the forward definition along orbits (see the remark
after Lemma 1). Thus in this paper we take the completely opposite approach—we consider a forward
definition of ω-limit sets, giving up its invariance (which is generally not available). Then we will show
that still a weaker invariance can be established, and with its aid, a desired Lyapunov-type theorem
can be constructed. A similar forward approach can be found in [23]. But it considered attractors for
sufficiently small time-stepping widths, and the goal is different from ours.

The remainder of this paper is organized as follows: In §2, we review the Lyapunov theory on
continuous and discrete dynamical systems. §3 is devoted to the main results including several definitions
and the main theorem. There the discussion is done in general Banach space setting. In §4, the
implications of the main theorem in terms of numerical integrators are discussed. §5 is for conclusion.

2 Preliminaries

The description of this section is based on Hale [15] and Robinson [32].

Definition 1 (Continuous dynamical systems). Let X be a Banach space, and S(t) : X → X (t ≥ 0)
be a C0-semigroup defined as

1. S(0) is an identity operator;

2. S(t)x is continuous in t and x;

3. S(t)S(s) = S(t+ s) = S(s)S(t) holds for all s, t ≥ 0.

Then, the pair (X,S) is called a continuous dynamical system.
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In this definition, the third property of S is quite essential for the proof of the Lyapunov theorem
below. For any x ∈ X, the positive orbit γ+(x) through x is defined as γ+(x) = {S(t)x | t ≥ 0}. Note
that, thanks to the semigroup property, this definition makes sense.

The ω-limit set of B ⊆ X is defined as follows:

ω(B) :=
∩
t≥0

∪
s≥t

S(t)B. (8)

This ω(B) can be characterized as

ω(B) = {y ∈ X | ∃tn → ∞, xn ∈ B s.t. S(tn)xn → y} . (9)

In the continuous dynamical systems, ω-limit set is invariant under certain conditions. A subset B ⊆ X
is called invariant if S(t)B = B holds for all t ≥ 0, and called positively invariant if S(t)B ⊆ B holds
for all t ≥ 0.

Proposition 1. Let B ⊆ X be a compact and positively invariant set of S. For all x0 ∈ B, ω(x0) is a
nonempty and invariant set.

The semigroup property of S plays a crucial role in (the proof of) Proposition 1: For any x ∈ ω(B),
from the characterization (9), we obtain

S(t)x = S(t) lim
n→∞

S(tn)xn = lim
n→∞

S(t)S(tn)xn = lim
n→∞

S(t+ tn)xn ∈ ω(B)

for any t ≥ 0. That means S(t)ω(B) ⊆ ω(B) holds. The converse can be also proved by the semigroup
property (see, e.g., [32, Proposition 10.3]).

Here, we define fixed points and Lyapunov functionals to state the Lyapunov theorem below.

Definition 2 (Fixed point). x ∈ X is called a fixed point of S if S(t)x = x holds for all t ≥ 0. E(S)
denotes the set of all the fixed points of S.

Definition 3 (Lyapunov functional). Let B be a positively invariant subset of X with respect to S. A
continuous map Φ : B → R is called a Lyapunov functional for S if the following conditions are satisfied.

1. Φ(S(t)x0) ≤ Φ(x0) holds for all x0 ∈ B and t ≥ 0;

2. If there exists t > 0 and x ∈ B such that Φ(S(t)x) = Φ (x) holds, then x ∈ E(S).

Proposition 2 below can be shown using Proposition 1.

Proposition 2 (Lyapunov theorem). Let B ⊆ X be a compact and positively invariant set of S, such
that there exists a Lyapunov functional on B. Then for every x0 ∈ B, ω(x0) ⊆ E(S). If E(S) is discrete,
then ω(x0) ∈ E.

For discrete dynamical systems (see, e.g., [15, 32]), there are similar definitions and propositions
(Humphries–Stuart [16]). The key for this is the fact the discrete dynamical systems keep similar
semigroup property as the continuous systems, and accordingly the same line of discussion holds for the
corresponding Lyapunov-type theorems.

3 Main Results

We define the concept of non-semigroup dynamical systems, which does not suppose the semigroup
property. More precisely, we drop the condition (iii) of Definition 1.
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Definition 4 (Non-semigroup dynamical systems). Let X be a Banach space, and F (∆t) : X → X
(∆t ≥ 0) be an operator satisfying

1. F (0) is an identity operator ;

2. F (∆t)x is continuous in ∆t and x.

Then, the pair (X,F ) is called a non-semigroup dynamical system.

Note that although this is quite similar to the concepts of the cocycles and nonautonomous dynamical
systems, we prefer to introduce a new terminology to clarify that we are not considering pullbacks.

Next, we define the positive orbit in non-semigroup dynamical systems. This is not so straightforward
since the positive orbit in non-semigroup dynamical systems depends on the time-stepping. Let ∆T
denote a subset of (0,+∞) which represents a range of the time-stepping sizes, and T (∆T ) denotes the
set of all feasible instance of time stepping schedule {∆tn}’s:

T (∆T ) := {{∆tn}∞n=0 | ∆tn ∈ ∆T (n = 0, 1, 2, . . . )} .

Then, we define the positive orbit γ+(x; {∆tn}) through x ∈ X with {∆tn} ∈ T (∆T ) as γ+(x; {∆tn}) =
{x(m)({∆tn}) | m ≥ 0}, where x(m)({∆tn}) is recursively defined by

x(m)({∆tn}) =

{
x (m = 0),

F (∆tm−1)x
(m−1)({∆tn}) (m > 0).

In other words, x(m)({∆tn}) denotes the solution of the m-th time step, reached by the time-
stepping schedule {∆tn}. In this definition, we do not suppose that a family of operators F has the
semigroup property, as opposed to the continuous and discrete dynamical systems. The concept of the
non-semigroup dynamical systems naturally includes the discrete dynamical systems: we can simply
consider (X,F (∆t)) for a constant time-stepping width ∆t > 0.

We proceed to the definition of ω-limit set. As noted above, it should depend on the employed
time-stepping {∆tn} ∈ T (∆T ).

Definition 5 (ω-limit set). The ω-limit set of B ⊆ X with respect to {∆tn} is defined as follows :

ω (B; {∆tn}) =
∩
k≥1

∪
m≥k

F (∆tm−1) · · ·F (∆t0)B. (10)

The same definition can be found in [23].
In the continuous and discrete dynamical systems context, usually there are also equivalent charac-

terizations in terms of sequences, which are useful in practical point of view. Fortunately, the definition
(10) allows a similar counterpart. As stated in Lemma 1 below, the ω (B; {∆tn}) can be characterized
as

ω (B; {∆tn}) =
{
y ∈ X

∣∣∣ ∃nk → ∞, xk ∈ B s.t. x
(nk)
k ({∆tn}) → y

}
. (11)

Lemma 1. The ω-limit set defined by (10) is equivalent to the set defined by the right-hand side of (11).

Proof. We define the sets ω1 and ω2 as follows:

ω1 =
∩
k≥1

∪
m≥k

F (∆tm−1) · · ·F (∆t0)B,

ω2 =
{
y ∈ X

∣∣∣ ∃nk → ∞, xk ∈ B s.t. x
(nk)
k ({∆tn}) → y

}
.

We show that ω1 = ω2 holds.
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1. ω1 ⊆ ω2 :
Since y ∈

∪
m≥n F (∆tm−1) · · ·F (∆t0)B holds for all y ∈ ω1 and n ≥ 1, there exists a sequence

{(mn
k , x

n
k )}

∞
k=1 such that mn

1 ≥ n and

(xn
k )

(mn
k ) ({∆tn}) → y as k → ∞

hold. Then, for each n ≥ 1, we define (m̃n, x̃n) = (mn
k , x

n
k ) such that∥∥∥(xn

k )
(mn

k ) ({∆tn})− y
∥∥∥ ≤ 1

n
.

For this sequence, we see x̃
(m̃n)
n ({∆tn}) → y, which implies y ∈ ω2.

2. ω1 ⊇ ω2 :
Let y be an element of ω2. By the definition of ω2, there exists mk and xk ∈ B such that

x
(mk)
k ({∆tn}) → y as k → ∞. Therefore, y ∈

∪
m≥n F (∆tm−1) · · ·F (∆t0)B holds for all n ≥ 1,

which means y ∈ ω1.

Remarks. 1. When B consists of a single point, say x0, the above definition naturally considers
the orbit γ+(x0; {∆tn}). On the other hand, supposing the time schedule is defined for all n ∈ Z, we
can define an ω-limit set in the pullback sense: ω (B,n; {∆tn}) =

∩
k≤n

∪
m≤k F (∆tn−1) · · ·F (∆tm−1)B

(see [3, §2.1] for a continuous definition; essentially the same concept in discrete setting can be found in,
for example, [20]). Note that it depends on n, i.e., at which moment we consider the limit set. From the
definition, we see it does not match Lyapunov-type theories, since the points F (∆tn−1) · · ·F (∆tm−1)x0

(m = n, n− 1, . . .) does not form an orbit.
2. Recall the first choice of the time-steppings in the Lotka–Volterra example in Introduction. The

above definition of ω-limit set captures the set of the three points.

We say a subset B ⊆ X is positively invariant with respect to F , if F (∆t)B ⊆ B holds for all
∆t ≥ 0. Since non-semigroup dynamical systems do not keep the semigroup property, ω-limit sets are
not invariant in general. Still, the following lemma states that a weaker invariance, corresponding to
Proposition 1, holds for non-semigroup dynamical systems.

Lemma 2. Suppose that ∆T is a compact set. Suppose also that B ⊆ X is a compact and positively
invariant set of F . Then, for all x ∈ B and {∆tn} ∈ T (∆T ), ω (x; {∆tn}) is nonempty and satisfies the
following condition: for any y ∈ ω (x; {∆tn}), there exists ∆t ∈ ∆T such that F (∆t)y ∈ ω (x; {∆tn}).

Proof. We fix x ∈ B and {∆tn} ∈ T (∆T ). In this proof, we use the notation x(m) = x(m)({∆tn}) for
brevity. Since γ+(x; {∆tn}) is a sequence on the compact set B, there exists a convergent subsequence.
Hence, ω (x; {∆tn}) is nonempty. Due to the characterization (11) of ω (x; {∆tn}), for arbitrarily chosen
y ∈ ω (x; {∆tn}), there exists a subsequence {nk}∞k=1 such that x(nk) → y (k → ∞) holds.

Since F is continuous, we obtain

∀ε > 0, ∃δ > 0, ∀x̃ ∈ B, |∆s1 −∆s2| < δ ⇒ ∥F (∆s1)x̃− F (∆s2)x̃∥ <
ε

2
.

Moreover, ∆tk ∈ ∆T holds for all k by the assumption on {∆tn}. Hence, there exists a subsequence of
{nk}∞k=1, again denoted by {nk}∞k=1, such that limk→∞ ∆tnk

→ ∆t > 0 for some ∆t ∈ ∆T , i.e.,

∀δ > 0, ∃k1 ∈ N, ∀k ≥ k1, |∆tnk
−∆t| < δ.
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Summing up the two claims above, we obtain

∀ε > 0, ∃k1 ∈ N, ∀x̃ ∈ B, ∀k ≥ k1, ∥F (∆tnk
)x̃− F (∆t)x̃∥ <

ε

2
. (12)

On the other hand, since {x(nk+1)}∞k=1 is a sequence on the compact set B, there exists a convergent
subsequence {n′

k}∞k=1, i.e.,

∀ε > 0, ∃k2 ∈ N, ∀k ≥ k2,
∥∥∥x(n′

k+1) − y′
∥∥∥ <

ε

2
. (13)

Note that y′ ∈ ω (x; {∆tn}) holds.
For all k ≥ max{k′1, k2}, where k′1 is a positive integer such that n′

k′
1
≥ nk1 holds, the following

inequality holds by (12) and (13):∥∥∥F (∆t)x(n
′
k) − y′

∥∥∥ ≤
∥∥∥F (∆t)x(n

′
k) − F (∆tn′

k
)x(n

′
k)
∥∥∥+ ∥∥∥x(n′

k+1) − y′
∥∥∥

<
ε

2
+

ε

2
= ε.

Therefore, we obtain

F (∆t)y = F (∆t) lim
k→∞

x(n
′
k) = lim

k→∞
F (∆t)x(n

′
k) = y′.

It means that F (∆t)y ∈ ω (x; {∆tn}) holds.

The invariance that this lemma states is weak in the following sense: (i) it is only about the positive
invariance (not the full invariance); (ii) the invariance is only conditional in the sense that it does hold
for some ∆t, and not for all ∆t > 0; and furthermore, (iii) the ∆t’s vary depending on y.

Fortunately, however, the weak invariance is sufficient to establish a Lyapunov-type theorem for the
non-semigroup dynamical systems. For the description of the main theorem, we define fixed points and
Lyapunov functionals for non-semigroup dynamical systems.

Definition 6 (Fixed point). Let (X,F ) be a non-semigroup dynamical system. x ∈ X is called a fixed
point of (X,F ) if F (∆t)x = x holds for all ∆t ≥ 0. The set E(F ) ⊆ X denotes all such fixed points of
(X,F ).

Definition 7 (Lyapunov functional). Let (X,F ) be a non-semigroup dynamical system, ∆T be a subset
of (0,+∞), and B ⊆ X be a positively invariant set of F . A continuous map Φ : B → R is called a
Lyapunov functional on B and ∆T , if the following conditions are satisfied.

1. Φ(F (∆t)x) ≤ Φ(x) holds for all x ∈ B and ∆t ∈ ∆T ;

2. If there exist ∆t ∈ ∆T and x ∈ B such that Φ (F (∆t)x) = Φ (x) holds, then x ∈ E(F ).

Theorem 1 below is the main result of this paper. The proof of the second part is essentially the
same as that in [16, Theorem 4.3].

Theorem 1. Suppose that ∆T is a compact set. Let B ⊆ X be a compact and positively invariant
set of F , such that there exists a Lyapunov functional Φ on B and ∆T . Then, for all x ∈ B and
{∆tn} ∈ T (∆T ), ω (x; {∆tn}) is nonempty and ω (x; {∆tn}) ⊆ E (F ) holds. Furthermore, if the fixed
points of F are isolated, then ω (x; {∆tn}) = {y} for some y ∈ E (F ).
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Proof. We fix x ∈ B and {∆tn} ∈ T (∆T ). Then, ω (x; {∆tn}) is nonempty from Lemma 2. Since, for
any y ∈ ω (x; {∆tn}), there exists a subsequence {nk}∞k=1 such that x(nk) → y holds, Φ(y) is expressed
as follows:

Φ(y) = Φ

(
lim
k→∞

x(nk)

)
= lim

k→∞
Φ
(
x(nk)

)
= inf

n
Φ
(
x(n)

)
.

Here, the final equality derives from the decreasing property of Φ. Hence, we obtain Φ(y1) = Φ(y2) for
all y1, y2 ∈ ω (x; {∆tn}). For all y ∈ ω (x; {∆tn}), there exists ∆t > 0 such that F (∆t)y ∈ ω (x; {∆tn})
from Lemma 2. Therefore, Φ(F (∆t)y) = Φ(y) holds, which means that y ∈ E(F ).

Now we assume that the fixed points of F are isolated, i.e., there exists ε > 0 such that for any
distinct y1, y2 ∈ ω (x; {∆tn}) = E(F ) ∩ ω (x; {∆tn}), ∥y1 − y2∥ > 2ε. Since ω (x; {∆tn}) is compact,
this assumption implies that ω (x; {∆tn}) contains a finite number of fixed points, say yi, i = 1, 2, . . . , I.
Then, there exists a sufficiently small δ (0 < δ < ε) such that ∥F (∆t)x1 − F (∆t)x2∥ < ε holds for any
∆t ∈ ∆T and for any x1, x2 ∈ B satisfying ∥x1 − x2∥ < δ. We define Bi = {ỹ ∈ X | ∥ỹ − yi∥ < δ}.
Note that Bi ∩ Bj = ∅ holds for any i ̸= j. Let the set B− denote the closure of B \

∪
i Bi. Below

we show the claim by contradiction: for this purpose, we assume that y1 is not the unique member of
ω (x; {∆tn}). Since y1 is not the unique member of ω (x; {∆tn}), there exists a subsequence {nk} such
that x(nk) ∈ B1 and x(nk+1) /∈ B1 hold for all k. Then, we obtain

∥x(nk+1) − y1∥ = ∥F (∆tnk
)x(nk) − F (∆tnk

)y1∥ < ε.

This means x(nk+1) ∈ B− for each k. However, since B− is compact, this sequence has a convergent
subsequence, which is a contradiction.

4 Application to Dissipative Numerical Integrators

In this section, we apply the main theorem to numerical integrators. We first consider abstract dissipative
integrators on X, and then the discrete gradient integrators on Rd as their special cases.

Let E and E(F ) denote the set of the fixed points of the original equation (1) and numerical integrator
(4), respectively. Lemma 3 below states that they coincide under a reasonable assumption.

Lemma 3. Let (X,F ) be a non-semigroup dynamical system defined by (4). If f(x) = f̂(x, x) holds for
all x ∈ X, then E = E (F ) holds.

Proof. By the definitions of the fixed points, we can represent the sets E and E(F ) as E = {x ∈ X |
f(x) = 0} and E(F ) = {x ∈ X | f̂(x, x) = 0}, respectively. Hence, x ∈ E ⇐⇒ f(x) = 0 ⇐⇒ f̂(x, x) =
0 ⇐⇒ x ∈ E(F ) holds by the assumption.

The implication of Theorem 1 for the numerical integrator (4) can be summarized as follows.

Theorem 2. Consider a set ∆T ⊆ (0,+∞) and general dissipative integrator (4) satisfying the condi-
tion : G(F (∆t)x) = G(x) holds for some ∆t ∈ ∆T , only when x ∈ E(F ). Then, G serves as a Lyapunov
functional on B := {x | G(x) ≤ G(x(0))} and ∆T in the sense of Definition 7.

If B and ∆T are compact, then, for all {∆tn} ∈ T (∆T ), and for all x(0), it holds ω
(
x(0); {∆tn}

)
⊆

E. If the fixed points of the original equation are isolated, ω
(
x(0); {∆tn}

)
= {y} for some y ∈ E, i.e.,

the numerical solution converges to a fixed point of the original equation.

Proof. Note that this F defines a non-semigroup dynamical system (X,F ). We only have to prove the
following claim: under the assumption of this theorem, B is a positively invariant set. For any x ∈ B
and ∆t ∈ ∆T , G (F (∆t)x) ≤ G(x) ≤ G(x(0)) holds, which means F (∆t)x ∈ B.
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Let us more specifically consider the linear gradient case on X = Rd that we considered in Introduc-
tion. For such a system, the discrete gradient integrators defined by (6) automatically satisfy some of
the assumptions of Theorem 2. The remaining assumptions are only related to the original differential
equations, i.e., they do not depend on the choice of the discrete gradients.

Corollary 1. Suppose L satisfies d
dtG(z) < 0 for ∀z /∈ E. Consider the non-semigroup dynamical

system defined by (6). Then G is a Lyapunov functional on B.
Suppose also that B and ∆T are compact. Then, for all {∆tn} ∈ T (∆T ), and for all z(0),

ω
(
z(0); {∆tn}

)
⊆ E holds. If the fixed points of the original equation are isolated, ω

(
z(0); {∆tn}

)
= {y}

for some y ∈ E, i.e., the numerical solution converges to a fixed point of the original equation.

Let us illustrate the above results taking the following test scalar problem as an example (see, e.g.,
Matsuo–Furihata [26]):

d

dt
z(t) = −∇G(z) = z − z3, G(z) =

(1− z2)2

4
.

Here, we can construct a candidate of discrete gradient ∇dG : R× R → R:

∇dG
(
z(n+1), z(n)

)
= −z(n+1) + z(n)

2
+

(
z(n+1) + z(n)

2

)((
z(n+1)

)2
+
(
z(n)

)2
2

)
. (14)

Then, the discrete gradient integrator reads as follows:

z(n+1) − z(n)

∆tn
= −∇dG

(
z(n+1), z(n)

)
.

The set B = {z ∈ R | G(z) ≤ C} is obviously compact. Hence, if there exists a compact set ∆T ⊆
(0,+∞) such that ∆tn ∈ ∆T for all n, the numerical solution converges to one of the fixed points
{−1, 0, 1}.

Let us employ the adaptive time-stepping given by

∆tn =
α∣∣∣z(n) (1− (z(n))2)∣∣∣+ β

for z(0) = 1.5, where α, β > 0. Then, the compact set ∆T =
[

8α
15+8β ,

α
β

]
satisfies ∆t(n) ∈ ∆T . Hence,

Corollary 1 implies that the associated numerical solution should converge to one of the true fixed points,
which can be confirmed numerically (see Fig. 2, 3).

5 Conclusions and Remarks

In this paper, we established a Lyapunov-type theorem for dissipative numerical integrators with adap-
tive time-stepping. There we employed a forward approach (instead of the pullback approach in the
cocycles and nonautonomous systems studies). This destroys the invariance of the limit sets, but we
proved that a weaker invariance can still hold, and that is sufficient to construct a Lyapunov-type the-
orem. As an application, we gave a theorem that precisely describes the asymptotic behavior of the
discrete gradient integrators.

The results can be applied to various dissipative integrators keeping Lyapunov functionals. In the
literature, extensive effort has been devoted to such integrators, for example, see [9, 10, 25, 8, 38] (see
also [11] and the references therein).
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Figure 2: α = β = 5/24
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Figure 3: α = β = 5/264

As mentioned earlier, the forward and pullback approaches are such that they complement each
other—one gives up invariance, while the other is not suitable to consider each orbit. Compared to the
rich literature on the pullback approach, it seems quite little has been known for the forward approach,
at least to the best knowledge of the present authors. It should be interesting to further study to which
extent the forward approach can make sense, and the relation between the results on the forward and
pullback approaches. The present authors are now working on this issue, and the results will be reported
elsewhere soon.
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