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Abstract

We examine an auction model where there are many different goods,
each good has multiple units, and bidders have gross substitutes valu-
ations over the goods. We analyze the number of iterations in iterative
auction algorithms for the model based on the theory of discrete con-
vex analysis. By making use of Li-convexity of the Lyapunov function
we derive exact bounds on the number of iterations in terms of the
{-distance between the initial price vector and the found equilib-
rium. Our results extend and unify the price adjustment algorithms
of Ausubel (2006) and other existing algorithms for the unit-demand
auction models, offering computational complexity results for these al-
gorithms, and reinforcing the connection between auction theory and
discrete convex analysis.
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1 Introduction

In recent years, there has been a growing use of iterative auctions for sell-
ing items such as spectrum licenses in telecommunication, electrical power,
landing slots at airports, etc. (see Blumrosen and Nisan (2007); Cramton et
al. (2006) for surveys). In such auctions, given a set of discrete (or indivis-
ible) items the auctioneer aims at finding an efficient allocation of items to
bidders as well as market clearing prices of the items.

In this paper, we consider a model where there are multiple indivisible
goods for sale and each good may have several units; this is more general
than the single-unit model treated extensively in the literature. We are par-
ticularly interested in precise time bounds of iterative auctions. Theoretical
bounds on the number of iterations are interesting in their own right but
also important in practice, providing market participants with an a priori
guarantee for the time required to execute a planned auction. While com-
puter simulations are often used to evaluate the practical performance of
iterative auctions (see, e.g., Bichler et al. (2009); Parkes and Ungar (2000)),
there are only a few scattered results on theoretical analysis of the time
complexity so far (see, e.g., Andersson and Erlanson (2013)).

The objective of this paper is to provide a unified method of analysis
for iterative auctions based on the theory of discrete convex analysis. Our
contribution consists of the following two aspects.

In the multi-unit auction model with gross substitutes valuations, Ausubel
(2006) proposed several iterative auctions, all of which are based on mini-
mization of a function called the Lyapunov function. Our first contribution
is to reveal a nice combinatorial property of the Lyapunov function—discrete
convexity (Lh—convexity), and analyze the number of iterations required in
iterative auctions by utilizing the theory of discrete convex analysis. We
give the exact bounds for the ascending and descending auctions in Ausubel
(2006) and their variants in terms of the f.-distance between the initial
price vector and the equilibrium price vector (see Theorems 4.7, 4.8, 4.10,
and 4.11). This implies, in particular, that the trajectory of the price vec-
tor generated by the ascending or descending auction is the “shortest” path
between the initial vector and the equilibrium price vector. This result also
exhibits an appealing feature of the ascending and descending auctions. An-
other iterative auction named the two-phase auction, consisting of a single
ascending phase and a single descending phase, is also considered in this
paper (see Theorems 4.12 and 4.13 and Remark 4.14).

Our second contribution is concerned with the wunit-demand auction
model in the sense that each bidder is interested in getting at most one
item. Iterative auctions for this model are discussed extensively in the lit-
erature (see, e.g., Andersson et al. (2013); Andersson and Erlanson (2013);
Demange et al. (1986); Mishra and Parkes (2009); Mo et al. (1988); Sankaran
(1994)). Specifically, Vickrey-English auction by Demange et al. (1986),
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Figure 1: Relationship among three auction models.

Vickrey—Dutch auction by Mishra and Parkes (2009), and Vickrey—English—
Dutch auction by Andersson and Erlanson (2013) are such iterative auc-
tions. These three algorithms are proposed independently of the iterative
auction algorithms for the multi-unit model. We offer a unified treatment
of these iterative auction algorithms by revealing their relationship to the
general iterative auction algorithms for the general model. In particular,
we show that the sequence of price vectors generated by Vickrey—English
auction (resp., Vickrey—Dutch auction) coincides with that generated by
an ascending auction (resp., a descending auction) when applied to unit-
demand auctions. This observation, combined with our first contribution
described above, yields immediately the known bounds for the number of
iterations in Vickrey-English auction and Vickrey—Dutch auction. A new
bound for Vickrey—English—-Dutch auction is obtained from our result for
the two-phase auction algorithm above.

The organization of this paper is as follows. In Section 2, we explain
auction models and fundamental concepts used in this paper. In Section 3
we review the concept of discrete convexity and some fundamental results in
discrete convex analysis. In Section 4, we analyze the number of iterations
required in iterative auctions in the multi-unit model with gross substitutes
valuations, while iterative auction algorithms for the unit-demand auctions
are discussed in Section 5.

2 Fundamental Concepts in Auctions
We explain auction models and fundamental concepts used in this paper.

2.1 Auction Models and Walrasian Equilibrium.

In the auction market, there are n types of items or goods, denoted by
N ={1,2,...,n}, and m bidders, denoted by M = {1,2,...,m}. We have



u(7) units available for each item i € N, where u(i) is a positive integer.
We denote the integer interval as [0,u]z = {x € Z" | 0 < z < u}, where
u = (u(1),u(2),...,u(n))". Each vector x € [0,u]z is called a bundle; a
bundle z = (z(1),2(2),...,2(n))" corresponds to a (multi-)set of items,
where z(i) represents the multiplicity of item 7 € N. Each bidder j € M
has his valuation function f; : [0,u]z — R; the number f;(x) represents the
value of the bundle z worth to bidder j. The case with u(i) =1 (i € N) is
referred to as single-unit auction in this paper, while the case with general u
as multi-unit auction. Note that [0,1]z = {0,1}", where 1 = (1,1,...,1)".
A further special case where each bidder is interested in getting at most
one item is called unit-demand auction; see Section 5 for more detailed
description of this auction model. The relationship among the three auction
models is summarized in Figure 1.

In an auction, we want to find an efficient allocation and market clearing
prices. An allocation of items is defined as a set of bundles x1,zs,...,Tm €
[0, u]z satisfying Z;nzl x; = u. Given a price vector p € R”}, each bidder
Jj € M wants to have a bundle z which maximizes the value f;(x) — pla.
For j € M and p € R"}, define

Vip) = max{fi(e) —p x| x e [0,ulz}, (1)
Di(p) = argmax{f;(x)—p e |z € [0,ulz}. (2)

We call the function V; : R} — R and the set D;(p) C [0,u]z the indirect
utility function and the demand set, respectively. The auctioneer wants to
find a pair of a price vector p* and an allocation z7,z5,...,z;, such that
z; € D; (p*) for j € M. This pair is called a (Walrasian) equilibrium; p* is a
(Walrasian) equilibrium price vector (see, e.g., Blumrosen and Nisan (2007);
Cramton et al. (2006)). Thus, in an equilibrium every bidder gets an optimal
bundle for himself and all goods are sold; i.e., all market participants are in
harmony.

Although the Walrasian equilibrium possesses a variety of desirable prop-
erties, it does not always exist. Hence, some assumption for bidders’ valua-
tion functions is required to guarantee the existence of a Walrasian equilib-
rium.

2.2 Gross Substitutes Condition and Discrete Concavity.

We say that function f; satisfies the gross substitutes (GS) condition if it
satisfies the following:

(GS) Vp,q € R} with p <q, Vo € Dj(p), 3y € Dj(q) :
x(i) < y(i) (Vi € N with p(i) = q(7)).

This condition means that when prices of some items increase, the only items
that may drop from the optimal bundle are those with increased prices. The



GS condition is originally introduced by Kelso and Crawford (1982) for val-
uation functions defined on 0-1 vectors in the setting of a fairly general
two-sided job matching model. Since then, this condition has been widely
used in various models such as matching, housing, and labor markets (see,
e.g., Ausubel (2006); Ausubel and Milgrom (2002); Bing et al. (2004); Blum-
rosen and Nisan (2007); Cramton et al. (2006); Gul and Stacchetti (1999,
2000); Lehmann et al. (2006)).

Various characterizations of GS condition are given in the literature of
discrete convex analysis and auction theory (Ausubel and Milgrom (2002);
Fujishige and Yang (2003); Gul and Stacchetti (1999, 2000)). Among others,
Fujishige and Yang (2003) revealed the relationship between GS condition
and discrete concavity called M2-concavity (see Section 3.1 for the defini-
tion). The concept of M?-concave function is introduced by Murota and
Shioura (1999), independently of GS condition, as a class of discrete con-
cave functions. It is an extension of the concept of M-concave function
introduced by Murota (1996). The concepts of MP-concavity /M-concavity
play primary roles in the theory of discrete convex analysis (Murota (2003)).

It is shown by Fujishige and Yang (2003) that GS condition and M®-
concavity are equivalent in the case of single-unit auction.

Theorem 2.1 (Fujishige and Yang (2003)). A valuation function f : {0,1}" —
R defined on 0-1 vectors satisfies the GS condition if and only if it is an M-
concave function.

This result initiated a strong interaction between discrete convex analysis
and auction theory; the results obtained in discrete convex analysis are used
in auction theory (Bing et al. (2004); Lehmann et al. (2006), etc.), while auc-
tion theory provides discrete convex analysis with interesting applications
(see, e.g., Murota and Tamura (2003)).

It is known that in single-unit auctions, a Walrasian equilibrium does
exist if bidder’s valuation functions satisfy the GS condition. The GS con-
dition, however, is not sufficient for the existence of an equilibrium in multi-
unit auctions. In the last decade, several papers independently tried to
identify conditions for valuation functions to guarantee the existence of an
equilibrium in a multi-unit auction. Murota and Tamura (2003) proposed a
stronger version of GS condition by using the relationship with Mf-concavity,
and proved the existence of an equilibrium in a more general setting (see
also Murota (2003, Chapter 11)).

In this paper, we use the strong gross substitutes (SGS) condition given
by Milgrom and Strulovici (2009) (see also Shioura and Tamura (2015, Sec-
tion 4)). We say that a valuation function satisfies the SGS condition if the
function satisfies the GS condition when each unit of items is regarded as
being distinct. More precisely, for a valuation function f : [0,ulz — R, we



associate a function f : {0, I}N — R by considering
N={@B)]ieN, 1<8<u(i)}

and defining f(Z) for Z € {0, 1}N by
f(&) = f(z), wherez(i) =Y #(i,8) (i€ N). (3)
p=1

Then, by definition, f satisfies the SGS condition if and only if f satisfies the
GS condition. The SGS condition turns out to be equivalent to M?-concavity
(see Theorem 4.1 below) and also to the condition given by Murota and
Tamura (2003).

Throughout this paper we assume the following conditions for all bidders’
valuation functions f; (j =1,2,...,m) defined on [0, u]z:

(AO0) f; is monotone nondecreasing,
(A1) f; satisfies the SGS condition,
(A2) f; takes integer values.

The assumption (A2) can be removed if we only need an e-approximate
equilibrium price vector, which is defined, for € > 0, as a vector p such that
lp — p*||co < € for some equilibrium price vector p*. For such a problem, all
results in this paper can be adapted easily with slight modifications.

2.3 Iterative Auctions.

An auction algorithm called the iterative auction (or Walrasian tatonnement
process, price adjustment process, dynamic auction, etc.) is studied exten-
sively in the auction literature (Blumrosen and Nisan (2007); Cramton et al.
(2006)). An iterative auction finds an equilibrium price vector by iteratively
updating a current price vector p using information on demand sets D;(p).

The most natural and popular iterative auction is ascending auction,
in which the current price vector is increased monotonically. Ascending
auction is a natural generalization of the classical English auction for a single
item; in addition, it is natural from the economic point of view, and easy
to understand and implement. For single-unit auctions with GS valuation
functions, an ascending auction of Gul and Stacchetti (2000) can find an
equilibrium price vector.

Ausubel (2006) featured the Lyapunov function, which is defined by

Lp)=) Vip+u'p (peR), (4)
j=1

where the vector u € Z} represents the numbers of available units for items
in N. Use of the Lyapunov function is motivated by the fact that the set



of excess supply vectors at a price vector p coincides with the set of subgra-
dients of the Lyapunov function at p. The following important properties
of the Lyapunov function are known (see Ausubel (2006); Sun and Yang
(2009)).

Theorem 2.2. Suppose that all bidders’ valuation functions f; (j =1,2,...,m)
defined on [0,u]z satisfy the conditions (A0) and (Al).

(i) A price vector p € R™ is an equilibrium price vector if and only if it is a
minimizer of the Lyapunov function L.

(ii) The minimal equilibrium price vector p* and the mazimal equilibrium
price vector p* are uniquely determined. Moreover, if the valuation func-
tions f; are integer-valued (i.e., satisfy (A2)), then p* and p* are integral,
i.e., p*,p* € Z". a

The ascending auction algorithm in Ausubel (2006), which is a refor-
mulation of the ascending auction by Gul and Stacchetti (2000), finds the
minimal integral minimizer p* of the Lyapunov function in a finite number of
iterations by updating the price vector in a greedy manner (see Section 4.2
for details). Ausubel (2006) also proposed a descending auction algorithm,
which finds the maximal integral minimizer p* of the Lyapunov function by
iteratively decreasing the price vector from an initial price vector. While the
ascending and descending auction algorithms have various nice properties
(see, e.g., Blumrosen and Nisan (2007); Cramton et al. (2006)), they have a
disadvantage that the initial price vector must be a lower (or upper) bound
of the equilibrium price vector p* (or p*). Ausubel (2006) proposed a third
iterative auction, named “global Walrasian tatonnement algorithm,” which
can start with an arbitrary price vector.

3 Preliminaries from Discrete Convex Analysis

We review the concepts of Mf-concave and Li-convex functions and present
some useful properties. See Murota (2003) for more account of these con-
cepts.

3.1 Definitions and Conjugacy.

A valuation function f; : [0,u]z — R is said to be M:-concave (read “M-
natural-concave”) if it satisfies the following:

(M!-EXC) Vz,y € [0,u]z, Vi € supp ™ (x —y), Ik € supp ™ (z — y) U {0} :
fi@) + fi(y) < file = xi + xw) + iy + Xi — Xx)-

Here, we denote

suppt(z) = {i € N | z(i) > 0}, supp (z) ={i € N | z(i) < 0}



for a vector x € R", x; € {0,1}" is the characteristic vector of i € N (i.e.,
the i-th unit vector), and xg = 0 = (0,0,...,0)".

Let g : R — RU {+00} be a polyhedral convex function, i.e., a convex
function such that the epigraph {(p,a) | p € R", a € R, g(p) < a} is a
polyhedron. We denote

domg = {p € R" | g(p) < +o0},
argming = {p € R" | g(p) < g(q) (Vg € R")}.

A polyhedral convex function ¢ is said to be polyhedral L?-convez if for every
p,q € dom g and every nonnegative A € Ry, it holds that

g)+9(q) = g((p+ 1) Ag) +g(pV (¢ — A1), (5)

where 1 = (1,1,...,1) ", and for p, ¢ € R", pAq and pVq denote, respectively,
the vectors obtained by component-wise minimum and maximum of p and
q. The property (5) is called translation submodularity. By (5) with A = 0,
an Li-convex function g is a submodular function on R", i.e.,

gp) +9(q) >glpANqg)+9(pVe)  (Vp,q € domg).

A polyhedral Li-convex function g : R” — RU {+o0} is called integral if
argmin{g(p) —p'z | p € dom g} is an integral polyhedron for every z € R"
with argmin{g(p) —p'z | p € domg} # 0. It is known that integral L
convex functions are closed under addition.

Proposition 3.1 (Murota (2003)). The sum of (two or more) integral poly-
hedral LF-convex functions is also an integral polyhedral L*-convex function.

We note that by the definition of integral polyhedral Li-convex function,
the minimization of an integral polyhedral L-convex function g : R" —
R U {400} can be reduced to the minimization of g on the integer lattice
points Z"™. It is easy to see that the restriction of g on the integer lattice
points Z™ satisfies the inequality (5) for every p,q € Z™ and every \ € Z...
In general, a function g : Z" — R U {400} is called an Lf-convex function if
it satisfies the inequality (5) for every p,q € Z™ and every \ € Z,..

The following conjugacy relation holds between Mi-concavity and Li-
convexity.

Proposition 3.2 (Murota (2003)). Let f : [0,u]z — R be a function.
(i) f is an MP-concave function if and only if the function g : R* — R
defined by

9(p) = max{f(z) —p'z |z €[0.uz}  (pER") (6)

is a polyhedral LP-convex function.
(ii) If f is an integer-valued function, then g is an integral polyhedral L°-
convex function.



3.2 Minimization Algorithms.

We consider minimization of an Lf-convex function g : Z" — R U {400}
defined on the integer lattice points. We denote

domzg ={p€Z" | g(p) < +o0},
argmingg = {p € Z" | g(p) < 9(q) (Vg € Z")}.

To the end of this section we assume that argming g is nonempty and
bounded. It is known that under such assumptions, argming g has the
uniquely determined minimal and maximal elements, which we denote by
q¢" and ¢, i.e.,

¢* = the (uniquely determined) minimal minimizer of g,

" = the (uniquely determined) maximal minimizer of g.

This minimization problem can be solved by certain greedy (or steepest
descent) algorithms (Murota (2003)). We first consider a greedy algorithm
such that the vector p is always increased. For X C N, we denote by
xx € {0,1}" the characteristic vector of X, i.e., xx(i) = 1if i € X and
xx(i)=0ifie N\ X.

Algorithm GREEDYUP

Step 0: Set p := p°, where p° € domy g satisfies p° < ¢ for some minimizer
q of g.

Step 1: Find a minimizer X C N of g(p + xx)-

Step 2: If X = (), then output p and stop.

Step 3: Set p:=p+ xx and go to Step 1.

A tight bound of the number of iterations of GREEDYUP is known.

Proposition 3.3 (Murota and Shioura (2014, Theorem 1.3)). The algo-
rithm GREEDYUP terminates by outputting a minimizer q* of g, and the
number of updates of p is exactly equal to ||q* — p°||co-

Proof. Theorem 1.3 in Murota and Shioura (2014) implies that GREEDYUP
outputs a minimizer of g exactly in ||¢* — p°||o + 1 iterations. Since the last
iteration in GREEDYUP is used to check the optimality of p and does not
update p itself, the number of updates of p is equal to [|¢* — p°||co- O

We note that the vector ¢* found by GREEDYUP satisfies
la* = P°lloc = min{|[p" — p°lloc | p* € argmingg, p* > p°}.
Hence, Proposition 3.3 shows that the trajectory of the vector p generated
by GREEDYUP is the “shortest” path between the initial vector p°® and the
found minimizer ¢* of g.
To find the minimal minimizer ¢* of g, a variant of GREEDYUP called

GREEDYUPMINIMAL is considered, where Step 0 and Step 1 in GREEDYUP
are replaced with the following:



Step 0: Set p := p°, where p° € domg g satisfies p° < ¢*.
Step 1: Find the minimal minimizer X C N of g(p + xx).

That is, a minimal X is found in Step 1, which is uniquely determined by
the Li-convexity of g. GREEDYUPMINIMAL outputs the minimal minimizer
q* of g, as shown in the following proposition. In addition, a tight bound of
the number of iterations can be given.

Proposition 3.4. The algorithm GREEDYUPMINIMAL terminates by out-
putting the minimal minimizer ¢* of g, and the number of updates of p is
exactly equal to ||q* — p°||oo.

Proof. The behavior of GREEDYUPMINIMAL applied to g is the same as
that of GREEDYUP applied to the function g.(p) = g(p) + &> p(i) with
a sufficiently small positive €. Indeed, we have the following equivalences:

X C N is a minimizer of g-(p + xx)
<= X is the minimal minimizer of g(p + xx),
p € Z} is a minimizer of g. <= p is the minimal minimizer of g.

This fact, together with Proposition 3.3, implies the claim of the proposition.
O

We consider another variant of GREEDYUP called GREEDYUPMAXIMAL,
where Step 0 and Step 1 in GREEDYUP are replaced with the following;:

Step 0: Set p := p°, where p° € domy g satisfies p° < G*.
Step 1: Find the maximal minimizer X C N of g(p + xx).

That is, a maximal X is found in Step 1 instead of a minimal X, where a
maximal minimizer X C N of g(p + xx) is uniquely determined by the Lt-
convexity of g. This modification makes it possible to output the maximal
minimizer of g instead of the minimal one.

Proposition 3.5. The algorithm GREEDYUPMAXIMAL terminates by out-
putting the maximal minimizer §° of g, and the number of updates of p is
exactly equal to ||g* — p°||oo-

Proof. The proof is quite similar to that for Proposition 3.4, where the
function ¢°(p) = g(p) — e >, p(i) is used instead of g.. O

Symmetrically, we can consider algorithms GREEDYDOWNMAXIMAL and
GREEDYDOWNMINIMAL, where the vector p is always decreased. Due to the
Lf-convexity of ¢, minimal and maximal minimizers X C N of g(p—xx) in
Step 1 are uniquely determined.

Algorithm GREEDYDOWNMAXIMAL
Step 0: Set p := p°, where p° € domy g satisfies p° > g*.

10



Step 1: Find the minimal minimizer X C N of g(p — xx).
Step 2: If X = (3, then output p and stop.
Step 3: Set p:=p — xx and go to Step 1.

Proposition 3.6. The algorithm GREEDYDOWNMAXIMAL terminates by
outputting the mazximal minimizer ¢* of g, and the number of updates of p
is exactly equal to ||7* — p°||co-

Proof. The claim follows immediately from Proposition 3.4 applied to the
Lf-convex function §(p) = g(—p). O

The algorithm GREEDYDOWNMINIMAL is the one obtained from GREEDY-
DowNMAXIMAL by replacing Step 0 and Step 1 with the following:

Step 0: Set p := p°, where p° € domg g satisfies p° > ¢*.
Step 1: Find the maximal minimizer X C N of g(p — xx).

Proposition 3.7. The algorithm GREEDYDOWNMINIMAL terminates by
outputting the minimal minimizer ¢* of g, and the number of updates of p
is exactly equal to ||g* — p°||oc.

Proof. The claim follows immediately from Proposition 3.5 applied to the
Li-convex function §(p) = g(—p). O

4 Analysis of Iterative Auctions

In this section, we analyze the number of iterations of several iterative auc-
tion algorithms for finding an integral equilibrium price vector.

4.1 Lf-convexity of Lyapunov Function

We prove Li-convexity of the indirect utility functions and the Lyapunov
function. This observation plays a key role in the analysis of iterative auc-
tions. We first note that the equivalence between the SGS condition and
M?-concavity.

Theorem 4.1. A function f : [0,u]z — Z satisfies the SGS condition if and
only if it is MP-concave.

This theorem can be shown as follows. By definition, the SGS condition
for a function f : [0,ulz — Z is equivalent to the GS condition for f :

{0,1}" — Z given by (3). We can also show the following.

Proposition 4.2. A function f : [0,ulz — Z is M?-concave if and only if
the function f : {0,1}N — Z defined by (3) is M*-concave.

11



The proof is rather straightforward and therefore omitted. By Theorem 2.1,
the function f : {0,1}" — Z satisfies the GS condition if and only if it is an
Mf-concave function. A combination of this fact with Proposition 4.2 yields
Theorem 4.1.

We then prove Lf-convexity of the indirect utility function under the
assumptions (A1) and (A2).

Theorem 4.3. The indirect utility function V; : R® — R in (1) is an
integral polyhedral LP-convex function if the valuation function fj satisfies
the assumptions (Al) and (A2).

Proof. The assumption (Al) and Theorem 4.1 imply M?-concavity of the
valuation function f;. Hence, the indirect utility function V; is integral
polyhedral Li-convex by the conjugacy in Proposition 3.2 (ii) as well as the
assumption (A2). O

Corollary 4.4. Suppose that all bidders’ valuation functions f; (j =1,2,...,m)
satisfy the assumptions (Al) and (A2). Then, the Lyapunov function L :
R™ — R in (4) is an integral polyhedral LA-convex function. In particu-
lar, the minimal and mazximal minimizers of the Lyapunov function L are
integral vectors.

Proof. The claim follows from Theorem 4.3 and Proposition 3.1. O

On the basis of Corollary 4.4, we regard the Lyapunov function L, orig-
inally defined on R", as a function on Z". That is, the Lyapunov function
L:7Z" — R is an Li-convex function.

We denote by p* (resp., p*) the (uniquely determined) minimal (resp.,
maximal) integral equilibrium price vector. In the following proposition we
give an interval in which p* and p* are guaranteed to exist. Define a € Z'}
by

a(i) = max{f;(x) - ;(0)} (i€ N). (7)
je

Proposition 4.5. Suppose that all bidders’ valuation functions f; (j =
1,2,...,m) defined on [0,uly satisfy the conditions (A0) and (Al). Then,
every equilibrium price vector p € R" satisfies 0 < p < a.

The proof is outlined in Section 4.4.1.

4.2 Ascending and Descending Auction Algorithms

We first consider the ascending auction algorithm of Ausubel (2006), which
can be described as follows:

Algorithm ASCENDMINIMAL
Step 0: Set p := p°, where p° € Z" satisfies p° < p* (e.g., p° = 0).

12



Step 1: Find the minimal minimizer X C N of L(p + xx)-
Step 2: If X = (3, then output p and stop.
Step 3: Set p:=p+ xx and go to Step 1.

Note that the algorithm ASCENDMINIMAL can be interpreted in auction
terms as follows (see Ausubel (2006, Appendix B) for details about the
implementation of Steps 2 and 3):

Step 0: The auctioneer sets p := p°, where p°® € Z™ satisfies p° < p*.

Step 1: The auctioneer asks the bidders to report their demand sets Dj(p)
(j € M), and finds the minimal minimizer X C N of L(p + xx)-

Step 2: The auctioneer checks if X = () by using the demand sets D;(p)
(j € M); if X = () holds, then the auctioneer reports p as the final
price vector and stop.

Step 3: The auctioneer sets p := p + xx and returns to Step 1.

Theorem 4.6 (Ausubel (2006)). Starting from an integral vector p° with
p° < p*, the algorithm ASCENDMINIMAL outputs the minimal integral equi-
librium price vector p* in a finite number of iterations.

The exact bound for the number of iterations in ASCENDMINIMAL is
given in terms of the f,-distance between the initial price vector and the
minimal equilibrium price vector p*.

Theorem 4.7. Suppose that the algorithm ASCENDMINIMAL starts from an
integral vector p° with p® < p*. Then, the number of updates of the price
vector is exactly equal to ||p* — p°||oo.

Proof. The Lyapunov function L is an Li-convex function by Corollary 4.4,
and the algorithm ASCENDMINIMAL is nothing but the application of the
algorithm GREEDYUPMINIMAL to L. Hence, Proposition 3.4 implies that
ASCENDMINIMAL outputs the minimal integral minimizer ¢*of L, which is
the minimal integral equilibrium price vector p* by Theorem 2.2 (i). More-
over, the number of updates of the price vector in ASCENDMINIMAL is equal

to [|g* = p°llec = llp" — P°llco- a

Note that any algorithm that increases the price vector by a 0-1 vector in
each iteration requires updates of the price vector at least ||p* — p°||o times.
Hence, the algorithm ASCENDMINIMAL is the fastest among all iterative
auction algorithms of this type, and the trajectory of the price vector is a
“shortest” path from the initial vector p° to the minimal equilibrium p*.

In addition, since ||[p* — p°||oo < max;en{a(i)—p°(i)} by Proposition 4.5,
we can guarantee that the number of updates of p is at most max;ecy{a(i) —
p°(7)}; note that this bound can be computed in advance before executing
the algorithm.

To find the maximal equilibrium price vector p* instead of the mini-
mal one, we consider another variant of the ascending auction algorithm

13



called ASCENDMAXIMAL, where Step 0 and Step 1 in ASCENDMINIMAL are
replaced with the following:

Step 0: Set p := p°, where p° € Z" satisfies p° < p* (e.g., p° = 0).
Step 1: Find the maximal minimizer X C N of L(p + xx).

That is, a maximal X is found in Step 1 instead of a minimal X. This mod-
ification makes it possible to output the maximal equilibrium price vector

=k

p

Theorem 4.8. If the initial vector p° in the algorithm ASCENDMAXIMAL
satisfies p° < p*, the algorithm outputs p* and the number of updates of the
price vector is exactly equal to ||p* — p°||so-

Similarly to ASCENDMINIMAL and ASCENDMAXIMAL, we can consider
two variants of the descending auction algorithm called DESCENDMAXIMAL
and DESCENDMINIMAL, where the price vector is decreased by a 0-1 vector.
Note that the algorithm DESCENDMAXIMAL is the same as the descending
auction algorithm in Ausubel (2006).

Algorithm DESCENDMAXIMAL

Step 0: Set p := p°, where p° € Z" satisfies p° > p* (e.g., p° = a with a € Z"
given by (7)).

Step 1: Find the minimal minimizer X C N of L(p — xx)-

Step 2: If X = (), then output p and stop.

Step 3: Set p:=p— xx and go to Step 1.

Theorem 4.9 (Ausubel (2006)). Starting from an integral vector p° with
p° > p*, the algorithm DESCENDMAXIMAL outputs p* in a finite number of
iterations.

The algorithm DESCENDMINIMAL is obtained from DESCENDMAXIMAL
by replacing Step 0 and Step 1 with the following:

Step 0: Set p := p°, where p° € Z" satisfies p° > p* (e.g., p° = a
with a € Z" given by (7)).
Step 1: Find the maximal minimizer X C N of L(p — xx)-

The algorithms DESCENDMAXIMAL and DESCENDMINIMAL are noth-
ing but the application of the algorithms GREEDYDOWNMAXIMAL and
GREEDYDOWNMINIMAL to the Lyapunov function. Hence, the next the-
orems follow from Propositions 3.6 and 3.7.

Theorem 4.10. If the initial vector p° in the algorithm DESCENDMAXIMAL
satisfies p° > p*, the algorithm outputs p* and the number of updates of the
price vector is exactly equal to ||p* — p°||so-
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Theorem 4.11. If the initial vector p° in the algorithm DESCENDMINIMAL
satisfies p° > p*, the algorithm outputs p* and the number of updates of the
price vector is ezactly equal to ||p* — p°||co-

4.3 Two-Phase Auction Algorithms

An advantage of ascending and descending auction algorithms is that the
price vector is updated monotonically, which is an important property from
the viewpoint of auctions. They, however, have a drawback that the initial
price vector should be a lower or upper bound for the integral equilibrium
price vector p* (or p*). In contrast, the following algorithms, which we call
the two-phase auction algorithms, can start with any initial price vector and
find an equilibrium. Therefore, the number of iterations can be small if we
can choose an initial vector that is close to an equilibrium.

As we see below, a two-phase auction algorithm is an application of an
ascending auction algorithm with an arbitrary initial vector, followed by a
descending auction algorithm. We first present a variant of the two-phase
auction algorithm obtained from the combination of ASCENDMINIMAL and
DESCENDMINIMAL, which always outputs the minimal equilibrium price
vector p*

Algorithm TwOPHASEMINMIN
Step 0: Set p := p°, where p° € Z™ is any vector (to be chosen appropriately
in practice). Go to Ascending Phase.
Ascending Phase:
Step Al: Find the minimal minimizer X C N of L(p + xx).
Step A2: If X = (), then go to Descending Phase.
Step A3: Set p:=p+ xx and go to Step Al.
Descending Phase:
Step D1: Find the maximal minimizer X C N of L(p — xx).
Step D2: If X = (), then output p and stop.
Step D3: Set p :=p — xx and go to Step DI1.

To analyze the number of iterations required by TWOPHASEMINMIN,
we define

np,q)=llp—all+llp—alx  (.qeZ), (8)

where
Ip—qll%, = max max(0, p(i)—q(i)), [p—alls% = max max(0, —p(i)+q(7)).
1EN 1EN

The proof of the next theorem is given in Section 4.4.2.

Theorem 4.12. Starting from any integral vector p°, the algorithm TWOPHASEM-
INMIN terminates by outputting the minimal integral equilibrium price vector
p*, and the number of updates of the price vector in the ascending phase is

at most n(p°, p*) and that in the descending phase is at most 2n(p°, p*).
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We can consider another variant of the two-phase auction algorithm,
to be called TWOPHASEMINMAX, which is the combination of ASCEND-
MiINIMAL and DESCENDMAXIMAL. That is, TWOPHASEMINMAX is the
algorithm obtained by replacing Step D1 in TWOPHASEMINMIN with the
following:

Step D1: Find the minimal minimizer X C N of L(p — xx)-

A version of the algorithm TwOPHASEMINMAX specialized to valua-
tion functions on {0, 1}" coincides with the one in Sun and Yang (2009).
TwOPHASEMINMAX is also similar to the “global Walrasian tatonnement
algorithm” in Ausubel (2006), which repeats ascending and descending phases
until some equilibrium p* is found, where p* is not necessarily equal to p*
or p*. Our analysis shows that the global Walrasian tatonnement algorithm
terminates after only one ascending phase and only one descending phase;
see also Sun and Yang (2009). In other words, the behavior of the global
Walrasian tatonnement algorithm coincides with that of TWOPHASEMIN-
MAX.

Theorem 4.13. Starting from any integral vector p°, the algorithm TWOPHASEM-
INMAX terminates by outputting some integral equilibrium price vector p*,

and the number of updates of the price vector in the ascending phase is at

most n(p°, p*) and that in the descending phase is at most 2n(p°, p*).

The proof of this theorem is given in Section 4.4.3.

Remark 4.14. We may also consider other two-phase auction algorithms
TwOPHASEMAXMIN and TwWOPHASEMAXMAX. The former consists of
ASCENDMAXIMAL and DESCENDMINIMAL, and the latter consists of As-
CENDMAXIMAL and DESCENDMAXIMAL. It can be shown that TWOPHASE-
MAXMIN (resp., TWOPHASEMAXMAX) finds the minimal integral equilib-
rium price vector p* (resp., the maximal integral equilibrium price vector
P*); the proof is similar to that for Theorem 4.12 and omitted. O

Remark 4.15. We point out that the iterative auction algorithms consid-
ered in this section use linear and anonymous pricing rule, meaning that the
price of any bundle z of goods is equal to p" x and is the same for all bidders.
On the other hand, so-called combinatorial auction algorithms use nonlinear
and discriminatory pricing rule, i.e., the price p(x,i) of a bundle = of goods
depends on x and bidder ¢ and is nonlinear. It is shown that various iterative
auction algorithms using the latter pricing rule can be used to find (possibly
nonlinear and discriminatory) equilibrium prices even if valuation functions
are more general than those with SGS condition (see, e.g., Cramton et al.
(2006, Chapter 2)). Such iterative auction algorithms, however, are difficult
to use in practice since we need to deal with exponential number of prices.

O

16



4.4 Proofs
4.4.1 Proof of Proposition 4.5.

Since all bidders’ valuation functions f; (j = 1,2,...,m) satisfy the condi-
tion (A1), they are Mf-concave functions by Theorem 4.1. For the proof of
Proposition 4.5, we use the following property of Mf-concave functions.

Lemma 4.16 (Murota (2003)). Let f : [0,u]z — R be an M:-concave func-
tion. For x,y € [0,ulz with x <y and i € N with y(i) < u(i), it holds that
fle+xi) = flx) = fly+xi) = fy)-

Let p* € R™ be an equilibrium price vector. Let z7,23,...,x;, be an

allocation such that ] + 3 +--- + 2}, = v and 2} € D;(p*) for all j € M.
We first show that p*(i) > 0 for every i € N. Since z7 (i) + 25(i) + - - - +
y, (1) = u(i) and 2% (i) < u(i) for all j* € M, there exists some j € M such

m

that z7(i) < u(i), which, together with z7 € D;(p"), implies that

Filay) = ) s = fi(25 4+ xa) — (09) (@ + xa),
where 27 + x; € [0,u]z. This inequality can be rewritten as

p (i) 2 f;(5 +xq) = fix5) = 0,
where the last inequality is by the monotonicity assumption (A0) for f;.
We then show that p*(i) < a(i) for every i € N. Since zj (i) + x5(i) +

-+, (i) = u(i) > 0 and 27, (i) > 0 for all j* € M, there exists some j € M
such that z7 (i) > 0, which, together with z; € D (p*), implies that

Fila) = ") 25 = fi(25 —xa) — ()T (25 — xa),
where x7 — x; € [0, u]z. This inequality can be rewritten as

p*(@) < fi(x}) — fi(zf — xi) < fi(xai) — £3(0) < a(i),

where the second inequality is by Lemma 4.16 and the third by the definition
(7) of a(q).
4.4.2 Proof of Theorem 4.12 for Algorithm TwoOPHASEMINMIN.

The key of the proof is the following property of Li-convex functions. Recall
that the Lyapunov function is regarded as a function defined on Z".

Lemma 4.17 (Murota (2003, Theorem 7.7)). Let g : Z" — R be an Lf-
convex function. For every integral p,q € Z" with supp™ (p—q) # 0, it holds

that g(p)+g(q) > g(p—xx)+9(q+xx), where X = arg max;e n{p(i)—q(i)}.
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We show several lemmas below, from which Theorem 4.12 follows. Let
P be the price vector at the end of the ascending phase and p be the out-
put of the algorithm. Recall that p* denotes the (unique) minimal integral
equilibrium price vector, which is also the (unique) minimal minimizer of
the Lyapunov function L by Theorem 2.2.

Lemma 4.18. The vector p is the minimal vector in the set argmin{L(p) |
p €L, p>p°} and satisfies p > p*. In addition, the number of updates of
the price vector in the ascending phase is exactly equal to ||p — p°||co-

Proof. The behavior of the ascending phase is the same as that of the algo-
rithm ASCENDMINIMAL applied to the function L : Z" — RU{+o0} defined
as

poy_ J L) (ifp=p°),

L) = { +oo  (otherwise),

which is also an L¥-convex function. Theorem 4.7 implies that in the ascend-
ing phase the number of updates of the price vector p is equal to ||p — p°||cc,
and p is the minimal minimizer of the function L, ie., p is the minimal
vector in argmin{L(p) | p € Z", p > p°}.

We now prove p > p*. Assume, to the contrary, that p 2 p*. Then, we
have supp™ (p* — p) # 0, and therefore Lemma 4.17 implies that

L(p*) + L(p) > L(p* — xx) + L(p + xx), (9)

where X = argmax;en{p*(¢) — p(i)}. Since p+ xx > p > p° and p €
argmin{L(p) | p € Z", p > p°}, we have L(p + xx) > L(p), which, to-
gether with (9), implies L(p* — xx) < L(p*), i.e., p* — xx € argming L, a
contradiction to the fact that p* is a minimal minimizer of L. O

Lemma 4.19. [|p — p°|loc < n(p°, p*).

Proof. If p* > p°, then p* = p by Lemma 4.18. Since |[p* — p°[|oc = [[p* —
p°||& and [|p* — p°|| = 0, it holds that
15 = 2%l = Ip" = P lle = lI2" = p°lI& + 2" = p°lloc = 0%, p").
We then assume that supp™ (p°—p*) # 0. This implies supp™ (p—p*) # 0.
Let X = argmax;en{p(i) — p*(7)}.
Claim: min;ex{p(i) —p°(i)} = 0.
[Proof of Claim|] By Lemma 4.17, it holds that

L(p)+ L(p*) > L(p— xx) + L(p* + xx)- (10)

Since p* is a minimizer of L, we have L(p* + xx) > L(p*), which, combined

with (10), implies L(p — xx) < L(p). From this inequality follows that
p— xx 2 p° since p is the minimal vector in the set argmin{L(p) | p €
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7", p > p°} by Lemma 4.18. This concludes the proof since p — xx 7 p°
holds if and only if min;ex{p(i) — p°(i)} = 0. [End of Proof of Claim]

Let ¢t € X be an element with p(¢) = p°(¢). Then, it holds that

Hence, all the inequalities in this formula hold with equality. In particular,
we have

max{p(i) —p" (1)} = max{p®(i) — p*(0)} = " — p°llc,

where the last equality is by supp™ (p° — p*) # (0. From this equation follows
that for every k € N, we have

§R) = () = [ (k) = " ()] + [B(K) — p" (h)]
< llp" = 1% + max{p() — (i)}

(e]

= p" ="l + Ip" = p°llc = n(p°, p7).

Hence, [|p — p°|loc < n(p°, p*) holds. O

Lemma 4.20. We have p = p*. In addition, the number of updates of the
price vector in the descending phase is at most 2n(p°, p*).

Proof. Since p > p* holds by Lemma 4.18, the behavior of the descending
phase is the same as that of the algorithm DESCENDMINIMAL applied to
function L with initial vector p. Hence, Theorem 4.11 implies that p = p*
and the number of updates of the price vector p in the descending phaseqs
equal to [|p* — plloc. We have

o

, D),

2" = Dlloe < llp" = P°lloo + [Ip” = Blloc < 0(0°, ") + 00", ") = 2n(p
where the last inequality is by (8) and Lemma 4.19. O

Theorem 4.12 follows from Lemmas 4.18, 4.19, and 4.20 shown above.

4.4.3 Proof of Theorem 4.13 for Algorithm TwoPHASEMINMAX.

Theorem 4.13 follows from Lemma 4.18 and Lemmas 4.21 and 4.22 below.
Recall that p* here denotes the output of the algorithm TwOPHASEMIN-
MAX.
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Lemma 4.21. The vector p* is a minimizer of L and an integral equilibrium
price vector. In addition, the number of updates of the price vector in the
descending phase is at most n(p°, p*) + |[p° — D||oc-

Proof. The behavior of the descending phase is the same as that of the
algorithm DESCENDMAXIMAL applied to the function L : Z" — R U {+o0}

defined as () ( )
. L) (fp<p),
L(p) = { +oo  (otherwise),

which is also an Lf-convex function. Theorem 4.10 implies that in the de-
scending phase the number of updates of the price vector p is equal to
|[p* — P, and p* is the maximal minimizer of the function L, i.e., p* is the
maximal vector in argmin{L(p) | p € Z", p < p}. Since p* < p holds by
Lemma 4.18, we have B

L(p") = min{L(p) | p € Z", p < p} = L(p*),

*

i.e., p* is a minimizer of L. By Theorem 2.2 (i), p* is an equilibrium price

vector.

We have
1P = Dlloc < 1P" = P%lloc + 1P° = Bllcc < n(p°, p*) +[1P° — Pllcos
where the second inequality is by (8). O
Lemma 4.22. [p — p°[lc < n(p°, p).

Proof. TIf p* = p, we have ||p* — p°lloo = |lp* — p°||L and |p* — p°|l%, = 0,
and therefore,

15 = 1°lloc = lIp" = Pl = Ip* = 2% % + Ilp" — p°ll = n(®°, 1").

If p* # p, we have supp™ (p — p*) # 0 since p* < p. The rest of the proof is
the same as that for Lemma 4.19, where p* should be replaced with p*. [l

5 Connection to Unit-Demand Auction

The unit-demand auction model, where each bidder is interested in getting at
most one item, is discussed extensively in the literature (see, e.g., Andersson
et al. (2013); Andersson and Erlanson (2013); Demange et al. (1986); Mishra
and Parkes (2009); Mo et al. (1988); Sankaran (1994)). The model is known
to be a special case of the general model with gross substitutes valuations
considered in the previous sections. The objective of this section is to offer a
unified treatment by showing that the general algorithms ASCENDMINIMAL,
DESCENDMINIMAL, and TwWOPHASEMINMIN, when applied to the unit-
demand auction model, coincide with existing fundamental iterative auction
algorithms for the unit-demand auction model.
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5.1 Unit-Demand Auction Model and Relationship with Gen-
eral Model

We explain the unit-demand auction model considered in this section, and
show the relationship with the general auction model discussed in the pre-
vious sections.

The unit-demand auction model is a special case of the single-unit auc-
tion model, where each bidder is interested in getting at most one item, i.e.,
each bidder is a unit-demand bidder. This means that even if a bidder can
get multiple items, the bidder is interested in only one item.

As in the previous sections, we denote by N = {1,2,...,n} the set of
items and by M = {1,2,...,m} the set of bidders. We assume, without loss
of generality, that each type of item is available in only one unit. For each
item ¢ and each bidder j, we denote by v;(i) € Ry the valuation of item %
by bidder j. We define a valuation function f; : {0,1}" — R of bidder j
by

ey = { prtn@licswpto} (ot 20 @ e o,
(1)

Through the one-to-one correspondence between 0-1 vectors and subsets of
N, we identify the valuation function f; in (11) defined on 0-1 vectors with
the following set function defined on subsets of N:

£(X) = { F R ) (12)

A valuation function of this form is often called a unit-demand valuation
(see, e.g., Cramton et al. (2006, Section 9.2.2) and Blumrosen and Nisan
(2007, Definition 11.17)). It is known that a unit-demand valuation is a
typical example of gross substitutes valuation.

Theorem 5.1 (Gul and Stacchetti (1999)). Valuation function f; : {0,1}" —
R given by (11) satisfies the GS condition (and also the SGS condition).

Hence, the unit-demand auction model is a special case of the general model
with gross substitutes valuations discussed in the previous sections, and all
of the results there can be applied to the unit-demand auction model. To
be consistent with (12), we rewrite the definition of the demand set D;(p)
in (2) associated with a valuation function f; in terms of set functions, i.e.,

Dj(p) ={X € N[ f;(X) = p(X) = f;(Y) —p(Y) (VY € N)},

where p(Y) = >,y p(i) for Y C N.
Let N° = NU{0}, where 0 denotes an artificial item which has no value
(i.e., vj(0) = 0 for j € M) and is available in infinite number of units. For
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each bidder j and a price vector p € R"}, we define a set Ej (p) by

Dj(p) = argmax{v; (i) — p(i) | i € N}
= {i € N° | 0;(i) = pli) > v;(i) — p(i') (V' € N°)},

where we put p(0) = 0 for convenience. An assignment is a function 7 :
M — NO and an assignment 7 is said to be feasible if each item in N
appears at most once in {7(j) | 7 € M} (the artificial item 0 may appear
more than once).

A price vector p* € R" is said to be a Walrasian equilibrium price vector
if there exists a feasible assignment 7 : M — N© such that 7(j) € l~)j (p*)
for every j € M and p*(i) = 0 for every item i € N\ {n(j) | j € M}.
This definition of Walrasian equilibrium price vector is consistent with the
definition given in Introduction in the case of unit-demand auction model.
This fact, which seems to be well known among experts, is stated in the
following proposition, where a proof is given in Appendix for completeness.

Proposition 5.2. For a price vector p € R | there exists a feasible assign-
ment ™ : M — N° such that 7(j) € lN)j(p) for every j € M and p(i) = 0
for every i € N\ {n(j) | j € M} if and only if there exists a partition
{X1,..., Xm} of N such that X; € D;(p) (possibly X; = 0) for everyj € M.

5.2 Review of Unit-Demand Auction Algorithms

In this section we review three iterative auction algorithms for the unit-
demand auction model: Vickrey—English auction by Demange et al. (1986),
Vickrey—Dutch auction by Mishra and Parkes (2009), and Vickrey—English—
Dutch auction by Andersson and Erlanson (2013). The description of the
algorithms given below basically follows Andersson et al. (2013) and An-
dersson and Erlanson (2013). In the following, we assume that valuation
vj(7) for bidder j and item 4 is given by a nonnegative integer; this implies,
in particular, that the valuation function f; for j € M is an integer-valued
function, and therefore there exists an integral equilibrium price vector by
Theorem 2.2 and Corollary 4.4.
For a price vector p € R’} and an item set Y C N, we define

O(Y,p) = {j € M | Dj(p) C Y},
U(Y,p)=1{j € M| Dj(p)NY # 0}.

The set O(Y, p) consists of bidders who only demand items in Y at price p,
while U(Y,p) is the set of bidders who demand some item in Y at price p.
Obviously, O(Y,p) CU(Y,p).

A set Y C N is said to be overdemanded if |O(Y,p)| > |Y'|. This condi-
tion means that there exists at least one bidder in O(Y,p) who can get no

22



item in l~7j (p) \ {0}. A set X C N is said to be in excess demand at price p
if it satisfies

UY.p)NOX.p)| > Y] (8 #VY CX).

This means that for every nonempty subset Y of X, there exists at least
one bidder in U(Y,p) NO(X, p) who cannot get an item in Y. The following
property of sets in excess demand is shown in Mo et al. (1988, Proposition
1) (see also Andersson and Erlanson (2013, Proposition 1) and Andersson et
al. (2013, Theorem 1)). For completeness, we give a proof of this proposition
in Appendix.

Proposition 5.3. Sets in excess demand at price p are closed under union
operation, i.e., if X, Y C N are in excess demand at price p, then X UY
1$ also in excess demand at price p. In particular, a maximal set in excess
demand at price p is uniquely determined.

The Vickrey-English auction algorithm due to Mo et al. (1988) and
Sankaran (1994), which is a variant of the one in Demange et al. (1986),
is described as follows:

Algorithm VICKREY_ENGLISH

Step 0: Set p := p°, where p° € Z! satisfies p° < p* for the minimal
equilibrium price vector p* (e.g., p° = 0). B

Step 1: Find the maximal set X C N in excess demand at price p.

Step 2: If X = (), then output p and stop.

Step 3: Set p:=p+ xx and go to Step 1. O

To describe the Vickrey-Dutch auction algorithm, we need variants of
the sets D;(p) and O(Y,p) by taking the positivity of prices (i.e., positive
or zero) into account as follows:

D} (p) = Dj(p) Nsupp™(p) (j € M),
O*(Y,p)={je M |D/(p) CY}.

A set X C N is said to be in positive excess demand at price p if it satisfies
X C supp™(p) and

U(Y,p)NOY(X,p)| > Y]  (D#VY CX).

The following proposition can be proved in a similar way.

Proposition 5.4 (cf. Andersson and Erlanson (2013, Theorem 2)). Sets
in positive excess demand at price p are closed under union operation. In
particular, a mazximal set in positive excess demand at price p is uniquely
determined.
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Vickrey—Dutch auction by Mishra and Parkes (2009) is described as fol-
lows:

Algorithm VICKREY_DUTCH

Step 0: Set p := p°, where p°® € Z satisfies p° > p* for the minimal
equilibrium price vector p*.

Step 1: Find the maximal set Z C N in positive excess demand at price p,
and put X = supp™t(p) \ Z.

Step 2: If X = (), then output p and stop.

Step 3: Set p:=p— xx and go to Step 1. O

Vickrey—English-Dutch auction by Andersson and Erlanson (2013), which
is a combination of Vickrey—English auction and Vickrey—Dutch auction, is
described as follows.

Algorithm VICKREY_ENGLISH_DUTCH

Step 0: Set p := p°, where p°® € Z™ is any vector (to be chosen appropriately
in practice). Go to Step El.

Step E1: Find the maximal set X C N in excess demand at price p.

Step E2: If X = (), then go to Step D1.

Step E3: Set p :=p+ xx and go to Step El.

Step D1: Find the maximal set Z C N in positive excess demand at price
p, and put X = supp™(p) \ Z.

Step D2: If X = (), then output p and stop.

Step D3: Set p := p — xx and go to Step D1.

5.3 Analysis of Unit-Demand Auction Algorithms

We first show that the unit-demand auction algorithms explained above co-
incide with the iterative auction algorithms in Section 4 applied to valuation
functions f; given by (11).

Theorem 5.5. Let f; : {0,1}" — Z be valuation functions given by (11).

(i) The sequence of price vectors p generated by the algorithm VICKREY _ENGLISH

is the same as that of the algorithm ASCENDMINIMAL applied to valuation

functions f;.

(ii) The sequence of price vectors p generated by the algorithm VICKREY_DUTCH

is the same as that of the algorithm DESCENDMINIMAL applied to valuation

functions f;.

(iii) The sequence of price vectors p generated by the algorithm VICKREY_ENGLISH_DUTCH
1s the same as that of the algorithm TWOPHASEMINMIN applied to valuation

functions f;.

The crucial technical facts for the proof of Theorem 5.5 are the following
connections between sets in excess demand and the Lyapunov function L :
Z — R in (4) associated with valuation functions f; in (11).
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Lemma 5.6. Let p € Z} be a price vector.

(i) A set X C N is the maximal set in excess demand at price p if and only
if X is the minimal minimizer of L(p + xx) — L(p).

(ii) A set Z C supp™(p) is the mazimal set in positive excess demand at
price p if and only if X = supp™(p) \ Z is the maximal minimizer of L(p —
xx) — L(p).

The proof of Lemma 5.6 is given in Section 5.4.

A combination of Theorem 5.5 above and Theorems 4.7, 4.11, and 4.12
in Section 4 yields the following (exact or upper) bounds on the number of
iterations in the unit-demand auction algorithms. The claims (i) and (ii)
given below are already shown in Andersson and Erlanson (2013, Corollary
2), while (iii) is a new result. Recall the definition of 7(p, ¢) in (8).

Corollary 5.7.

(i) The number of updates of the price vector in the algorithm VICKREY _ENGLISH
is exactly equal to ||[p* — p°||oc-

(ii) The number of updates of the price vector in the algorithm VICKREY_DUTCH
is exactly equal to ||p* — p°||oo-

(iii) The number of updates of the price vector in the algorithm VICK-
REY_ENGLISH_DUTCH is at most 3n(p°, p*).

5.4 Proof of Lemma 5.6
5.4.1 Proof of Lemma 5.6 (i).

We first prove Lemma 5.6 (i).
Lemma 5.8. Let j € M. Forp € Z"} and X C N, it holds that

L(p+ xx) — L(p) = |X| = [O(X, p)|- (13)
Proof. We first show the following equation:

Vi(p) = max{e; (1) = p(i)}. (14)

Vi(p) = max{f;(X) —p(X) | X C N}
p(0), max{f;({i}) —p({i}) | i € N}]
(0)

p(0), max{u;(i) —p(i) | i € N} = g%{vj(i) —p(i)}-

0

I
=
I
"

£
—
=

On the other hand, for every nonempty X C N, we have v;(i*) — p(i*) >
fi(X) —p(X), where i* € X is an item with v;(i*) = f;(X). We also have
vj(0) — p(0) = £;(0) — p(0), from which follows that

Vi(p) = max{ f;(X) = p(X) | X © N} < max{v; (i) — p(i)}-

25



Hence, (14) holds.
From (14) follows that

Therefore, it holds that

Lip+xx) = L(p) = |X|+ > _{V;(p+xx) = V;(0)} = [X| - [O(X,p)|.
j=1

O

To establish a connection between the minimal minimizer of L(p+ xx)—
L(p) and the maximal set in excess demand, it is convenient to use a directed
graph G defined as follows. For a price vector p € Z'}, we consider a directed
graph G = (V, E) with the vertex set V = {s,#} UM U N and the edge set

E={(s,4) | j € Myu{(i,t) | i€ N} U{(j;i)|j € M, i € Dj(p)}.

For each edge (u,v) € E, we define its capacity c(u,v) as

c(u, v) = {

Note that edge set E is dependent on price vector p. A vertex partition
(S,V\ S) with s € Sand t € V'\ S is called an s-t cut, and its the capacity
c(S,V'\ S) is defined as

(S VANS)= Y cuw),
(u,0)€E(S,V\S)
where E(S,V\S) ={(u,v) e E|ueS, veV\S} An st cutof G is said
to be minimum if it has the minimum capacity among all s-t cuts.
For X C N, define a vertex set K(X) by

K(X)={s} UO(X,p) UX.

Note that (K(X),V \ K(X)) is an s-t cut. The next lemma shows that the
capacity of (K(X),V \ K(X)) minus m (= |M]) is equal to the right-hand
side of (13), and that a minimum s-¢ cut is given by (K(X),V \ K (X)) for
some X.

1 (fu=sandve M, orue N and v =1),
+o0o  (otherwise).

Lemma 5.9. Let X C N.
(i) For every s-t cut (S,V \ S) with SN M C O(X,p) and SNN° = X, we
have

(S, V\S)=|X|-|SNM|+m.
In particular, we have ¢(K(X),V \ K(X)) = |X| — |O(X,p)| + m.
(ii) For every s-t cut (S,V \ S) with S # K(X) and SN N° = X, it holds
that ¢(K(X),V\ K(X)) <c(S,V\S).
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Proof. We first prove (i). By the definition of edge set E, there exists no
edge from O(X,p) = {j € M | Dj(p) \ X = 0} to N°\ X. Hence, it holds
that

(S VNS = > clut)+ > c(s,v)

(u,t)eE, ueX (s,v)EE, veM\S
=|X|+|M\S|=|X|—-|SNM|+m.

We then prove (ii). Suppose that there exists some j € SN M such that
ZNDj(p)\X # (). Fori € ﬁj(p) \ X, we have (j,i) € F and i € V' \ S, and
therefore

c(S,V\S) > c(j,1) = +oo.

If there exists no j € SN M with 5j(p) \ X # 0, we have SN M C O(X, p).
Moreover, S N M # O(X,p), since S # K(X). Using claim (i) above we
obtain that

(S, V\S)=|X|—-|SNM|+m
> | X[ = |0(X,p)| +m = (K (X),V\ K(X)).

O

It follows from Lemmas 5.8 and 5.9 that a set X C N is a minimizer of
the value L(p + xx) — L(p) if and only if (K(X),V \ K(X)) is a minimum
s-t cut of the graph G.

Our next step is to relate minimal such X to the maximal set in excess
demand.

Lemma 5.10. Let X C N be the (uniquely determined) minimal set such
that (K(X),V \ K(X)) is a minimum s-t cut of the graph G. Then, X is
the maximal set in excess demand at price p.

Proof. We first show that X is in excess demand at price p, i.e., |U(Y,p) N
O(X,p)| > Y| holds for every nonempty ¥ C X. Putting X' = X \ Y and
Z=U(Y,p)NO(X,p), we have
0(X",p)| = [0(X,p)| - |Z].
Hence, it follows that
o(K(X'), VA K(X') = |X'| - [O(X", p)| + |M]

= (X[ =Y]) = (|O0(X,p) = |Z]) + [M]

= o(K(X), V\ K(X)) + (12| = [Y]),
where Lemma 5.9 (i) is used. Since (K(X),V \ K(X)) is an s-t cut with

the minimum capacity and X’ C X, the minimality of X implies |Z| > |Y|.
Hence, X is in excess demand at price p.
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To show that X is the unique maximal set among all sets in excess
demand, we assume, to the contrary, that there exists some set X 2 X
in excess demand (cf. Proposition 5.3). Since X is in excess demand and
X \ X # 0, it holds that

U(X\ X,p) NO(X,p)| > [X\ X].
Putting Z' = U(X \ X,p) N O(X,p), we also have O(X,p) = O(X,p) \ Z'.
Hence, it follows that
(K(X),V\ K(X)) = |X| - |0(X,p)| +|M]|
= (IX]+ X\ X|) = (I0(X,p)| + |2']) + | M]
<|X[—[0(X,p)| + M| = ¢(K(X),V \ K(X)),
a contradiction to the fact that (K (X), V\ K (X)) is a minimum s-t cut of G.

Therefore, X is the unique maximal set among all sets in excess demand. [

From the discussion above, we see that a set X C N is the minimal
minimizer of the value L(p+ xx) — L(p) if and only if X is the maximal set
in excess demand at price p. Thus, Lemma 5.6 (i) holds.

5.4.2 Proof of Lemma 5.6 (ii).

The proof of Lemma 5.6 (ii) given below is similar to that for Lemma 5.6
OF

Lemma 5.11. Let j € M. Forp € Z, Z C supp™ (p), and X = supp™(p) \
Z, it holds that

L(p — xx) — L(p) = —|X| = |07 (supp™ (p) \ X, p)| + |M]  (15)

=|Z| - 10%(Z.p)| — |supp™ (p)| + [M].  (16)

Proof. We have Vj(p) = max;cyo{v;(i) — p(i)} by (14). Therefore, it holds

that ~

+1 (if DF (p)N X #0),

Vilp — xx) — Vi(p) = j
5P = xx) = Vilp) { 0  (otherwise),

from which follows that
L(p— xx) — L(p) = =X+ > _{Vj(p— xx) — V;(p)}
j=1
= —|X|+[{j € M| D} (p) N X # 0}
= —|X|+{j € M | D} (p) Z supp™ (p) \ X}
= —|X|+ M\ O (supp™(p) \ X, p)|
= —|X| = [0 (supp™ (p) \ X, p)| + [M]
= |Z] = |0 (Z,p)| — |supp™ (p)| + |M].
This concludes the proof. ]
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To relate the minimal minimizer X of L(p—xx)— L(p) with the maximal
set in positive excess demand, we use a directed graph GT = (V*, ET) with
the vertex set VT = {s,t} UM Usupp™(p) and the edge set

EY ={(5,4) | j € MYU{(i,t) | i € supp™ ()} U{(4,7) | j € M, i € D (p)}.

That is, the graph G is a subgraph of the graph G defined in Section 5.4.1
obtained by removing vertices in NV \ suppt(p). We define the capacity
c(u,v) for each edge (u,v) € ET as in Section 5.4.1, i.e.,

e, v) = 1 (if u=sand v € M, or u € supp*(p) and v = t),
" 4oo  (otherwise).

For Z C N, a vertex set KT (Z) is defined by
KT (Z)={s}uO*(Z,p)UZ.

Note that (KT (Z),Vt\ KT(Z)) is an s-t cut. The next lemma shows that
the capacity of (K (Z),Vt\ K*(Z)) minus |[supp™ (p)| is equal to the right-
hand sides of (15) and (16) with X = supp™(p) \ Z, and that a minimum
s-t cut is given by (K1(Z),V*T\ K*(Z)) for some Z.

Lemma 5.12. Let Z C supp™(p).
(i) For every s-t cut (S, V*1\S) with SNM C Ot (Z,p) and Snsupp™(p) = Z,
we have

(S, VH\ S) =|Z| - |S N M| +m.

In particular, we have ¢(KY(Z),VT\ K*(2)) = |Z| — |0 (Z,p)| + m.
(ii) For every s-t cut (S,V*\ S) with S # K*(Z) and S Nsupp™(p) = Z,
it holds that c(K+(Z),VT\ KT(Z)) < ¢(S,V*+\ 9).

Proof. The proof is essentially the same as that for Lemma 5.9 and therefore
omitted. O

It follows from Lemmas 5.11 and 5.12 that a set X C supp®(p) is a
minimizer of the value L(p—xx)— L(p) if and only if (K*(Z),VT\K*(Z))
is a minimum s-t cut of the graph G* for Z = supp™(p) \ X.

Our next step is to relate minimal such Z to the maximal set in positive
excess demand.

Lemma 5.13. Let Z C N be the (uniquely determined) minimal set such
that (K(Z),V*T\ K(Z)) is a minimum s-t cut of the graph G*. Then, Z is
the maximal set in positive excess demand at price p.

Proof. The proof is quite similar to that for Lemma 5.10 and therefore omit-
ted. O
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From the discussion above, the following equivalence holds for X C
supp™ (p) and Z = supp™ (p) \ X:

X is the maximal minimizer of the value L(p — xx) — L(p)
<= Z is the minimal set such that (K(Z),V*t\ K(Z))
is a minimum s-t cut of the graph G
<= 7 is the maximal set in positive excess demand at price p.

Thus, Lemma 5.6 (ii) holds.
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Appendix

A Proof of Proposition 5.2

We first prove the “if” part. Let p be a price vector, and suppose that
there exists a partition {X1,...,X,,} of N such that X; € D;(p) (possibly
X; = 0) for all j € M.

Claim: For each j € M, the following properties hold:

(i) The set X; in the partition contains at most one item in supp™(p).

(i) If X; Nsupp™(p) # 0, then the unique item i* in X; Nsupp™(p) satisfies
e X;nN Ej(p).

(iii) If X; # 0, then X; N D;(p) # 0.

(iv) If X; =0, then 0 € ﬁj(p).

[Proof of Claim (i)] For i € X; Nsupp™(p), we have v;(i) = f;(X;) since
otherwise (i.e., if v;(i) < f;(X;)) we have

[i(X5) — p(X;) = fi(X5\ {i}) — p(X;) < (X5 \ {i}) —p(X; \ {i}), (17)

a contradiction to the fact that X; € D;(p). If | X; Nsupp™(p)| > 2, then we
have f;(X;\ {i}) = f;(X;), and therefore the inequality (17) holds again, a
contradiction.
[Proof of Claim (ii)]  For the unique item ¢* in X; Nsupp™(p) we have
vj(1*) = fj(X;) and p(X;) = p(:*). Since X; € D;(p), it holds that
vi(i*) = p(i*) = fi(X;) — p(X;)
> max(f,(0) ~ p0) mace{£,({i)) ~ p((1}))]

= max(u;(0) — p(0), max{v;(i) — p(i)}] (18)
Hence i* € ﬁj (p).
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[Proof of Claim (iii)] By Claim (ii), we may assume X; Nsupp™(p) = 0
with X; # 0. Let ¢* be an item in X; with the maximum value of v;(i*).
Then, we have v;(7*) = f;(X;) and p(i*) = p(X;) = 0. Hence, the inequality
(18) holds again, i.e., i* € ﬁj(p). This shows X; N ﬁj(p) # 0.

[Proof of Claim (iv)] If X; = 0, then v;(0)—p(0) = 0 = f;(X;)—p(Xj).
Hence, (iv) follows. [End of Claim]

Based on the claims above, we define an assignment 7 : M — NY as
follows:

the unique item in X; Nsupp™(p) (if X; Nsupp™(p) # 0),

7(j) = any item in X; N D;(p) (if X; Nsupp™(p) =0 and X; # 0),

0 (otherwise (i.e., if X; = 0)).

We show that this assignment satisfies the conditions in the statement of
Proposition 5.2.

Since {X1,..., X} is a partition of N and 7(j) € X; holds whenever
7(j) # 0, we have () # ©(j) for every j, 7' € M with 7(j) # 0 and 7(j’) #
0. Hence, the assignment 7 is a feasible assignment. By Claims (ii), (iii),
and (iv), 7(j) € D;(p) holds for all j € M. Since each X; contains at most
one item with positive price, we have p(i) = 0 for i € N\ {n(j) | j € M}.
This concludes the proof of “if” part.

Next we prove the “only if” part of the statement. Assume that there
exists a feasible assignment 7 : M — N° such that 7(j) € D;(p) for all
j € M and p(i) =0 for every item i € N \ {w(j) | j € M}. We may assume
that m(j) # 0 for some j € M; if w(j) = 0 for all j € M, then we may set
m(1) = 1 since v1(1) > 0 = v1(0).

Let {X1,..., X} be any partition of N satisfying the condition that

if 7(j) # 0 then 7(j) € X}, if 7(j) = 0 then X; = 0.

Since 7(j) # 0 for some j € M, such a partition exists. For j € M and
i€ X;\{m(j)}, we have p(i) = 0.

It remains to show that X; € D;(p) holds for each j € M. We first
consider the case with m(j) # 0. Since 7(j) € lN)j(p) \ {0} and p(i) = 0 for
i€ X;\{m(j)}, we have

vi(m(5)) = vj(x(5)) = p(w(4)) = v(i) = p(i) = vi(i) (Vi€ X;\{n(5)}).
Hence, we have vj(7(j)) = f;(X;) and p(7(j)) = p(X;), which implies that
[i(X5) = p(X;) = vj(7(4)) = p(7(5))-

For any nonempty Y C N, let i’ be an item in Y with v;(¢") = f;(Y"). Then,
it holds that



Therefore,
[i(X5) = p(X;) = v(7(5)) — p(n(§)) = v;(i') = p(i’) = f;(Y) — p(Y).
We also have
£i(X5) = p(X;) = v;(7(4)) — p(w(4)) = v;(0) — p(0) = £;(0) — p(D).

Thus, X; € D;(p) holds.

We then consider the case with 7(j) = 0. We have 0 € l~)j(p) and
fi(0) —p(®) = 0 = v;(0) — p(0). Using this fact, we can prove f;(0) — p(0) >
fi(Y)=p(Y) for all Y C N in a similar way as in the previous case. That
is, X; =0 € D;(p) holds.

B Proof of Proposition 5.3

For completeness, we reproduce the proof of Proposition 5.3 given in An-
dersson et al. (2010) with some modification.
Let X7, X5 be sets in excess demand at price p, i.e.,

|U(Yk,p) NO(Xp, p)| > |V (k=1,2, 0 #VY, C Xy). (19)

We will show that the following condition holds for every nonempty subset
Y of Xj U Xs:
U(Y,p) NO(X1 U Xq,p)| > Y] (20)

Suppose that Y C X; or Y C X5 holds. Since O(Xg,p) C O(X1 UX»,p)
for k = 1,2, we have |U(Y,p)NO(Xk, p)| < |U(Y,p)NO(X1UX2,p)|, which,
together with (19), implies (20).

Suppose that neither Y C X7 nor Y C X5 holds, and let Y7 = Y N X3
and Yo =Y \ X;. Then, we have () # Y, C Xy for k =1,2. For k = 1,2, it
hold that

UYe,p) CU(Y,p),  O(Xi,p) € O(X1U X3, p),
implying that
U(Yy,p) NO(Xk,p) CU(Y,p) NO(X1 U X2,p). (21)
We claim that U(Y1,p) N O(X1,p) and U(Ya,p) N O(Xa,p) are disjoint.

If a bidder j is contained in O(Xi,p), then we have D;j(p) C X;. Since
X1NY, =0, we have Dj(p)NYa2 =0, i.e., j & U(Ya,p) holds. It follows that
U(Y1,p) NO(X1,p) and U(Ya,p) N O(X2,p) are disjoint.
Hence, (21) with (19) implies that
[U(Y,p) NO(X1U Xa,p)| > [U(Y1,p) NO(X1,p)| + |U(Yz,p) N O(Xz, p)|
> Y|+ 2| =Y,

i.e., (20) holds.
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