
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Combinatorial Relaxation Algorithm
for the Entire Sequence of the
Maximum Degree of Minors

in Mixed Polynomial Matrices

Shun SATO

(Communicated by Takayasu MATSUO)

METR 2015–01 January 2015

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Combinatorial Relaxation Algorithm for the

Entire Sequence of the Maximum Degree of Minors

in Mixed Polynomial Matrices

Shun Sato

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo
shun sato@mist.i.u-tokyo.ac.jp

January, 2015

Abstract

Iwata–Takamatsu (2013) showed that the maximum degree of mi-
nors in mixed polynomial matrices for a specified order can be com-
puted by combinatorial relaxation type algorithm. In this letter, based
on their algorithm, we propose an efficient “combinatorial relaxation”
algorithm for computing the entire sequence of the maximum degree of
minors. In our previous work, we dealt with a similar problem for ratio-
nal matrices, where the efficiency derived from the discrete concavity
of valuated bimatroids. We follow the same line of discussion; but,
technical details are different due to special characteristics of mixed
matrices.

1 Introduction

The concept of mixed matrices [1] was introduced as a mathematical tool
for description of physical systems. A mixed matrix contains two kinds of
numbers as follows:

• Accurate Numbers (Fixed Constants)
They frequently represent conservation laws, and are precise in values.
These numbers should be treated numerically.

• Inaccurate Numbers (Independent Parameters)
They often denote physical characteristics and are not precise in values.
Since they can be assumed to be independent, these numbers should
be treated combinatorially as nonzero parameters.

1

Let A(x) be a mixed polynomial matrix over certain fields (which we will
define later). R and C denote the row-set and column-set of A, respectively.
deg f denotes the degree of a polynomial function f . We define the maximum
degree of minors of order k as

δk(A) := max
I⊆R,J⊆C

{deg detA[I, J] | |I| = |J | = k} ,

where A[I, J] denotes the submatrix of A with I ⊆ R and J ⊆ C. We set
δ0(A) = 0. The entire sequence of maximum degree of minors {δk(A)}rk=0

can be used for computing the Smith–McMillan form at infinity [1], which
often used in control theory. Thus we aim to develop an efficient algorithm
for computing {δk(A)}rk=0.

The maximum degree of minors can be defined on rational matrices,
which includes mixed polynomial matrices as special cases. Murota [2]
showed that the maximum degree of minors on rational matrices for a spec-
ified order can be computed by the general framework of “combinatorial
relaxation”(Murota [3]). Our previous work [4] then showed an efficient
combinatorial relaxation type algorithm for finding the entire sequence of
the maximum degree of minors in rational matrices. On the other hand, for
mixed polynomial matrices, Iwata–Takamatsu [5] gave an algorithm for a
specified order. In this letter, we extend the idea of [4] to mixed polynomial
matrices and develop a combinatorial relaxation type algorithm for finding
the entire sequence of the maximum degree of minors. The efficiency of the
proposed algorithm is based on two theorems (Theorems 1 and 2) concerning
“tightness” of combinatorial relaxations.

2 Preliminaries

2.1 Mixed Polynomial Matrices and δk(A)’s

We define mixed polynomial matrices (see, e.g., [1]). In the definition below,
fields K and F express accurate and inaccurate numbers, respectively; the
coefficients of Qij(x) corresponding to fixed constants, and the coefficients
of Tij(x) to independent parameters.

Definition 1 (Mixed Polynomial Matrices) Let K be a subfield of a
field F . A polynomial matrix M(x) is called a mixed polynomial matrix
over (K,F) if M(x) can be represented as M(x) = Q(x)+T (x), where Q(x)
and T (x) satisfy the following conditions:

(MP-Q) Q(x) is a polynomial matrix over K.

(MP-T) T (x) is a polynomial matrix over F , and the set T of nonzero
coefficients of T (x) is algebraically independent over K.

2

A mixed polynomial matrix M(x) is called a layered mixed (LM) poly-
nomial matrix if it is in the form

M(x) =

[
Q(x)
T (x)

]
, (1)

where Q(x) and T (x) satisfies (MP-Q) and (MP-T).
Finding the maximum degree of minors in a mixed polynomial matrix

can be reduced to a corresponding problem on an LM polynomial matrix.
Let us start with an m × n mixed polynomial matrix Ã(x) = Q̃(x) + T̃ (x)
with R̃ and C̃ being the row-set and the column-set. Then, we can associate
Ã with an LM polynomial matrix

A(x) =

[
diag[xd1 , . . . , xdm] Q̃(x)

diag[t1x
d1 , . . . , tmx

dm] T̃ (x)

]
, (2)

where di := maxj∈C deg Q̃ij , and ti is a new parameter for all i ∈ R̃. We
define R and C as the row-set and column-set of A. We define δLMk (A) as
follows:

δLMk (A) := max
I⊆RT ,J⊆C

{deg detA[I ∪RQ, J] | |I| = |J | −m = k},

where RQ ⊆ R and RT ⊆ R denote the row-subsets corresponding to Q̃ and
T̃ . Then, δk(Ã) = δLMk (A)−

∑m
i=1 di holds [6], and the problem with δk(Ã)’s

reduces to δLMk (A)’s (r := rank Ã = rankA−m).

2.2 Valuated Bimatroid

A valuated bimatroid is a triple (R,C,w), where R and C are disjoint finite
sets and w : 2R × 2C → R ∪ {−∞} is a map satisfying a certain exchange
axiom (see, e.g., [7, 1]). We define Sk ⊆ 2R × 2C and δk ∈ R as follows:

Sk = {(I, J) | |I| = |J | = k, I ⊆ R, J ⊆ C},
δk = max{w(I, J) | (I, J) ∈ Sk}.

Proposition 1 ([7]) δk−1 + δk+1 ≤ 2δk holds for k = 1, 2, . . . , r − 1.

Mk denotes the set of the maximizers of w:

Mk = {(I, J) ∈ Sk | w(I, J) = δk}.

Proposition 2 ([7]) For any (Ik, Jk) ∈Mk with 1 ≤ k ≤ r− 1, there exist
(Il, Jl) ∈Ml (0 ≤ l ≤ r, l 6= k) such that Il−1 ⊆ Il and Jl−1 ⊆ Jl (1 ≤ l ≤ r).

It is known that
w(I, J) := deg det Ã[I, J] (3)

defines a valuated bimatroid [7, 1]. Therefore, {δk(Ã)}, as well as {δLMk (A)},
is a concave sequence by Proposition 1. Proposition 2 means that the max-
imizers of w have a nesting structure.

3

2.3 Combinatorial Relaxation of δLMk (A)

The description of this section is based on [5]. Let A(x) be an LM polynomial
matrix defined by (2). We define G(A) = (R ∪ C,E(A), c) as a bipartite
graph associated with A(x), where the arc set E(A) and the weight c :
E(A)→ Z are defined as follows:

E(A) := {(i, j) | i ∈ R, j ∈ C, Aij(x) 6= 0} , (4)

c(i, j) := degAij ((i, j) ∈ E(A)). (5)

For a matching M on the bipartite graph G(A), we define ∂+M :=
∂M ∩R and ∂−M := ∂M ∩C, where ∂M denotes the set of incident vertices
of M . Then, let δ̂LMk (A) be the weight of a maximum weight (m + k)-
matching M such that RQ ⊆ ∂+M in G(A), i.e.,

δ̂LMk (A) := max{
∑

e∈M c(e) |M : a matching in G(A),

|M | = m+ k, RQ ⊆ ∂+M}.

If there is no (m + k)-matching in G(A), we put δ̂LMk (A) = −∞. Then,

δ̂LMk (A)’s play the role of a combinatorial relaxation of δLMk (A)’s, and it

holds that δLMk (A) ≤ δ̂LMk (A) [2]. Moreover,

ŵ(I, J) :=

{
max{c(M) | ∂M = I ∪ J} (RQ ⊆ I)

−∞ (othewise)
,

as well as w(I, J) in (3), defines a valuated bimatroid. Therefore, Proposi-
tions 1 and 2 hold for ŵ.

We can test whether δLMk (A) = δ̂LMk (A) (which we call “tight”) holds or
not without knowing δLMk (A) itself by utilizing the duality of linear program-
ming as Proposition 3 below shows. The dual of the linear programming
problems associated with the weighted bipartite matching problem discussed
above is given as follows:

DLP(A, k) : min.
∑
i∈R

pi +
∑
j∈C

qj + (m+ k)t

s. t. pi + qj + t ≥ cij ((i, j) ∈ E(A)),

pi ≥ 0 (i ∈ RT), qj ≥ 0 (j ∈ C).

DLP(A, k) has an integral optimal solution, and the optimal value is equal
to δ̂LMk (A). For a feasible solution (p, q, t), we define the active rows I∗ ⊆ R,
the active columns J∗ ⊆ C, and the tight coefficient matrix A∗ as

I∗ = RQ ∪ {i ∈ RT | pi > 0} , J∗ = {j ∈ C | qj > 0} ,

A∗ij = lim
x→∞

x−pi−qj−tAij(x). (6)

4

Note that the right-hand side of (6) is a bounded constant because of pi +
qj + t ≥ cij = degAij , and that computing the rank of A∗ is relatively easy
(but it needs the algorithm for the rank of an LM matrix [1]).

Proposition 3 ([2]) Let (p, q, t) be an optimal dual solution. The following
three conditions are equivalent:

• δLMk (A) = δ̂LMk (A) holds;

• There exist I ⊇ I∗ and J ⊇ J∗ such that rankA∗[I, J] = |I| = |J | =
m+ k;

• The following four conditions hold:

(r1) rankA∗[R,C] ≥ m+ k,

(r2) rankA∗[I∗, C] = |I∗|,
(r3) rankA∗[R, J∗] = |J∗|,
(r4) rankA∗[I∗, J∗] ≥ |I∗|+ |J∗| − (m+ k).

3 Proposed Algorithm

In this section, we propose an algorithm to compute δLMk (A)’s for an LM
polynomial matrix A(x) defined by (2). For the sake of the algorithm de-
scription, let us here suppose that A(x) is a Laurent polynomial matrix.
Here, a rational function f is said to be a Laurent polynomial function if
there exists an integer N such that xNf(x) is a polynomial function (−ord f
denotes the minimum among such N ’s). We define

dmax = max
i,j

degAij , dmin = min
i,j

ordAij .

3.1 Theorems to Improve Efficiency

We show two theorems concerning tightness that form the basis of our al-
gorithm. These theorems can be proved similarly as the corresponding the-
orems in [4].

Theorem 1 Suppose that δLMk (A) = δ̂LMk (A) holds and (p, q, t) is a common
optimal dual solution of DLP(A, k) and DLP(A, k + 1). Then, δLMk+1(A) =

δ̂LMk+1(A) = δLMk (A) + t if and only if rankA∗ > m+ k, where A∗ is the tight
coefficient matrix defined by (6).

Theorem 1 allows us to check if δLMk+1(A) = δ̂LMk+1(A) by computing rankA∗

only. This value, r∗ := rankA∗, is always greater than or equal to m + k.
Furthermore, when r∗ > m+k+1, thanks to the next theorem, we obtain all
of δLMk+1(A), . . . , δLMr∗−m(A) at the same time, i.e., we can skip the computation

of δLMk+2(A), . . . , δLMr∗−m(A).

5

Theorem 2 Under the assumptions of Theorem 1 and m + k < r∗, the
following equalities and inequality hold:

δLMl (A) = δ̂LMl (A) = δLMk (A) + (l − k)t (k < l ≤ r∗ −m),

δLMl (A) < δLMk (A) + (l − k)t (k = r∗ −m+ 1).

3.2 The Outline of the Proposed Algorithm

The outline of the proposed algorithm is as follows.
Outline of the Proposed Algorithm

Step 0: Compute δLM0 (A) and set k := 0.

Step 1: Find a common optimal dual solution (p, q, t) of DLP(A, k) and
DLP(A, k + 1).

Step 2: Test for the tightness, i.e., whether δLMk+1(A) = δ̂LMk+1(A) or not, by
using (p, q, t) and the tight coefficient matrix A∗ (Theorem 1). If the
equality holds, go to Step 4. Otherwise, go to Step 3.

Step 3: Modify A(x) to A′(x) such that δ̂LMk+1(A
′) < δ̂LMk+1(A) and δLMk+1(A

′) =

δ̂LMk+1(A) hold, and go back to Step 1.

Step 4: Output δLMk+1(A), . . . , δLMr∗−m(A) (Theorem 2), update k := r∗ −m
and go back to Step 1.

For Step 0, the initialization, we define M0 as the unique matching on
submatrix diag[xd1 , . . . , xdm] of A, i.e., δLM0 (A) =

∑m
i=1 di. Then, we set

I∗0 := RQ, J
∗
0 := ∂−M0 and k = 0. The other steps are discussed in Sec-

tion 3.3–3.6.

3.3 Step 1: Construction of an Optimal Dual Solution

At every starting point of Step 1, the following conditions are satisfied as a
result of the last loop:

1. deg detA[I∗k , J
∗
k] =

∑
(i,j)∈Mk

degAij = δLMk (A);

2. RQ ⊆ I∗k = ∂+Mk, J
∗
k = ∂−Mk.

In actual computation, we do not need to store I∗k and J∗k because they can
be easily constructed from Mk. They are explicitly introduced here for a
better presentation.

An optimal dual solution (p, q, t) of DLP(A, k) can be constructed by
solving the shortest paths problem on the auxiliary graph GMk

(cf. [5]). In
this step, we can adopt “reweighting” using the newest optimal dual variable
(see, e.g., [8]).

6

3.4 Step 2: Test for Tightness

Lemma 1 is an immediate corollary of [4, Lemma 2].

Lemma 1 Let (p, q, t) be the optimal dual solution of DLP(A, k) obtained
in Step 1. Then, (p, q, t) is an optimal dual solution of DLP(A, k + 1).

Lemma 1 means that δ̂LMk+1(A) = δLMk (A) + t holds. Since δ̂LMk+1(A) ≥
δLMk+1(A) ≥ (m+k+1)dmin holds for all integer k < r, δ̂LMk+1(A) = δLMk (A)+t <
(m + k + 1)dmin implies k = r. Therefore, if t < (m + k + 1)dmin − δk(A)
holds, we can set rankA = m+ k and halt.

Since Lemma 1 means that (p, q, t) is a common optimal dual solution of
DLP(A, k) and DLP(A, k+ 1), we can adopt Theorem 1 instead of Proposi-
tion 3 to test for the tightness. Here, we need to compute the rank of an LM
matrix A∗. We execute a slightly different version of the algorithm stated
in [1] to ensure the property (1) of Theorem 3 below.

The rank of an LM matrix can be computed by solving the independent
matching problem on a bipartite graph G = (RT ∪ CQ, C;ET ∪ EQ), where
CQ denotes the copy of the column-set C and the sets of arcs are defined
as ET = {(i, j) | i ∈ RQ, j ∈ C,A∗ij 6= 0} and EQ = {(jQ, j) | j ∈ C}.
We can solve this problem by utilizing augmenting paths in auxiliary graph
GM = (V,E), where V = RT ∪CQ ∪C and E = ET ∪EQ ∪E+ ∪M◦. Here,
E+ expresses the structure of the linear matroid with respect to A∗[RQ, C].
The difference from [1] appears only in the step of initialization.

(i) We set

base[i] = j ((i, j) ∈Mk, i ∈ RQ),

M◦ = {(j, i) | (i, j) ∈Mk, i ∈ RT } ∪ {(j, jQ) | i ∈ RQ, base[i] = j}.

(ii) Then, we construct a constant matrix P by repeating the following
procedure for i = 1, 2, . . . ,m: we choose (i, j) ∈ Mk ∩ (RQ × C) in
descending order of pi, and conduct the row elimination for all rows
taking A∗ij as the pivot. At the end of the procedure, we obtain a
constant matrix P such that

P =
[
Im U

]
= SA∗[RQ, C] (7)

holds, where S is a nonsingular constant matrix which expresses the
row eliminations (U is a constant matrix created by the procedure).

After the procedure (i) and (ii), we execute the algorithm for the rank
of LM matrices [1]. At the end of this algorithm, P satisfies

rank

[
P

A∗[RT , C]

]
= term-rank

[
P

A∗[RT , C]

]
. (8)

where term-rankA is defined as the maximum matching on G(A) (see,
e.g., [1]).

7

3.5 Step 3: Matrix Modification

At the beginning of Step 3, the relation (8) holds and we have a constant
matrix S satisfying (7). Then, we define S̃(x) and S(x) as follows:

S̃(x) =

[
S(x) O
O I

]
= diag(x; pR)

[
S O
O I

]
diag(x;−pR).

We modify the matrix A(x) to A′(x) as follows:

A′(x) = S̃(x)A(x) =

[
S(x)A[RQ, C](x)
A[RT , C](x)

]
. (9)

This modification makes sense, as stated in Theorem 3.

Theorem 3 The matrix A′(x) defined in (9) has the following four proper-
ties:

(1) δLMl (A′) = δLMl (A) (l = 0, 1, . . . , r);

(2) deg detA′[I∗k , J
∗
k] = δLMk (A′);

(3) δ̂LMk (A′) = δLMk (A′);

(4) δ̂LMk+1(A
′) < δ̂LMk+1(A).

Proof (1) It is sufficient to show that S̃(x) is biproper. This claim holds
by costruction of S.

(2) By construction of A′, we obtain

deg detA′[RQ ∪ I∗k , J∗k] = deg detA[RQ ∪ I∗k , J∗k].

Since the right-hand side is equal to δLMk (A), this equality means that
the property (2) holds.

(3) An optimal solution (p, q, t) of DLP(A, k) is a feasible solution of
DLP(A′, k). Here, A∗ and A′∗ denote the tight coefficient matrices
of A and A′ with respect to (p, q, t). Then, the following equality
holds:

A′∗ =

[
S O
O I

]
A∗.

This means that term-rankA′∗[I∗k , J
∗
k] = m + k holds. Hence, by [5,

Lemma 5], (p, q, t) is an optimal solution of DLP(A′, k). Moreover, (8)
and Proposition 3 mean that δ̂LMk (A′) = δLMk (A′).

(4) We show term-rankA′∗[R,C] = rankA′∗[R,C] = m+ k in the discus-
sion above. Hence, (p, q, t) is not optimal in DLP (A′, k + 1) by [5,
Lemma 5]. 2

8

3.6 Step 4: Outputs and Updates

Recall that the task of Step 4 is to output δLMl (A)’s (l = k + 1, . . . , r∗ −m)
in view of Theorem 2, and then we go back to Step 1. But in order to start
the process of Step 1, we need the corresponding matching M = Mr∗−m
such that ∑

(i,j)∈M

degAij = deg detA[∂+M,∂−M] = δLMr∗−m(A)

holds. The key ingredient for obtaining this is the computation of I∗r∗−m =
∂+Mr∗−m and J∗r∗−m = ∂−Mr∗−m, which can be obtained simultaneously
in the calculation of rankA∗ described in section 3.4 as follows:

I∗r∗−m = ∂M◦ ∩R, J∗r∗−m = ∂M◦ ∩ C.

Then, Mr∗−m is an maximum weight bipartite matching on G = (I∗r∗−m ∪
J∗r∗−m, E, γ), where E = E(A) ∩ (I∗r∗−m × J∗r∗−m). We can obtain Mr∗−m
efficiently by augmenting paths.

4 Complexity Analysis

The time complexity of the proposed algorithm can be analyzed as The-
orem 4, along the same line of discussion in Iwata–Takamatsu [5]. This
theorem can be proved similarly as [4, Theorem 4].

Theorem 4 The proposed algorithm runs in O(dnr(n + m2 + dmω−1r))
time, where d := dmax − dmin.

This complexity of the proposed algorithm is almost the same as the
primitive one, which simply repeats the algorithm [5] for a specified order
(even a little bit worse than the primitive one in special cases). However,
since the step of modification is seldom executed [5, Proposition 1], the
time complexity of the computation for rankA∗ is crucial. As stated in
Proposition 4 below, The number of iterations of Step 2 is only (O(

√
dr)+s),

whereas the primitive one computes the rank 4(r+s) times, where s denotes
the number of modifications. Hence, the proposed algorithm might be faster
if d and s are sufficiently small.

Proposition 4 Let A(x) be an LM Laurent polynomial matrix defined as
(2). Then, the proposed algorithm executes Step 2 at most (f(d, r) + s)
times, where s denotes the number of modifications and f(d, r) is defined as
follows:

f(d, r) =

{⌊
−1+

√
8dr+1
2

⌋
(r ≥ 2d− 1)

r (r < 2d− 1)
. (10)

9

Proof If t denotes the number of iterations of Step 4, Step 2 is executed
(t+s) times. By the latter part of Theorem 2, t is same as the number of k’s
such that δLMk+1(A) − δLMk (A) 6= δLMk (A) − δLMk−1(A) holds, which is less than
f(d, r). Here, f(d, r) is upper bound of the maximum number of n({ak})
among {ak} ∈ Xr

d , where Xr
d ⊆ Zr+1 is the set of sequences {ak} such that

a0 = 0, ar ≥ 0 and ak+1−ak ≤ ak−ak−1 ≤ d (k = 1, . . . , r−1), and n({ak})
is the number of k’s such that ak+1 − ak 6= ak − ak−1. It can be shown by
simple calculation that f(d, r) plays the role of the upper bound. 2

Acknowledgements The author is grateful to Kazuo Murota for valu-
able comments.

References

[1] K. Murota, Matrices and Matroids for Systems Analysis. Springer,
Berlin, 2000.

[2] K. Murota, Combinatorial relaxation algorithm for the maximum de-
gree of subdeterminants: computing Smith–McMillan form at infinity
and structural indices in Kronecker form. Appl. Algebra Eng. Commun.
Comput., 6 (1995), 251–273.

[3] K. Murota, Computing Puiseux-series solutions to determinantal equa-
tions via combinatorial relaxation. SIAM J. Comput., 19 (1990), 1132–
1161.

[4] S. Sato, Combinatorial relaxation algorithm for the entire sequence of
the maximum degree of minors, METR2014-23 (2014), http://www.
keisu.t.u-tokyo.ac.jp/research/techrep/data/2014/METR14-23.pdf.

[5] S. Iwata and M. Takamatsu, Computing the maximum degree of mi-
nors in mixed polynomial matrices via combinatorial relaxation. Algo-
rithmica, 66 (2013), 346–368.

[6] K. Murota, On the degree of mixed polynomial matrices, SIAM J. Ma-
trix Anal. Appl., 20 (1999),196–227.

[7] K. Murota, Finding optimal minors of valuated bimatroids. Appl. Math.
Lett., 8 (1995), 37–42.

[8] N. Tomizawa, On some techniques useful for solution of transportation
network problems. Networks, 1 (1971), 173–194.

10

