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Abstract

In this paper, we study several variable-based satisfiability preserv-
ing assignments to the constraint satisfaction problem. In particular,
we consider fixable, autark and satisfiable partial assignments, as well
as their local and linear forms. We show the inclusion relationships
among the original and local forms of the satisfiability preserving as-
signments, and discuss maximality for linear satisfiability preserving
assignments, which are defined as linear cones of the associated real
space. As an application, we present a pseudo-polynomial time al-
gorithm that computes a linear fixable assignment for integer linear
systems, which also implies the well known pseudo-polynomially for
integer linear systems such as two variables par inequality (TVPI),
Horn and q-Horn systems.

1 Introduction

The constraint satisfaction problem (CSP, in short) is given as a triple
(V,D, F ), where V is a set of variables, D is variable domain, and F is
a set of constraints on the variables that specify the permitted or forbid-
den combinations of value assignment to variables. A solution to the CSP
instance is an assignment to all variables such that all constraints are sat-
isfied. The CSP can express a number of problems in diverse fields, and is
recognized as one of the most fundamental problems in computer science,
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see e.g., [7, 8, 29, 31]. The CSP has been studied extensively from both the-
oretical and practical point of view. For example, it is known that the CSP
has dichotomy property if the size of the domain is bounded by 3 [4, 30].
Namely, it is polynomially solvable if all the constraints satisfy a certain
property, and NP-hard, otherwise. Moreover, due to practical importance,
many heuristic algorithms have been proposed [8, 29, 31].

The Boolean satisfiability problem (SAT) can be regarded as Boolean
CSP, in which each constraint is represented by a clause (i.e., disjunction of
some literals). The SAT itself is an important problem in computer science.
It is well-known that the SAT is NP-hard [5], but several restricted classes
such as 2-SAT [9], Horn SAT [14], renamable Horn SAT [25], q-Horn SAT
[3], and LinAut SAT [20, 33] are solvable in polynomial time.

Integer linear systems are also formulated as the CSP. Given a matrix
G = (gij) ∈ Zm×n, a vector h ∈ Zm, and D = {0, 1, . . . , d}, where Z denote
the set of all integers, compute an integer vector x ∈ Dn such that Gx ≥ h.
It is a well-studied topic, especially in the field of mathematical program-
ming. The problem is strongly NP-hard, but several (semi-)tractable sub-
classes are known to exist. For example, the problem can be solved in
polynomial time, if n is bounded by some constant [24], or G is totally uni-
modular [16]. Moreover, it can be solved in pseudo-polynomial time if (1)
m is bounded by some constant [27], (2) G is quadratic [1, 15] (also called
TVPI, i.e., each row of G contains at most two non-zero elements), (3) G is
Horn [12, 34] (i.e., each row of G contains at most one positive element), or
(4) G is q-Horn [19]. It is also known that the problem is weakly NP-hard,
even if m is bounded by some constant or G is quadratic Horn [23] (also
called monotone quadratic).

As mentioned above, many practical algorithms have been proposed
to solve the CSP (including the Boolean satisfiability problem and integer
linear systems). One of the important methods is based on how to reduce
the problem size by partial variable assignments. For example, satisfiability
preserving assignments are used to reduce the problem size, where a partial
assignment is called satisfiability preserving if the satisfiability of the prob-
lem does not change after substituting it to the corresponding variables.
Once a satisfiability preserving assignment is available, instead of solving
the original problem instance, we may solve the problem instance obtained
from the original one by the assignment. Here we note that the size of
the resulting problem instance is smaller than the size of the original one.
Another example is found under the name of backdoor set. A backdoor set
is a subset of variables whose instantiation leads a given formula to an easy
problem [6, 11, 35]. In this paper, we study several kinds of satisfiability
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preserving assignments, investigate their relations and also consider linear
forms which can be obtained efficiently.

Satisfiability preserving assignments has been considered in many fields
such as artificial intelligence, optimization, and so on. For example, in ar-
tificial intelligence, interchangeability is one of the first form of satisfiabil-
ity preserving assignment [10]. Another example is an autark assignment,
which plays a central role in the paper and thus will be stated in depth
in the next paragraph. Ones of the most general notions of satisfiability
preserving assignments are tuple substitutability [17] and full dynamic sub-
stitutability [28]. Although it is preferable to obtain these assignments, it
is known that finding these assignments is NP-hard in general. Thus, lo-
cal forms and the restriction to the problem are also considered. See also
[2, 18].

For the SAT problem, autark assignments were introduced by Monien
and Speckenmeyer [26] to provide a fast exponential time algorithm. An
autark assignment is a partial assignment A that satisfies any clause c if
c contains a variable assigned by A. Later, Kullmann investigated autark
assignments in terms of resolution refutation, and introduced a linear form
of autark assignments, which can be found in polynomial time via solving
linear programming problem [20]. It is known that to find a non-trivial
autark assignment is NP-hard and well-known tractable classes such as 2-,
Horn and q-Horn SAT are solved by finding linear autark assignments.

The results in this paper

In this paper, we investigate several satisfiability preserving assignments
such as fixable, autark and satisfiable partial assignments. We first reveal
the inclusion relations among satisfiability preserving assignments and their
local forms. In particular, we show that for any prime CNF expression, a
partial assignment is fixable if and only if it is locally fixable. We also study
linear forms of satisfiability preserving assignments for Boolean CSP.

For Boolean CSP of n variables, we consider n-dimensional real space
Rn, and we identify a vector y ∈ Rn with a partial assignment x such that
xj = 1 if yj > 0, xj = 0 if yj < 0, and xj = ∗ (i.e., unassigned) if yj = 0.
Then, to compute satisfiability preserving assignments efficiently, we con-
sider inner polyhedral conic approximations of them, i.e., polyhedral cones
that are contained in the region corresponding to satisfiability preserving
assignments. We note that linear autark assignments defined by Kullmann
[20] are indeed inner polyhedral conic approximations of a special type. We
investigate which polyhedral cone well-approximates satisfiability preserv-
ing assignments. For the SAT problem, i.e., given a CNF φ = ∧ci, we show
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the following statements.

(1) For any inner open polyhedral conic approximation K of partially
satisfiable assignments of φ, some matrix M which satisfies Mij > 0
(resp., < 0) only if ci contains xj (resp., xj) produces an inner open
polyhedral conic approximation that contains K.

(2) For any inner closed polyhedral conic approximation K of autark
assignments of φ, some matrix M which satisfies Mij > 0 (resp.,
< 0) if and only if ci contains xj (resp., xj) produces an inner closed
polyhedral conic approximation that contains K.

(3) Any matrix M with each row containing a nonzero entry which satis-
fies Mij > 0 (resp., < 0) only if ci contains xj (resp., xj) produces an
inner open polyhedral conic approximation that contains all partially
satisfiable assignments of φ, if φ is monotone.

(4) Any matrix M which satisfies Mij > 0 (resp., < 0) if and only if
ci contains xj (resp., xj) produces an inner closed polyhedral conic
approximation that contains all autark assignments of φ, if φ is mono-
tone.

(5) Any matrix M which satisfies Mij > 0 (resp., < 0) if and only if
ci contains xj (resp., xj) produces a maximal inner polyhedral conic
approximation of autark assignments, if φ is prime and monotone.

From these results, matrices of a certain form are only used to find good
inner approximations of satisfiable and autark assignments. In particular,
(5) is used to find a good inner approximation of fixable assignments of
integer linear systems, since each inequality is monotone (unate, more pre-
cisely). We also note that (2) is an extension of the result by Kullmann
[21] which states that autark assignments are covered with inner polyhedral
conic approximations of a certain form.

As for algorithmic results, we consider integer linear systems. By ap-
plying (5) to each constraint, we show that a non-trivial linear fixable as-
signment can be found in pseudo-polynomial time. Here our algorithm
makes use of the ellipsoid method and dynamic programming similarly to
Knapsack problem. For unit 0-1 integer linear systems, we show that a
non-trivial linear fixable assignment can be found in polynomial time. We
also show that well-known efficiently solvable classes such as quadratic,
Horn and q-Horn systems can be solved by repeatedly finding linear fixable
assignments.
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2 Constraint satisfaction problem and satisfiabil-
ity preserving assignments

In this section, we fix the notations to represent the constraint satisfaction
problem (CSP) and the Boolean satisfiability problem (SAT), and define
several satisfiability preserving assignments. We then discuss their rela-
tionships.

Let V denote a set of variables with size n = |V |, and let D denote
a finite set, called the domain of variables in V . For a subset X ⊆ V ,
an element A ∈ DX is called a partial assignment to X, and an (full)
assignment, if X = V holds in addition. We also denote it by X = A.
For simplicity, we write x = p if X = {x} and p ∈ D. A subset C of
partial assignments to some X ⊆ V (i.e., C ⊆ DX) is sometimes called a
constraint. Constraint satisfaction problem (CSP) is defined by a triplet
(V,D, F ) such that F denotes a set of constraints Ci with m = |F |, where
we assume that Ci ⊆ DV (Ci). An (full) assignment A ∈ DV is called a
solution (or a satisfiable full assignment) to the CSP instance (V,D, F )
if for every constraint C ∈ F , the restriction of A to V (C), denoted by
πV (C)(A), is a member of C. CSP is the problem of finding a solution to
a given instance (V,D, F ). It is clear that the set of solutions to a CSP
instance specifies a subset S of DV . Thus, for an S ⊆ DV , (V,D, F ) (or F
if V and D are clear from the context) is called an expression of S if the
set of its solutions equals to S.

The Boolean satisfiability problem (SAT) is regarded as a special case of
CSP, in which V = {x1, . . . , xn} denotes the set of propositional variables,
i.e., D = {0, 1}, and F is given by a conjunctive normal form (CNF) φ =∧m

i=1(
∨

j∈J(i)
+

xj ∨
∨

j∈J(i)
−
xj), where J

(i)
+ , J

(i)
− ⊆ V and J

(i)
+ ∩ J (i)

− = ∅ for

all i = 1, . . . ,m. Namely, the constraints in F correspond to clauses in φ.
In this paper, we sometimes do not distinguish between CNFs φ and SAT
instances I. Moreover, the problem of solving an integer linear system is
also contained in CSP, where each constraint is given as a linear inequality.

Let S be a subset of DV . For a partial assignment X = A, let S[X =
A] = {πV \X(B) | B ∈ S, πX(B) = A}. For a CSP instance (D,V, F ) with

the solution set S ⊆ DV , a partial assignment X = A is called satisfiability
preserving if the satisfiability of the problem does not change after substi-
tuting it to the corresponding variables, i.e., S[X = A] is empty if and only
if so is S.

We now define several satisfiability preserving assignments.

Definition 1. Let (D,V, F ) be a CSP instance with solution set S. A
partial assignment X = A is called satisfiable (resp., fixable) for (D,V, F )
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if S[X = A] = DV \X (resp., S[X = A] ⊇ S[X = B] for any partial
assignment B to X).

We note that the fixability was introduced by Bordeaux et al. [2] for sin-
gle variable assignments. We also note that both satisfiable and fixable
assignments are satisfiability preserving.

Example 1. Let (D = {0, 1, 2}, V = {x1, x2, x3}, F ) be a CSP instance
whose solution set S is given as

S = {(0, 1, 1), (0, 2, 1), (1, 1, 0), (1, 1, 1), (1, 1, 2)}.

Consider two partial assignments (x1, x2) = (1, 1) and (x1, x3) = (0, 1).
Then (x1, x2) = (1, 1) is satisfiable for (D,V, F ), since S[(x1, x2) = (1, 1)] =
D{x3}, while (x1, x3) = (0, 1) is fixable, since S[(x1, x3) = A] = {1, 2} if
A = (0, 1), {1} if A = (1, 0), (1, 1), (1, 2), and ∅ otherwise.

Let us then consider several local satisfiability preserving assignments,
i.e., satisfiability preserving assignments that are defined in terms of con-
straints in CSP.

Definition 2. For a CSP instance (D,V, F ), a partial assignment X = A
is respectively called (i) locally satisfiable, (ii) autark, and (iii) locally fixable
if (i) C[X = A] = DV (C)\X for any constraint C in F , (ii) C[X = A] =
DV (C)\X for any constraint C in F with V (C) ∩X ̸= ∅, and (iii) C[X =
A] ⊇ C[X = B] holds for any partial assignment X = B and any constraint
C in F .

The concept of autark assignments was introduced by Monien and
Speckenmeyer [26] for the Boolean case D = {0, 1} to construct fast exact
algorithms for SAT, and was investigated by Kullmann [20]. Kullmann [22]
also introduce autark assignments for generalized clause sets for the non-
Boolean case.

Example 2. Let (D = {0, 1, 2, 3}, V = {x1, x2, x3}, F ) be a CSP instance
where F is given by a linear system

2x1 + 3x2 − x3 ≥ 3
3x1 − 4x3 ≥ −2

− x2 − x3 ≥ −5.
(1)

Then three partial assignments (x2, x3) = (1, 0), x2 = 2 and x1 = 3 are
respectively locally satisfiable, autark and locally fixable for (D,V, F ).
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2.1 Relationships among satisfiability preserving assignments

In this section, we consider the relationship among satisfiability preserving
assignments defined in Section 2.

Definition 3. For a CSP instance I = (D,V, F ), we define Pl-sat(I),
Psat(I), Pautark(I), Pl-fix(I), Pfix(I) and Ppresv(I) as the set of all locally
satisfiable, satisfiable, autark, locally fixable, fixable and satisfiability pre-
serving assignments of I, respectively.

We first show the following result for general CSP.

Theorem 1. Let I = (D,V, F ) be a CSP instance. Then the following
relations hold.

Pl-sat(I) = Psat(I) ⊆ Pautark(I) ⊆ Pl-fix(I) ⊆ Pfix(I) ⊆ Ppresv(I). (2)

Before proving the theorem, we show by the following examples that no
other relationship holds.

Example 3. Consider four Boolean CSP instances I = (D,V, F ) with two
variables, i.e., D = {0, 1} and V = {x1, x2}.
(i) Let F be given as φ = x1x2. Then x1 = 1 is contained in Pautark(I), but

not in Psat(I).
(ii) Let F be given as a single inequality x1 + x2 ≥ 2. Then x1 = 1 is

contained in Pl-fix(I), but not in Pautark(I).
(iii) Let F be given as φ = x1(x1∨x2). Then x2 = 0 is contained in Pfix(I),

but not in Pl-fix(I).
(iv) Let F be given as φ = (x1∨x2). Then x1 = 0 is contained in Ppresv(I),

but not in Pfix(I).

Proof of Theorem 1. It is not difficult from the definitions that

Pl-sat(I) = Psat(I) ⊆ Pautark(I) and Pfix(I) ⊆ Ppresv(I). (3)

For Pautark(I) ⊆ Pl-fix(I), let X = A be an autark assignment. If X ∩
V (C) ̸= ∅ for a constraint C, then DV \X includes C[X = B] for any
B ∈ DX . On the other hand, if X ∩ V (C) = ∅ for a constraint C, then
C[X = A] = C[X = B] for any B ∈ DX . Thus, we have Pautark(I) ⊆
Pl-fix(I).

For Pl-fix(I) ⊆ Pfix(I), let X = A be a local fixable assignment, and S
be the solution set of I. Since each C[X = A] specifies a subset SC[X=A] ⊆
DV \X , i.e., SC[X=A] = {πV \X(B) | B ∈ DV , πV (C)(B) ∈ C, πX(B) = A},
we have S[X = A] =

∩
C SC[X=A]. Note that for any B ∈ DX , C[X = A] ⊇

C[X = B] is equivalent to SC[X=A] ⊇ SC[X=B]. Thus S[X = A] ⊇ S[X =

B] holds for any B ∈ DX , which implies that X = A is fixable.
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We note that the locality depends on properties on the constraints. We
show that one more relation

Pautark(I) ⊇ Pl-fix(I) (4)

is satisfied for any SAT instance I.

Theorem 2. Let I denote a SAT instance (i.e., a Boolean CSP instance
where the constraints are given by a CNF). Then we have

Pl-sat(I) = Psat(I) ⊆ Pautark(I) = Pl-fix(I) ⊆ Pfix(I) ⊆ Ppresv(I). (5)

Proof. By Theorem 1, it suffices to show that a local fixable assignment
X = A for a CNF φ is autark. For a clause c ∈ φ with V (c) ∩X ̸= ∅, we
have a partial assignment X = B such that c[X = B] = DV (c)\X . This,
together with local fixability of X = A implies c[X = A] = DV (c)\X . Hence
X = A is autark.

A CNF φ is called prime if the solution set is different from the one
of any CNF obtained from φ by replacing a clause c ∈ φ by its proper
subclause. If Boolean constraints are in addition represented by a prime
CNF, it holds that

Pl-fix(I) ⊇ Pfix(I). (6)

Theorem 3. Let I denote a SAT instance such that the constraints are
given by a prime CNF. Then we have

Pl-sat(I) = Psat(I) ⊆ Pautark(I) = Pl-fix(I) = Pfix(I) ⊆ Ppresv(I). (7)

Proof. Let φ be a prime CNF that represents a Boolean CSP instance, and
let X = A be a partial assignment. Assuming that X = A is not locally
fixable, we show that it is not fixable.

Let S be the set of solutions of φ. Since X = A is not locally fixable,
there exists a clause c in φ such that c[X = A] ̸⊇ c[X = B] for some
partial assignment X = B. This implies that X = A is not a satisfiable
assignment for c, i.e., c[X = A] ̸= {0, 1}V (c)\X . On the other hand, by
primality of φ, we have a satisfiable (full) assignment V = A∗ for φ that
does not satisfy c[X = A]. This implies that πV \X(A∗) ̸∈ S[X = A] and
πV \X(A∗) ∈ S[X = πX(A∗)], which proves that X = A is not fixable for
S.

Let us finally mention integer linear systems. Note that any CNF can be
represented by a 0-1 linear system, since a 0-1 assignment satisfies a clause
c = (

∨
j∈J+ xj ∨

∨
j∈J− xj) if and only if it satisfies

∑
j∈J+ xj +

∑
j∈J−(1−

xj) ≥ 1. Thus it follows from Example 3 that (4) or (6) is not always
satisfied by integer linear systems.
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3 Linear satisfiability preserving assignments

In this section, we restrict our attention to Boolean CSP and deal with
linear forms of satisfiability preserving assignments.

For a vector y ∈ Rn, let V (y) = {xj | yj ̸= 0} and define a partial
assignment V (y) = A(y) by A(y)j = 1 if yj > 0 and A(y)j = 0 if yj < 0.
For R ⊆ Rn, let P (R) = {V (y) = A(y) | y ∈ R}. Conversely, for a set
of partial assignments P , we define the region of P by R(P ) = {y ∈ Rn |
V (y) = A(y) ∈ P}. Note that R(P ) is a cone, where R ⊆ Rn is a cone if
λy ∈ R holds for any λ > 0 and y ∈ R.

The following properties show that satisfiable partial assignments and
satisfiability preserving assignments of CSP are characterized by the region
of its solutions. Let B ⊆ R be the unit ball with center 0, i.e., B = {y ∈
Rn | |y| ≤ 1}. For a subset Y of Rn, its closure is defined as cl(Y ) =
{y ∈ Rn | ∀ε > 0, (y + εB) ∩ Y ̸= ∅}, and its interior is defined as
int(Y ) = {y ∈ Rn | ∃ε > 0, (y + εB) ⊆ Y }. We note that these definitions
are equivalent to the usual definitions of closure and interior defined in
terms of convergence of vectors.

Proposition 1. Let I = (D = {0, 1}, V, F ) be a CSP instance with so-
lution set S( ̸= ∅). Let y be a vector in Rn. Then we have the following
equivalences.

(i) V (y) = A(y) is a satisfiable assignment of I if and only if y is contained
in the interior of the closure of R(S).

(ii) V (y) = A(y) is a satisfiability preserving assignment of I if and only
if y is contained in the closure of R(S).

Proof. (i): For the only-if part, assume that V (y) = A(y) is satisfiable.
Let ε be a positive real such that ε < |yj | for any yj ̸= 0, and let y′

be a vector in (y + εB) ∩ R({V = A | A ∈ {0, 1}n}). Since y′ has no
zero element, V (y′) = A(y′) is a satisfiable full assignment. Hence for any
y′ ∈ (y + (ε/2)B) and any 0 < ε′ ≤ ε/2, we have (y′ + ε′B) ∩ R(S) ̸= ∅,
since (y′ + ε′B) ⊆ (y + εB) and clearly there exists a point in (y′ + ε′B)
which corresponds to a full assignment. Hence (y + (ε/2)B) ⊆ cl(R(S))
holds, which implies that y is contained in int(cl(R(S))).

For the if part, suppose that y is contained in the interior of the closure
of R(S). Then for sufficiently small ε > 0, y + εw is also contained in
the interior of the closure of R(S) for all w ∈ {−1, 1}n. Note that y + εw
has no zero element, i.e., V (y + εw) = V . This means that V (y + εw) =
A(y + εw) is a satisfiable full assignment for any w ∈ {−1, 1}n. Thus, a
partial assignment V (y) = A(y) is arbitrarily extendable to a satisfiable
full assignment and hence it is satisfiable.
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(ii): For the only-if part, suppose that y is not contained in the closure
of R(S). We show that V (y) = A(y) is not satisfiability preserving.

Since y ̸∈ cl(R(S)), there exists an ε > 0 such that (y+εB)∩cl(R(S)) =
∅. Thus, for sufficiently small ε′ > 0, y+ε′w ̸∈ R(S) and πV (y)(A(y+ε

′w)) =
A(y) hold for all w ∈ {−1, 1}n. This implies that V (y) = A(y) is not
extendable to any satisfiable full assignment. Hence, V (y) = A(y) is not
satisfiability preserving.

For the if part, suppose y is contained in the closure of R(S). Then for
sufficiently small ε > 0, y + εw ∈ R(S) and πV (y)(A(y + εw)) = A(y) hold
for some w ∈ {−1, 1}n. Thus, V (y) = A(y) is extendable to a satisfiable
assignment, which implies that V (y) = A(y) is satisfiability preserving.

We remark that R(S) is not equal to int(cl(R(S))). For example, for a
SAT instance φ = x1∨x2, we have R(S) = {y ∈ R2 | y1 > 0, y2 ̸= 0}∪{y ∈
R2 | y2 > 0, y1 ̸= 0} and int(cl(R(S))) = {y ∈ R2 | y1 > 0 or y2 > 0}.

We now introduce linear satisfiability preserving assignments. Note
that Proposition 1 implies that computing a point in the closure of R(S)
is equivalent to computing a satisfiability preserving assignment. However,
R(S) and/or its closure are not given explicitly (i.e., they are given as a
CSP instance (D,V, F )). Moreover, they are not convex, although they are
cones. It is in general difficult to compute a point from the closure of R(S).
We thus consider convex polyhedral cones K contained in the closure of
R(S). Here convex polyhedrality helps efficient computation of a point in
K. Since such polyhedral cones K are inner approximations of satisfiability
preserving assignments, we study how to construct large such cones.

Definition 4. Let (D = {0, 1}, V, F ) be a Boolean CSP instance. A sub-
set P of satisfiable (resp., autark, local fixable, fixable and satisfiability
preserving) assignments of (D,V, F ) is called linear if it is described by
some convex polyhedral cone K and such an assignment in P is called K-
linear.

Linear autark assignment is a generalization of simple linear autark
assignments introduced by Kullmann [20].

We identify a partial assignment X = A with a vector a in {0, 1, ∗}n
such that aj = 0 if j ∈ X and Aj = 0, aj = 1 if j ∈ X and Aj = 1, and
aj = ∗ otherwise (i.e., j ̸∈ X).

Example 4. Let I = (D = {0, 1}, V = {x1, x2}, F ) be a SAT instance,
where F is given by a CNF φ = x1 ∨ x2. Then we have

Psat(I) = {(0, 1), (1, 0), (1, 1), (1, ∗), (∗, 1)},
Pautark(I) = Pl-fix(I) = Pfix(I) = Psat(I) ∪ {(∗, ∗)},
Ppresv(I) = {0, 1, ∗}2 \ {(0, 0)}.

(8)
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Consider three convex cones defined by linear systems:

K1 = {y ∈ R2 | y1 + y2 > 0},
K2 = {y ∈ R2 | y1 + y2 ≥ 0},
K3 = {y ∈ R2 | y1 ≥ 0, y1 − y2 ≥ 0}.

(9)

Then we have

K1 ⊆ R(Psat(I)), K2 ⊆ R(Pautark(I)) and K3 ⊆ R(Ppresv(I)). (10)

In fact,

P (K1) = Psat(I), P (K2) = Pautark(I) and P (K3) ⊆ Ppresv(I). (11)

Lemma 1. Let I = (D = {0, 1}, V, F ) be a Boolean CSP instance.

(i) For an open subset K ⊆ R(Psat(I)), there exists an open cone K∗ such
that K ⊆ K∗ ⊆ R(Psat(I)). If K is in addition convex (resp., linear),
then K∗ can be taken from convex (resp., linear) cones.

(ii) For a closed subset K ⊆ R(Ppresv(I)), there exists a closed convex cone
K∗ such that K ⊆ K∗ ⊆ R(Ppresv(I)). If K is in addition convex
(resp., linear), then K∗ can be taken from convex (resp., linear) cones.

Proof. (i): Let K∗ be the conic hull of K. Then K∗ is open, and we have
K∗ ⊆ R(Psat(I)), since R(Psat(I)) is a cone. Since convexity and linearity
are preserved by taking the conic hull, the proof is competed.

(ii): Let K∗ the closure of the conic hull of K. Then K∗ ⊆ R(Ppresv(I)),
since R(Ppresv(I)) is a closed cone by Proposition 1. It is again well known
that convexity and linearity are preserved by taking the closure of the conic
hull.

We note that for a SAT instance I and a non-open convex subset K of
R(Psat(I)) there does not always exists an open convex subset of R(Psat(I))
which contains K, as the next example shows.

Example 5. Let I = (D = {0, 1}, V = {x1x2}, F ) be a SAT instance,
where F is given by φ = x1 ∨ x2. For a non-open convex subset K = {y ∈
R2 | y1 + y2 > 0} ∪ {(1,−1)} of R(Psat(I)), there does not exists an open
convex subset of R(Psat(I)) which contains K, since a convex set containing
both K and {(1,−1)}+ εB also contains a point not in R(Psat(I)) for any
ε > 0.

For a SAT instance, we now introduce special forms of linear satisfi-
ability preserving assignments obtained from CNF expressions. For two
vectors y and z ∈ RW , we write y ≫ z, if yj > zj for all j ∈W . Note that
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y > z is different from y ≫ z, where y > z denotes that yj ≥ zj for all
j ∈W and y ̸= z. For a CNF φ =

∧m
i=1 ci, let Mφ denote an m× n matrix

such that (i, j) entry is 1 if xj ∈ ci, −1 if xj ∈ ci, and 0 otherwise (i.e.,
xj ̸∈ V (ci)). For a matrix M , let K≫(M) and K≥(M) respectively denote
open and closed polyhedral cones defined by

K≫(M) = {y ∈ Rn |My ≫ 0},
K≥(M) = {y ∈ Rn |My ≥ 0}. (12)

We first show the following proposition.

Proposition 2. Let I = (D = {0, 1}, V, F ) be a SAT instance, where F is
given by a CNF φ. Then we have

(i) K≫(Mφ) ⊆ R(Psat(I)),
(ii) cl(K≫(Mφ)) ⊆ K≥(Mφ) ⊆ R(Pautark(I)) ⊆ R(Ppresv(I)).

Proof. It is known by Kullmann [20, 21] that K≫(Mφ) ⊆ R(Psat(I)) and
K≥(Mφ) ⊆ R(Pautark(I)). Moreover, we have cl(K≫(Mφ)) ⊆ K≥(Mφ),
since K≥(Mφ) is a closed set. Finally, by Theorem 1, R(Pautark(I)) ⊆
R(Ppresv(I)).

We note that cl(K≫(Mφ)) ⊆ R(Psat(I)) and cl(K≫(Mφ)) = K≥(Mφ)
are not always satisfied. Let I1 = (D = {0, 1}, V1 = {x1}, F1), where F1

is given by φ1 = x1, and I2 = (D = {0, 1}, V2 = {x1, x2}, F2), where F2 is
given by φ2 = (x1 ∨ x2)(x1 ∨ x2). Then we have cl(K≫(Mφ1)) = {y1 ∈ R |
y1 ≥ 0} and R(Psat(I1)) = {y1 ∈ R | y1 > 0}, which implies cl(K≫(Mφ1)) ̸⊆
R(Psat(I1)). We also have cl(K≫(Mφ2)) = ∅ and K≥(Mφ2) = {y ∈ R2 |
y1 = y2}, which implies cl(K≫(Mφ2)) ̸= K≥(Mφ2).

By Proposition 2, a satisfiable partial (resp., autark) assignment is
called simple linear if a corresponding vector is contained inK≫(Mφ) (resp.,
K≥(Mφ)).

Example 6. Let (D = {0, 1}, V = {x1, x2}, F ) be a SAT instance, where
F is given by a CNF φ = (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x3). Then satisfiable
assignment (x1, x2) = (1, 1) is simple linear and autark assignment x3 = 1
is simple linear, since (2, 3, 0) ∈ K≫(Mφ) and (0, 0, 2) ∈ K≥(Mφ).

We note that K≫(Mφ) = ∅ and K≥(Mφ) = {0} might hold in general.

Example 7. Let I = (D = {0, 1}, V = {x1, x2, x3}, F ) be a SAT instance,
where F is given by a CNF φ = (x1∨x2∨x3)(x1∨x2∨x3)(x1∨x2∨x3)(x1∨
x2 ∨ x3). It can be verified that

Psat(I) = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)},
Pautark(I) = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1), (∗, ∗, ∗)},
Ppresv(I) = {0, 1, ∗}3 \ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

(13)
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On the other hand, there exists no simple linear satisfiable assignment nor
non-trivial simple linear autark assignment, since

Mφ =


1 1 1
1 −1 −1
−1 1 −1
−1 −1 1

 (14)

and hence K≫(Mφ) = ∅ and K≥(Mφ) = {0}.
We now define the perturbed version of simple linear satisfiable and

autark assignments. For a real matrix M , let Q(M) denote the set of
matrices N with sign pattern identical to M , i.e., Nij < 0 (resp., = 0, > 0)
if and only if Mij < 0 (resp., = 0, > 0), and let Q0(M) denote the set of
matrices N such that 1) Nij < 0 (resp., Nij > 0), only if Mij < 0 (resp.,
Mij > 0), and 2) each row contains at least one nonzero entry.

Proposition 3. Let I = (D = {0, 1}, V, F ) be a SAT instance, where F is
given by a CNF φ. Then we have
(i) K≫(M) ⊆ R(Psat(I)) for all M ∈ Q0(Mφ),
(ii) K≥(M) ⊆ R(Pautark(I)) for all M ∈ Q(Mφ),
(iii) cl(K≫(M)) ⊆ R(Ppresv(I)) for all M ∈ Q0(Mφ).

Proof. Since (ii) is known by Kullmann [21], we show (i) and (iii) only.
(i): Let y be a vector in K≫(M). Then for each c ∈ φ, there exists an

element j such that (xj ∈ c and yj > 0) or (xj ∈ c and yj < 0). In either
case, V (y) = A(y) should satisfy c, implying that it satisfies φ.

(iii): We have K≫(M) ⊆ R(Psat(I)) for any M ∈ Q0(Mφ) by (i).
By taking the closure of both sides of K≫(M) ⊆ R(Psat(I)), we obtain
cl(K≫(M)) ⊆ cl(R(Psat(I))), and since cl(R(Psat(I))) ⊆ R(Ppresv(I)) by
Proposition 1, we have cl(K≫(M)) ⊆ R(Ppresv(I)).

We note that the proof of (i) in Proposition 3 is similar to the one that
K≫(M) ⊆ R(Psat(I)) for M ∈ Q(Mφ) in [21].

Example 8. Consider again the CSP instance (D,V, F ) given in Ex-
ample 7, i.e., D = {0, 1}, V = {x1, x2, x3} and F is given by a CNF
φ = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3). Recall that
there exists no simple linear satisfiable assignment nor non-trivial simple
linear autark assignment for φ. On the other hand, define M1 ∈ Q0(Mφ)
and M2 ∈ Q(Mφ) by

M1 =


1 1 1
1 0 0
0 1 0
0 0 1

 and M2 =


1 1 1
2 −1 −1
−1 2 −1
−1 −1 2

 . (15)
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Then we have

P (K≫(M1)) = P (K≥(M2)) = {(1, 1, 1), (∗, ∗, ∗)},
P (cl(K≫(M1))) = {(1, 1, 1), (1, 1, ∗), (1, ∗, 1), (1, ∗, ∗), (∗, 1, 1),

(∗, 1, ∗), (∗, ∗, 1), (∗, ∗, ∗)}.
(16)

These provide linear satisfiability preserving assignments. For example,
(x1, x2) = (1, 1) is a cl(K≫(M1))-linear satisfiability preserving assignment.

We note that for a CNF φ and a matrix M ∈ Q0(Mφ), K≥(M) is not
always contained in R(Ppresv(I)). For example, for φ = (x1 ∨ x2)(x1 ∨ x2)
and

M =

(
0 1
0 −1

)
∈ Q0(Mφ), (17)

we have K≥(M) ̸⊆ Ppresv(I), since (−1, 0) is contained in K≥(M) while not
in Ppresv(I) (since x1 = 0 is not satisfiability preserving).

We also note {K≥(M) |M ∈ Q(Mφ)} and {cl(K≫(M)) |M ∈ Q0(Mφ)}
are incomparable in general. For example, for φ = (x1 ∨ x2)(x1 ∨ x2) and

M =

(
1 −1
−1 1

)
∈ Q(Mφ), (18)

there does not exist a matrix M∗ ∈ Q0(Mφ) with K≥(M) ⊆ cl(K≫(M∗)),
and for φ = (x1 ∨ x2) and

M =
(
1 0

)
∈ Q0(Mφ), (19)

there does not exist a matrix M∗ ∈ Q(Mφ) with cl(K≫(M)) ⊆ K≥(M
∗).

The following proposition shows that linear satisfiable and autark as-
signments in Proposition 3 is enough to find satisfiable and autark assign-
ments.

Proposition 4 ([21]). Let I = (D,V, F ) be a SAT instance, where F is
given by a CNF φ. Then, for any X = A ∈ Psat(I) (resp., Pautark(I)) there
exists a matrix M ∈ Q(Mφ) such that X = A is K≫(M)-linear (resp.,
K≥(M)-linear).

We here study maximality of these linear assignments, which is useful
to find a satisfiability preserving assignment.

Theorem 4. Let I = (D,V, F ) be a SAT instance, where F is given by a
CNF φ.

(i) Let N be a matrix that represents linear satisfiable assignments, i.e.,
K≫(N) ⊆ R(Psat(I)). Then there exists a matrix M in Q0(Mφ) such
that K≫(N) ⊆ K≫(M).
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(ii) Let N be a matrix that represents linear autark assignments, i.e.,
K≥(N) ⊆ R(Pautark(I)). Then there exists a matrix M in Q(Mφ)
such that K≥(N) ⊆ K≥(M).

Proof. (i): For a clause c =
∨

j∈J+ xj ∨
∨

j∈J− xj in φ with J+ ∩J− = ∅, let
Kc = {y ∈ Rn | yj ≤ 0 (j ∈ J+), yj ≥ 0 (j ∈ J−)}. Then, Kc is a closed
cone which contains no point in R(Psat(I)). This implies K≫(N)∩Kc = ∅.
SinceK≫(N) is open, there exists a separating hyperplane betweenK≫(N)
and Kc, i.e., there exists a vector α ∈ Rn such that K≫(N) ⊆ {y ∈ Rn |
αy > 0} and Kc ⊆ {y ∈ Rn | αy ≤ 0}. We claim that αj ≥ 0 for all j ∈ J+,
αj ≤ 0 for all j ∈ J−, and αj = 0 for all j ̸∈ J+ ∪ J−.

Since −ej , ej and ±ej are respectively contained in Kc for j ∈ J+,
j ∈ J− and j ̸∈ J+ ∪ J−, we have (−ej)α ≤ 0, ejα ≤ 0 and (±ej)α ≤ 0
respectively. Here ej denotes the jth unit vector. This proves the claim.

Since α ̸= 0, the claim implies (i) in the theorem.
(ii): For a clause c =

∨
j∈J+ xj ∨

∨
j∈J− xj in φ with J+ ∩ J− = ∅, let

Kc be a non-closed cone defined by Kc = {y ∈ Rn | yj ≤ 0 (j ∈ J+), yj ≥
0 (j ∈ J−),−

∑
j∈J+ yj +

∑
j∈J− yj > 0}. Then Kc contains no point in

R(Pautark(I)). This implies K≥(N)∩Kc = ∅. There exists a vector α ∈ Rn

such that K≥(N) ⊆ {y ∈ Rn | αy ≥ 0} and Kc ⊆ {y ∈ Rn | αy < 0}. We
claim that αj > 0 for all j ∈ J+, αj < 0 for all j ∈ J−, and αj = 0 for all
j ̸∈ J+ ∪ J−.

Since −ej and ej are respectively contained inKc for j ∈ J+ and j ∈ J−,
we have (−ej)α < 0 and ejα < 0 respectively, which proves the claim for
j ∈ J+ and j ∈ J−. For j ̸∈ J+ ∪ J−, define two vectors z and z′ by zj = 1,
z′j = −1, zk = z′k = 0 if k ̸∈ J+ ∪ J− ∪ {j}, zk = z′k = −ε if k ∈ J+, and
zk = z′k = +ε if k ∈ J− for any ε > 0. Then z is contained in Kc and hence
we have αz < 0. This implies that −ε(

∑
k∈J+ αk −

∑
k∈J− αk) < αj <

ε(
∑

k∈J+ αk −
∑

k∈J− αk). Since ε > 0 is arbitrary, we have αj = 0.

While {K≫(M) | M ∈ Q0(Mφ)} and {K≥(M) | M ∈ Q(Mφ)} repre-
sents a family of convex sets which are large in R(Psat(I)) and R(Pautark(I))
respectively by Theorem 4, they are respectively not maximal convex sub-
set of R(Psat(I)) and R(Pautark(I)) in terms of region, as the next examples
show.

For a subset R in Rn, we denote by conv(R) its convex closure.

Example 9. Let I = (D = {0, 1}, V = {x1, x2}, F ) be a SAT instance,
where F is given by a CNF φ = x1 ∨x2. Then no M ∈ Q0(Mφ) produces a
maximal convex set K≫(M) of R(Psat(I)). This is because conv(K≫(M)∪
{y}) is respectively contained in R(Psat(I)) for y = (M12,−M11) ̸∈ K≫(M)
if M12 ̸= 0 and y = (0, 1) ̸∈ K≫(M) if M12 = 0.
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Example 10. Let I = (D = {0, 1}, V = {x1, x2}, F ) be a SAT instance,
where F is given by a CNF φ = x1(x1 ∨ x2). Then for any M ∈ Q(Mφ),
K≥(M) is not a maximal convex subset of R(Pautark(I)). We note that
R(Pautark(I)) = {y ∈ R2 | y1 > 0} ∪ {y ∈ R2 | y1 ≥ 0, y2 ≥ 0}. y =
(M22,−M21 − 1) is contained in R(Pautark(I)), but it is not contained in
K≥(M), since it violates M21y1 +M22y2 ≥ 0. Moreover, we can see that
conv(K≥(M) ∪ {y}) is contained in R(Pautark(I)).

The next theorem shows that there exist maximal elements in {K≫(M) |
M ∈ Q0(Mφ)} and {K≥(M) |M ∈ Q(Mφ)} in terms of partial assignment,
which contrasts Examples 9 and 10.

Theorem 5. Let I = (D,V, F ) be a SAT instance, where F is given by a
CNF φ.

(i) For any convex set C contained in R(Psat(I)), there exists a matrix
M ∈ Q0(Mφ) such that P (C) ⊆ P (K≫(M)).

(ii) For any convex set C contained in R(Pautark(I)), there exists a matrix
M ∈ Q(Mφ) such that P (C) ⊆ P (K≥(M)).

Proof. Since we have 3n partial assignments, there exists finite points y(1),
. . . , y(ℓ) in C such that P ({y(1), . . . , y(ℓ)}) = P (C).

For (i), let K denote the convex hull of y(i) (i = 1, . . . , ℓ). It follows
from convexity of C that K ⊆ R(Psat(I)). By an argument similar to that
in Theorem 4, we have K ⊆ K≫(M) for some M ∈ Q0(Mφ).

For (ii), let K denote the convex cone closure of y(i) (i = 1, . . . , ℓ). It
follows from convexity of C that K ⊆ R(Pautark(I)). By Theorem 4, there
exists a matrix M ∈ Q(Mφ) such that K ⊆ K≥(M), which proves the
theorem.

We remark that Mφ itself might not be maximal as seen in Example 7
and 8.

A CNF φ is called monotone if it contains no negative literal. For
monotone SAT instance, we have the following good properties.

Theorem 6. Let I = (D,V, F ) be a monotone SAT instance, i.e., a SAT
instance where F is given by a monotone CNF φ. For any matrix M ∈
Q(Mφ), we have P (K≫(M)) = Psat(I) and P (K≥(M)) = Pautark(I).

Proof. We first show the case of Psat(I). For a partial satisfiable assignment
X = A, let y be a vector in Rn defined as yj = γ if Aj = 1, yj = −1 if
Aj = 0, and yj = 0 otherwise, where γ is sufficiently large. Then it is clear
that a partial assignment V (y) = A(y) is equal to X = A. Moreover, we
have My ≫ 0.

We can similarly show the case of autark assignments.
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Theorem 6 does not hold if we replace Q(Mφ) to Q0(Mφ) for the case
of satisfiable assignments. Indeed, for a SAT instance I represented by a
monotone CNF φ = x1 ∨ x2, let M = (1 0) ∈ Q0(Mφ). Then we have
P (K≫(M)) = {(1, 0), (1, 1), (1, ∗)} ⊊ Psat(I).

We also remark that by Examples 9 and 10, even if φ is a monotone
CNF, there does not always exist anM ∈ Q(Mφ) such that K≫(M) (resp.,
K≥(M)) is a maximal convex subset of R(Psat(I)) (resp., R(Pautark(I))).
This contrasts Theorem 6.

We next consider prime monotone CNFs. In this case, maximality
holds in terms of not only partial assignments but also region for autark
assignments.

Theorem 7. Let I = (D,V, F ) be a prime monotone SAT instance, i.e.,
a SAT instance, where F is given by a prime monotone CNF φ. Then any
M ∈ Q(Mφ) produces a maximal convex subset K≥(M) of Pautark(I).

Proof. We claim that conv(K≥(M) ∪ {y}) ̸⊆ R(Pautark(I)) holds for any
y ̸∈ K≥(M). Fix a vector y ̸∈ K≥(M). Then

∑
xj∈cMcjyj + ε = 0 holds

for some c ∈ φ and ε > 0. If |c| = 1, then Mcjyj < 0 for xj ∈ c, implying
that yj < 0, which implies that V (y) = A(y) does not satisfy c. Therefore,
y is not contained in R(Pautark(I)), which proves the claim. We therefore
assume that |c| ≥ 2.

Let z be a vector in Rn defined as zj = (1/Mcj)(
∑

xk∈c,k ̸=j Mckyk+((|c|−
1)/|c|)ε) if xj ∈ c, and zj = γ otherwise, where γ is sufficiently large. We
show that z ∈ K≥(M) and (y+z)/2 /∈ R(Pautark(I)), which prove the claim
since the former condition implies that (y + z)/2 ∈ conv(K≥(M) ∪ {y}).

In order to prove z ∈ K≥(M), we show that
∑

xj∈c′ Mc′jzj ≥ 0 for each

c′ ∈ φ. If c′ = c, we have∑
xj∈cMcjzj =

∑
xj∈c(

∑
xk∈c,k ̸=j Mckyk +

|c|−1
|c| ε)

=
∑

xj∈c
∑

xk∈cMckyk −
∑

xj∈cMcjyj + (|c| − 1)ε

= (|c| − 1)(
∑

xj∈cMcjyj + ε)

= 0.

(20)

On the other hand, if c′ ̸= c, we have
∑

xj∈c′ Mc′jzj ≥ 0, since c′ contains

at least one variable not contained in V (c) by primality of φ and γ is
sufficiently large.

Next, we show that (y + z)/2 /∈ R(Pautark(I)). For each xj ∈ c,

yj + zj = yj +
1

Mcj
(
∑

xk∈c,k ̸=j Mckyk +
|c|−1
|c| ε)

= 1
Mcj

(
∑

xj∈cMcjyj +
|c|−1
|c| ε)

= 1
Mcj

(−ε+ |c|−1
|c| ε) < 0.

(21)
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Hence a partial assignment V ((y + z)/2) = A((y + z)/2) does not satisfy
c, which implies that (y + z)/2 is not contained in R(Pautark(I)). This
completes the proof.

Different from Theorems 4, 5 and 6, K≫(M) for M ∈ Q0(Mφ) is not
maximal convex set of Psat(I), which follows Example 9.

We also note that primality alone does not always yield maximality.

Example 11. Let I = (D = {0, 1}, V = {x1, x2}, F ) be a SAT instance,
where F is given by a prime CNF φ = (x1 ∨ x2)(x1 ∨ x2). Then no
M ∈ Q(Mφ) with M ̸= Mφ produces a maximal convex subset K≥(M)
of R(Pautark(I)).

Indeed, let R+ = {y ∈ R2 | y1 > 0, y2 > 0} and R− = {y ∈ R2 |
y1 < 0, y2 < 0}. Then we have R(Pautark(I)) = R+ ∪ R− ∪ {0}. For any
M ∈ Q(Mφ), it holds that K≥(M) ⊆ R+ ∪ {0} or K≥(M) ⊆ R− ∪ {0}. If
K≥(M) ⊆ R+ ∪ {0}, then there exists a y ∈ R+ which is not contained in
K≥(M), since K≥(M) is closed and R+ is open. It follows from convexity
of R+ ∪ {0} that conv(K≥(M) ∪ {y}) ⊆ R+ ∪ {0}. Hence, K≥(M) is not
a maximal convex subset of R(Pautark(I)). The case of K≥(M) ⊆ R− ∪ {0}
can be proven in a similar way.

We remark that maximality in Theorem 7 is used to heuristically com-
pute a local fixable assignment, which can be found in the next section.

4 Computing a satisfiability preserving assignment
for CSPs given by 0-1 integer linear systems

In this section, we discuss the complexity of computing a satisfiability pre-
serving assignment of Boolean CSPs given by integer linear systems. We
first note that computing a non-trivial satisfiability preserving assignment
defined in Section 2 is NP-hard, since we can solve CSP by iteratively com-
puting such assignments. For the linear forms discussed in the previous
section, it is still NP-hard to compute an assignment which is contained in
some linear satisfiability preserving assignments, since for any satisfiable
partial assignment there exists a linear cone that corresponds to such an
assignment. Hence, we consider restricting cones that represents linear sat-
isfiability preserving assignments. For CNFs φ, it is natural to consider
linear autark assignments derived from matrices in Q(Mφ), in particular,
simple linear autark assignments (i.e., cones derived from Mφ). For the
0-1 integer linear systems, we note that each constraint is unate (i.e., it
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can be represented by a monotone CNF by changing the polarity of vari-
ables appropriately). Simple linear autark (i.e., fixable) assignments for
its prime CNF expression are maximal in terms of both region and partial
assignments, which follows from results in the previous section. Here we
note that a prime CNF might have exponentially many clauses, if the con-
straint inequality involve non-constantly many variables. This implies that
we cannot explicitly have linear inequalities that represent simple linear fix-
able assignments. In this paper, we study computing a linear locally-fixable
assignment which is contained in the intersection of such simple linear au-
tark assignments. We show that it can be computed in pseudo-polynomial
time, even if some constraints have non-constantly many variables. From
this, we can show that well known pseudo-polynomially solvable classes are
also solvable by repeatedly computing such linear locally-fixable assign-
ments, which is discussed in the next section.

We consider a Boolean CSP instance I = (D = {0, 1}, V, F ), where F is
given by a linear system

Gx ≥ h, (22)

where G is a matrix in Zm×n and h is a vector in Zm. As mentioned
above, each linear inequality in the system (22) is unate. Let Ii denote the
CSP instance whose constraint is represented by the ith inequality of (22).
By Theorem 7, R(Pfix(Ii)) is well-approximated by K≥(Mφ) for a unique
prime CNF expression φ of Ii, where primality implies Pautark(Ii) = Pfix(Ii)
by Theorem 3.

Consider a single inequality:∑
j∈J+

gjxj −
∑
j∈J−

gjxj ≥ η, (23)

where J+, J− ⊆ V , J+ ∩ J− = ∅, gj > 0 for j ∈ J+ ∪ J−, and η ∈ Z.
Let U denote the set of extreme infeasible points of (23), i.e., u ∈ U

satisfies that u + ej is feasible to (23) if j ∈ J+ and uj = 0, and u − ej
is feasible to (23) if j ∈ J− and uj = 1. Then it is known that φ =∧

u∈U (
∨

j∈J+:uj=0 xj ∨
∨

j∈J−:uj=1 xj) is a unique prime CNF, which implies
the following lemma.

Lemma 2. Let φ denote a unique prime CNF expression φ of (23). Then
we have

K≥(Mφ) =

y ∈ Rn

∣∣∣∣∣ ∑
j∈J+:uj=0

yj −
∑

j∈J−:uj=1

yj ≥ 0 (u ∈ U)

 . (24)
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Let φi denote a prime CNF for the ith inequality in (23) for each i. Then
we note that

∩m
i=1K≥(Mφi) represents linear locally-fixable assignments.

In order to find a non-trivial one, we solve the following two LP problems
for each j ∈ V :

maximize ±yj
subject to Mφiy ≥ 0 (i = 1, . . . ,m),

−1 ≤ yj ≤ 1 (j = 1, . . . , n).
(25)

The constraints −1 ≤ yj ≤ 1 for j = 1, . . . , n in (25) ensure that the
feasible region is bounded. We note that the number of the inequalities
in the LP problem (25) might be exponential in the size of the input.
For example, for a linear inequality

∑n
j=1 xj ≥ ⌊n/2⌋, the set U which

corresponds to the extreme infeasible points is given by

U =

{
u ∈ {0, 1}n

∣∣∣∣∣
n∑

i=1

uj = ⌊n/2⌋ − 1

}
. (26)

Hence |U | =
(

n
⌊n/2⌋−1

)
= Ω(2n/2−logn) holds, which implies that the LP

problem (25) has exponentially many inequalities. Instead of solving (25)
directly, we make use of the ellipsoid method [13]. It is known [13] that
optimization is polynomially equivalent to solving the separation problem.
Namely, given a y ∈ Rn, we compute an inequality in (25) that is violated
by y, if y is infeasible. Since −1 ≤ yj ≤ 1 can be checked efficiently, we
consider how to check if Mφiy ≥ 0 is satisfied for each i.

Let J
(i)
+ = {j ∈ V | gij > 0}, J (i)

− = {j ∈ V | gij < 0} and U (i) denote
the set of extreme infeasible points of the ith constraint in (22). Then
by Lemma 2, the following LP problem computes mink{(Mφi)ky}, where
(Mφi)k denotes the kth row vector of Mφi .

minimize
∑

j∈J(i)
+
yj(1− uj)−

∑
j∈J(i)

−
yjuj

= −
∑

j∈J(i)
+ ∪J(i)

−
yjuj +

∑
j∈J(i)

+

yj

subject to u ∈ U (i).

(27)

Hence the optimal value is at least zero if and only if Mφiy ≥ 0. It is
easy to see that u ∈ U (i) if and only if

1)
∑

j∈J(i)
+ ∪J(i)

−
gijuj ≤ hi − 1,

2) u ∈ {0, 1}n,
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3) u is extreme, i.e.,
∑

j∈J(i)
+ ∪J(i)

−
gijuj + gik ≥ hi if k ∈ J

(i)
+ and uk = 0,

and
∑

j∈J(i)
+ ∪J(i)

−
gijuj − gik ≥ hi if k ∈ J

(i)
− and uk = 1.

Although condition 3) seems to be difficult to deal with, we show that
the following dynamic programming approach can solve (27) in pseudo-
polynomial time.

We assume that 0 < |gi1| ≤ · · · ≤ |gin| holds without loss of generality.
For a vector u ∈ {0, 1}n, we say that u chooses an element j if either (uj = 1

and j ∈ J
(i)
+ ) or (uj = 0 and j ∈ J

(i)
− ). Let k be the first element that is

not chosen by u. Then we can see that u is an extreme infeasible point
of the ith constraint if and only if hi − gik + 1 ≤

∑n
j=1 gijuj ≤ hi (resp.,

hi + gik + 1 ≤
∑n

j=1 gijuj ≤ hi) when k ∈ J
(i)
+ (resp., k ∈ J

(i)
− ). Therefore,

in order to solve (27), it is enough to solve the following LP problem for
each k = 1, . . . , n+ 1.

maximize
∑

j∈V yjuj
subject to hi − gik + 1 ≤

∑
j∈V gijuj ≤ hi

(resp., hi + gik + 1 ≤
∑

j∈V gijuj ≤ hi),

k is the first unchosen element by u,
u ∈ {0, 1}n.

(28)

Here k = n+ 1 means that u chooses all the elements.
Let k be an integer in [n]. For an integer ℓ with k ≤ ℓ ≤ n and an

integer w ∈ Z, let A(ℓ, w) denote the objective value of

maximize
∑

j∈[ℓ] yjuj
subject to

∑
j∈[ℓ] gijuj = w,

k is the first unchosen element by u,
u ∈ {0, 1}ℓ.

(29)

Let us consider the case in which k ∈ J
(i)
+ , since the case of k ∈ J

(i)
− can be

treated similarly. Then we have

A(k,w) =

{ ∑
j∈J(i)

+ : j≤ k−1
yj if w =

∑
j∈J(i)

+ : j≤ k−1
gij

−∞ otherwise,

A(ℓ, w) = max{A(ℓ− 1, w), A(ℓ− 1, w − giℓ) + yℓ} ℓ = k + 1, . . . , n.

(30)

Hence we can see that maxhi−gik+1≤w≤hi
A(n,w) is the optimal value of

(28). Since the dynamic programming algorithm requires O((n − k)nηi)
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time for each k, where ηi = max{hi, |gi1|, . . . , |gin|}, we can solve the sepa-
ration problem in O(n3mη) time, where η = maxi ηi.

We next consider the unit integer linear system, i.e., the integer linear
system such that the input matrix G is given by G ∈ {0,−1,+1}m×n.
Note that this includes global cardinality constraint [32] and is related to
MAX(MIN) ONES [7] in CSP.

Let ∑
j∈J+

xj +
∑
j∈J−

(1− xj) ≥ k (31)

be an inequality in the system. Then, it has a unique prime CNF expression
φ represented by

φ =
∧

I+⊆J+,I−⊆J−:
|I+|+|I−|=|J+|+|J−|−k+1

( ∨
j∈I+

xj ∨
∨
j∈I−

xj

)
. (32)

Thus we have the following lemma.

Lemma 3. Let φ be a unique prime CNF expression of (31). Then we
have

K≥(Mφ) = {y ∈ Rn |
∑

j∈I+ yj −
∑

j∈I− yj ≥ 0,

I+ ⊆ J+, I− ⊆ J−, |I+|+ |I−| = |J+|+ |J−| − k + 1}. (33)

Again the number of the constraints in the LP problem (25) might be
exponential in the size of the input. Hence we use the ellipsoid method to
solve the LP problem (25).

Lemma 4. We can solve the separation problem for the LP problem (25)
in polynomial time if G ∈ {0,−1,+1}m×n.

Proof. Suppose that a vector y ∈ Rn is given. Then we note that y ∈
K≥(Mφ1) ∩ · · · ∩K≥(Mφm) if and only if

min{
∑

j∈I+ yj −
∑

j∈I− yj ≥ 0 | I+ ⊆ J
(i)
+ , I− ⊆ J

(i)
− ,

|I+|+ |I−| = |J (i)
+ | − hi + 1} ≥ 0

(34)

holds for all i = 1, . . . ,m. The left hand side of (34) can be computed

simply by sorting the set {yj | j ∈ J
(i)
+ } ∪ {−yj | j ∈ J

(i)
− } and summing

up the smallest |J (i)
+ | − hi + 1 elements. Hence we can solve the separation

problem in O(mn log n) time.
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In summary, we have shown the following theorem.

Theorem 8. We can find a non-trivial linear locally-fixable assignment
for (22), if exists, in pseudo polynomial time. Moreover, it is possible in
polynomial time, if the input matrix is contained in {0,−1,+1}m×n.

5 Computing a satisfiability preserving assignment
for CSPs given by general integer linear systems

In this section, we consider linear satisfiability preserving assignments for
non-Boolean CSPs given by integer linear systems. We make use of the
following encoding that transform CSP instances with D = {0, 1, . . . , d}
to Boolean CSP instances. For each variable xj in V , we take d Boolean
variables xj1, . . . , xjd, which guarantees that xj = p if and only if xj1 =
· · · = xjp = 1 and xj,p+1 = · · · = xjd = 0. Let

Gx ≥ h, x ∈ {0, 1, . . . , d}n (35)

denote an integer linear system such that the ith inequality is represented
by ∑

j∈J(i)
+

αijxj −
∑

j∈J(i)
−

αijxj ≥ hi (36)

for αij > 0 (j ∈ J
(i)
+ ∪ J

(i)
− ). Let Ui denote the set of extreme infeasible

points of (36), i.e., u ∈ Ui satisfies that u+ ej is feasible to (36) if j ∈ J
(i)
+

and uj ̸= d, and u− ej is feasible to (36) if j ∈ J
(i)
− and uj ̸= 0.

Define a CNF φi by

φi =
∧
u∈Ui

( ∨
j∈J(i)

+ :uj ̸=d

xj,uj+1 ∨
∨

j∈J(i)
− :uj ̸=0

xj,uj

)
. (37)

We note that Gx ≥ h and x ∈ Dn if and only if all φi (i = 1, . . . ,m) and
xjp ≥ xj,p+1 (j = 1, . . . , n; p = 1, . . . , d− 1) are satisfied. Since xjp ≥ xj,p+1

can be represented by a CNF ψjp discussed in Section 4, by applying the el-
lipsoid method proposed in Section 4, we can compute in pseudo-polynomial
time a linear locally-fixable assignment contained in the intersection of sim-
ple linear autark assignments of φi and ψjp.

A system Gx ≥ h is said to be quadratic if each row of G contains
at most two nonzero elements, Horn if each row of G contains at most

23



one positive element, and q-Horn if the optimal value of the following LP
problem is at most 1.

minimize Z

subject to
∑

j:gij>0

αj +
∑

j:gij<0

(1− αj) ≤ Z (i = 1, . . . ,m),

0 ≤ αj ≤ 1 (j = 1, . . . , n).

(38)

Also, a CNF φ =
∧m

i=1

(∨
j∈J(i)

+
xj ∨

∨
j∈J(i)

−
xj

)
is called quadratic (or a

2-CNF) if |J (i)
+ ∪J (i)

− | ≤ 2 holds for all i = 1, . . . ,m, Horn if |J (i)
+ | ≤ 1 holds

for all i = 1, . . . ,m, and q-Horn if the optimal value of the following LP
problem is at most 1.

minimize Z
subject to

∑
j∈J(i)

+
αj +

∑
j∈J(i)

−
(1− αj) ≤ Z (i = 1, . . . ,m),

0 ≤ αj ≤ 1 (j = 1, . . . , n).

(39)

We note that
∧m

i=1 φi ∧
∧

j=1,...,n;p=1,...,d−1 ψjp is Horn (resp., quadratic
(i.e., a 2-CNF) and q-Horn) if so is the original integer linear system Gx ≥
h. It is known [20] that any satisfiable quadratic, Horn and q-Horn CNF can
be solved by repeatedly finding non-trivial simple linear autark assignment.
Therefore, we have the following theorem.

Theorem 9. Let Gx ≥ h and x ∈ Dn be an integer linear system. If it is
quadratic, Horn or q-Horn, then it can be solved in pseudo-polynomial time
by repeatedly finding linear locally-fixable assignments.

Finally, we note that the following naive encoding does not work, since
quadratic (resp., Horn and q-Horn) systems does not always transformed
to the 0-1 quadratic (resp., Horn and q-Horn) systems.


G(

∑d
p=1 xp) ≥ h,

xjp ≥ xj,p+1 (j = 1, . . . , n; p = 1, · · · , d− 1),
xp ∈ {0, 1}n (p = 1, · · · , d),

(40)

where xp = (x1p, · · · , xnp)⊤ for p = 1, . . . , d.
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