
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

CholeskyQR2: A Simple and
Communication-Avoiding Algorithm for

Computing a Tall-Skinny QR Factorization on
a Large-Scale Parallel System

Takeshi FUKAYA, Yuji NAKATSUKASA, Yuka
YANAGISAWA and Yusaku YAMAMOTO

METR 2014–37 December 2014

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



CholeskyQR2: A Simple and Communication-Avoiding Algorithm for
Computing a Tall-Skinny QR Factorization on a Large-Scale Parallel System

Takeshi Fukaya∗¶, Yuji Nakatsukasa†, Yuka Yanagisawa‡ and Yusaku Yamamoto§¶
∗RIKEN Advanced Institute for Computational Science, Kobe, Japan

takeshi.fukaya@riken.jp
†The University of Tokyo, Tokyo, Japan

‡Waseda University, Tokyo, Japan
§The University of Electro-Communications, Tokyo, Japan

¶JST CREST, Tokyo, Japan

Abstract

Designing communication-avoiding algorithms is
crucial for high performance computing on a large-
scale parallel system. The TSQR algorithm is a
communication-avoiding algorithm for computing a
tall-skinny QR factorization, and TSQR is known to
be much faster and as stable as the classical House-
holder QR algorithm. The Cholesky QR algorithm is
another very simple and fast communication-avoiding
algorithm, but rarely used in practice because of its
numerical instability. Our recent work points out that
an algorithm that simply repeats Cholesky QR twice,
which we call CholeskyQR2, gives excellent accuracy
for a wide range of matrices arising in practice.
Although the communication cost of CholeskyQR2 is
twice that of TSQR, it has an advantage that its
reduction operation is addition whereas that of TSQR
is a QR factorization, whose high-performance imple-
mentation is more difficult. Thus, CholeskyQR2 can po-
tentially be significantly faster than TSQR. Indeed, in
our experiments using 16384 nodes of the K computer,
CholeskyQR2 ran about three times faster than TSQR
for a 4194304× 64 matrix.

1. Introduction

It is now a consensus that communication-avoiding
algorithms play a crucial role in high performance
computing on a large-scale parallel system. Here, com-
munication refers to data transfers among distributed
processors over a network. The cost for communication
is increasing relative to the cost for floating-point
operations. Besides, the setup cost of communica-
tion (i.e. latency) becomes much larger than the cost

for transferring a word of data (i.e. the inverse of
bandwidth). Thus, it is vital to design an algorithm
whose total number of data transfers (in other words,
the number of messages) is much less than that in
conventional algorithms, a so-called communication-
avoiding algorithm [1].

The TSQR algorithm [2], [3] is a communication-
avoiding algorithm for computing a tall-skinny QR
factorization. A tall-skinny QR factorization, the QR
factorization of a matrix with many more rows than
columns, is a fundamental matrix factorization that
appears in various numerical methods such as Krylov
subspace methods [4], [5] and other subspace pro-
jection methods [6] for linear systems and eigen-
value problems. The widely-used Householder QR
algorithm [7] requires very high communication cost,
which makes it difficult to obtain good performance
on a modern large-scale parallel system. TSQR is thus
currently attracting much interest of many researchers.

On the other hand, the Cholesky QR algorithm [7,
Thm. 5.2.3] is another communication-avoiding algo-
rithm whose communication cost is equivalent to that
of the TSQR algorithm (see Section 2.2). Cholesky
QR has the advantage over TSQR that its arithmetic
cost is about half and that its reduction operator is
addition, while that of TSQR is a QR factorization of
a small matrix (for details see Section 2.1). As a result,
Cholesky QR usually runs faster than TSQR. However,
Cholesky QR is rarely used in practice because of
its instability: the orthogonality of its computedQ
grows rapidly with the condition numberκ(A) =
∥A∥2∥A−1∥2 of the input matrix. By constrast, TSQR
is unconditionally stable [2], [3], [8].

Recently [9], the authors have pointed out that the
instability of Cholesky QR can be remedied simply



by repeating the process twice: an algorithm that we
refer to as CholeskyQR2. Specifically, CholeskyQR2
produces results as accurate as TSQR as long as the
condition numberκ(A) is smaller than a threshold
around108 (in double precision), indicating its prac-
ticality. Cleary, CholeskyQR2 requires twice as much
communication as Cholesky QR, in terms of both the
number of messages and the amount of transferred
data. Still, it is much lower than that of Householder
QR. When compared with TSQR, the communication
cost of CholeskyQR2 is roughly twice that of TSQR,
but it has an important advantage in the reduction op-
erator over TSQR. Thus, CholeskyQR2 has a potential
to be competitive with or outperform TSQR.

In this paper, we compare these two communication-
avoiding algorithms for tall-skinny QR factorization:
TSQR and CholeskyQR2. We illustrate the stability
improvement of ChoeleskyQR2 with experimental re-
sults. We measure their parallel performance using the
K computer and examine the difference in runtime.
The main goal of the paper is to demonstrate the
practicality of CholeskyQR2 on a modern large-scale
parallel system.

The rest of the paper is organized as follows: in
Section 2, we briefly review TSQR and Cholesky
QR. We then introduce CholeskyQR2 in Section 3.
We show experimental results both on the numerical
stability and the parallel performance in Section 4, and
discuss the results in Section 5.

Throughout the paper, we letA be anm × n real
matrix with m ≫ n and consider computing its QR
factorization A = QR, where Q is m × n with
orthonormal columnsQTQ = I andR is n×n upper
triangular. We suppose that this computation is done
by P distributed processors and make the following
assumptions:

• P is a power of two, andm is divisible byP for
simplicity.

• m
P ≥ n, sinceA is tall-skinny.

• A is stored in one-dimensional block row layout;
A = [A⊤

1 A
⊤
2 · · ·A⊤

P ]
⊤, whereAi is m

P × n, and
Q is stored in the same manner.

• The ith processor has the data ofAi on entry and
Qi on exit. (No restriction onR.)

2. Review of TSQR and Cholesky QR

In this section, we review two communication-
avoiding algorithms, namely the TSQR algorithm and
the Choelsky QR algorithm, for computing a tall-
skinny QR factorization.

2.1. The TSQR algorithm

The TSQR algorithm is an algorithm based on the
idea that the QR factorization ofA can be given by

A =

[
A1

A2

]
=

[
Q̃1R̃1

Q̃2R̃2

]
=

([
Q̃1 O

O Q̃2

]
Q̃12

)
R, (1)

where [
R̃1

R̃2

]
= Q̃12R. (2)

It is clear that (1) can be applied recursively to
compute the QR factorization ofA1 (and A2). The
QR factorization in (2) is a so-called structured QR
factorization [3], which is essentially equivalent to the
QR factorization of a2n× n matrix built by coupling
two n× n upper triangular matrices. By exploiting its
triangular structure, one can compute it with much less
arithmetic cost than the QR factorization of a general
2n × n matrix. In the rest of the paper, we call the
QR factorization of a general matrix ageneral QR
factorization. For more detail on TSQR, see [2], [3].

Figures 1 illustrates the parallel computation of
TSQR: computingR (Figure 1(a)) and formingQ ex-
plicitly (Figure 1(b)). Here we assume that a binary re-
duction tree is used (other reduction trees are described
in [2], [3]). The process of merging the upper triangular
matrices in computingR can be interpreted as a global
reduction in which a structured QR factorization is
the reduction operator. For formingQ, the process
can be regarded as one global broadcast that involves
multiplications with a structuredQ factor. In total,
just two global collective communication operations
is needed; much lower than that of the Householder
QR algorithm, which requiresO(n) global collective
communication.

2.2. The Cholesky QR algorithm

The Cholesky QR algorithm is a simple algorithm,
whose pseducode is described in Figure 2. One first
calculates the Gram matrixA⊤A by matrix-matrix
multiplication, which is a great advantage in high
performance computing. After that, one obtainsR via
the Cholesky factorization of the Gram matrix, and
then computeQ via back substitution (e.g. the trsm
routine in LAPACK), which is partly performed by
matrix-matrix multiplication. It is worth noting that
Cholesky QR belongs to the family of “triangular
orthogonalization” type algorithms [10] (see line 3 in
Figure 2), in whichQ is obtained by right-multiplying
triangular matrices. This family includes the Gram-
Schmidt type algorithms. The other family for QR



n

m

procs. 1

procs. 2

procs. 3

procs. 4

A

point-to-point communication

structured QR factorization

general QR factorization

R

(a) Computation of R

n

m

procs. 1

procs. 2

procs. 3

procs. 4

Q

point-to-point communication

multiplication of structured Q factor

multiplication of general Q factor

I

(b) Generation of explicit Q

Figure 1. Sketch of the parallel computation of the
binary tree based TSQR algorithm when P = 4.

factorization is “orthogonal triangularization”, which
includes Householder QR and TSQR.

In parallel computing, Cholesky QR requires only
one global communication operation, namely the allre-
duce operation for calculating the Gram matrixW .
The number of words transferred is about1

2n
2, cor-

responding to the data of the upper triangular part of
W . This means that Cholesky QR has about the same
communication cost as TSQR1.

However, it is well known that Cholesky QR is
numerically unstable because the Gram matrixA⊤A
squares the condition number ofA while TSQR is
as stable as Householder QR [3], [8]. The loss of
orthogonality of the computedQ by the Cholesky
QR algorithm grows withκ(A) like O(ϵκ(A)2) where
ϵ ≈ 10−16.

1. Here, we regard one allreduce operation as almost equal to one
reduce and broadcast operations.

Input: A; A is m× n
1: W := A⊤A
2: R := Chol(W ) // Cholesky factorization
3: Q := AR−1

Output: Q,R; Q is m×n orthonormal,R is n×n
upper triangular,QR = A

Figure 2. Pseudocode of the Cholesky QR algo-
rithm.

Input: A; A is m× n
1: [A′, R1] := CholeskyQR(A)
2: [Q,R2] := CholeskyQR(A′)
3: R := R2R1

Output: Q,R; Q is m×n orthonormal,R is n×n
upper triangular,QR = A

Figure 3. Pseudocode of the CholeskyQR2 algo-
rithm.

3. The CholeskyQR2 algorithm

It has been reported that applying Cholesky QR
repeatedly often produce a computed QR factorization
with good numerical stability [11]. Recalling the sta-
bility improvement of the iterative Gram-Schmidt algo-
rithms (e.g. CGS2 [12]), this idea is natural in view of
the fact that Cholesky QR is a triangular orthogonaliza-
tion algorithm. In this paper, we particularly focus on
an algorithm that simply repeats Cholesky QR twice,
which can be interpreted as a variant of the Cholesky
QR algorithm with (one) reorthogonalization. We call
this algorithm the CholskyQR2 algorithm, following
the naming of the CGS2 algorithm. The pseudocode
of CholeskyQR2 is described in Figure 3.

In parallel computing, the communication cost of
CholeskyQR2 is twice that of Choleksy QR, in both
the number of messages and the amount of transferred
data. The communication cost of CholeskyQR2 is
higher than TSQR, but much less than the conventional
Householder QR and Gran-Schmidt algorithms, which
requireO(n) global collective communication opera-
tions. The costs of CholeksyQR2 in parallel execution
are compared with those of TSQR in Table 1, in which
measurements are made along the critical path of the
parallel execution.

4. Experimental results

We report the results of numerical experiments both
on the numerical stability and on the parallel perfor-
mance.



Table 1. Parallel execution costs of the TSQR and CholeskyQR2 algorithms; costs for an m× n matrix are
measured along the critical path of the parallel execution with P processes.

item TSQR CholeskyQR2

#flops 2m
P
n2 general QR factorization 2× m

P
n2 general matrix-matrix multiplication

2m
P
n2 general Q factor multiplication 2× m

P
n2 back substitution

2× 1
3
n3 Cholesky factorization

1
3
n3 triangular-triangular multiplication

2
3
n3 log2 P structured QR factorization 2× 1

2
n2 log2 P addition in reduce operation

2
3
n3 log2 P structured Q factor multiplication

#msgs log2 P with structured QR factorizations 2× log2 P in reduce operation

log2 P with structured Q factor multiplications 2× log2 P in broadcast operation

#words 1
2
n2 log2 P with structured QR factorizations 2× 1

2
n2 log2 P in reduce operation

1
2
n2 log2 P with structured Q multiplications 2× 1

2
n2 log2 P in broadcast operation

4.1. Implementation

4.1.1. CholeskyQR2.Our CholeskyQR2 code is im-
plemented based on the routines provided in the BLAS
and LAPACK libraries. There is some performance gap
between dgemm and dsyrk for computingA⊤A (Ta-
ble 3a), and we employed dgemm although the number
of the floating-point operations becomes double. We
use dpotrf for computing the Cholesky factorization,
dtrsm for the back substitution and dtrmm for the
products ofR1 andR2, where zeros are inserted into
the strictly lower triangular part ofR1. We transfer
the whole data ofA⊤A to avoid the cost for copy-
ing the upper triangular part to/from a continuous
buffer from/to the general rectangular array required
in dgemm etc.

4.1.2. TSQR. Our TSQR code is implemented as
follows. We adopt the recursive QR algorithm [13],
known to be efficient particularly in computing the full
compact WY representation [14], [15], for the general
QR factorization in each process. Consequently, the
multiplication of Q, whose arithmetic cost is reduced
to about half the original amount [16], is done by
one large dtrmm and other two small dtrmms. The
arithmetic cost in the former becomes3m

P n2, almost
all of which can be done by dgemm2. Structured QR
factorizations are calculated by our self-coded routine
in which no BLAS routine is used. This is because
BLAS routines are not tuned for such small matrices
appearing in structured QR factorizations. We also
compute the compact WY representation from the

2. The size of matrices in each dgemm call is of course not
necessarily large.

result of a structured QR factorization, and calculate
the multiplication of structuredQ by dtrmm.

4.2. Numerical stability

We evaluated the numerical stability of
CholeskyQR2 in parallel execution by using the
FX10 supercomputing system Oakleaf-FX3. We
generated test matrices with condition numberσ
by A := UΣV , where U is an m × n random
orthogonal matrix,V is n × n random orthogonal
and Σ = diag(1, σ

1
n−1 , · · · , σ

n−2
n−1 , σ). The obtained

orthogonality and residual whenP = 8192 are shown
in Figures 4(a) and 4(b) respectively. They illustrate
that parallel CholeskyQR2 is stable untilκ(A)
becomes larger than the threshold around108. These
results agree with our recent theoretical analysis [9].

We note that there are many applications in which a
Gram-Schmidt algorithm without reorthogonalization
is used, e.g. QR factorizations in the block Arnolid
method [17] and orthogonalization in the real space
DFT calculation [18]. The above results indicate that
CholeskyQR2 can be applicable to these computations.

4.3. Parallel performance on the K computer

We measured the parallel execution time of
CholeskyQR2 and TSQR on the K computer, which
consists of 88192 computational nodes; each node
has one SPARC64 VIIIfx processor (2.0GHz, 8cores)
and 16GB memory (DDR3 SDRAM, 64GB/s), and is
connected by the 6D mesh/tours network (5GB/s/link,

3. the system operated by SCD/ITC, The University of Tokyo,
and it has almost the same architecture as the K computer.



1.0E-16

1.0E-14

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

House

TSQR

Chol

Chol2

Cholesky fact. broke down

(a) Orthogonality: ∥Q⊤Q− I∥F /
√
n

1.0E-16

1.0E-14

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

House

TSQR

Chol

Chol2

Cholesky fact. broke down

(b) Residual: ∥A−QR∥F /∥A∥F
Figure 4. Comparison of the numerical stability;
the orthogonality and residual of the computed QR
factorizations by Householder QR (House), TSQR,
Cholesky QR (Chol) and CholeskyQR2 (Chol2)
are plotted. m = 2097152, n = 64 and P = 8192.

bidirectional). We complied our codes written in For-
tran90 by Fujitsu Fortran90 compiler with the option
“-Kfast,openmp” and linked Fujitsu BLAS, LAPACK
and MPI libraries. Note that we used the thread par-
allelized BLAS and LAPACK libraries. The version
of the language environment was K-1.2.0-15. We as-
signed one MPI process per node and eight threads
per process. Since the condition number ofA does not
influence the execution time, we used a random matrix
whose condition number is not so large.

Figures 5(a) to 5(f) show the strong scaling
of ScaLAPACK (pdgeqrf and pdorgqr), TSQR
and CholeskyQR2. These graphs show that
communication-avoiding algorithms (TSQR and
CholeskyQR2) are much faster than ScaLAPACK and
that CholeskyQR2 is faster than TSQR in almost all
cases. We also observe that the runtime difference
between TSQR and CholeskyQR2 depends not onm
but rather onn whenP is large enough.

We then show the breakdown of the execution time
of four typical cases in Figures 6(a) to 6(d). When
P is small andn is also small, the performance gap
between dgemm and recursive QR is not so large (the
dark blue parts in Figure 6(a)), thus the total execution
time of TSQR and that of CholeskyQR2 are almost
the same. We suspect that this is becausem

P ≫ n,
so each local matrix is still tall-skinny. However, asn
grows, the performance gap also becomes large, which
makes CholeskeyQR2 faster than TSQR (Figure 6(b)).
On the other hand, whenP is large, the cost of
calculating the structured QR factorizations becomes
a serious bottleneck in TSQR (the orange part in
Figure 6(c)), and its influence grows asn becomes
large (Figure 6(d)).

5. Discussion

In this section, we discuss the parallel performance
results shown in the previous section, particularly from
the following three viewpoints.

5.1. Local kernel performance

Figures 6(b) and 6(c) show that the performance
gap in the local computational kernels (e.g. dgemm,
recursive QR, etc., comparing those with the same
color in each figure) strongly influences the difference
of total execution time. To examine the generality
of this gap, we measured the effective performance
of each kernel not only on the K computer but also
on a standard Xeon processor, and list the results in
Tables 2(a) and 2(b) respectively. The result that the
effective performance of dgeqrf and recursive QR are
lower than that of the others is reasonable because the
former is more sequential and complicated computa-
tions than the latter. This result reflects the advantage
of CholeskyQR2 that it mainly consists of dgemm and
dtrsm, which are expected to be highly tuned on a
general system.

5.2. Performance of structured QR factoriza-
tions

Figures 6(c) and 6(d) clearly show that the runtime
for computing structured QR factorizations becomes a
serious bottleneck of TSQR whenP is large. Taking
into account that the arithmetic cost of structured QR
factorization grows likeO(log2 P ), this seems to be
reasonable. Figures 7(a) and 7(b) show the effective
performance of each implementation4 of a structured

4. dtpqrt is the specialized routine in LAPACK for computing a
structured QR factorization.



1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

4 16 64 256 1024 4096 16384

ScaLAPACK

TSQR

Chol2

P

exe. time (sec.)

(a) m = 4194304, n = 16

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

4 16 64 256 1024 4096 16384

ScaLAPACK

TSQR

Chol2

P

exe. time (sec.)

(b) m = 4194304, n = 64

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

4 16 64 256 1024 4096 16384

ScaLAPACK

TSQR

Chol2

P

exe. time (sec.)

(c) m = 4194304, n = 256

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

4 16 64 256 1024 4096 16384

ScaLAPACK

TSQR

Chol2

P

exe. time (sec.)

(d) m = 16777216, n = 16

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

4 16 64 256 1024 4096 16384

ScaLAPACK

TSQR

Chol2

P

exe. time (sec.)

(e) m = 16777216, n = 64

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

4 16 64 256 1024 4096 16384

ScaLAPACK

TSQR

Chol2

P

exe. time (sec.)

(f) m = 16777216, n = 256

Figure 5. Strong scaling on the K computer; the parallel execution times for computing the QR factorization
of a m× n matrix by ScaLAPACK (pdgeqrf and pdorgqr), TSQR and CholeskyQR2 (Chol2) are plotted.

TSQR : general QR fact. (recursive QR) general Q mult. (dtrmm)

Chol2 : mat-mat mult. (dgemm) back substitution (dtrsm)

structured QR fact. structured Q mult. (dtrmm) comm.

Cholesky fact. (dpotrf) & tri-tri mult. (dtrmm) comm.

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

TSQR Chol2

exe. time (sec.)

(a) n = 16, P = 64

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

TSQR Chol2

exe. time (sec.)

(b) n = 64, P = 64

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

TSQR Chol2

exe. time (sec.)

(c) n = 64, P = 16384

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

TSQR Chol2

exe. time (sec.)

(d) n = 256, P = 16384

Figure 6. Breakdown of the execution time; typical breakdowns of the parallel execution time of TSQR and
CholeskyQR2 (Chol2) are shown. m = 4194304 in all cases.

QR factorization on the K computer and the Xeon pro-
cessor. The figures corroborate that our implementation
is appropriate and indicate that the high performance
implementation of a structured QR factorization is
much more difficult than that of dgemm. In addition
to the complications of computing a QR factorization,
exploiting the upper triangular structure5 in structured

5. dgeqrf can not exploit the triangular structure. Its #flops is thus
quintupled, and its effective performance is also not high.

QR factorizations makes the implementation more dif-
ficult.

5.3. Other state-of-the-art algorithms

The TSQR algorithm against which we compared
CholeskyQR2 is a basic variant that uses a binary
reduction tree, and there are some state-of-the-art
communication-avoiding algorithms, e.g. the tile QR



Table 2. Performance gap in local computational
kernels; the relative effective runtimes for one

floating-point operation in each kernel to dgemm
are listed. “ req qr” is our implementation of

recursive QR. m
P = 2000 in all cases.

n dgemm dsyrk dtrmm dtrsm dgeqrf recqr

16 1.00 1.75 0.67 0.79 4.11 4.83

32 1.00 4.20 1.32 1.55 12.8 9.74

64 1.00 4.21 1.62 1.80 23.9 10.8

128 1.00 3.16 1.99 2.19 37.5 9.76

256 1.00 1.93 2.14 2.23 16.9 6.42

(a) Fujitsu BLAS, LAPACK on 1 node of the K
computer (using 8 threads).

n dgemm dsyrk dtrmm dtrsm dgeqrf recqr

16 1.00 1.52 1.58 1.00 8.01 7.61

32 1.00 1.16 1.43 0.85 5.48 6.54

64 1.00 1.38 1.27 1.02 4.37 6.25

128 1.00 1.43 1.21 1.19 2.65 4.16

256 1.00 1.29 1.13 1.10 2.43 2.92

(b) Intel MKL ver. 11.0 on Xeon E5-2660 (using 8
threads).

algorithm [19]. For tall and skinny matrices, a binary
reduction tree is known to be near optimal. Asn be-
comes large, other trees such as hierarchical trees [20]
are probably more efficient, e.g. the case ofn = 256;
our experiments simply show that CholeskyQR2 is
faster than a basic TSQR algorithm, which may be
suboptimal whenn is not small.

We also note that applying the TSQR algorithm for
computing local (in node) QR factorizations sometimes
improves the performance [21], which reduces the
gap in the local kernel performance as discussed in
Section 5.1.

6. Conclusion

Our main message is that CholeskyQR2 is a prac-
tical algorithm worth considering for computing a
tall-skinny QR factorization on a modern large-scale
parallel system. We confirmed that it is as stable as the
TSQR algorithm for a wide range of matrices arising
in practice. We demonstrated that it can significantly
outperform the binary tree based TSQR algorithm
on the K computer. The results suggest the overall
practicality of CholeskyQR2, which is strengthened
also by the simplicity of its implementation.

Many issues remain to be solved for an effective use

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

1.0E+13

0 50 100 150 200 250

dgemm(n,n,n) dgeqrf

dtpqrt naive

our code

n

FLOPS

(a) Fujitsu BLAS, LAPACK on 1 node of
the K computer (using 8 threads).

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

1.0E+13

0 50 100 150 200 250

dgemm(n,n,n) dgeqrf

dtpqrt naive

our code

n

FLOPS

(b) Intel MKL ver. 11.0 on Xeon E5-2660
(using 8 threads).

Figure 7. Effective performance of routines that
compute a structured QR factorization.

of CholeskyQR2. First, a thorough performance eval-
uation on systems other than the K computer is nec-
essary. Moreover, in addition to the binary tree based
TSQR algorithm, we need to compare CholeskyQR2
with other state-of-the-art communication-avoiding al-
gorithms mentioned in Section 5.3. The numerical
stability of CholeskyQR2 also needs to be examined
with matrices appearing in practical computations.

The second issue pertains to the numerical break-
down in the Cholesky factorization. Throughout our
experiments we observe that CholeskyQR2 gives an
accurate result if the first Cholesky factorization does
not break down, but a rigorous analysis is unavail-
able. One possible approach is to first try a Cholesky
factorization and then determine whether to continue
CholeskyQR2 or switch to TSQR (if Cholesky breaks
down). This seems to be reasonable because the exper-
imental results indicate that the additional cost entailed
would not be so expensive relative to the cost of TSQR.



Third, dealing with cases other than tall-skinny ma-
trices is also of importance. One may employ the panel
blocking technique as in block Gram-Schmidt [22] and
use CholeskyQR2 for computing the QR factorization
of a panel.

Acknowledgment

The authors would like to thank Dr. Toshiyuki
Imamura for his valuable comments. The first author
appreciates the fruitful discussions during his recent
visit to LBNL and UC Berkeley. This research was
supported by JST, CREST and used computational
resources of the K computer provided by the RIKEN
AICS through the HPCI System Research project
(Project ID:hp120170).

References

[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz,
“Minimizing communication in numerical linear alge-
bra,” SIAM J. Matrix Anal. Appl., vol. 32, no. 3, pp.
866–901, 2011.

[2] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
“Communication-optimal parallel and sequential QR
and LU factorizations,”SIAM J. Sci. Comp, vol. 34,
no. 1, pp. 206–239, 2012.

[3] ——, “Communication-avoiding parallel and sequential
QR factorizations,”CoRR, vol. abs/0806.2159, 2008.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and
H. van der Vorst, Templates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide.
Philadelphia, PA, USA: SIAM, 2000.

[5] M. H. Gutknecht, “Block Krylov space methods for
linear systems with multiple right-hand sides: An in-
troduction,” 2006.

[6] T. Sakurai and H. Sugiura, “A projection method for
generalized eigenvalue problems using numerical inte-
gration,” J. Comput. Appl. Math., vol. 159, no. 1, pp.
119–128, Oct. 2003.

[7] G. H. Golub and C. F. Van Loan,Matrix Computations,
4th ed. The Johns Hopkins University Press, 2012.

[8] D. Mori, Y. Yamamoto, and Z. Shao-Liang, “Backward
error analysis of the AllReduce algorithm for House-
holder QR decomposition,”Jpn J. Ind. Appl. Math.,
vol. 29, no. 1, pp. 111–130, feb 2012.

[9] Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa,
and T. Fukaya, “Roundoff error analysis of the
CholeskyQR2 algorithm,” http://www.na.scitec.kobe-
u.ac.jp/˜yamamoto/work/CholeskyQR2.pdf, submitted.

[10] L. N. Trefethen and I. David Bau,Numerical Liner
Algebra. Philadelphia: SIAM, 1997.

[11] A. Stathopoulos and K. Wu, “A block orthogonalization
procedure with constant synchronization requirements,”
SIAM J. Sci. Comp, vol. 23, pp. 2165–2182, 2002.

[12] N. N. Abdelmalek, “Round off error analysis for Gram-
Schmidt method and solution of linear least squares
problems,”BIT, vol. 11, 1971.

[13] E. Elmroth and F. G. Gustavson, “Applying recursion
to serial and parallel QR factorization leads to better
performance,”IBM J. RES. DEV., vol. 44, no. 4, pp.
605–624, 2000.

[14] C. Puglisi, “Modification of the Householder method
based on the compact WY representation,”SIAM J. Sci.
Stat. Comp., vol. 13, pp. 723–726, 1992.

[15] R. Schreiber and C. F. van Loan, “A storage-efficient
WY representation for products of Householder trans-
formations,”SIAM J. Sci. Stat. Comp., vol. 10, pp. 53–
57, 1989.

[16] Y. Yamamoto, T. Fukaya, T. Uneyama, M. Takata,
K. Kimura, M. Iwasaki, and Y. Nakamura, “Acceler-
ating the singular value decomposition of rectangular
matrices with the CSX600 and the Integrable SVD,” in
Lecture Notes in Computer Science, vol. 4671, 2007,
pp. 340–345.

[17] Y. Saad, Numerical Methods for Large Eigenvalue
Problems. Manchester, UK: Manchester University
Press, 1992.

[18] Y. Hasegawa, J.-I. Iwata, M. Tsuji, D. Takahashi,
A. Oshiyama, K. Minami, T. Boku, F. Shoji, A. Uno,
M. Kurokawa, H. Inoue, I. Miyoshi, and M. Yokokawa,
“First-principles calculations of electron states of a
silicon nanowire with 100,000 atoms on the k com-
puter,” in Proceedings of the 2011 ACM/IEEE Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (SC’11), 2011, pp.
1–11.

[19] F. Song, H. Ltaief, B. Hadri, and J. Dongarra, “Scal-
able tile communication-avoiding QR factorization on
multicore cluster systems,” inProceedings of the 2010
ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis
(SC’10), 2010, pp. 1–11.

[20] J. Dongarra, M. Faverge, T. HéRault, M. Jacquelin,
J. Langou, and Y. Robert, “Hierarchical QR factor-
ization algorithms for multi-core clusters,”Parallel
Comput., vol. 39, no. 4-5, pp. 212–232, Apr. 2013.

[21] M. Hoemmen, “A communication-avoiding, hybrid-
parallel, rank-revealing orthogonalization method.” in
IPDPS. IEEE, 2011, pp. 966–977.

[22] G. Stewart, “Block Gram–Schmidt orthogonalization,”
SIAM J. Sci. Comp, vol. 31, pp. 761 – 775, 2008.


