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ROUNDOFF ERROR ANALYSIS OF THE CHOLESKYQR2
ALGORITHM

YUSAKU YAMAMOTO∗, YUJI NAKATSUKASA† , YUKA YANAGISAWA‡ , AND TAKESHI

FUKAYA§

Abstract. We consider the QR decomposition of an m × n matrix X with full column rank,
where m ≥ n. Among the many algorithms available, the Cholesky QR algorithm is ideal from the
viewpoint of high performance computing, since it consists entirely of standard level 3 BLAS opera-
tions with large matrix sizes and requires only one allreduce and broadcast in parallel environments.
Unfortunately, it is well known that the algorithm is not numerically stable and the deviation from
orthogonality of the computed Q factor is of O((κ2(X))2u), where κ2(X) is the 2-norm condition
number of X and u is the unit roundoff. In this paper, we show that if the condition number of X
is not too large, we can improve the stability greatly by iterating the Choelsky QR algorithm twice.

More specifically, if κ2(X) is at most O(u−
1
2 ), both the residual and deviation from orthogonality

are shown to be of O(u). Numerical results support our theoretical analysis.

Key words. QR decomposition, Cholesky QR, commnication-avoiding algorithms, roundoff
error analysis

AMS subject classifications. 15A23, 65F25, 65G50

1. Introduction. Let X ∈ Rm×n be an m by n matrix with m ≥ n of full col-
umn rank. We consider computing its QR decomposition, X = QR, where Q ∈ Rm×n

has orthonormal columns and R ∈ Rn×n is upper triangular. This is one of the most
fundamental matrix decompositions and is used in various scientific computations.
Examples include linear least squares, preprocessing for the singular value decompo-
sition of a rectangular matrix [10], and orthogonalization of vectors arising in block
Krylov methods [2, 17] or electronic structure calculations [3, 22]. Often, the matrix
size is very large, so an algorithm suited for modern high performance computers is
desired.

One important feature of modern high performance architectures is that com-
munication is much slower than arithmetic. Here, communication refers to both data
transfer between processors or nodes and data movement between memory hierarchies.
Thus it is essential for higher performance to minimize the frequency and amount of
these communications [1]. To minimize interprocessor communications, the algorithm
has to have a large grain parallelism. To minimize data movement between memory
hierarchies, it is effective to reorganize the algorithm to use level 3 BLAS operations
as much as possible [10]. Of course, the benefit of using level 3 BLAS operations
increases as the size of matrices used there becomes larger.

Conventionally, three major algorithms have been used to compute the QR de-
composition: the Householder QR algorithm, the classical Gram-Schmidt (CGS) al-
gorithm and the modified Gram-Schmidt (MGS) algorithm. The Householder QR
algorithm is widely used due to its excellent numerical stability [11]. MGS, which is
less stable, is often preferred when the Q factor is needed explicitly, because it requires
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only half as much work as the Householder QR in that case. When the matrix A is
well conditioned, CGS is also sometimes used since it provides more parallelism. Note
that for matrices with the 2-norm condition number κ2(X) at most O(u−1), where
u is the unit roundoff, repeating CGS or MGS twice leads to algorithms that are as
stable as Householder QR [9]. They are known as CGS2 and MGS2, respectively.

For each of these algorithms, variants that can better exploit modern high per-
formance architectures have been developed. There are block versions and recursive
versions of Householder QR [6, 18], MGS [13] and CGS [12] that can perform most of
the computations in the form of level 3 BLAS. There is also a variant of Householder
QR called the tall-and-skinny QR (TSQR) [5], which has large grain parallelism and
requires only one allreduce and broadcast in a distributed environment.

While these variants have been quite successful, they are not completely satisfac-
tory from the viewpoint of high performance computing. In the block and recursive
versions mentioned above, the sizes of matrices appearing in the level 3 BLAS are
generally smaller than that of X, and become even smaller as the level goes down in
the case of recursive algorithms. For the TSQR algorithm, though only one allreduce
is required throughout the algorithm, the reduction operation is a non-standard one,
which corresponds to computing the QR decomposition of a 2n×n matrix formed by
concatenating two upper triangular matrices [5]. Thus each reduction step requires
O(n3) work and this tends to become a bottleneck in parallel environments [7]. In
addition, the TSQR algorithm requires non-standard level 3 BLAS operations such
as multiplication of two triangular matrices [5], for which no optimized routines are
available on most machines.

There is another algorithm for the QR decomposition, namely, the Cholesky QR
algorithm. In this algorithm, one first forms the Gram matrix A = X>X, computes its
Cholesky factororization A = R>R, and then finds the Q factor by Q = XR−1. This
algorithm is ideal from the viewpoint of high performance computing because (1) its
computational cost is 2mn2 (in the case where m� n), which is equivalent to the cost
of CGS and MGS and half that of Householder QR, (2) it consists entirely of standard
level 3 BLAS operations, (3) the first and third steps are highly parallel large size level
3 BLAS operations in which two of the three matrices are of size m×n, (4) the second
step, which is the only sequential part, requires only O(n3) work, as opposed to the
O(mn2) work in the first and the third steps, and (5) it requires only one allreduce
and one broadcast if X is partitioned horizontally. Unfortunately, it is well known
that Cholesky QR is not stable. In fact, deviation from orthogonality of the Q factor
computed by Cholesky QR is proportional to (κ2(X))2 [19]. Accordingly, standard
textbooks like [21] describe the method as ”quite unstable and is to be avoided unless
we know a priori that R is well conditioned”.

In this paper, we show that the Cholesky QR algorithm can be applied to matri-
ces with a larger condition number to give a stable QR factorization if it is repeated
twice. More specifically, we show that if κ2(X) is at most O(u−

1
2 ), the Q and R

factors obtained by applying Cholesky QR twice satisfy ‖Q>Q − I‖F = O(u) and
‖X − QR‖F = O(u). Furthermore, we give the coefficients of u in these bounds
explicitly as simple low degree polynomials in m and n. In the following, we call this
method CholeskyQR2. Of course, the arithmetic cost of CholeskyQR2 is twice that
of Cholesky QR, CGS and MGS, but it is equivalent to the cost of Householder QR,
CGS2 and MGS2. Given the advantages stated above, the increase in the compu-
tational work might be more than compensated in some cases. Hence, for matrices
with κ2(X) ∼ O(u−

1
2 ), CholeskyQR2 can be the method of choice in terms of both
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numerical stability and efficiency on high performance architectures.

The idea of performing the QR decomposition twice to get better stability is
not new. In his textbook [15], Parlett analyses Gram-Schmidt orthogonalization of
two vectors and introduces the principle of ”twice is enough”, which he attributes
to Kahan. There is also a classical paper by Daniel, Gragg, Kaufman and Stewart
[4], which deals with the effect of reorthogonalization on the update of the Gram-
Schmidt QR decomposition. More recently, Giraud et al. performed a detailed error
analysis of CGS2 and MGS2 and showed that they give numerically orthogonal Q
factor and small residual for matrices with κ2(X) ∼ O(u−1) [9]. Stathopoulas et
al. experimentally show that the Cholesky QR algorithm can be applied to matrices
with a large condition number, if it is applied twice (or more) [19]. Rozložńık et
al. analyze the CholeskyQR2 algorithm in a more general setting of orthogonalization
under indefinite inner product and derive bounds on the residual and deviation from
orthogonality [16]. However, their bounds are expressed in terms of the computed Q
and R factors, along with the matrix B that defines the inner product, and do not
constitute a priori error bounds, in contrast to the bounds derived in this paper. Also,
the coefficients of u are not given explicitly.

Even though the underlying idea of repeating an unstable algorithm twice to im-
prove stability is the same, it is worth noting the inherent disadvantage of CholeskyQR2
when compared with CGS2 and MGS2: numerical breakdown. Specifically, if κ2(X)�
u−

1
2 then the Cholesky factorization ofXTX can break down, and so does CholeskyQR2.

By contrast, Gram-Schmidt type algorithms are free from such breakdowns (except
for very obvious breakdowns due to division by zeros in the normalization), and
as shown in [9], gives stable QR factorizations for a much wider class of matrices
κ2(X) ∼ O(u−1) when repeated twice.

The rest of this paper is organized as follows. In section 2, after giving some
definitions and assumptions, we introduce the CholeskyQR2 algorithm. Detailed error
analysis of CholeskyQR2 is presented in section 3. Numerical results that support
our analysis is provided in Section 4. Section 5 gives some discussion on our results.
Finally, some concluding remarks are given in section 6.

2. The ChoelskyQR2 algorithm.

2.1. Notation and assumptions. In the following, we consider computing the
QR decomposition of an m by n real matrix X, where m ≥ n. Throughout this paper,
we assume that computations are performed using IEEE 754 floating point standard
and denote the unit roundoff by u. Let σi(X) be the ith largest singular value of X
and κ2(X) = σ1(X)/σn(X) be its condition number. We further assume that

(2.1) δ ≡ 8κ2(X)
√
mnu + n(n+ 1)u ≤ 1.

This means that the condition number of X is at most O(u−
1
2 ). From this assumption

and κ2(X) ≥ 1, we also have

(2.2) mnu ≤ 1

64
, n(n+ 1)u ≤ 1

64
.

Following [11], let us define a quantity γk for a positive integer k by

γk =
ku

1− ku
.



4 Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa and T. Fukaya

Then it is easy to show that under the assumption (2.1)

(2.3) γm =
mu

1−mu
≤ 1.1mu, γn+1 =

(n+ 1)u

1− (n+ 1)u
≤ 1.1(n+ 1)u.

2.2. The algorithm. In the Cholesky QR algorithm, we compute the QR de-
composition of X by the following procedure.

A = X>X,

R = chol(A),

Y = XR−1,

where chol(A) is a function that computes the (upper triangular) Cholesky factor of
A. Then, X = Y R can be regarded as the QR decomposition of X.

In the CholeskyQR2 algorithm, after obtaining Y and R by the above procedure,
we further compute the following.

B = Y >Y,

S = chol(B),

Z = Y S−1 (= X(SR)−1),

U = SR

If the columns of Y are exactly orthonormal, B becomes the identity and Z = Y .
However, in finite precision arithmetic, this does not hold in general and Z 6= Y . In
the CholeskyQR2 algorithm, the QR decomposition of X is given by X = ZU .

3. Error analysis of the CholeskyQR2 algorithm. Our objective is to show
that under assumption (2.1), the CholeskyQR2 algorithm delivers an orthogonal factor
Z and an upper triangular factor U for which both the orthogonality ‖Z>Z−I‖F and
residual ‖X − ZU‖F /‖X‖2 are of O(u). Here, the constants in O(u) contain lower
order terms in m and n, but not in κ2(X).

This section is structured as follows. In subsection 3.1, we formulate the CholeskyQR2
algorithm in floating point arithmetic and prepare several bounds that are necessary
to evaluate the orthogonality of the computed orthogonal factor. Using these bounds,
the bound on the orthogonality is derived in subsection 3.2. In subsection 3.3, several
bounds that are needed to evaluate the residual are provided, and they are used in
subsection 3.4 to give a bound on the residual.

3.1. Preparation for evaluating the orthogonality. Let us denote the ma-
trices A, R and Y computed using floating point arithmetic by Â = fl(X>X),
R̂ = fl(chol(Â)) and Ŷ = fl(XR̂−1), respectively. Taking rounding errors into
account, the computed quantities satisfy

Â = X>X + E1,(3.1)

R̂>R̂ = Â+ E2 = X>X + E1 + E2,(3.2)

ŷ>i = x>i (R̂+ ∆R̂i)
−1 (i = 1, 2, . . . ,m).(3.3)

Here, x>i and ŷ>i are the ith row vectors of X and Ŷ , respectively. E1 is the forward
error of the matrix-matrix multiplication X>X, while E2 is the backward error of the
Cholesky decomposition of Â. ∆R̂i denotes the backward error arising from solving
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the linear simultaneous equation y>i R̂ = x>i by forward substitution. It would be
easier if we could express the backward error of the forward substitution as

Ŷ = X(R̂+ ∆R̂)−1,

but we have to use the row-wise expression (3.3) instead because the backward error
∆R̂ depends on the right-hand side vector x>i .

In the following, we evaluate each of E1, E2 and ∆R̂i. We also give bounds on
the 2-norms of R̂−1 and XR̂−1 for later use. Furthermore, we derive an alternative
form of Eq. (3.3):

(3.4) ŷ>i = (x>i + ∆x>i )R̂−1,

in which the backward error enters in the right-hand side vector instead of the co-
efficient matrix. Equivalently, ∆x>i is the residual of the linear system y>i R = x>i .
Then, by letting ∆X = (∆x1,∆x2, . . . ,∆xm)>, we can rewrite (3.3) as

(3.5) Ŷ = (X + ∆X)R̂−1,

which is more convenient to use. We also evaluate the norm of ∆X.
Forward error in the matrix-matrix multiplication X>X. Let A ∈ Rm×n and

B ∈ Rn×p. Then the componentwise forward error of the matrix-matrix multiplication
C = AB can be evaluated as

(3.6) |C − Ĉ| ≤ γn|A||B|,

where Ĉ = fl(AB), |A| denotes the matrix whose (i, j)th element is |aij |, and the
inequality means componentwise inequality [11]. The 2-norm of the ith column of X,
which we denote by x̃i, is clearly less than or equal to ‖X‖2. Hence,

(3.7) |E1|ij = |A− Â|ij ≤ γm(|X|>|X|)ij = γm|x̃i|>|x̃j | ≤ γm‖x̃i‖‖x̃j‖ ≤ γm‖X‖22.

(Throughout, a vector norm is always the 2-norm.) Thus we have

(3.8) ‖E1‖2 ≤ ‖E1‖F ≤ γmn‖X‖22.

Simplifying this result using (2.3) leads to

(3.9) ‖E1‖2 ≤ 1.1mnu‖X‖22.

Backward error of the Cholesky decomposition of Â. Let A ∈ Rn×n be symmetric
positive definite and assume that the Cholesky decomposition of A in floating point
arithmetic runs to completion and the upper triangular Cholesky factor R̂ is obtained.
Then, there exists ∆A ∈ Rn×n satisfying

R̂>R̂ = A+ ∆A, |∆A| ≤ γn+1|R̂|>|R̂|.

See Theorem 10.3 of [11] for details. In our case, we take A← Â in (3.2) to obtain

(3.10) |E2| ≤ γn+1|R̂|>|R̂|.

Hence,
(3.11)
‖E2‖2 ≤ ‖E2‖F = ‖ |E2| ‖F ≤ γn+1‖ |R̂|>|R̂| ‖F ≤ γn+1‖ |R̂| ‖2F = γn+1‖R̂‖2F ≤ γn+1n‖R̂‖22.
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On the other hand, we have from Eq. (3.2),

(3.12) ‖R̂‖22 = ‖R̂>R̂‖2 ≤ ‖Â‖2 + ‖E2‖2.

Substituting Eq. (3.12) into the rightmost hand side of Eq. (3.11) leads to

‖E2‖2 ≤ γn+1n(‖Â‖2 + ‖E2‖2),

or,

(3.13) ‖E2‖2 ≤
γn+1n

1− γn+1n
‖Â‖2.

Noting that

(3.14) ‖Â‖2 ≤ ‖X>X‖2 + ‖E1‖2 ≤ ‖X‖22 + γmn‖X‖22 = (1 + γmn)‖X‖22,

from Eqs. (3.1) and (3.8), we have

(3.15) ‖E2‖2 ≤
γn+1n(1 + γmn)

1− γn+1n
‖X‖22.

This result can be simplified using (2.2) and (2.3) as

‖E2‖2 ≤
1.1(n+ 1)u · n · (1 + 1.1mnu)

1− 1.1n(n+ 1)u
‖X‖22

≤
1.1(n+ 1)u · n · (1 + 1.1

64 )

1− 1.1
64

‖X‖22 =
7161

6290
n(n+ 1)u‖X‖22 ≤ 1.2n(n+ 1)u‖X‖22.(3.16)

Backward error of the forward substitution. Let U ∈ Rn×n be a nonsingular
triangular matrix. Then, the solution x̂ obtained by solving the linear simultaneous
equation Ux = b by substitution in floating point arithmetic satisfies

(3.17) (U + ∆U)x̂ = b, |∆U | ≤ γn|U |.

See Theorem 8.5 of [11]. Note that ∆U depends both on U and b, although the bound
in (3.17) does not. In our case, U = R̂, so we have for 1 ≤ i ≤ m,

(3.18) ‖∆R̂i‖2 ≤ ‖∆R̂i‖F = ‖ |∆R̂i| ‖F ≤ γn‖ |R̂| ‖F ≤ γn
√
n‖R̂‖2.

By inserting Eq. (3.13) into Eq. (3.12) and using (3.14), we have

(3.19) ‖R̂‖22 ≤
1

1− γn+1n
‖Â‖2 ≤

1 + γmn

1− γn+1n
‖X‖22.

Inserting this into Eq. (3.18) leads to

‖∆R̂i‖2 ≤ γn

√
n(1 + γmn)

1− γn+1n
‖X‖2.

Simplifying the right-hand side in the same way as in Eq. (3.16), we obtain

‖∆R̂i‖2 ≤ 1.1nu

√
n(1 + 1.1mnu)

1− 1.1n(n+ 1)u
‖X‖2

≤ 1.1nu

√
n · (1 + 1.1

64 )

1− 1.1
64

‖X‖2 ≤ 1.2n
√
nu‖X‖2.(3.20)
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Bounding the 2-norm of R̂−1. Next we evaluate the 2-norm of R̂−1. Noting that
all the matrices appearing in Eq. (3.2) are symmetric, we can apply the Bauer-Fike
theorem (or Weyl’s theorem) to obtain

(σn(X))2 − (‖E1‖2 + ‖E2‖2) ≤ (σn(R̂))2.

Using assumption (2.1), Eqs. (3.9) and (3.16), we have ‖E1‖2+‖E2‖2 ≤ 1.2
64 (σn(X))2 ≤

(1− 1
1.12 )(σn(X))2. Hence,

1

1.12
(σn(X))2 ≤ (σn(R̂))2,

leading to the bound on R̂−1 as

(3.21) ‖R̂−1‖2 = (σn(R̂))−1 ≤ 1.1(σn(X))−1.

Bounding the 2-norm of XR̂−1. From Eq. (3.2), we have

(3.22) R̂−>X>XR̂−1 = I − R̂−>(E1 + E2)R̂−1.

Thus,

‖XR̂−1‖22 ≤ 1 + ‖R̂−1‖22 (‖E1‖2 + ‖E2‖2).

By using ‖E1‖2 + ‖E2‖2 ≤ 1.2
64 (σn(X))2 again and inserting Eq. (3.21), we obtain

(3.23) ‖XR̂−1‖2 ≤ 1.1.

Evaluation of the backward error ∆X. From Eq. (3.3), we have

ŷ>i = x>i (R̂+ ∆R̂i)
−1

= x>i (I + R̂−1∆R̂i)
−1R̂−1.

Now, let

(I + R̂−1∆R̂i)
−1 = I + R̆i.

Then, since R̆i =
∑∞

k=1(−R̂−1∆R̂i)
k, we obtain the bound on ‖R̆i‖2 as

‖R̆i‖2 ≤
∞∑
k=1

(‖R̂−1‖2‖∆R̂i‖2)k

=
‖R̂−1‖2‖∆R̂i‖2

1− ‖R̂−1‖2‖∆R̂i‖2

≤ 1.1(σn(X)−1) · 1.2n
√
nu‖X‖2

1− 1.1(σn(X)−1) · 1.2n
√
nu‖X‖2

,(3.24)

where we used Eq. (3.20) and (3.21) in the last inequality. The denominator of
Eq. (3.24) can be evaluated as

1− 1.1(σn(X))−1 · 1.2n
√
nu‖X‖2 ≥ 1− 1.1 · 1.2n

√
nu

8
√
mnu + n(n+ 1)u

≥ 1− 1.32

8

√
nu

≥ 1− 1.32

8

√
1

11
≥ 0.95.
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Inserting this into Eq. (3.24) and evaluating the numerator using Eq. (3.20) again, we
have

‖R̆i‖2 ≤
1

0.95
· 1.1κ2(X) · 1.2n

√
nu ≤ 1.4κ2(X)n

√
nu.

Now, let

∆x>i = x>i R̆i.

Then,

(3.25) ŷ>i = (x>i + ∆x>i )R̂−1.

By defining the matrix ∆X ∈ Rm×n as ∆X = (∆x1,∆x2, . . . ,∆xm)>, we can rewrite
Eq. (3.25) as

(3.26) Ŷ = (X + ∆X)R̂−1.

The bound on ‖∆X‖F can be given as

‖∆X‖F =

√√√√ m∑
i=1

‖∆x>i ‖2 ≤

√√√√ m∑
i=1

‖x>i ‖2‖R̆i‖22

≤ 1.4κ2(X)n
√
nu

√√√√ m∑
i=1

‖x>i ‖2 ≤ 1.4κ2(X)‖X‖2n2u,(3.27)

where the relationship
√∑m

i=1 ‖x>i ‖2 = ‖X‖F ≤
√
n ‖X‖2 is used to derive the last

inequality.

3.2. Orthogonality of Ŷ and Ẑ. Based on the preparations given in the previ-
ous subsection, we evaluate the orthogonality of Ŷ and Ẑ computed by the Cholesky
QR and CholeskyQR2 algorithms. The following lemma holds.

Lemma 3.1. Suppose that X ∈ Rm×n with m ≥ n satisfies Eq. (2.1) . Then, the
matrix Ŷ obtained by applying the Cholesky QR algorithm in floating point arithmetic
to X satisfies the following inequality. With δ as defined in (2.1),

‖Ŷ >Ŷ − I‖2 ≤
5

64
δ2.

Proof. By expanding Ŷ >Ŷ using Eq. (3.26), we have

Ŷ >Ŷ= R̂−>(X + ∆X)>(X + ∆X)R̂−1

= R̂−>X>XR̂−1 + R̂−>X>∆XR̂−1 + R̂−>∆X>XR̂−1 + R̂−>∆X>∆XR̂−1

= I − R̂−>(E1 + E2)R̂−1 + (XR̂−1)>∆XR̂−1 + R̂−>∆X>(XR̂−1) + R̂−>∆X>∆XR̂−1.
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Here, we used Eq. (3.22) to derive the last equality. Thus,

‖Ŷ >Ŷ − I‖2 ≤ ‖R̂−>(E1 + E2)R̂−1‖2 + 2‖R̂−>∆X>(XR̂−1)‖2 + ‖R̂−>∆X>∆XR̂−1‖2
≤ ‖R̂−1‖22(‖E1‖2 + ‖E2‖2) + 2‖R̂−1‖2‖XR̂−1‖2‖∆X‖2 + ‖R̂−1‖22‖∆X‖22
≤ ‖R̂−1‖22(‖E1‖2 + ‖E2‖2) + 2‖R̂−1‖2‖XR̂−1‖2‖∆X‖F + ‖R̂−1‖22‖∆X‖2F
≤ (1.1(σn(X))−1)2(1.1mnu + 1.2n(n+ 1)u)‖X‖22

+2 · 1.1(σn(X))−1 · 1.1 · 1.4κ2(X)‖X‖2n2u
+(1.1(σn(X))−1 · 1.4κ2(X)‖X‖2n2u)2

≤ 1.12 · 1.2
64

δ2 +
2 · 1.12 · 1.4

64
δ2 +

(
1.1 · 1.4

64
δ2
)2

≤ 5

64
δ2.(3.28)

In the fourth inequality, we used Eqs. (3.9), (3.16), (3.21), (3.23) and (3.27). In the
last inequality, we simplified the expression using the assumption δ ≤ 1.

The next corollary follows immediately from Lemma 3.1.
Corollary 3.2. The condition number of Ŷ satisfies κ2(Ŷ ) ≤ 1.1.
Proof. By Lemma 3.1, every eigenvalue λi of Ŷ >Ŷ satisfies

1− 5

64
≤ λi ≤ 1 +

5

64
.

Hence, every singular value σi(Ŷ ) of Ŷ satisfies

(3.29)

√
59

8
≤ σi(Ŷ ) ≤

√
69

8
.

Thus it follows that

κ2(Ŷ ) =
σ1(Ŷ )

σn(Ŷ )
≤
√

69

59
≤ 1.1.

In other words, the matrix Ŷ obtained by applying the Cholesky QR algorithm
once is extremely well-conditioned, though its deviation from orthogonality, ‖Ŷ >Ŷ −
I‖2, is still of order 0.1.

Combining Lemma 3.1 and Corollary 3.2, we obtain one of the main results of
this paper.

Theorem 3.3. The matrix Ẑ obtained by applying CholeskyQR2 in floating point
arithmetic to X satisfies the following inequality.

(3.30) ‖Ẑ>Ẑ − I‖2 ≤ 6(mnu + n(n+ 1)u).

Proof. Noting that κ2(Ŷ ) ≤
√

69
59 from Corollary 3.2 and applying Lemma 3.1

again to Ŷ , we have

‖Ẑ>Ẑ − I‖2 ≤
5

64
δ2 ≤ 5

64
· 69

59
· 64(mnu + n(n+ 1)u)

≤ 6(mnu + n(n+ 1)u).(3.31)
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Orthogonality error in the Frobenius norm. Above, we derived the bound on the
orthogonality error in terms of the 2-norm, because we wanted to give a bound on
the 2-norm based condition number of Ŷ . However, by tracing the derivation of
Eq. (3.28), we can also derive the following bound in the Frobenius norm,

‖Ŷ >Ŷ − I‖F ≤ ‖R̂−1‖22(‖E1‖F + ‖E2‖F ) + 2‖R̂−1‖2‖XR̂−1‖2‖∆X‖F + ‖R̂−1‖22‖∆X‖2F .

As is clear from Eqs. (3.8) and (3.11), the upper bounds on ‖E1‖2 and ‖E2‖2 that were
used in Eq. (3.28) are also bounds on ‖E1‖F and ‖E2‖F . Thus, the same bound given
in Eq. (3.31) holds for the Frobenius norm as well. We summarize this observation as
a corollary as follows.

Corollary 3.4. The matrix Ẑ obtained by applying CholeskyQR2 in floating
point arithmetic to X satisfies the following inequality.

(3.32) ‖Ẑ>Ẑ − I‖F ≤ 6(mnu + n(n+ 1)u).

3.3. Preparation for evaluating the residual. Let the matrices B, S, Z
and U computed by floating point arithmetic be denoted by B̂ = fl(Ŷ >Ŷ ), Ŝ =
fl(chol(B̂)), Ẑ = fl(Ŷ Ŝ−1) and Û = fl(ŜR̂), resepctively. Then we have

B̂ = Ŷ >Ŷ + E3,(3.33)

Ŝ>Ŝ = B̂ + E4 = Ŷ >Ŷ + E3 + E4,(3.34)

ẑ>i = ŷ>i (Ŝ + ∆Ŝi)
−1 (i = 1, 2, . . . ,m),(3.35)

Û = ŜR̂+ E5.(3.36)

Here, ẑ>i is the ith row vector of Ẑ. E3 and E5 are the forward errors of the matrix

multiplications Ŷ >Ŷ and ŜR̂, respectively, while E4 is the backward error of the
Cholesky decomposition of B̂. ∆Ŝi is the backward error introduced in solving the
linear simultaneous equation z>i Ŝ = ŷ>i by forward substitution.

As a preparation of evaluating the residual, we first evaluate the norms of R̂, Ŝ,
∆Ŝi, E5 and Ẑ.

Evaluation of R̂. From Eq. (3.19), we have

(3.37)
‖R̂‖2
‖X‖2

≤

√
1 + γmn

1− γn+1n
≤

√√√√ 1 + mnu
1−mu

1− n(n+1)u
1−(n+1)u

≤

√√√√√1 +
1
64

1− 1
11

1−
1
64

1− 1
11

=

√
651

629
≤ 1.1.

Evaluation of Ŝ. Noticing that ‖Ŷ ‖2 ≤
√
69
8 from Eq. (3.29), we can obtain an

upper bound on the norm of Ŝ by multiplying the bound of Eq. (3.37) by
√
69
8 . Thus,

‖Ŝ‖2 ≤
√

651

629
·
√

69

8
≤ 1.1.

Evaluation of ∆Ŝi. Similarly, multiplying the bound of Eq. (3.20) by
√
69
8 leads

to the following bound on ∆Ŝi.

‖∆Ŝi‖2 ≤
√

69

8
· 1.2n

√
nu ≤ 1.3n

√
nu.
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Evaluation of E5. By using the error bound on matrix multiplication given in
Eq. (3.6), we have

|E5| ≤ γn|Ŝ||R̂|.

Hence,

‖E5‖2 ≤ ‖ |E5| ‖F ≤ γn‖ |Ŝ||R̂| ‖F ≤ γn‖ |Ŝ| ‖F ‖ |R̂| ‖F = γn‖Ŝ‖F ‖R̂‖F ≤ nγn‖Ŝ‖2‖R̂‖2

≤ n · 1.1nu ·
√

651

629
·
√

69

8
·
√

651

629
‖X‖2 ≤ 1.2n2u‖X‖2.

Evaluation of Ẑ. From Eq. (3.29), we have ‖Ŷ ‖F ≤
√
69
8

√
n. Multiplying this by

√
69
8 yields the following upper bound on Ẑ.

‖Ẑ‖F ≤
69

64

√
n ≤ 1.1

√
n.

3.4. Bounding the residual. Based on the above results, we evaluate the resid-
ual of the pair (Ẑ, Û). The following theorem holds, which is also one of our main
results.

Theorem 3.5. Assume that an m×n real matrix X (m ≥ n) satisfies Eq. (2.1).
Then the matrices Ẑ and Û obtained by applying the CholeskyQR2 algorithm in float-
ing point arithmetic to X satisfy the following inequality.

(3.38)
‖ẐÛ −X‖F
‖X‖2

≤ 5n2
√
nu.

Proof. Expanding ẑ>i Û − x>i using Eqs. (3.36), (3.35) and (3.3) leads to

‖ẑ>i Û − x>i ‖= ‖ẑ>i (ŜR̂+ E5)− ẑ>i (Ŝ + ∆Ŝi)(R̂+ ∆R̂i)‖
= ‖ẑ>i ŜR̂+ ẑ>i E5 − ẑ>i ŜR̂− ẑ>i Ŝ∆R̂i − ẑ>i ∆ŜiR̂− ẑ>i ∆Ŝi∆R̂i‖
≤ ‖ẑ>i ‖(‖E5‖2 + ‖Ŝ‖2‖∆R̂i‖2 + ‖∆Ŝi‖2‖R̂‖2 + ‖∆Ŝi‖2‖∆R̂i‖2)

≤ ‖ẑ>i ‖(1.2n2u + 1.1 · 1.2n
√
nu + 1.3n

√
nu · 1.1 + 1.3n

√
nu · 1.2n

√
nu)‖X‖2

≤ ‖ẑ>i ‖ ‖X‖2 · 4n2u.(3.39)

Hence,

‖ẐÛ −X‖F
‖X‖2

=

√∑n
i=1 ‖ẑ>i Û − x̂>i ‖2

‖X‖2
≤ 4n2u

√√√√ n∑
i=1

‖ẑ>i ‖2 = 4n2u‖Ẑ‖F ≤ 5n2
√
nu.

4. Numerical results. Here we evaluate the numerical stability of CholeskyQR2
and compare it with the stability of other popular QR decomposition algorithms,
namely, Householder QR, classical and modified Gram-Schmidt (CGS and MGS; we
also run them twice, shown as CGS2 and MGS2) and Cholesky QR. To this end, we
generated test matrices with a specified condition number by X := UΣV ∈ Rm×n,
where U is an m × n random orthogonal matrix, V is an n × n random orthogonal
matrix and

Σ = diag(1, σ
1

n−1 , · · · , σ
n−2
n−1 , σ).
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Here, 0 < σ < 1 is some constant. Thus ‖X‖2 = 1 and the 2-norm condition number
of X is κ2(X) = 1/σ. We varied κ2(X), m and n and investigated the dependence
of the orthogonality and residual on them. All computations were done on Matlab
2012b using IEEE standard 754 binary64 (double precision) on Mac OS X version
10.8 with 2 GHz Intel Core i7 Duo processor, so that u = 2−53 ≈ 1.11× 10−16.

We show the orthogonality and residual measured by the Frobenius norm under
various conditions in Figures 4.1 through 4.6. Figures 4.1 and 4.2 show the orthogo-
nality ‖ẐT Ẑ − I‖F and residual ‖ẐÛ −X‖F , respectively, for the case m = 10, 000,
n = 100 and varying κ2(X). In Figures 4.3 and 4.4, κ2(X) = 105, n = 100 and m was
varied from 1,000 to 10,000. In Figures 4.5 and 4.6, κ2(X) = 105, m = 1, 000 and n
was varied from 100 to 1,000.

It is clear from Figures 4.1 and 4.2 that both the orthogonality and residual are
independent of κ2(X) and are of O(u), as long as κ2(X) is at most O(u−

1
2 ). This is in

good agreement with the theoretical prediction and is in marked contrast to the results
of CGS, MGS and Cholesky QR, for which the deviation from orthogonality increases
in proportional to κ2(X) and (κ2(X))2, respectively. As can be seen from Figures
4.3 through 4.6, the orthogonality and residual increase only mildly with m and n,
which is also in agreement with the theoretical results, although they are inevitably
overestimates. Compared with Householder QR, it was observed that CholeskyQR2
generally produces smaller orthogonality and residual. From these results, we can
conclude that CholeskyQR2 is stable for matrices with condition number at most
O(u

1
2 ). As is well known, Gram-Schmidt type algorithms perform well when repeated

twice.

5. Discussion. In this section, we discuss four topics related to the stabil-
ity of CholeskyQR2. First, we compare the orthogonality and residual bounds of
CholeskyQR2 given in Theorems 3.4 and 3.5, respectively, with known bounds for
Householder QR [11] and CGS2 [9]. Second, we consider how to examine the appli-
cability of CholeskyQR2 for a given matrix. Third, we show that CholeskyQR2 is
not only norm-wise stable, but also column-wise stable. Finally, we discuss row-wise
stability of CholeskyQR2, which cannot be proved but is nearly always observed in
practice.

5.1. Comparison with the error bounds of Householder QR and CGS2.

Orthogonality. For Householder QR, the Q factor is computed by applying n
Householder transformations to I1:m,1:n, an m × n matrix consisting of the first n
columns of the identity matrix of order m. Hence, from Lemma 19.3 of [11], the
computed Q factor satisfies

Q̂ = P>(I1:m,1:n + ∆I),

where P is some m×m exactly orthogonal matrix and ∆I is an m× n matrix whose
each column vector has a norm bounded by nγcm, where c is a small positive constant.
From this, it is easy to derive the bound

‖Q̂>Q̂− I‖F ≤ n
√
nγc′m ' c′mn

√
nu.

For CGS2, Giraud et al. show the following bound for deviation from orthogonality
under the assumption that κ2(X)m2n3u = O(1) [9].

‖Q̂>Q̂− I‖2 ≤ c′′mn
√
nu.



Error Analysis of the CholeskyQR2 Algorithm 13

102 104 106 108

10−15

10−10

10−5

100

κ (X )

‖Ẑ
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Fig. 4.1. Orthogonality ‖Ẑ>Ẑ − I‖F for test matrices with m = 10, 000, n = 100, varying κ2(X).
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Fig. 4.2. Residual ‖ẐÛ −X‖F for test matrices with m = 10, 000, n = 100, varying κ2(X).
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‖Ẑ
T
Ẑ
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Fig. 4.3. Orthogonality ‖Ẑ>Ẑ − I‖F for test matrices with κ2(X) = 105, n = 100, varying m.
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‖Ẑ
Û
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Fig. 4.4. Residual ‖ẐÛ −X‖F for test matrices with κ2(X) = 105, n = 100, varying m.
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Fig. 4.5. Orthogonality ‖Ẑ>Ẑ − I‖F for test matrices with κ2(A) = 105, m = 1, 000, varying n.
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Û

−
X
‖ F

 

 

MGS
MGS2
CGS
CGS2
Householder QR
Cholesky QR
CholeskyQR2

Fig. 4.6. Residual ‖ẐÛ −X‖F for test matrices with κ2(A) = 105, m = 1, 000, varying n.
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Although this assumption is hard to satisfy for large matrices (notice that κ2(X)m2n3

is 1019 for the largest matrix appearing in Fig. 4.3), it has been observed that CGS2
produces near-orthogonal matrices in many cases where this condition is violated [14].

Comparing these bounds with Eq. (3.32), we observe that the error bound of
CholeskyQR2 is smaller by a factor of

√
n. This is in qualitative agreement with the

results of numerical experiments given in the previous section.

Note however that this difference should not be overemphasized, because these
are merely upper bounds. In fact, the Givens QR algorithm admits error bound that
is smaller than that of Householder QR by a factor of n, but it is observed that no
difference in accuracy is seen in practice [11, p.368].

Residual. According to [11, Sec. 19.3], the upper bound on the residual of the
Householder QR algorithm can be evaluated as O(mn

√
nu). As for CGS2, it is not

difficult to derive a bound of the same order using the results given in [9]. Thus,
we can say that the CholsekyQR2 algorithm has a smaller bound also in terms of
the residual. This is related to the fact that in the CholeskyQR2 algorithm, the
computation of Y from X and Z from Y is done by row-wise forward substitution.
Thus the backward errors introduced there or their sum of squares, which is one of
the main sources of the residual, do not depend on m when ‖X‖2 is fixed. In addition,
the forward error in the computation of ŜR̂, which is another source of residual, also
involves only n. Thus the residual depends only on n, which is in marked contrast to
Householder QR.

A few more comments are in order regarding the bound (3.38). A close examina-
tion of Eq. (3.39) shows that the highest order term in the residual comes from the
forward error of the matrix multiplication ŜR̂, which we denoted by E5. This implies
that if we compute this matrix multiplication using extended precision arithmetic,
we can reduce the upper bound on the residual to O(n2u) with virtually no increase
in the computational cost (when m � n). Moreover, in a situation where only the
orthogonal factor Ẑ is needed, as in orthogonalization of vectors, we can leave the
product ŜR̂ uncomputed and say that the triplet (Ẑ, Ŝ, R̂) has residual of O(n2u).

5.2. Applicability of CholeskyQR2 for a given matrix. There are some
cases in which the condition number of X is known in advance to be moderate. An
example is orthogonalization of vectors in first-principles molecular dynamics [3]. In
this application, we are interested in the time evolution of an orthogonal matrix
X(t) ∈ Rm×n, whose column vectors are orthogonal basis of the space of occupied-
state wave functions. To obtain X(t + ∆t), we first compute X̃ = X(t) − F (X)∆t,
where F (X) ∈ Rm×n is some nonlinear matrix function of X, and then compute
X(t + ∆t) by orthogonalizing the columns of X̃. Since X(t) is orthogonal, we can
easily evaluate the deviation from orthogonality of X̃ by computing the norm of
F (X)∆t. Usually, the time step ∆t is small enough to ensure that κ2(X̃)� u−

1
2 .

In some cases, however, the condition number ofX cannot be estimated in advance
and one may want to examine the applicability of CholeskyQR2 from intermediate
quantities that are computed in the algorithm. This is possible if R̂ has been computed
without breakdown in the Cholesky decomposition. Given R̂, one can estimate its
largest and smallest singular values using the power method and inverse power method
on R>R, respectively. Indeed the MATLAB condition number estimator condest first
computes the LU factorization of the input matrix, then applies a few iterations of
power method to obtain a reliable estimate of the 1-norm condition number. This
should not cost too much because R̂ is triangular and each step of both methods
requires only O(n2) work. After that, one can evaluate the condition number of X by
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using the relations (3.1) and (3.2), the bounds (3.9) and (3.16) on ‖E1‖2 and ‖E2‖2,
respectively, and the Bauer-Fike theorem.

5.3. Column-wise stability of CholeskyQR2. Thus far we have investigated
the normwise residual of CholeskyQR2. Sometimes the columns of X have widely
varying norms, and one may wish to obtain the more stringent column-wise backward
stability, which requires

‖x̃j − Q̂r̂j‖/‖x̃j‖ = O(u), j = 1, . . . , n.

Here, x̃j and r̂j denote the jth columns of X and R̂, respectively. In this subsection,
we prove that CholeskyQR2 is indeed column-wise backward stable.

To see this, we first consider a single Cholesky QR and show that the computed
‖r̂j‖ is of the same order as ‖x̃j‖. Let us recall Eqs. (3.1) through (3.3). From
Eq. (3.7), we have

(5.1) |E1|jj ≤ γm|x̃j |>|x̃j | = γm‖x̃j‖2.

By considering the (j, j)th element of Eq. (3.2) and substituting Eqs. (5.1) and (3.10),
we obtain

‖r̂j‖2 ≤ |Âjj |+ γn+1|r̂j |>|r̂j |
≤ ‖x̃j‖2 + γm‖x̃j‖2 + γn+1‖r̂j‖2.

Hence,

(5.2) ‖r̂j‖ ≤

√
1 + γm

1− γn+1
‖x̃j‖ = ‖x̃j‖ ·O(1).

Now we demonstrate the column-wise backward stability of a single Cholesky QR.
Let the jth column of Ŷ be denoted by ỹj . From Eq. (3.3), we have

(5.3) Xij = ŷ>i (r̂j + ∆r̂
(i)
j ).

Here, ∆r̂
(i)
j is the jth column of ∆R̂i. Thus,

|Xij − ŷ>i r̂j | ≤ |ŷ>i ∆r̂
(i)
j |

≤ ‖ŷi‖ ‖∆r̂
(i)
j ‖

≤ γn‖ŷi‖ ‖r̂j‖.

Squaring both sides and summing over i leads to

‖x̃j − Ŷ r̂j‖2 ≤ γ2n‖Ŷ ‖2F ‖r̂j‖2.

By using ‖Ŷ ‖F = O(1) (see Lemma 3.1) and Eq. (5.2), we can establish the column-
wise backward stability of Cholesky QR as follows.

‖x̃j − Ŷ r̂j‖
‖x̃j‖

≤ γn‖Ŷ ‖F ·
‖r̂j‖
‖x̃j‖

= γn ·O(1) ·

√
1 + γm

1− γn+1
.(5.4)
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To apply the above result to CholeskyQR2, we consider the backward errors in the
second QR decomposition Y = ZS and the product of the two upper triangular factors
U = SR. These backward errors, which we denote by ∆Ŷ and ∆Ŝ, respectively, satisfy

Ŷ + ∆Ŷ = ẐŜ,

ûj = (Ŝ + ∆Ŝ)r̂j .

Here, ûj is the j th column of Û . To evaluate ∆Ŷ , we note the following inequality,
which can be obtained in the same way as Eq. (5.4).

‖ỹj − Ẑ ŝj‖2 ≤ γ2n‖Ẑ‖2F ‖ŝj‖2.

Summing both sides over i and taking the square root gives

(5.5) ‖∆Ŷ ‖F = ‖Ŷ − ẐŜ‖F ≤ γn‖Ẑ‖F ‖Ŝ‖F = γn ·O(1).

As for ∆Ŝ, the standard result on the error analysis of matrix-vector product, com-
bined with ‖Ŝ‖F ' ‖Ŷ ‖F = O(1), leads to

(5.6) ‖∆Ŝ‖F ≤ γn‖Ŝ‖F = γn ·O(1).

On the other hand,

x̃j − Ẑûj = x̃j − Ẑ(Ŝ + ∆Ŝ)r̂j

= x̃j − (Ŷ + ∆Ŷ + Ẑ∆Ŝ)r̂j

= (x̃j − Ŷ r̂j)− (∆Ŷ + Ẑ∆Ŝ)r̂j .(5.7)

By substituting Eqs. (5.4), (5.5) and (5.6) into Eq. (5.7), we finally obtain the column-
wise backward stability of CholeskyQR2 as follows.

‖x̃j − Ẑûj‖
‖x̃j‖

≤ ‖x̃j − Ŷ r̂j‖
‖x̃j‖

+ (‖∆Ŷ ‖F + ‖Ẑ‖F ‖∆Ŝ‖F ) · ‖r̂j‖
‖x̃j‖

= γn ·O(1).

5.4. Row-wise stability of CholeskyQR2. In this subsection, we investigate
the row-wise stability of CholeskyQR2, which is defined as

(5.8) ‖x>i − q̂>i R̂‖/‖x>i ‖ = O(u), i = 1, . . . ,m.

Here x>i and q̂>i denote the ith rows of the matrices.
The requirement (5.8) is strictly more stringent than the normwise stability, and

indeed the standard Householder QR factorization does not always achieve (5.8). It is
known [11, Ch.19] that when row sorting and column pivoting are used, Householder
QR factorization gives row-wise stability. However, pivoting involves an increased
communication cost and is best avoided in high-performance computing.

Having established the normwise and column-wise stability of CholeskyQR2, we
now examine its row-wise stability. To gain some insight we first run experiments with
a semi-randomly generated matrix X, whose row norms vary widely. Specifically,
we generate a random m × n matrix via the Matlab command X = randn(m,n),

then left-multiply a diagonal matrix X := DX with Djj = 2
j
2 for j = 1, . . . ,m.

Here we took m = 100 and n = 50; the matrix thus has rows of exponentially
growing norms and κ2(X) ≈ u−

1
2 . Figure 5.1 shows the row-wise residuals of three
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algorithms: standard Householder QR, Householder QR employing row sorting and
column pivoting, and CholeskyQR2.

We make several observations from Figure 5.1. First, we confirm the known
fact that the standard Householder QR factorization is not row-wise backward sta-
ble, but this can be cured by employing row sorting and column pivoting. Second,
CholeskyQR2 gave row-wise stability comparable to Householder QR with row sorting
and column piroving; this is perhaps surprising considering the fact that CholeskyQR2
employs no pivoting or sorting.
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Householder QR w/ sort+pivot

CholeskyQR2

Fig. 5.1. Row-wise residual ‖x>i − q̂>i R̂‖2/‖x>i ‖2.

To illustrate the situation, we examine the first step of CholeskyQR2. Recall that
q̂>i = fl(x>i R̂

−1). Hence ‖x>i − q̂>i R̂‖2 = ‖x>i − fl(x>i R̂−1)R̂‖2, and by standard
triangular solve there exist ∆Ri for i = 1, . . . ,m such that

fl(x>i R̂
−1)(R̂+ ∆Ri) = x>i , ‖∆Ri‖ = O(u)‖R̂‖.

Hence for row-wise stability we need ‖fl(x>i R̂−1)∆Ri‖ = O(u)‖x>i ‖. Since ‖fl(x>i R̂−1)∆Ri‖ ≤
O(u)‖R̂‖‖fl(x>i R̂−1)‖, a sufficient condition is

(5.9) ‖fl(x>i R̂−1)‖ = O(‖x>i ‖/‖R̂‖).

Since the general normwise bound for ‖y>R−1‖ is ‖y>R−1‖ ≤ ‖y‖/‖R‖κ2(R), the
condition (5.9) is significantly more stringent when R is ill-conditioned.

Even so, as illustrated in the example above, in all our experiments with ran-
dom matrices the condition (5.9) was satisfied with ‖x>i − q̂>i R̂‖/‖x>i ‖ < nu for all
i. We suspect that this is due to the observation known to experts that triangu-
lar linear systems are usually solved to much higher accuracy than the theoretical
bound suggests [11][20]. However, as with this classical observation, counterexam-
ples do exist in our case: For example, taking R to be the Kahan matrix [11], which
are ill-conditioned triangular matrices known to have special properties, the bound
‖fl(y>R−1)‖ = O(‖y>‖/‖R‖) is typically tight for a randomly generated y>, which
means (5.9) is significantly violated. In view of this we form X so that the Cholesky
factor R of X>X is the Kahan matrix. This can be done by taking X = QR for an
m × n orthogonal matrix Q. To introduce large variation in the row norms of X we
construct Q as the orthogonal factor of a matrix as generated in the example above.
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For every such X with varying size n, (5.9) was still satisfied. Finally, we then ap-
pended a row at the bottom of X of random elements with much smaller norm than
the rest, and repeated the experiment. Now the row-wise residual for the last row
was significantly larger than O(u‖x>i ‖), indicating row-wise stability does not always
hold. Employing pivoting in the Cholesky factorization did not improve the residual.

A referee has suggested more examples for which CholeskyQR2 fails to have row-
wise backward stability. One example is as follows: take X to be the off-diagonal
parts of the 6× 6 Hilbert matrix and setting the (3, 3) element to 5e6.

Experiments suggest nonetheless that cases in which CholeskyQR is not row-wise
stable is extremely rare.

6. Conclusion. In this paper, we performed roundoff error analysis of the CholeskyQR2
algorithm for computing the QR decomposition of an m × n real matrix X, where
m ≥ n. We showed that if X satisfies Eq. (2.1), the computed Q and R factors, which
we denote by Ẑ and Û , respectively, satisfy the following error bounds.

‖Ẑ>Ẑ − I‖F ≤ 6(mnu + n(n+ 1)u),

‖ẐÛ −X‖F /‖X‖2 ≤ 5n2
√
nu.(6.1)

The bounds shown here is of a smaller order than the corresponding bounds for the
Householder QR algorithm. Furthermore, it was shown that when only the Q factor
is required, the right hand side of Eq. (6.1) can be reduced to O(n2u). Numerical
experiments support our theoretical analysis. CholeskyQR2 is also column-wise back-
ward stable, as Householder QR. We also observed that the row-wise stability, which
is a more stringent condition than the norm-wise stability shown by Eq. (6.1), nearly
always holds in practice, though it cannot be proved theoretically.

In this paper, we focused on the stability of CholeskyQR2. Performance results of
CholeskyQR2 on large scale parallel machines, along with comparison with other QR
decomposition algorithms and detailed performance analysis, is given in our recent
paper [8].

When the matrix is near square, it might be more efficient to partition the ma-
trix into panels and apply the CholeskyQR2 algorithm to each panel successively.
Development of such an algorithm remains as future work.
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