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Abstract

In this note, we consider the problem of estimating poles of meromorphic functions from
function values at sample points on the complex plane. It is known that we can use rational
interpolation for this problem since poles of rational interpolants converge to those of interpo-
lated functions as the sample points increase. The aim of this note is to analyze the convergence
rates of the poles for arbitrary distributions of sample points, in order to provide criteria about
how to design sample points. The main result is that the convergence rates are bounded by a
value given by logarithmic potentials which depend on the distributions of sample points. In
particular, it is shown that, in some situations, equidistant sample points give better estimation
than Chebyshev points.

1 Introduction

We consider the problem of estimating poles of meromorphic function f from function values at
sample points. For this problem, it is known that a method using rational interpolation is applicable.
In this method, we compute polynomials p ∈ PM and q ∈ PN satisfying

f(sj) =
p(sj)

q(sj)
, j = 1, . . . ,M +N + 1 (1)

for M + N + 1 distinct sample points S := {sj}M+N+1
j=1 , where Pn is the set of polynomials of a

single indeterminate of degree at most n. We output the roots of q as the estimated poles of f . If
p ∈ PM and q ∈ PN satisfy (1), r(z) = p(z)

q(z) is called a rational interpolant of type (M,N) on S.
Rational interpolant must satisfy

f(sj)q(sj) = p(sj), j = 1, . . . ,M +N + 1, (2)

which follows from (1). Although rational interpolant does not always exist, if it exists, we can
compute it by solving (2) as a linear equation in coefficients of p and q. For more detail, see, for
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example, [1]. Recently, stable and fast algorithms of computing a rational interpolant have been
proposed based on the equation (2) [5, 8, 11].

In the context of the approximation of functions, the polynomial interpolation is used more often
than rational interpolation due to the stability and the efficiency. However, rational interpolation
has a potential advantage that it may behave better in the presence of singularities. In fact, the
poles of rational interpolants of a meromorphic function f converge to those of f even if the poles
of f are on and outside of the interpolating region [3, 9, 14]. Specifically, Saff [9] and Warner
[14] showed that rational functions interpolating meromorphic functions f with N poles behave
as follows when the degree M of the denominator of the rational functions is fixed to N and the
degree of the numerator is increased:

• There exists rational interpolants for sufficiently large M .

• The values of rational interpolants converge to those of f uniformly on some regions.

• The poles of rational interpolants converge to those of f .

More details are written in preliminaries. These results guarantee that a rational interpolant gives
estimation of poles of f . In this note, we consider convergence rates of the poles estimated by
rational interpolation.

Our approach is to use the logarithmic potential

U(z) = −
∫

log |z − t|dµ(t), (3)

where µ is the measure associated with the distribution of sample points. Such approach using
logarithmic potentials has been exploited by Gončarov [4] and Krylov [7] in order to analyze poly-
nomial interpolation on the real line. Davis [2] and Walsh [13] extended this approach to Hermite
interpolation problem. The above results about the convergence of rational interpolation by Saff
[9] and Warner [14] also depend on the logarithmic potentials. For more details about logarithmic
potentials, see, for example, [6, 10, 12].

This note is organized as follows. Section 2 introduces the definition and basic properties of the
logarithmic potential, and existing results about the convergence of rational interpolation. Section
3 presents the main result of this note, which states that the convergence rates of poles are bounded
by a value given by the logarithmic potential. Section 4 shows results of numerical experiments,
in which we compare Chebyshev sample points and equidistant sample points. In particular, it is
demonstrated that equidistant points may give better estimation than Chebyshev points.

2 Preliminaries

For natural numbers n, let S(n) = {s(n)
1 , . . . , s

(n)
n } ⊆ C denote n sample points. We assume that a

compact set E in the complex plane contains S(n) for all n. Define the elementary measures {µn}
on E associated with {S(n)} by

µn(B) =
1

n

n∑
j=1

χ(s
(n)
j ∈ B), (4)

2



where χ(P ) = 1 if P is true and 0 if P is false. We assume that there exists a measure µ on E such
that µn → µ in the weak∗ topology, i.e.,

lim
n→∞

∫
E
g(z)dµn(z) =

∫
E
g(z)dµ(z) (5)

for arbitrary continuous functions g on E. We call this measure µ the interpolation measure. Define
Un, U : C→ R ∪ {∞} by

Un(z) = −
∫
E

log |z − t|dµn(t), U(z) = −
∫
E

log |z − t|dµ(t). (6)

This Un and U have the following property.

Lemma 1.
(a) lim infn→∞ Un(z) ≥ U(z), uniformly on compact subsets of the complex plane.
(b) lim infn→∞ Un(z) = U(z), uniformly on compact subsets of C \ E.

The proof of this lemma can be found in, for example, [14].
Define Dρ to be the set of all complex numbers z satisfying U(z) > ρ. Saff [9] and Warner [14]

showed that rational interpolants for meromorphic functions have the following property.

Theorem 1 ([9, 14]). If f(z) is holomorphic on E and meromorphic on Dρ with precisely N poles
{ζ1, . . . , ζN} inside Dρ, then for all M sufficient large, there exist rational interpolants of f , of type
(M,N) on S(M+N+1), rMN (z) = pMN (z)/qMN (z). Moreover, the denominators, qMN (z) converge
to
∏N
k=1(z − ζk), uniformly on compact subsets of the complex plane, and the rational functions,

rMN (z), converge to f(z) uniformly on compact subsets of Dρ \ {ζ1, . . . , ζN}.

This theorem guarantees also that the roots of qMN approaches the poles ζ1, . . . , ζN of f . For

each k, we denote by ζ
(M)
k the root of qMN which converges to ζk.

3 Convergence rates of poles of rational interpolants

The main result of this note is as follows.

Theorem 2. If f(z) is holomorphic on E and meromorphic on Dρ with precisely N poles {ζ1, . . . , ζN},
inside Dρ, then the poles {ζ(M)

1 , . . . , ζ
(M)
N } of rational interpolants rMN satisfy

lim sup
M→∞

|ζ(M)
k − ζk|

1
M ≤ exp(ρ− U(ζk)) (7)

for k = 1, . . . , N .

In preparation for the proof of this theorem, we start with the following lemma.

Lemma 2. Suppose that p1 is a polynomial of degree at most n and p2 is a polynomial of degree
exactly n+ 2, where n is a natural number. If Γ is a simple closed curve enclosing all roots of p2,
it holds that ∫

Γ

p1(z)

p2(z)
dz = 0. (8)
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Proof. This follows from the fact that p1(z)
p2(z) is holomorphic on and outside Γ and its residue at the

infinity is 0.

In the following, we suppose that f satisfies the assumptions in Theorem 2. From this assump-
tions, there exists an open region Ω such that E ∪Dρ ⊆ Ω and f is holomorphic on Ω \ {ζk}. Let
ηk denote the residue of f at pole ζk.

Proposition 1. Under the assumptions in Theorem 2, we have

lim sup
M→∞

|qMN (ζk)|
1
M ≤ exp(ρ− U(ζk)), k = 1, . . . , N. (9)

Proof. Fix an arbitrary number R > ρ. Since the closure DR of DR is included in Dρ, it holds
that DR ∪ E ⊆ Ω, and hence, there exists a simple closed curve ΓR ⊆ Ω enclosing DR ∪ E. Define

Fn(z) =
∏n
j=1(z − s(n)

j ). First, we will show that∣∣∣∣∣
∫

ΓR

qMN (z)f(z)
∏N
k=2(z − ζk)

FM+N+1(z)
dz

∣∣∣∣∣ =

∣∣∣∣∣ 1

2πi

qMN (ζ1)η1
∏N
k=2(ζ1 − ζk)

FM+N+1(ζ1)

∣∣∣∣∣ . (10)

Since all singularities of the integrand of the left-hand side are on E except for ζ1, we have∫
ΓR

qMN (z)f(z)
∏N
k=2(z − ζk)

FM+N+1(z)
dz

=

∫
Γ

qMN (z)f(z)
∏N
k=2(z − ζk)

FM+N+1(z)
dz +

∫
Γ1

qMN (z)f(z)
∏N
k=2(z − ζk)

FM+N+1(z)
dz

=

∫
Γ

qMN (z)f(z)
∏N
k=2(z − ζk)

FM+N+1(z)
dz +

1

2πi

qMN (ζ1)η1
∏N
k=2(ζ1 − ζk)

FM+N+1(ζ1)
, (11)

where we take contours Γ and Γ1 as in Figure 1. Since pMN (z) = qMN (z)f(z) on all poles of the
integrand which are enclosed by Γ, we have∫

Γ

pMN (z)
∏N
k=2(z − ζk)

FM+N+1(z)
dz =

∫
Γ

qMN (z)f(z)
∏N
k=2(z − ζk)

FM+N+1(z)
dz = 0, (12)

where the second equality comes from Lemma 2. From (11) and (12), we have (10).
The equality (10) implies that there exists a constant C > 0 independent of M such that

C
supz∈ΓR

|qMN (z)|
infz∈ΓR

|FM+N+1(z)|
≥ |qMN (ζ1)|
|FM+N+1(ζ1)|

. (13)

Hence, we have

|qMN (ζ1)|
1
M ≤

∣∣∣∣∣C sup
z∈ΓR

|qMN (z)|

∣∣∣∣∣
1
M |FM (ζ1)|

1
M

(infz∈ΓR
|FM (z)|)

1
M

. (14)
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Figure 1: Contours Γ, ΓR, Γ1 (Γ encloses S(M) and does not enclose any pole of f).

From Theorem 1 we have

lim
M→∞

∣∣∣∣∣C sup
z∈ΓR

|qMN (z)|

∣∣∣∣∣
1
M

= 1.

Furthermore, since Lemma 1 gives

lim inf
M→∞

|FM (ζ1)|
1
M

(infz∈ΓR
|FM (z)|)

1
M

≤ exp(−U(ζ1))

infz∈ΓR
exp(−U(z))

≤ exp(R− U(ζ1)), (15)

we have lim infM→ |qMN (ζ1)|
1
M ≤ exp(R − U(ζ1)). Since this holds for arbitrary R > ρ, we have

(9).

(Proof of Theorem 2) From Proposition 1, we have

lim sup
M→∞

|ζ(M)
k − ζk|

1
M = lim sup

M→∞
|qMN (ζk)|

1
M

∣∣∣∣∣∣
∏

1≤l≤N,l 6=k
(ζk − ζ

(M)
l )

∣∣∣∣∣∣
− 1

M

≤ lim sup
M→∞

|qMN (ζk)|
1
M lim sup

M→∞

∣∣∣∣∣∣
∏

1≤l≤N,l 6=k
(ζk − ζ

(M)
l )

∣∣∣∣∣∣
− 1

M

= lim sup
M→∞

|qMN (ζk)|
1
M ≤ exp(ρ− U(ζk)).

for each k ∈ {1, . . . , N}. �

4 Numerical examples

In this section, we compute rational interpolation of meromorphic functions f on the real segment
[−1, 1] to see how the poles of rational interpolants behave. In particular, we compare the equidis-
tant sample points on [−1, 1] and Chebyshev points. In experiments, we used matlab(R2010b). We
solved the equation (2) in coefficients of pMN and qMN by using the singular value decomposition
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to compute rational interpolation. We applied roots command in Matlab to compute the roots of
qMN .

We used ζk, µk shown in Table 1 to define a rational function

f(z) =
20∑
k=1

µk
z − ζk

. (16)

The real parts and imaginary parts of µk, ζk were samples drawn from the normal distribution with
mean 0 and standard deviation 1. For the potential U1 given by Chebyshev sample points, we
ordered ζk so that {U1(ζk)} made a monotonically decreasing sequence:

U1(ζ1) > U1(ζ2) > · · · > U1(ζ20). (17)

Theorem 2 implies that, for N < 20, the poles (ζ
(M)
1 , . . . , ζ

(M)
N ) of rational interpolants of type

(M,N) converge to ζ1, . . . , ζN with the convergence rates at most exp(U(ζN+1) − U(ζk)) for k =
1, . . . , N , respectively, when we use Chebyshev sample points. For the potential U2 given by
equidistant sample points, ζ1, . . . , ζ5 satisfy U2(ζ1) > U2(ζ2) > · · · > U2(ζ5) and U2(ζ5) is greater
than the potential values at any other poles.

We chose N = 5 and used Chebyshev sample points and equidistant sample points. Figure 2
shows the results of pole estimation. Curves in figures are level curves of the associated logarithmic
potential. We can see that this method finds poles with largest potential. In this example, Cheby-
shev sample points give poorer estimation. Theorem 2 explains the reason for this phenomenon:
the 5th largest potential at poles is close to the 6th. Figure 3 shows convergence rates of estimated
poles for ζ1 and ζ5. The straight lines in the figure shows the theoretical curve associated with
the upper bounds of the convergence rate which are derived from Theorem 2. In this situation,
equidistant sample points give better convergence rates. For M sufficiently large, both sample
points provide much the same accuracy in pole estimation.

Figures 4 and 5 show the results of pole estimation for the same function f for N = 6. Con-
vergence rates differ from that for N = 5 since parameter r in Theorem 2 can be smaller for
N = 6.

We also applied the same method to hyperbolic tangent function f(z) = tanh(z), which is a
meromorphic function with poles

ζ1 =
πi

2
, ζ2 = −πi

2
, ζ3 =

3πi

2
, ζ4 = −3πi

2
, ζ5 =

5πi

2
, . . . .

For Chebyshev sample points and equidistant sample points, {ζk} satisfies

U(ζ1) = U(ζ2) > U(ζ3) = U(ζ4) > U(ζ5) = U(ζ6) > · · · .

Hence, if N is an even number, the poles (ζ
(M)
1 , . . . , ζ

(M)
N ) of rational interpolants of type (M,N)

converge to ζ1, . . . , ζN with the convergence rates at most exp(U(ζN+1)− U(ζk)) for k = 1, . . . , N ,
respectively. Figures 6 and 7 show the results of pole estimation for tanh function, where we set
N = 2. In this situation, Chebyshev sample points and equidistant sample points provide much the
same accuracy. The reason is that the two logarithmic potentials behave similarly on regions far
from sample points. It is observed that the estimation errors increase for too large M , presumably
due to numerical error.
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Table 1: The poles and residues randomly generated for this experiment. U1 and U2 are the
logarithmic potentials associated with Chebyshev sample points and equidistant sample points,
respectively.

k ζk µk U1(ζk) U2(ζk)

1 0.1873 · · · + 0.1240 · · · i 0.0335 · · · − 0.1332 · · · i 0.5672 · · · 0.7954 · · ·
2 −0.4390 · · · − 0.1977 · · · i 0.3502 · · · − 0.2248 · · · i 0.4760 · · · 0.6136 · · ·
3 −0.6003 · · · − 0.2725 · · · i −0.9792 · · · + 0.3075 · · · i 0.3674 · · · 0.4340 · · ·
4 0.7394 · · · − 0.2779 · · · i −0.5336 · · · − 0.8655 · · · i 0.3180 · · · 0.3325 · · ·
5 0.3035 · · · − 0.4686 · · · i −0.8314 · · · + 1.6555 · · · i 0.2235 · · · 0.3321 · · ·
6 −1.1658 · · · − 0.1941 · · · i −2.0518 · · · + 0.9642 · · · i 0.0488 · · · −0.0296 · · ·
7 0.1049 · · · − 0.8396 · · · i −0.8236 · · · − 0.0200 · · · i −0.0722 · · · −0.0024 · · ·
8 −0.8880 · · · + 0.8252 · · · i −0.2620 · · · − 0.8479 · · · i −0.2199 · · · −0.2060 · · ·
9 −0.6669 · · · + 0.9609 · · · i 0.2820 · · · + 1.0187 · · · i −0.2425 · · · −0.2120 · · ·
10 −0.5445 · · · − 1.0582 · · · i −0.2857 · · · + 2.5260 · · · i −0.2801 · · · −0.2449 · · ·
11 0.4900 · · · + 1.0984 · · · i −1.1564 · · · − 1.2571 · · · i −0.2966 · · · −0.2601 · · ·
12 0.1001 · · · + 1.3790 · · · i −1.7502 · · · − 1.1201 · · · i −0.4340 · · · −0.3996 · · ·
13 −0.0825 · · · + 1.4367 · · · i −1.3337 · · · − 0.7145 · · · i −0.4669 · · · −0.4346 · · ·
14 0.7222 · · · + 1.3546 · · · i −1.5771 · · · − 0.0348 · · · i −0.4910 · · · −0.4700 · · ·
15 0.2157 · · · + 1.7119 · · · i 0.7015 · · · − 2.0026 · · · i −0.6188 · · · −0.5953 · · ·
16 −1.7947 · · · − 1.2078 · · · i −0.2991 · · · − 0.5890 · · · i −0.7550 · · · −0.7601 · · ·
17 −1.1480 · · · − 2.1384 · · · i −0.3539 · · · + 0.5201 · · · i −0.9110 · · · −0.9028 · · ·
18 2.5855 · · · − 1.0722 · · · i 0.5080 · · · − 0.7982 · · · i −1.0068 · · · −1.0143 · · ·
19 −1.9330 · · · − 1.9609 · · · i 1.1275 · · · + 1.3514 · · · i −1.0150 · · · −1.0140 · · ·
20 0.8404 · · · + 2.9080 · · · i 0.0229 · · · − 0.2938 · · · i −1.1302 · · · −1.1227 · · ·

5 Conclusion

In this note, we considered the convergence of poles of rational interpolants for meromorphic func-
tions. We established an upper bound of the convergence rates of the poles by using logarithmic
potentials. This result will be useful in designing sample points for pole estimation.

A possible future work is to develop a method of designing sample points for pole estimation. In
order to do this, it will be necessary to investigate the relation between sample points and numerical
errors in rational interpolation.
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Figure 2: Pole estimation with M = 24, N = 5.
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derived from Theorem 2.
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Figure 4: Pole estimation with M = 23, N = 6.
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Figure 5: Convergence rates of pole estimation with N = 6. Straight lines are theoretical curves
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Figure 6: Pole estimation with M = 10, N = 2 for tanh function.
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