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Abstract

We reveal the relations between the conditional normalized maximum likelihood (CNML)
distributions and Bayesian predictive densities based on the latent information priors (LIPs).
In particular, CNML3, which is one type of CNML distributions, is investigated. The Bayes
projection of a predictive density, which is an information projection of the predictive density
on a set of Bayesian predictive densities, is considered. We prove that the sum of the Bayes
projection divergence of CNML3 and the conditional mutual information is asymptotically con-
stant. This result implies that the Bayes projection of CNML3 (BPCNML3) is asymptotically
identical to the Bayesian predictive density based on LIP. In addition, under some stronger
assumptions, we show that BPCNML3 exactly coincides with the Bayesian predictive density
based on LIP.

Keywords: Bayes projection, conditional mutual information, Kullback-Leibler divergence,
least favorable prior, regret, Rényi divergence

1 Introduction

We construct predictive densities for future variables based on observed data. Let (X,F) be a
measurable space and let M = {p(z|f)|z € X,0 € © C R} be a statistical model, where p(x|6)
is the probability density function with respect to a o-finite measure p on (X, F). We assume
that observations 2V := (21,...,zy)" € X" and future variables y™ = (y1,...,yn)" € XM are
independent and identically distributed random variables with probability distribution M. Thus,
the joint probability density function of 2V and yM i

N M
N yMig 6) 9).
pa™, yM10) = [ [ p(x:l6) H (516)
=1 :

A predictive density ¢(y™ |z) is a conditional probability density, i.e., a function from XV x XM
to Ry satisfying [y a dpe(y™)g(y™|2™V) = 1. The goodness of prediction fit of ¢(y* |z") is evaluated



by the average Kullback—Leibler divergence (simply referred to as KL risk in this paper) :

M
Ryp)" (6,q) := /XN du(xN)p(wa)/ p(y™16)

du(yMp(y™M|0) log 212
o w(y™ )p(y™0) gq(yM|xN)

In information theory, the Bayes risk
N,M N,M
RNM (7, p) 1= /@ dr(0)RYM (0, ).

is called conditional mutual information when N > 0 (Cover and Thomas, 2006). Latent informa-
tion priors (LIPs) are defined as prior distributions on © that maximize the conditional mutual
information, see Komaki (2011). Bayesian predictive densities based on LIPs are minimax predic-
tive densities under KL risk when M is a submodel of the multinomial distribution. The LIPs are
different from Jeffreys priors in general. In addition, when N > 0 and the model is a joint location
and scale model, we note that the minimax predictive densities under KL risk do not have to match
the Bayesian predictive densities based on Jeffreys priors as shown by Liang and Barron (2004).

On the other hand, in the context of information-theoretic learning, the normalized maximum
likelihood (NML) distributions, introduced by Shtarkov (1987), are important predictive densities
with no observation (N = 0). The NML distribution is defined by

My PM0™M))
Jnr dp(zM)p(zM[0(=M))”

where A(zM) := argmax, p(z0). Shtarkov (1987) showed that the NML distribution achieves the
minimax regret:

gNML (y

axan, = argmin max{ —log (™) — (~log p(y™10(s")))}.
q

However, NML distributions have a serious problem that the normalizing constants diverge to
infinity even if M is a simple statistical model such as the normal, Poisson, or geometric distribu-
tion. To remedy the problem, Griinwald (2007) proposed three types of generalizations of NML
distributions called conditional normalized maximum likelihood (CNML) distributions:

N) — p<xN7yM‘é(yM))A
Jxar du(zM)p(aN, 2M[6(=2))”

(zM)p
2™ yM|0 (N, yM))
(zM)p

qenmt (yM |x

M p(
) = ) ’
gonmL2(y™ |z7) fXM du ZM) (xN,zMW(xN’zM))
M mN’é xN, M
QCNML3(yM|~TN) = 2] : L

T T du(A (M 2N, 6z, 1))
where é(a:N, M) .= argmaxy p(z"V, 2M|0). By conditioning on observations x'V, the normalizing
constants of CNML distributions do not diverge to infinity, and the distributions are defined as
predictive densities with some observations (N > 0). As with the NML distribution, CNML-¢

(1 =1,2,3) achieves the minimax conditional regret-i (i = 1,2,3):

gennwr = argmin max{—log ¢(y"z™) — (~logp(«™, y™0(y™)))},
q Yy

gennre = argmin max{—log ¢(y"|2™) — (~logp(«™, y™ (0", y™)))},
q Yy

genmLs = argminmax{—log g(y"a™) — (~logp(y™ ™, 6(=™, ™))}
q Y



Our results are twofold. First, we show that the sum of the Bayes projection divergence of
CNML3 and the conditional mutual information is asymptotically constant. The Bayes projection
of a predictive density is an information projection, a generalization of the information projection
studied by Csiszar (1975), of the predictive density on a set of Bayesian predictive densities (see
Section 2). Throughout the paper, “asymptotic” means that the number of observations, N,
is fixed, and the number of future variables, M, goes to infinity. Roughly speaking, the first
result implies that the Bayes projection of CNML3 (BPCNMLS3) is asymptotically identical to the
Bayesian predictive density based on LIP. Second, under some stronger assumptions, we show that
the BPCNML3 exactly coincides with the Bayesian predictive density based on LIP. These results
indicate that CNML3 is related to LIPs.

Among CNML distributions, CNML2 has received much attention (Kotlowski and Griinwald,
2011; Hedayati and Bartlett, 2012a,b; Bartlett et al., 2013; Harremoés, 2013), and it has been
recognized as the only natural generalization of NML distributions (Griinwald, 2012). Griinwald
(2007) showed that CNML1 and CNML2 are asymptotically equal to the Bayesian predictive density
based on Jeffreys prior. Under some regularity conditions, Hedayati and Bartlett (2012a) showed
that CNML2 is identical to the Bayesian predictive density based on Jeffreys prior even when
M is finite. Because of the connection with Jeffreys prior, CNML2 is considered to be the most
important predictive density among CNML distributions.

However, we argue that LIPs, not Jeffreys priors, are naturally related to minimax predictive
densities under the conditional regret when N > 0. The reason is as follows. The regret and
Kullback—Leibler divergence are widely known to be naturally related in the sense that they are
special versions of the Rényi divergence (Rényi, 1961; van Erven and Harremoés, 2014). Notably,
when N = 0 and statistical model M is the multinomial distribution, Xie and Barron (2000)
showed that a Bayesian predictive density based on a modification of Jeffreys prior asymptotically
achieves the minimax regret. When N = 0 and the model satisfies some regularity conditions,
Clarke and Barron (1994) showed that Jeffreys prior is asymptotically least favorable under KL
risk. Roughly speaking, when N = 0, Bayesian predictive densities based on Jeffreys priors are
asymptotically minimax under both the regret and KL risk. In addition, the NML distribution
is known to asymptotically coincide with the Bayesian predictive density based on Jeffreys prior
(Griinwald, 2007). These studies imply that least favorable priors under KL risk are connected with
minimax predictive densities under the regret when N = 0. Therefore, as is the case for N = 0, we
insist that LIPs are naturally related to minimax predictive densities under the conditional regret
because LIPs are least favorable priors under KL risk when N > 0.

Our results shed light on the connection between LIPs and CNML3. Although CNML2 has
received the most attention among CNML distributions, we consider that CNML3, not CNML2,
is more in line with the minimax KL risk approach and is the most important predictive density
among CNML distributions. Notably, Griinwald (2007) also vaguely suggested that CNML3 is
more in line with the minimax KL risk approach (called Liang and Barron’s approach (Liang and
Barron, 2004) in his book (Griinwald, 2007)) than CNML1 and CNML2.

The remainder of this paper is organized as follows. In Section 2, we define the Bayes projection
of predictive densities and review the definition and properties of LIPs. In Section 3, we state the
main results. In Section 4, we confirm that the main results hold for the binomial distributions
through numerical experiments. In Section 5, we conclude our study.



2 Preliminaries

Let K be a compact set of © and Pg be the set of all probability measures on © whose support
sets are contained in K. We assume that Px is endowed with the weak convergence topology and
the corresponding Borel sigma algebra. By the Prokhorov theorem, Py is compact.

2.1 Bayes Projection of Predictive Densities

We define the projection of predictive densities on a set of Bayesian predictive densities. Let

D%’éw (m) be a divergence from Bayesian predictive density based on 7 to predictive density g¢:
N , M
Pz, y™)
DY) = [ dula ey log . TePx,
fa XN XM " q(yM [z )pr(a)
where

ky .= i xk .
pel(a) = /@ dr(0)p(a"10)

Divergence DI]\([’Z.{W is convex with respect to m. Let m and 7y in Px and w € (0,1). We define
Ty := wmy + (1 — w)me. By the log sum inequality,

N . M
N M wa(JU Y )
" q(y™|zN)pr,, (zN)

pﬂ’l(xNayM) N M pﬂQ(xN’yM)
+ (1 —w)pr(z,y" ) log .
TN @) T Ope b8 ey,

< wp, (2, yM) log .

Therefore,

D (wm + (1= w)ma) < wDRM () + (1 —w) Do (), w € (0,1).

Since Pg is compact, if map Pxg > 7 — D%’é‘/l (m) € R is strictly convex and lower semicontinuous,

. . s . NM
then there exists unique minimizer 7’ g € Px such that

N,M ; ~N,M . N,.M
DK,q (T[-K,q ) = ﬂler,}pr DK,q (ﬂ-)

We refer to the Bayesian predictive density based on fr%’é‘/j as Bayes projection of q.
Komaki (2011) showed that KL risk of the Bayes projection of ¢ is not larger than that of ¢ if
the statistical model is a submodel of the multinomial distribution.

2.2 Latent Information Priors

In information theory, the Bayes risk
N.M N,M
R ) = [ am(O) 0.00),

is called mutual information when N = 0 and conditional mutual information when N > 0 (Cover
and Thomas, 2006). The conditional mutual information is concave with respect to m € Pg. LIPs
are defined as priors that maximize the conditional mutual information:

~NM RN.M
TrLp = argmax Ry ™ (m, pr).
T€PK
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Since Pk is compact, if map Px > 7 — R%JM(W,pﬂ) € R is strictly concave and upper semicon-
tinuous, then ﬁ'g’%lj is the unique maximizer.

Because LIPs are the least favorable priors (Ferguson, 1967), the Bayesian predictive densities
based on LIPs are naturally related to minimax predictive densities under KL risk. Notably, Komaki
(2011) showed that Bayesian predictive densities based on LIPs are minimax predictive densities
under KL risk when M is a submodel of the multinomial distribution.

3 Main Results

Before showing the main results, we give basic assumptions and notations.

We assume that a maximum likelihood estimator (MLE) 6(z%) € © exists for all k € N and
2F € X*. We take a compact set K contained in the interior of © such that p(z|6) is strictly positive
forall z € X and # € K and take a positive constant d such that K5 = {6 € ©|30 € K s.t. |§—0| < &}
is also contained in the interior of ©. Here, |#| denotes the Euclidean norm. We denote probabilities
of events and expectations of random variables by Py(-) and Eg(-), respectively.

We state conditions and lemmas required to prove the main results.

A1l. For all z € X, the log-likelihood function log p(z|@) is Lipschitz continuous on Ky, i.e., there
exists a measurable map Ly, : X — Ry and 1 < p < oo such that for all 8,602 € K5

| log p(2]61) — log p(2|62)| < Li;(2)|61 — 62l
where L, (-) satisfies
sup [ du(z)p(10) Ly ()} < o
9eK J X
We define {L g, }>° := esssup,c y Lk, (2).

A2,

lim sup/ du(zk)p(zﬂa)}é(zk) - H‘q =0,
k—oo gc K J xk

where ¢ > 1 satisfies 1/p+1/¢ =1 (¢ = oo when p =1 and ¢ = 1 when p = o0).
A3. There exists a measurable map Tk : X — Ry and 1 < r < oo such that

sup{log p(z]0(z)) — log p(2]0)} < T (2),
e K

and T satisfies

sup/ dp(2)p(z|0){Tk(2)}" < occ.

PeK J X

A4. A
p(*10(z*) d

lim su /d 2k zk910—‘:0.
mooe@‘é‘ o PO o =T =5

A5. There exist constants CV'™ that do not depend on 6 such that

lim sup ‘ / dp(z™)p(zN16) log (/ du(yM)p(yM|é(xN,yM))> - CN’M‘ =0.
M—ocopgekr | JxN XM



Remark 1. The integrand in condition A4 is known as the likelihood ratio statistic. The likelihood
ratio statistic is widely known to converge in distribution to the chi-squared distribution with
degrees of freedom d/2 under some mild conditions (Wilks, 1938). Because the mean of the chi-
squared distribution is d/2, condition A4 is considered to be satisfied for many regular statistical
models. However, except for Clarke and Barron (1989), we are not aware of studies about conditions
on the L' convergence of the likelihood ratio statistic.

Lemma 1. Assume that statistical model M satisfies condition A2. Then,

lim sup Pg({é(zk) ¢K5}> =0.

k—00 gc K

Proof. By the Markov and Holder inequalities, for all 6 € K,

1
q

A({och # ki) < R0 - 01> 0) < H{matiich) - o |

Since condition A2 is satisfied, the claim is verified. O

Lemma 2. Assume that conditions A1-A4 are satisfied. Then,

i sup| [ an@, ) pa ¥ 0)10g P10 +d‘ o
M=o gek | JXNxxM pyM[O(«N, yM)) 2
Proof. See Appendix. O

We state our first result.

Theorem 1. Let K be a compact set that is contained in the interior of © and assume that p(z|0)
is strictly positive for all z € X and 0 € K. Assume also that conditions A1-A5 are satisfied.
Then,

lim sup ‘DN’M (m) + RgLM(TF,pﬂ-) - CN'N’M’ =0, (1)

K7
M—00 nePye GCNML3

where CNM = oN-M _ d/2 that does not depend on the choice of .

By deforming (1), we have

DM (1) = —RM (m,pr) + CVM 4 0(1), (2)

K,qcNML3

where term o(1) satisfies limys o0 SUpep, |0(1)] = 0.

Asymptotically, in the right-hand side of (2), only the first term RQLM(TF, pr) depends on the
choice of w. Therefore, the LIP that maximizes RgtM(ﬂ', px) with respect to m € Px asymptotically
coincides with the minimizer of the left-hand side of (2), i.e., ﬁ%:%NMLS. In other words, roughly
speaking, BPCNML3 is asymptotically identical to the Bayesian predictive density based on the
LIP. Notably, BPCNML3 is different from CNML3. Later, under some stronger conditions, we will
show that BPCNML3 exactly coincides with the Bayesian predictive density based on the LIP even
when M is finite (see Theorem 2).



Proof of Theorem 1.

DA ) = ArOan(e, "ol 0) g P
Kgonmrz ) = Ox XN x XM PGP Y © QCNMLS(yM‘l'N)
Mio)
— dr(0)dp NyMpr,yMﬁlogL
L O e 00 B
M 9)
+ dr(O)dpu(™, 5™ yp(e ™ 19) log — Y| :
/@X)(N XM (O)du(x ol y10) gonmrs (yM|z)

The first term is —RQLM (m,pr). The second term is decomposed as

p(y™]0)

/ dn(@)du(z™, y™ ), 50 1o
OxXNx XM QCNML3(y

ol N My N Mg e, PWM6) d
_/@d (9){/}(Nxdeu( »y )p(a Y |9)1gp(yM|é(g;N,yM))+2}

N /@ dw(&){ /X du(a™) p(a™16) log < /X ) du(zMWMlé(fN’ZM”) - CN’M}
d
¢

+ oMM _

By Lemma 2 and assumption A5, we have

[ a0ty e ooy PV o o),
Ox XN x XM genmrs (yM[z) 2
where term o(1) satisfies limys o0 Sup,cp, |0(1)| = 0. Therefore, the claim is verified. O

We give some examples that satisfy conditions A1-A5.

Example 1 (Multinomial Distributions). The first example is the multinomial distribution. Let
X ={0,1,...,d} and © = {(p1,...,pa)|0 < p; <1 (i =1,...,d), L p; < 1}. We take a
compact set K that is contained in the interior of ©:

d
C {Hz(pl,...,pd)\0<pi<1 (i=1,...,d), sz‘<1}-
i=1

Since K is contained in the interior of ©, we can find § > 0 such that compact set Ky is also in the
interior of ©.
The probability function is

d
Z|0 HpZ()v z = (0) "7z(d))T € {071}d+17 bo = 1_Zp17
=1

where we identify elements in X with z = (2(0,... 2T ¢ {0,1}9! satisfying Z?:o 20 =1
Since there exists a positive constant cx such that infycg min,—o 1, ap; > cx > 0,

sup{log p(z|0(2)) — log p(2]0)} <log1 — inf logp(z|0) < —log k.
PeK feK



Similarly, there exists a positive constant cx; > 0 such that infgec g, min;—g 1. api > ck;. By
the mean value theorem, for all 81,02 € K5 and z € X,

1
| log p(2]61) — log p(z]62)| < — |61 — 6a].
CK;

Therefore, condition Al and A3 with any p € [1,00] and r = oo are satisfied. The MLE of the
multinomial distribution is

n (1) n (d)
9(271): (Zz 1% 7”.’Z:i:lzi >’ ZHEXn,

n n

and the variance of the MLE is
1 d
Eyl|0 —0 — (1—
ollO(=") — 0" = — ;pg pi)l

Hence, condition A2 with ¢ = 2 is satisfied. Concerning conditions A4 and A5, we show two
lemmas.

Lemma 3. For the multinomial distributions, condition A4 is satisfied.

Proof. Let G, be the likelihood ratio statistic:

Gn(2";0) :=log ZM

p(z"10)
Smith et al. (1981) showed that for # in the interior of ©,
n d
Eg(Gn(2™;0)) = 5 + R,(0),

where R,, satisfies

d
1
Ol <Y mpis—s
= "

n () 3
By <Zi:1 2 >

Thus, limy, e Supge i |Rn(0)| = 0. Consequently, the claim is verified. O

d
lZ|1_p] 1—2p])|
(e Dj

Lemma 4. For the multinomial distributions, the normalizing constant of CNMLS3 is independent
of V. Therefore, condition A5 is satisfied.

Proof. See Appendix. O
In conclusion, the multinomial distributions satisfy conditions A1-A5.

Example 2 (Normal Distributions with Restricted Mean). We fix positive numbers a and b such
that @ > b > 0. Let © = [—a,a] and K = [—b,b]. Since a is strictly larger than b, we can take a
positive constant ¢ satisfying 6 < a —b and K5 = [-b—6,b+ d] C (—a,a).

We consider the normal distribution with mean 6 € © and variance 1. The probability density
function is

p(2]6) = \/1277rexp<—(2_29)2>, ZeX.




For 61,602 € Kj, the log-likelihood function satisfies
|log p(2]61) — log p(2162)| < (|2| + a)|01 — 62].

Therefore, condition A1l is satisfied with p = 2.
The MLE is

—a, if zF < —a,
0(zF) =< a, if 2F>aq,
zF otherwise,

where zF := Zle z;/k. We denote the probability density function of the one-dimensional normal
distribution with mean g and variance o2 by ¢(z;u,02). Since z* is normally distributed with
mean 6 and variance 1/k,

a

= dz (—a —0)%¢(2;0,1/k) + /00 dz (a — 0)%¢(2;0,1/k) + / dz (z — 0)%¢(2;0,1/k)

Vk(—a—0) (9] ()
< 4a2/ dz ¢(z;0,1) + 4a2/ dz ¢(z;0,1) —I—/ dz (z — 0)2¢(2;0,1/k)

—0o0

Consequently, we verify that condition A2 with ¢ = 2 is fulfilled. Next, we verify that condition
A3 holds. We have

0 _ (=) (4D

_ .2 2
5 5 + 2 =2z"4+b".

. z
sup{log p(z|0(z)) — log p(z]0)} < sup (
9K 9K

Since moments of all orders exist and they are continuous in 6, condition A3 is satisfied with r = 2.
Conditions A4 and A5 are also fulfilled, and the proofs are described in Appendix.

Lemma 5. For this model, condition A/ is satisfied.
Proof. See Appendix. O
Lemma 6. For this model, condition A5 is satisfied.
Proof. See Appendix. O

In summary, the one-dimensional normal distributions with restricted mean satisfy conditions

A1-A5.

Remark 2. As we will see later, numerous statistical models, including normal and Weibull dis-
tributions, satisfy a stronger condition than A5, i.e., the normalizing constant of CNML3 does not
depend on the value of observations 2"V (see condition B2 and Theorem 2). In Example 2, we ver-
ify that the one-dimensional normal model with restricted mean satisfies condition A5. However,



this model does not satisfy the stronger condition (condition B2) and the normalizing constant of
CNML3 does depend on =
The quantity

log (/XM du(yM)p(yM\é(wNwM)))

is not only the logarithm of the normalizing constant of CNML3 but also the minimax conditional
regret-3 when we observe 2V and predict M future variables. Intuitively speaking, if the statistical
model has “uniformity” such as group structure (for example location-scale models), the conditional
regret-3 is equal irrespective of the observations. Even when the uniformity is not equipped with
the model such as Example 2, condition A5 is considered to hold because the information of future
variables y™ increases as M goes to infinity and therefore the effect of 2V on the conditional regret
decreases.

Example 3 (Normal Distributions with Unknown Means). The third example is the normal dis-
tribution with unknown means. Let X = R% and © = R?. We take a compact subset K of © and
fix a positive number § > 0.

We consider a normal distribution with mean § = (61, ... ,H(d)) € O and covariance matrix
o%1;. Here, 02 > 0 is a known parameter, and I, is the d x d identity matrix. The probability
density function is

1 d (1) _ gi))2
p(z|f) = ——— exp < _ 2im 5 ) >, 2= (W, ) e R
(2wo?)2 20

For any compact set K C R?, there exist 9@ T mineeRQ(i) and 9 T maxeek,ﬂ(i). For

min, max,

01,05 € K, the log-likelihood function satisfies

3 |6maxK ‘+ wman |
|log p(z]01) — log p(z]02)| Z( 2’ »(@) 62 . 5 >‘91 — 6y,

Therefore, condition Al is satisfied with p = 2. The MLE is the sample mean and its variance is
E¢[|0(z¥) — 0|%] = do?/k. Thus, condition A2 is satisfied with ¢ = 2. We have

R d (50 _
sup {log p(2[6(2)) — log p(z(6)} = sup Z
0cK 9K =
< Z z(l) er(lezn,K>2 + (z(l) - HI(‘IZI)aX,K)Q
202 202 '

Because moments of all orders exist and are continuous in 8, condition A3 is satisfied with r» = 2.
Since for any # € © and for all j =1,...,d,

1 u ; 1 u G) 2 1 ) 1
7}: 72 j 72 @) _pgy2l_ 1L
{ 20 ( k =1 K ) " 202 = 9 } 2’

condition A4 is satisfied.

10



Finally, we show that condition A5 holds. Let z() := Zjvzl :cg»i) /N and Y@ = Z]]\i 1 ij /M.
By the translation invariance of the Lebesgue measure,

/ Ay p(y™ (N, ™))
RdM

d M . ~ 9
1 1 h Nz 4 My
_ M _ (@) _ Y
_/Rdey (2702) 2. eXp( 20222@] N+ M ) >

2mo?) 2 i=1 j=1
d M M @)\ 2
1 1 DD e 2
- dzMexp(_ <Z<z>_m) )
fr = e (22 2 (87 53

where z](.i) = y(i) — Z]kvzl xfj) /N. Therefore the normalizing constant of CNML3 does not depend

on zV, and thus condition A5 is satisfied. In summary, the normal distributions satisfy conditions

A1-A5.

Example 4 (Exponential Distributions). The fourth example is the exponential distribution. Let
X = (0,00) and © = (0,00). We take a compact set K that is contained in ©. We fix a positive
constant 0 such that infocg, @ > 0. We define Oyin x := minge g > 0, Onax,x := Maxperl < 00
and emimK5 = min96K50 > 0.

The probability density function is

p(z|0) =Oexp(—0z), ze€ X, 6€0O,

and by the mean value theorem, for all 61,60, € K,

| log p(2]01) — log p(z[62)] < <9 + Z> 161 — 6.

min, K

Therefore, condition Al with p = 2 is satisfied. Condition A3 with r = 2 is also satisfied because

Sulg{logp(ZIé(Z)) —logp(z|0)} < —log z + |10g Omin, k| + 108 Omax, k| + [Omax. K |2,
S

and

sup Eg[2°] < 00, sup Eg[(log 2)*] < co.
0K 0K

The MLE is 6(z*) = k/ 2% | z; and 2%, z; follows the gamma distribution with mean k/f and
variance k/62. Therefore,

) 00 2uk—1679u
Eew<zk>—9|2129k/0 d“(i“)> T (k) :<ki<lf>?klz2>92’

and condition A2 is satisfied with ¢ = 2 because 0 < Opin,x < 0 < Onax,x < 00 for all € K. Next,
we verify that condition A4 holds.

p(z"10("))
p(2*10)

k k
/ dp(2F)p(2*16) log =klogk — k — klog — kEy [logz zi] + 6Ey [ zi]
Xk —

=1 %
0 Qkuk_l
:klogk—klogG—k/ dulogu e v
0 L'(k)

= klogk — klog6 — k(¢(k) — log 0)

11



where 1 is the digamma function (Gradshteyn and Ryzhik, 2007). The digamma function is

represented as
U

1 oo
(k) = logh — 5 - 2/0 W e ) expr) - 1)

Since k2 < u? + k2,

0</oodu - <1/oodu - -
~Jo (u? + k?)(exp(2mu) — 1) — k2 Jo exp(2mu) — 1 24k2°

Therefore,
1
lim k(logk — (k) = =,
k—o00 2

and thus, condition A4 is satisfied. Finally, we show that condition A5 holds. Let z = Ei\; 12i/N
and § = Zf\i 1Yi/M. The normalizing constant of CNML3 is

M
; N+M A\ N+ M
/XM py M0y ) = | e ) e Nj+Mg;yz
Let z; = My;/(NZ) and 2 = "M 2;/M. Then,
N+M\M N+M E
dule™ M iGN MYy — / dzM _ )
Joy w0 = [ @ (G ) e (- g o
This is independent of V. In conclusion, the exponential distributions satisfy conditions A1-A5.

Thus far, we have considered asymptotic situations, but next, we provide a non-asymptotic
result. We state conditions for the result.

B1. For all 8 € K, and for all N and M,

p(gJMW)
(yM]0(xN, yM))

/ du(z™, y")p(a™,y"|0) log
XNxxM P

does not depend on 6.

B2. For all 8 € K, and for all N and M,

log (/XM dﬂ(yM)p(yMlé(ﬂfN,yM))>

does not depend on z¥.

Theorem 2. Let K be a compact set that is contained in the interior of © and assume that p(z|0)
is strictly positive for all z € X and 6 € K. Assume also that conditions B1 and B2 are satisfied.
Then, for any m € Pk and for all N and M,

DM () + R (7, pa) = CNM (3)

K,qcNML3

where CNM s a constant that is independent of w. Therefore, BPCNMLS3 exactly coincides with
the Bayesian predictive density based on the LIP.

12



Proof. The left-hand side of (3) is

N,M N,M
DK7QCNML3 (7‘(’) + RKL (7T>p7r)

o N MY N Mgy 1 POMO)
Jo 0] o i 100 B

+ | (df) dp(z")p(z™16) log dp(y™py™ 10N, ™)) ) ¢
foreo{ [, (S )}

By assumptions B1 and B2, the claim is verified. O

Example 5 (One-Dimensional Normal Distribution with Unknown Mean). In Example 3, we show
that the normal distribution satisfies condition B2. Here, we verify that condition B1 holds. Assume
that V¥ and y™ are independent and identically normally distributed with unknown mean 6 and
variance 1. Let & := Y.~ | 2;/N and let j := S 4;/M. Then,

Mg
[ auta e o —— L
XNxxM p(yM[0(x, y™))
M _ —\ 2
_ 1 g2y (g NEEMY
=55l w0t (w5 ) )
B %+M(1+92) NM02+M(1+M«92)+M02+ M
2 2 N+ M 2 2(N + M)
B M
2N+ M)

Condition B1 is satisfied, and thus, Theorem 2 holds.

Example 6 (Weibull Distribution with Unknown Scale Parameter). Let X = (0,00) and © =
(0,00). We consider the Weibull distribution with unknown scale parameter § € © and known
shape parameter k£ € (0,00). The Weibull distributions are widely known to include numerous
other probability distributions, such as the exponential distributions (k = 1) and the Rayleigh
distributions (k = 2).

The probability density function is

]KZW)::Z(Z)kJeXp{——<;)k}, ceX

i=1
First we show that condition B1 is satisfied. We have

The MLE is

M
p 0
[ ey e g —— P
XX p(yM0(zN, yM))
f: AN M yk ylf
=Eq {—klog0+klog¢9(x Y )—1+AZ}
i=1 OF = (BN, yM))k

k
7

i=1 i=1

Mok (N MM
_ ka ( )2z g } — M log(N + M).
i=1

N zF My
D1 % + > im1 %

13



If a random variable Z follows the Weibull distribution with scale parameter # and shape parameter
k, then (Z/0)* follows the exponential distribution with mean 1. In addition, if two random
variables Z; and Zs follow the gamma distributions with common scale parameter £ and shape
parameters a and £, respectively, then Z;/(Z; + Z3) follows the beta distribution with shape
parameters a and . From these facts and the reproductive property of the gamma distribution,

: Mg)
p(yM|0(xN, y™M))

= My(N + M) — M+ (N + M) x

/ du(z™, y"p(a™, yM|0) log
XNx XM

NiM
Nt (N + M)

= M((N + M) —log(N + M)),

where v is the digamma function. Hence, condition Bl is fulfilled. Because we can verify that
condition B2 holds in the same manner as Example 4, we omit the proof.

4 Numerical Experiments

In Example 1, we verify that the multinomial distribution satisfies condition A1-A5 and thus,
Theorem 1 holds. In this section, we confirm the validity of Theorem 1 for the binomial distribution
through numerical experiments.

We explain the settings of the numerical experiments. Let © = [0,1] and K = [0.1,0.9]. Since
Px is infinite-dimensional space, we approximate Px by the set of discrete distributions ]5}<00:

100 100
PlOO : {Zﬂ'l(SQ 14-0. ng(de)‘o < v < 1 for all 7, Zﬂ-’ = 1. }
=0 =0

where 6,(df) denotes the Dirac measure with support a € ©. By numerical optimization, we
calculate the approximation of the LIP

~NM RN.M
TrLIp ‘= argmax figy, (7, pr)
TEPK
: : OF (1 — 0;)MFp,(j
= argmaxzm ( > ( >923,+’f(1 _ Qi)N"!‘M—]—k log z( 2)‘ pw(])’
TEPK i,k pﬂ'(]vk)
and BPCNML3
~N,M L N.M
TKgonmves = arir;un DK ,GCNML3 <7T)
T€PK
_ j+k ANN+M—j—k pTr(j7 k)
= argmin 7rl< > < )97 (1—6y) log — < —,
nePr ”Zk ' (0,6) (1 = 0 1) M Fpa(5)

where 6; == 0.1+ 0.08, 6,1, := (j + k)/(N + M), pz(j) := X190 w67 (1 — 6;)N 7 and p,(j, k) :=
SO0 6! R (1= 9;)N+M—i=F We used the free software R (R Development Core Team, 2009) and
constrOptim function for the optimization.

Figure 1-3 show the result of comparison of KL risk among CNML3, BPCNML3, and Bayesian
predictive densities based on LIP (simply abbreviated to BPDLIP) when N = 1 and M =

14



KL Risk

Figure 1: Comparison of KL risk when N = 1, M = 10. The right panel shows the absolute
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Figure 2: Comparison of KL risk when N =1, M = 100. Since the KL risk of BPCNML3 is almost
the same as that of BPDLIP, we plot the absolute difference of KL risk between BPCNML3 and
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Figure 3: Comparison of KL risk when N =1, M = 500. Since the KL risk of BPCNMLS3 is almost
the same as that of BPDLIP, we plot the absolute difference of KL risk between BPCNML3 and
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10,100,500. When N = 1 and M = 100,500 (Figure 2 and 3), KL risk of BPCNMLS3 is al-
most the same as that of BPDLIP. Therefore, we plot the absolute difference of KL risk between
BPCNML3 and BPDLIP.

Implications from the figures are twofold. First, KL risk of BPCNML3 is much lower than that
of CNML3. Notably, for submodels of the multinomial distributions, Komaki (2011) showed that
KL risk of the Bayes projection of predictive density ¢ is not larger than that of ¢q. In addition,
the amount of reduction increases as M increases. Second, we find that the difference of KL risk
between BPCNML3 and BPDLIP goes to zero as M increases. This finding implies that BPCNML3
is asymptotically identical to BPDLIP.

5 Conclusion

In this study, we discussed the relations between the Bayes projection of CNML3 (BPCNML3)
and the Bayesian predictive density based on the LIP (BPDLIP). In Theorem 1, we proved that
the sum of the Bayes projection divergence of CNML3 and the conditional mutual information is
asymptotically constant. Roughly speaking, this result implies that the BPCNML3 is asymptoti-
cally identical to the BPDLIP. The numerical results in Section 4 confirmed that the BPCNML3
is asymptotically identical to the BPDLIP for the binomial model. Under stronger conditions B1
and B2, we showed that the BPCNML3 exactly coincides with the BPDLIP in Theorem 2.

Our results shed light on the connection between CNML3 and LIPs. Although CNML2 has
received the most attention among CNML distributions, we argue that CNML3, not CNML2, is
more in line with the minimax KL risk approach and is the most important predictive density
among CNML distributions.

Finally, we provide our future plans for this study. The plans are threefold. First, we will
study the sufficient conditions for A5 and B2. These conditions are concerned with the conditional
minimax regret-3. As reported in Remark 2, we believe that numerous regular statistical models
satisfy these conditions. Second, we will address the boundary of the parameter space. In the same
manner as Clarke and Barron (1994), we restricted the support set of the prior distributions that
should be contained in the fixed compact set. Using the methods such as in Xie and Barron (2000)
or Komaki (2012), we may treat the boundary of the parameter space. Finally, we plan to study
the predictive performance of the BPDLIP under the conditional regret-3. It is an interesting study
because it parallels to the study of Xie and Barron (2000).

A Appendix: Proofs of Lemmas

A.1 Proof of Lemma 2

Proof. We define several notations as follows:

Mg d
p(y™'10) L

1 6::/ du(z™, y™) p(a™, y™0) lo - ,
~,m(0) o p(x™,y™) pla™,y™|0) gp(yM|9(xN,yM)) 5

k10) d

RH::/ dp(2%) p(2¥|0) 1o %4—7.

k(0) = [ du(=) p(="10) B kB |2
Note that since p(z, y™|0(zN,y™)) = p(zN10(zN, y™ )N p(y™|6(zN, y™)) > 0 for all 2 and yM,

p(aN0(=",y™)) >0, pyM[6N,yM)) > 0.
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Since p(y™|0(y™)) = p(y™ [0(=", y™))
Ry (0) < Inwm(9), V8eK. (4)
For 6 € K, the integrand in the claim of Lemma 2 is decomposed as

pM™o) eV M) paVieEN.yM)

p(yMO(N, y™M))  plaN, yM [N,y M) p(a™]h)

By condition A1, for (zV,yM) € {8(zN,yM) € K5}

In addition, by condition A3, for (zV,y™) € {0(zN,yM) & K5}

N‘g( N M
log (wa Z{logp i (=", y™)) — log p(x:|0)}

< Z{logp(xi\é(xi)) —log p(zi|0)}

N
S Z TK(:L'Z').
i=1
By the Holder inequality, for all € K

Ng(aN, yM))
d :L,N, M l,N’ Mg\ 1o p(x ’ » Y
/XNXxM pw(x™,y™ )p(a™,y ™ |0) log pET)

< sup / A (N, ™ yp( M 16) (N G\ZLKJ z)
0eK J{0(zN yM)eKs}

+ sup / A du(a™ M (™, y™10) ZTK@»
0eK J{0(zN yM)ZKs} i=1

s [ du(xN>p<xN|0><ilLK5 @)

< sup { [t Mt M0 M) - erq}
XN x XM

e K

IN

Q=

+sup { B (6,0 2 1 ) }‘1* s [ dM(JJN)p(ﬂ/’NW)(ﬁ;TK(M))r}i,

where s satisfies 1/ +1/s = 1. We denote the upper bound by Uy n. Note that Uy n is
nonnegative and does not depend on 6. By conditions A1-A3 and Lemma 1, we have

lim Up,ny = 0. (6)

M—oo
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From (4) and (5),
Ry (0) < Inn(0) < Raryn(0) +Unne
Therefore, since |1y, n(0)| < max{|Rn(0)|,|Rar+n(0)] + Unin}
sup [Ty, v (0)] <max { sup [Ra(6)], sup [Ryryn(8)| +Unn )
beK beK

0cK

< sup [Ras ()] + sup [Rarsn (0)] + Unp .
e K e K

By condition A4 and (6), we have

lim sup |[Ip,n(0)] =0.
M—oogei

A.2 Proof of Lemma 4

Proof. We define a family of polynomials with one variable t as follows:

M
fﬁ?a(t) = Z <J\f> (t+i)(M+a—t—i)M,
=0

where M is a positive integer and a is a real number. We also define féi) (t)=1. If weset a =N
and z € {0,1,..., N}, then fa n(x)/(M + N)M is the normalizing constant of CNML3 for the
binomial distributions with observations ¥ satisfying Zfil x; = x. For any nonnegative integer
M and any real number a, we first prove that f ](\/21)a does not depend on the value of ¢, i.e., f](\i)a is
a constant function.

It suffices to show that for any real number a,

e

7 Mat) =0, VtER, (7)

since

(2)

M.q 18 @ polynomial in . We prove this by mathematical induction with respect to M. For
M =0, (7) is evident by the definition of fé?a). Assume that (7) holds for M = m and any a € R.
From this assumption, ff(r?)a is a constant function. Then,

d d
G el = dt{<m+1+a )m“+(t+m+1)m“}

+
NE

1
mr ) t+d)(m+1+a—t—i)mtt

-
Il
—

Dm+14+a—t)"+m+1)t+m+1)"

> (",
n
(m > t+i) Y m+14a—t—qi)mti
-3

_l’_
MES

I
—

[

Ms

m—i—l) (m+1—d)(t+i)(m+1+a—t—i)™ "

Il
_

%
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Since

(e (). (o (7).

hold,
% mra(t) = = (A D(m+ 1+ a— 0"+ (m+ 1)t +m+1)"
+0”+U§5<;?J(P+Ol%m+l+a—t jymti—
=1
_(m+1)z<l>(7§+z) (m+1+a—t—i)m™
i=1
=(m+1)t+m+1)"
m—1

+(m+1)2 (m) (t+i+1)i(mta—t—q)m

i

m+1 m

/\H

Z> (t+i+1)(m+a—t—i)m"

—(m+1)y ( >t+z (m4+1+a—t—3)""
m
=0

1)

Ms

(m+ < >t+z (m4+1+a—t—3)""

O

=

= (m + 1){fm,a+1(t + 1) - fm,a-l—l(t)}'

By the assumption of the induction, fy, a4+1(t +1) — fim,a+1(t) = 0. Therefore,

d 2
Gmial) =0,
and (7) is verified for any M and a. In addition, from this result, the claim of Lemma 4 is verified
for the binomial distributions.

Next, we show that the claim holds for (d+ 1)-nomial distributions (d > 2). We define a family
of polynomials with d variables (¢1,...,t;) as follows:

d .
M| d t -\ d M-=>_ 14
](\/c[l;l)(tl,...,td) = > [— (8 + )" (M—i—a—Z(tH-z'l)) ,
0<it....ia <M, il il (M = T i) 1=1
Zz,lzl M

where M is a positive integer and a is a real number. For the same reason discussed in the case of

1)

the binomial distributions, it suffices to show that f ](\jt is a constant function to verify that the
normalizing constant of CNML3 for (d + 1)-nomial distribution is independent of z

Note that f ](\f(;l) is symmetric with respect to any permutation of variables, i.e., for any per-
mutation o,

](\j,-;l) (ta(l)a v 7to-(d)) = ](\ji;l) (tl, R 7td>-
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Therefore, it is sufficient to show that

9 L(d+1)

aitl M,a (tl,...,td) - 0,
since f](\jtl) is a symmetric polynomial in (¢1,...,t4).
9 L(d+1)
ot fita (t1, ... tq)
M=%, 4 d NG d M=% i
9 MU= (8 4 dp)" ) 1=1U
= o0 > > - .l?l_l(l dl) : ‘(M—l—a—Z(tz—i-u))
Lo<io,. ig<M, i1=0 1- g (M =0 i) —1
S, <M
_ 9 M Tt + i)
- . . d -
8t1 0<in,...ig<M, ’LQ! RN Zd!(M — 2122 Zl)!
Yilp <M

M-, d . N d d M=% i—i
M~ I(t i ima =i
X Z ( 21222)(.14_,@1) <M—th+a—zil—t1—’i1>
i1=0 i1 |(M — Zz=2 i —11)! 1=2 1=2
d NG
= > Mt )" 0 2 (t1)
0<isig<nr, b2t -1l (M — ST i) Ot M=K (0= Eie )
12,005t d > IVE, -
27:2 y<M

since (7) holds. N

A.3 Proof of Lemma 5

Proof. Note that it is easy to verify that

HF
[ e g ) — 0

and thus, we omit the calculation. Let Ay, := {A(z¥) € (—a,a)}. Since (8) holds and 0(z*) = z* for
k
20 e Ag

1 p(*10(="))
) /Xk dM(Zk)P(ZkW) 10gW
_ Ky, ( k p(F[zF) (K10 1o p(z*|0(=%))
= [ ant:Pip(:H0) og o) [ annti0s 22T
= [ auHo o L) o)
Ag p(2*|0(2%))
Since p(z¥|zF) > p(2*|A(z*)), (9) is positive. Hence,
Vol 2410) Lo p(F[0(=*)) 1 Kol 10) 10 p(*|2F)
[ amtmonos U EED = [ anchntoos BT o)
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The integrand in the right-hand side of (10) is

og PNy ox pomyE R
8ok TR

Since the sample mean 2k is normally distributed with mean 6 and variance 1/k,

k| k
du(F k1)1 p(z A|Z )
/. (et tog T
o) k _ 2 —a k 2
- /a du é(u; 0, 1/k)(“2a) n /_OO du é(u; 6, 1/k)(“2+“)
o0 (u—VE(O+a)? [~VEato) (u— V& — a))?
= d : d .
/\/me) u ¢(us;0,1) 5 +/OO u ¢(u;0,1) ;
> o= VEO+a)? VR (= VR — )
< /mdu é(u;0,1) 5 +/OO du ¢(u;0,1) 5
= - du ¢(u;0, 1)(u ~ VKb — Vka)? + /OO du ¢(u; 0, 1)(u+ V0 — V/ka)?
Vké 2 VkS 2
< /\/E(S du ¢(u;0,1)(u? + k(a® + 6%)).
By the Lebesgue convergence theorem
lim - du ¢(u;0,1)u? = 0.
k—o0 N7

In addition, since u/(vk§) > 1 for u > Vkd,

[ o0, 0k 0 < [ au 0,128 2 2R o g

VS VS Vké
Therefore,

lim sup/ du ¢(u;0,1)k(a® + 6%) = 0.
k=00 gk J ks

By (10), the claim is verified. O

A.4 Proof of Lemma 6

Proof. First, we derive

N

alN 1
A M [Var~ var 2i=1%i
/ dyMp(yM (N, yM) =14+ = [T T dv ¢(v;0,1).
RM N _aN _ 1 Zl\i T
VM VM =171

From this equation, we find that the normalizing constant of CNML3 does depend on the value
SN | 2 (see Remark 2).
Let u := ZZ]\LI z; and let vM := (vy,...,vy) " satisfying

oM = HyM,
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where H is the M x M orthogonal matrix of the Helmert transformation. From the definition of
H, we have

1 M M M
- Yi = V1, y2: U-2.

MLE (zN,yM) is represented in terms of u and v;:
) —a, if ”']"V\:_;[Ul < -
O(u,v1) =< a, if ”']"V\j_;[”l > a,
u*]'\,\J/rMM“ , otherwise.

Because H is orthogonal

/ Ay p(y 0, 1))
RM

1 .
dvlrexp ( — 5(1)1 —VMO(u, Ul))2)
SEILES T R exp (— (v1+\gﬁa)2) 00 exp (- (vl—\gﬁa)Q)
= m + a(N4M) dvy
S Vor T/ s
a(N+M) u

VAT VAT 1 (Nvy — vV Mu)?
oNEM)  u dvlﬁexp " T 2(N + M)
T VM UM T
alN u
M [V~ v
=1+ N/ o dv1¢(v1;0,1).

vM VM

Next, we verify that condition A5 is satisfied.

VT oM
N
< exp (a |u> /F dur ¢(v130,1).

M _M 2
/F Vit dv1 #(v1;0,1) /F dvy ¢(vy;0, 1)exp< Y Y )

Since exp(aN|u|/M) > 1,

M [ iy
14+ —

aN|ul M [vm
< — ; .
N | o w dvy ¢(v1;0,1) < exp < i ) (1 + N / dvy ¢(v1;0, 1))
VM VM

_ _aN
VM

Similarly, we find the lower bound as follows:

alN

M [~ vn aNlu| — u? M [Vt

il . > _ _ el . )
1+ N | an d’U1 ¢(U1a0> 1) = €Xp ( M M 1+ /_ uN dUl ¢(U1707 1)

N
VM
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Therefore,

aN
N M [z N
log/ dyMp(yM|B(zN, y ™)) — log <1 n /m duy qS(vl;O,l))’ < Nl |
RM N J_an M
VM
From this inequality, if we set
M [
CNM = Jog <1 + / " duy ¢(v1;0, 1)),
N J_aN
VM

then the claim is verified because Eg[|u|] and Eg[u?] is uniformly bounded in # € K and do not
depend on M. O
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