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Abstract

In the context of discrete DC programming, Maehara and Murota (Mathematical Pro-
gramming, Series A, 2014) posed the problem of determining the complexity of minimizing
the difference of two M♮-convex set functions. In this paper, we show the NP-hardness of
this minimization problem by proving a stronger result: maximizing the difference of two
matroid rank functions is NP-hard.

Maehara and Murota [3] established a theoretical framework of difference of discrete convex
functions and studied the problem of minimizing the difference of two discrete convex func-
tions (discrete DC programs). The computational complexities of several types of discrete DC
programs were revealed in their paper, but determining the complexity of minimizing the differ-
ence of two M♮-convex set functions was posed as an open question (see Section 4.3 and Table
1 in [3]).1 In this paper, we show the NP-hardness of this minimization problem.

As we will describe later, a special case of this problem is to maximize the difference of two
matroid rank functions. We first show the NP-hardness of this special case.

Theorem 1. The following problem is NP-hard: for two matroids M1 and M2 on a common
ground set E with rank functions f1 and f2,

maximize
X⊆E

f1(X)− f2(X). (1)

Proof. Let B1 be the base family of M1. We show that Problem (1) is equivalent to the following
problem:

maximize |X| − f2(X)

subject to X ∈ B1. (2)

Claim 2. Problems (1) and (2) are equivalent.

∗This work is supported by JST, ERATO, Kawarabayashi Large Graph Project, and by KAKENHI Grant
Number 24106002, 24700004.

1Although the term “M♮-convex functions on {0, 1}n” is used in [3], they are equivalent to “M♮-convex set
functions” by identifying a subset of the ground set and its characteristic vector.
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Proof of Claim 2. Since any optimal solution of (2) is feasible in (1), the optimal value of (1) is
at least that of (2). Note that |X| − f2(X) = f1(X)− f2(X) if X ∈ B1.

Suppose that X ⊆ E is an optimal solution of (1). Let X ′ be a maximal subset of X such
that X ′ is an independent set of M1. Since f1(X

′) = f1(X) and f2(X
′) ≤ f2(X), X ′ is also an

optimal solution of (1). We now extend X ′ to a base of M1, that is, we take X ′′ ⊇ X ′ such
that X ′′ ∈ B1. Then, since f1(X

′′) = |X ′′| and f2(X
′′) ≤ f2(X

′) + (|X ′′| − |X ′|), we obtain
f1(X

′′) − f2(X
′′) ≥ f1(X

′) − f2(X
′), which shows that X ′′ is also an optimal solution of (1).

Since X ′′ is a feasible solution of (2), the optimal value of (2) is at least that of (1). Note that
we can construct X ′′ from X in polynomial time, since we can remove or add elements one by
one. (End of the proof of Claim 2)

Next, we reduce the problem of finding a clique of size k in a graph (Max-Clique), which
is a famous NP-hard problem, to Problem (2). Suppose that we are given an instance of Max-
Clique, i.e., a simple graph G = (V,E) and an integer k. We define two matroids M1 and M2

on E as follows.

• M1 is the uniform matroid whose bases contain exactly
(
k
2

)
elements.

• M2 is the graphic matroid of G.

By observing that f2(F ) = |V | − c(F ) for F ⊆ E, where c(F ) is the number of connected
components of GF = (V, F ), we can see that the following are equivalent.

1. G = (V,E) contains a clique of size k.

2. The optimal value of Problem (2) is
(
k
2

)
− (k − 1).

This shows that Max-Clique is reduced to Problem (2), and hence Problem (1) is NP-hard
by Claim 2.

Let E be a finite set and 2E denote the set of all subsets of E. A set function f : 2E →
Z ∪ {+∞} is said to be M♮-convex if it satisfies the exchange axiom:

For all X,Y ⊆ E and i ∈ X \ Y ,

f(X) + f(Y ) ≥min

[
f(X \ {i}) + f(Y ∪ {i}),

min
j∈Y \X

{f((X \ {i}) ∪ {j}) + f((Y ∪ {i}) \ {j})}
]
.

We say that f : 2E → Z ∪ {−∞} is M♮-concave if −f is M♮-convex. Note that M♮-concave
set functions are essentially equivalent to valuated matroids of Dress and Wenzel [1], and M♮-
convex functions on Zn are introduced by Murota and Shioura [5]. It is known that matroid
rank functions are M♮-concave set functions.

Lemma 3 (See [2, p. 51] and [4, Theorem 5.1]). Matroid rank functions are M♮-concave.

This lemma shows that Problem (1) is a special case of minimizing the difference of two
M♮-convex set functions. Hence, by Theorem 1, we obtain the following theorem, which answers
the open question posed by Maehara and Murota [3].

Theorem 4. The following problem is NP-hard: for two M♮-convex set functions f1 and f2,

minimize
X⊆E

f1(X)− f2(X).
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