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A POLYNOMIAL-TIME ALGORITHM
FOR NONCONVEX QUADRATIC OPTIMIZATION

WITH TWO QUADRATIC CONSTRAINTS ∗

SHINSAKU SAKAUE , YUJI NAKATSUKASA , AKIKO TAKEDA , AND SATORU IWATA†

Abstract. We consider solving a nonconvex quadratic minimization problem with two quadratic
constraints (2QCQP), one of which being convex. This problem includes the Celis-Denis-Tapia
(CDT) problem as a special case. The CDT problem has been widely studied, but no polynomial-
time algorithm was known until Bienstock’s recent work. His algorithm solves the CDT problem in
polynomial time with respect to the number of bits in data and log ε−1 by admitting an ε error in
the constraints. The algorithm, however, appears to be difficult to implement.

In this paper, we present a polynomial-time algorithm to solve 2QCQP exactly. Our algorithm is
based on the one proposed by Iwata, Nakatsukasa and Takeda (2014) for computing the signed dis-
tance between overlapping ellipsoids. Our algorithm computes all the Lagrange multipliers of 2QCQP
by solving a two-parameter linear eigenvalue problem, obtains the corresponding KKT points, and
finds a global solution as the KKT point with the smallest objective value. The computational
complexity of the algorithm is O(n6), where n is the number of variables.

Key words. quadratically constrained quadratic programming, nonconvex optimization, Celis-
Dennis-Tapia problem, two-parameter eigenvalue problem

AMS subject classifications. 49M37, 65K05, 90C25, 90C30

1. Introduction. In this paper, we consider solving the quadratic minimization
problem with two quadratic constraints (2QCQP):

minimize
x

f(x) = x>Q0x+ 2q>0 x+ γ0(1.1)

subject to gi(x) = x>Qix+ 2q>i x+ γi ≤ 0 (i = 1, 2)(1.2)

where Qi ∈ Rn×n is symmetric, qi ∈ Rn, and γi ∈ R for each i = 0, 1, 2. We assume
that Q1 is positive definite; we also make other minor assumptions as summarized in
Section 2.1.

2QCQP includes the Celis-Dennis-Tapia (CDT) problem, which minimizes a non-
convex quadratic function over the intersection of two ellipsoids, as a special case
where Q1 is positive definite and Q2 is positive semidefinite. The CDT problem was
proposed by Celis, Dennis and Tapia [8] as a natural extension of the trust region sub-
problem (TRS), which has only one ellipsoidal constraint. Though TRS is nonconvex
since Q0 in the objective function is indefinite, its Lagrangian dual gives an exact
semidefinite programming (SDP) reformulation of TRS [21]; an optimal solution for
TRS can be obtained from an optimal solution of the polynomial-time solvable SDP
problem. Moreover, the polynomial solvability property is extended by Sturm and
Zhang [22] to the case of a single nonconvex quadratic constraint by proving that the
Lagrangian dual of a quadratic minimization problem with one quadratic constraint
is also tight.

The additional constraint makes the CDT problem substantially more challenging
than TRS. The CDT problem can have a duality gap in general (see, e.g., [19]).
Ai and Zhang [1] derived easily verifiable conditions to characterize when the CDT
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problem has no duality gap, which is equivalent to when the SDP relaxation of the
CDT problem is tight since the Lagrangian dual problem coincides with the SDP
relaxation (see [18]). They also proved that the SDP relaxation is tight if and only
if the Hessian of the Lagrangian is positive semidefinite at a global solution: a fact
that we use in Section 6 to analyze numerical results. In addition, various properties
of the CDT problem have been studied, e.g., necessary and sufficient conditions for
the optimality of the CDT problem [6, 19] and the location of Lagrangian multipliers
corresponding to a local minimizer [9].

Li and Yuan [16] proposed an algorithm that finds a global solution for the CDT
problem with no duality gap, i.e., if the Hessian of the Lagrangian is positive semidefi-
nite at a global solution. As Yuan [25] proved, however, it is possible that the Hessian
of the Lagrangian in the CDT problem has one negative eigenvalue at a global solu-
tion, which means that Li and Yuan’s algorithm does not always find a global solution.
Burer and Anstreicher [7] provided a tighter relaxation problem by adding second-
order cone constraints to the usual SDP relaxation, but the resulting problem still has
a relaxation gap. Yang and Burer [24] reformulated the special case of the CDT prob-
lem with two variables into an exact SDP formulation by adding valid constraints. In
general, however, the complexity of the CDT problem had been open for a long time
until Bienstock [5] recently proved its polynomial-time solvability.

Bienstock’s proof in fact provides a polynomial-time algorithm for general quadratic
optimization problems with an arbitrary fixed number of quadratic constraints. His
algorithm makes a sequence of calls to a polynomial-time feasibility algorithm based
on Barvinok’s construction [3]; the length of the sequence is polynomial in the num-
ber of bits in the data and log ε−1. The algorithm returns an ε-feasible solution, that
is, a solution guaranteed to satisfy the relaxed constraints: x>Qix + 2q>i x + γi ≤ ε.
Unfortunately, however, Bienstock’s polynomial-time algorithm does not appear to
be very practical, because the polynomial-time feasibility algorithm looks difficult to
implement.

In this paper, we provide a polynomial-time algorithm for a generalization, 2QCQP,
of the CDT problem. To the best of our knowledge, no polynomial-time algorithm has
been implemented and used to solve large-scale problems. An efficient CDT algorithm
also provides an efficient algorithm for equality constrained optimization, since solving
a sequence of CDT problems is required in the Powell-Yuan trust-region algorithm
[20] for equality constrained optimization.

Our algorithm is based on the one developed in [13] for computing the signed
distance between overlapping ellipsoids via solving a special case of 2QCQP. We gen-
eralize the algorithm to solve 2QCQP. The approach is to find the Lagrange multipliers
of 2QCQP from the Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions of
2QCQP result in rational equations of Lagrange multipliers. We convert the rational
equations into polynomial equations by constructing certain bivariate matrix pencils
whose zeros of determinants are the zeros of the rational equations. This reduces
the problem to a two-parameter linear eigenvalue problem, which can be solved via a
single-parameter linear eigenvalue problem of large (squared) size, for which reliable
algorithms are available. As we shall see, in nongeneric cases our algorithm encounters
singular matrix pencils, and we also discuss how to handle such issues. The overall
computational complexity of our algorithm for 2QCQP is O(n6).

This paper is organized as follows. In Section 2, we derive the KKT conditions of
2QCQP and express them as two generalized eigenvalue problems and a two-parameter
linear eigenvalue problem with certain polynomial matrix pencils, whose solutions
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include the Lagrange multipliers. Section 3 discusses the solution method of the two-
parameter eigenvalue problem and show that our algorithm works in generic cases. In
Section 4, we analyze the case in which our algorithm faces difficulty and describe how
to handle such a case by employing certain preprocessing techniques. In Section 5, we
summarize our algorithm and show that our algorithm solves 2QCQP in O(n6) time.
Finally, in Section 6, we present numerical experiments to demonstrate the practical
performance of our algorithm.

Notation. Throughout this paper, we denote a zero vector in Rk by 0k, or just
by 0 when the dimension is clear. The unit matrix of size k is denoted by Ik. For a
pair of symmetric matrices X and Y , we write X � Y if X − Y is positive definite
and X � Y if X − Y is positive semidefinite.

2. Finding the KKT points.

2.1. Assumptions. We impose the following two assumptions throughout this
paper.

Assumption 2.1. The symmetric matrix Q1 is positive definite.
Assumption 2.1 enables us to check the feasibility of 2QCQP. Since Q1 � O, Q1

is nonsingular and the constraint g1(x) ≤ 0 can be written as

(x+Q−11 q1)>Q1(x+Q−11 q1) ≤ q>1 Q−11 q1 − γ1.

Therefore, notingQ1 � O, 2QCQP is infeasible if q>1 Q
−1
1 q1−γ1 < 0. If q>1 Q

−1
1 q1−γ1 =

0, the only possible solution is x = −Q−11 q1 and we check whether g2(−Q−11 q1) ≤ 0
holds or not. If q>1 Q

−1
1 q1 − γ1 > 0, we see the constraint g1(x) ≤ 0 is strictly feasible

(i.e., ∃x̂ satisfying g1(x̂) < 0). We then check the feasibility of 2QCQP by solving the
Lagrangian dual of

minimize
x

g2(x)(2.1)

subject to g1(x) ≤ 0,

which can be formulated as the following SDP with dual variables µ1, µ2:

maximize
µ1,µ2

µ2(2.2)

subject to µ1

[
γ1 q>1
q1 Q1

]
− µ2

[
1 0>n
0n O

]
� −

[
γ2 q>2
q2 Q2

]

µ1 ≥ 0.

Under the condition that g1(x) ≤ 0 is strictly feasible, there is no duality gap (see [22])
and the optimal value of (2.1) can be obtained by solving its dual problem, SDP (2.2).
If the optimal value is positive, then the original problem 2QCQP is infeasible. In this
way, we could check whether 2QCQP is feasible or not if Q1 � O. Furthermore, as we
see above, if g1(x) ≤ 0 is not strictly feasible, 2QCQP is trivial, i.e., the only possible
solution is x = −Q−11 q1. Therefore, throughout the following discussion, we consider
2QCQP such that the constraint g1(x) ≤ 0 is strictly feasible. Assumption 2.1 also
ensures that the optimal value of a feasible 2QCQP is bounded by the Weierstrass
extreme value theorem. In Appendix A we derive an explicit lower bound of the
optimal value. Furthermore, we use the nonsingularity of Q1 in theoretical analysis
of our proposed algorithm.
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Assumption 2.2. The linear independence constraint qualification (LICQ) holds
on the intersection of the boundaries of two constraints, i.e., ∇g1(x̄) and ∇g2(x̄) are
linearly independent for every x̄ satisfying g1(x̄) = g2(x̄) = 0.

Assumption 2.2 requires that if both constraints are active at x̄, the gradients
∇g1(x̄) = 2(Q1x̄ + q1) and ∇g2(x̄) = 2(Q2x̄ + q2) are linearly independent. Some
constraint qualification (CQ) such as LICQ or Mangasarian-Fromovitz CQ is necessary
to ensure that the Karush-Kuhn-Tucher (KKT) conditions are necessary optimality
conditions for 2QCQP. The LICQ is known to be the weakest CQ that guarantees
the existence and uniqueness of Lagrange multipliers (see [23]). Nonetheless, this
assumption can be relaxed if necessary: we discuss later in Appendix B how to find
local solutions that violate Assumption 2.2, i.e., the LICQ, by using the Karush-John
(sometimes called the Fritz John) optimality conditions.

2.2. The KKT conditions for the problem. As discussed above, we focus on
the case where 2QCQP has an optimal solution. Under Assumption 2.2, if x ∈ Rn is a
local solution of 2QCQP, then there exists a pair of Lagrange multipliers (λ1, λ2) ∈ R2

satisfying the KKT conditions:

H(λ1, λ2)x = y,(2.3)

x>Qix+ 2q>i x+ γi ≤ 0 (i = 1, 2),(2.4)

λi
(
x>Qix+ 2q>i x+ γi

)
= 0 (i = 1, 2),(2.5)

λi ≥ 0 (i = 1, 2),(2.6)

where

(2.7) H(λ1, λ2) := Q0 + λ1Q1 + λ2Q2

and

(2.8) y := −(q0 + λ1q1 + λ2q2).

We note that just like H(λ1, λ2), the vector y depends on λ1 and λ2, but for notational
simplicity we just write y in what follows. We also remark that the matrix H(λ1, λ2)
is the Hessian of the Lagrangian.

2.3. Formulation as a pair of bivariate matrix equations. The variable x
satisfying (2.3) can be expressed in terms of λ1, λ2. By substituting such x into (2.5),
we obtain two bivariate rational equations with respect to λ1, λ2 of the form

(2.9) λiy
>H(λ1, λ2)−1QiH(λ1, λ2)−1y + 2q>i H(λ1, λ2)−1y + γi = 0, i = 1, 2.

These can be reduced to a pair of bivariate polynomial equations if the numerator and
denominator polynomials in (2.9) are known explicitly, but since this is not the case,
solving (2.9) for λ1, λ2 is challenging. Instead, we formulate a pair of matrix equations
that provide appropriate multipliers: we introduce a pair of matrices M1(λ1, λ2) and
M2(λ1, λ2) defined by

(2.10) Mi(λ1, λ2) :=




Qi −H(λ1, λ2) qi
−H(λ1, λ2) O y

q>i y> γi


 (i = 1, 2).

Lemma 2.1. For every x that satisfies the KKT conditions (2.3)–(2.6) with La-
grange multipliers λ1 and λ2, we have λi detMi(λ1, λ2) = 0 (i = 1, 2).
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Proof. By equation (2.3), y must belong to ImH(λ1, λ2). Therefore, if H(λ1, λ2)
is singular, we have rank

[
−H(λ1, λ2) y

]
< n, which implies that Mi(λ1, λ2) is

singular. Therefore, we obtain λi detMi(λ1, λ2) = 0.
Now suppose thatH(λ1, λ2) is nonsingular. For the computation of detMi(λ1, λ2),

we use the Schur complement of Mi(λ1, λ2) with respect to

Ai :=

[
Qi −H(λ1, λ2)

−H(λ1, λ2) O

]
.

Since

A−1i =

[
O −H(λ1, λ2)−1

−H(λ1, λ2)−1 −H(λ1, λ2)−1QiH(λ1, λ2)−1

]
,

we have

detMi(λ1, λ2) = (−1)n detH(λ1, λ2)2×
(
γi + q>i H(λ1, λ2)−1y + y>H(λ1, λ2)−1QiH(λ1, λ2)−1y

)
.

Thus, using (2.3) for the above equation, we obtain

(2.11) detMi(λ1, λ2) = (−1)n detH(λ1, λ2)2
(
x>Qix+ 2q>i x+ γi

)
.

It then follows from (2.5) that λi detMi(λ1, λ2) = 0.

Lemma 2.1 suggests computing all possible pairs of Lagrange multipliers λ1 and
λ2 for the KKT points by solving the bivariate determinantal equations

(2.12) λ1 detM1(λ1, λ2) = λ2 detM2(λ1, λ2) = 0.

We will discuss how to solve (2.12) in Sections 2.4 and 3. Note that not all solutions
(λ1, λ2) for (2.12) are Lagrange multipliers for our 2QCQP, but as long as the number
of solutions is finite, we can find the 2QCQP solution via checking the feasibility and
comparing the objective values.

For each pair of nonnegative multipliers λ1 and λ2 thus obtained, one can compute
x by solving the linear equation (2.3). If H(λ1, λ2) is nonsingular, then the vectors
x are uniquely determined, and they naturally satisfy the feasibility conditions (1.2).
If H(λ1, λ2) is singular, we select a solution that satisfies (1.2) among all solutions of
(2.3) and verify that (2.5) holds. Specifically, let H0 ∈ Rn×r be a basis for the null
space of H(λ1, λ2) with rank (H0) = r and v be an arbitrary vector in Rr. Then,
solutions of (2.3) can be written as x∗ +H0v where x∗ is any vector satisfying (2.3);
for example the least-squares solution. If x∗ +H0v satisfies the KKT conditions, the
objective function can be written without v as follows:

f(x∗ +H0v) = f(x∗ +H0v) + λ1g1(x∗ +H0v) + λ2g2(x∗ +H0v)

= (x∗ +H0v)>H(λ1, λ2)(x∗ +H0v)− 2y>(x∗ +H0v) + γ0 + γ1 + γ2.

= x>∗ H(λ1, λ2)x∗ + x>∗ H(λ1, λ2)H0v − 2y>(x∗ +H0v) + γ0 + γ1 + γ2.

= x>∗ H(λ1, λ2)x∗ − 2y>x∗ + 2(x>∗ H(λ1, λ2)− y>)H0v + γ0 + γ1 + γ2

= x>∗ H(λ1, λ2)x∗ − 2y>x∗ + γ0 + γ1 + γ2.

This means that the objective function values are the same for all v such that x∗+H0v
satisfies the KKT conditions. Therefore, by selecting such v, we obtain one of the
global solutions. We discuss how to obtain such v in Appendix C.
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2.4. Three cases of (λ1, λ2) for the determinantal equations. We rewrite
Mi(λ1, λ2) defined by (2.10) in the following matrix polynomial form:

(2.13) Mi(λ1, λ2) = Ci + λ1D1 + λ2D2

where

(2.14) Ci :=



Qi −Q0 qi
−Q0 O −q0
q>i −q>0 γi


 , Di :=



O −Qi 0n
−Qi O −qi
0>n −q>i 0


 (i = 1, 2).

To obtain all the solutions of (2.12), we now separately consider three cases of
(λ1, λ2) depending on whether λ1, λ2 are zero or not.

1. The pair of zero multipliers (λ1, λ2) = (0, 0) satisfies (2.12). Therefore, we
have (λ1, λ2) = (0, 0) as one of the solutions of (2.12).

2. Exactly one of λ1 or λ2 is nonzero. If λ1 6= 0 and λ2 = 0, (2.12) can be
written as

(2.15) detM1(λ1, 0) = det(C1 + λ1D1) = 0.

This can be solved for λ1 as a linear generalized eigenvalue problem. Similarly,
if λ1 = 0 and λ2 6= 0, we obtain the values of λ2 corresponding to λ1 = 0 by
solving

(2.16) detM2(0, λ2) = det(C2 + λ2D2) = 0.

In some rare cases, M1(λ1, 0) or M2(0, λ2) is a singular matrix pencil (e.g.,
detM1(λ1, 0) = 0 for all λ1) and (2.15) or (2.16) has infinitely many solutions.
We deal with this case by slightly perturbing some of the matrices so that the
matrix pencils M1(λ1, 0) and M2(0, λ2) become regular. Details are described
in Section 4.

3. λ1λ2 6= 0. Then (2.12) is equivalent to the bivariate determinantal equations
expressed as

detM1(λ1, λ2) = detM2(λ1, λ2) = 0.(2.17)

We will discuss in detail how to solve (2.17) in Section 3.

3. Solving the bivariate determinantal equations. From (2.13), we see that
(2.17) is a two-parameter eigenvalue problem expressed as

det(C1 + λ1D1 + λ2D2) = 0,(3.1)

det(C2 + λ1D1 + λ2D2) = 0.(3.2)

We now discuss how to solve this system of equations for λ1 and λ2.

3.1. Reduction to univariate linear eigenvalue problems. The (2n+ 1)×
(2n+1) two-parameter eigenvalue problem (3.1), (3.2) can be solved via the following
(2n+ 1)2 × (2n+ 1)2 linear generalized eigenvalue problems:

detB(λ1) = det ((D2 ⊗ C1 − C2 ⊗D2) + λ1(D2 ⊗D1 −D1 ⊗D2)) = 0,(3.3)

detB(λ2) = det ((C1 ⊗D1 −D1 ⊗ C2) + λ2(D2 ⊗D1 −D1 ⊗D2)) = 0.(3.4)
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This is a standard process of solving two-parameter eigenvalue problems [2]. As we
discuss later, the matrices B(λ1), B(λ2) are the Bézout matrices [15].

Suppose v1 and v2 are nonzero eigenvectors of M1(λ1, λ2) and M2(λ1, λ2) at the
eigenvalue (λ1, λ2) respectively, i.e., M1(λ1, λ2)v1 = M2(λ1, λ2)v2 = 0, then v1 ⊗ v2
is a common eigenvector of B(λ1) and B(λ2) (see, e.g., [2]). Therefore, if the matrix
pencil B(λ2) is regular, we obtain the solutions (λ1, λ2) of (2.17) as follows: we
solve (3.4) to obtain all candidates of λ2 satisfying (2.17), which has finitely many
solutions λ2 if B(λ2) is regular. Then we solve the pair of ordinary eigenvalue problems

detM1(λ1, λ̂2) = detM2(λ1, λ̂2) = 0 among the positive λ̂2 thus obtained to get the
corresponding λ1, if any. If these determinantal equations have a common solution
λ1, we have (λ1, λ2) as a solution of (2.17) (alternatively, we can start from finding
λ1 by solving (3.3)). There is a minor issue here: it turns out that B(λ2) has null
space independent of the value of λ2 and therefore (3.4) has infinitely many solutions.
In Section 3.3 we discuss how to overcome this issue by removing the null space of
B(λ2).

3.2. Connections with Bézoutians. We now mention a connection of the
above process to Bézoutians, which we also use later. In fact, forming B(λ1), B(λ2)
in (3.3), (3.4) from M1,M2 is equivalent to taking the Bézoutian for the two matrix
polynomials I2n+1⊗M1(λ1, λ2) and M2(λ1, λ2)⊗ I2n+1, which are of size (2n+ 1)2×
(2n + 1)2. Here the Kronecker products are taken to achieve commutativity, which
facilitate the formulation of the Bézoutian for matrix polynomials [15].

Two matrix polynomials P1 and P2 are said to commute if P1(ξ)P2(ξ) = P2(ξ)P1(ξ)
holds for every value of ξ. The Bézoutian for commuting regular matrix polynomials
P1, P2 of size n× n and degree k is defined by the bivariate matrix polynomial

(3.5) B(s, t) =
P1(s)P2(t)− P2(s)P1(t)

s− t
=

k−1,k−1∑

i,j=0

Bijs
itj

in s and t. Here Bij is the n× n coefficient matrix corresponding to the term sitj in
B(s, t). Then the block symmetric nk × nk matrix

B =



B0,0 · · · B0,k−1

...
. . .

...
Bk−1,0 · · · Bk−1,k−1




is called the Bézout matrix.
Lemma 3.1 ([15, Theorem 1.1]). Suppose that P1 and P2 are regular matrix

polynomials, i.e., detP1(ξ1) 6= 0 and detP2(ξ2) 6= 0 for some ξ1 and ξ2. Then, the
Bézout matrix B is singular if and only if P1 and P2 share an eigenpair (ξ, v), i.e., a
scalar ξ and a vector v 6= 0 such that P1(ξ)v = P2(ξ)v = 0.

More generally, the null space of the Bézoutian is related to the so-called common
restriction [10, 15] (this fact is not needed for what follows).

According to the definition, for any fixed λ2, the Bézout matrix between P1(λ1) :=
M2(λ1, λ2)⊗ I2n+1 and P2(λ1) := I2n+1 ⊗M1(λ1, λ2) can be written as

(C1 + λ2D2)⊗D1 −D1 ⊗ (C2 + λ2D2),

which is equivalent to B(λ2) in (3.4). Lemma 3.1 suggests that we can find the λ2-
values for the solution of detM1(λ1, λ2) = detM2(λ1, λ2) = 0 by computing the values
of λ2 for which detB(λ2) = 0. The discussion for B(λ1) is completely analogous.
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3.3. Removing the null space of the Bézout matrix. As discussed above,
the solutions of (2.17) can be obtained via solving detB(λ2) = 0 if B(λ2) is a regular
matrix pencil. However, as we show below, B(λ2) has nonempty null space indepen-
dent of the value of λ2. We now describe how to remove the null space of B(λ2)
to obtain a regular matrix pencil so that the number of solutions computed from
detB(λ2) = 0 is finite.

Since Q1 is positive definite by Assumption 2.1, Q1 is nonsingular. Then we see
that D1 has the null vector

(3.6) v =
[
Q−11 q1 0>n −1

]>

since

(3.7) D1v =



O −Q1 0n
−Q1 O −q1
0>n −q>1 0





Q−11 q1

0n
−1


 =




0n
0n
0


 .

Therefore, for every fixed λ2, both M1(∞, λ2) and M2(∞, λ2) have v as a null vector.
This means the Bézout matrix B(λ2) has a null vector

(3.8) w :=
v ⊗ v
‖v‖2

for every λ2. In order to obtain a regular matrix pencil from B(λ2) that retains the
relevant information, we “project out” the null vector.

First, we show that the null vector v is not the common eigenvector of M1 and
M2. This means the projection process described later does not spoil the solvability
of (2.17).

Lemma 3.2. The vector v in (3.6) is not a common eigenvector of M1 and M2,
i.e., M1(λ1, λ2)v = M2(λ1, λ2)v = 0 does not hold for any finite pair (λ1, λ2).

Proof. Recall that we only need to consider the case where the constraint g1(x) ≤
0 is strictly feasible in addition to Q1 � O by Assumption 2.1. We now suppose to
the contrary that M1v = M2v = 0 holds with eigenvalues (λ1, λ2). Recalling (2.13)
and using D1v = 0, we express these equations as

(C1 + λ2D2)v = (C2 + λ2D2)v = 0

⇐⇒





Q2Q
−1
1 q1 − q2 = 0,

Q0Q
−1
1 q1 − q0 + λ2(Q2Q

−1
1 q1 − q2) = 0,

q>1 Q
−1
1 q1 − γ1 = q>2 Q

−1
1 q1 − γ2 = 0

⇐⇒

{
Q0Q

−1
1 q1 − q0 = Q2Q

−1
1 q1 − q2 = 0,

q>1 Q
−1
1 q1 − γ1 = q>2 Q

−1
1 q1 − γ2 = 0.

Using the third equality we obtain

g1(x) ≤ 0 ⇐⇒ (x+Q−11 q1)>Q1(x+Q−11 q1)− q>1 Q−11 q1 + γ1 ≤ 0

⇐⇒ (x+Q−11 q1)>Q1(x+Q−11 q1) ≤ 0.

Since Q1 � O, the feasible region of g1(x) ≤ 0 is a singleton x = −Q−11 q1, which
contradicts the strict feasibility of g1(x) ≤ 0.
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We now consider how to project out the null vector v. Mathematically, the
projection is done as follows: form a square orthogonal matrix [w,W ] where w =
(v ⊗ v)/‖v‖2, and define the projected Bézout matrix

(3.9) B̃(λ2) := W>B(λ2)W.

Now we show the solutions of (2.17) with |λ1| <∞ satisfies

(3.10) det B̃(λ2) = 0.

This means we obtain all solutions of (2.17) via solving (3.10).
Lemma 3.3. Suppose that λ2 is a solution of (2.17) with some corresponding finite

λ1 and nonzero eigenvectors v1, v2, i.e., M1(λ1, λ2)v1 = M2(λ1, λ2)v2 = 0. Then, the

projected Bézout matrix B̃(λ2) in (3.9) is singular.

Proof. We first show that B(λ2) has the following null vector u ∈ R(2n+1)2 :

u = v1 ⊗ v2 − ((v1 ⊗ v2)>w)w,

where w = (v⊗v)/‖v‖2 as in (3.8). Since v as in (3.6) is not a common eigenvector of
M1,M2 by Lemma 3.2, we see that v1⊗v2 is linearly independent of w, thus ‖u‖2 6= 0.
By multiplying u to B(λ2), we have

B(λ2)u = B(λ2)(v1 ⊗ v2)− ((v1 ⊗ v2)>w)B(λ2)w

= −((v1 ⊗ v2)>w)B(λ2)w

= −((v1 ⊗ v2)>w) ((C1 ⊗D1 −D1 ⊗ C2) + λ2(D2 ⊗D1 −D1 ⊗D2))w

= −((v1 ⊗ v2)>w) ((C1 + λ2D2)⊗D1 −D1 ⊗ (C2 + λ2D2)) (v ⊗ v)

= 0(2n+1)2 .

Moreover, since ‖w‖2 = 1, we have u>w = 0, which means u is orthogonal to w.

Therefore, we can rewrite u with some nonzero coefficient vector c ∈ R(2n+1)2−1 as
u = Wc. We now observe that this c is a null vector of B̃(λ2):

B̃(λ2)c = W>B(λ2)Wc = W>B(λ2)u = 0(2n+1)2−1.

This completes the proof.

In most cases, w is the only null vector of B(λ2) and the projected Bézout matrix

B̃(λ2) is regular; then we can solve (2.17) via solving det B̃(λ2) = 0. However, in

some rare cases, B̃(λ2) is still singular independent of the value of λ2. We deal with
such cases in Section 4.

A direct computation of W requires O(n6) operations since the size of B is O(n2),
which can be a significant computational cost in our algorithm. Fortunately, however,
B̃(λ2) can be computed in O(n4) flops using Householder transformations [11, Ch. 5].

Specifically, we first form a Householder reflector P ∈ R(2n+1)2×(2n+1)2 of the form
P = I(2n+1)2 − 2pp> where p is a (2n + 1)2-dimensional vector with ‖p‖2 = 1. To
multiply P by a matrix X of size (2n+1)2× (2n+1)2 efficiently, we use the identities
PX = X − 2p(p>X) and XP = X − 2(Xp)p>. We use a reflector P that satisfies

Pe1 = w where e1 := (1, 0 . . . , 0)> ∈ R(2n+1)2 , so that the first row (and column) of
P is equal to w: taking p = (e1 − w)/‖e1 − w‖2 accomplishes this. Then we obtain

B̃(λ2) simply by forming P>B(λ2)P and removing the first row and column, which
are all zero.
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3.4. Pseudocode for detM1(λ1, λ2) = detM2(λ1, λ2) = 0. Summarizing the
section, below is the algorithm for solving the bivariate determinantal equations
detM1(λ1, λ2) = detM2(λ1, λ2) = 0.

Algorithm 3.1 Algorithm for solving detM1(λ1, λ2) = detM2(λ1, λ2) = 0.

1: Form the Bézout matrix pencil B(λ2) according to the definition (3.4).

2: Form the projection matrix W to get B̃(λ2) = W>B(λ2)W as in (3.9).

3: Solve det B̃(λ2) = 0 to obtain the candidates λ̂2. In doing so, introduce pertur-
bation as in Algorithm 4.1 if necessary.

4: For all positive λ̂2 obtained in Step 3, solve detM1(λ1, λ̂2) = detM2(λ1, λ̂2) = 0.
If these two equations hold for the same value of λ1, return (λ1, λ2) as a solution.

As discussed in Section 3.1, we can alternatively start from finding λ1 by solving
det B̃(λ1) = 0.

4. Perturbing the matrices to obtain a regular Bézout matrix pencil.
Unfortunately, our algorithm faces difficulty in certain cases that result in the matrix
pencils (3.10), (2.15) or (2.16) being singular. In such cases there are infinitely many
solutions to the determinantal equations, and hence our algorithm fails to find a finite
number of candidates for the Lagrange multipliers. Such cases arise for example when
Ci, Di (i = 1, 2) defined by (2.14) have a common eigenpair (ξ, z), i.e.,

M1(λ1, λ2)z = (C1 + λ1D1 + λ2D2)z = ξ(1 + λ1 + λ2)z,

M2(λ1, λ2)z = (C2 + λ1D1 + λ2D2)z = ξ(1 + λ1 + λ2)z.

In this case, (2.17) holds for all (λ1, λ2) satisfying 1+λ1+λ2 = 0. Therefore, infinitely
many values λ2 satisfy B(λ2)(z ⊗ z) = 0, which means B(λ2) is singular for every

value of λ2. If z is linearly independent of v =
[
Q−11 q1 0>n −1

]>
, the null vector

of D1, we cannot remove z ⊗ z by the projection discussed in Section 3.3. Thus
det B̃(λ2) = 0 has infinitely many solutions λ2.

This issue arises also in the algorithm for the signed distance problem [13], for
which a slight perturbation is used as a remedy. We will similarly introduce a per-
turbation strategy that overcomes this issue. Although the perturbation does alter
the problem, it can be regarded as a small backward error in the solution [12], and
backward stability is generally the best a numerical algorithm can hope to achieve.
Hence numerically its use is acceptable as long as the perturbation size is in the order
of working precision.

We now discuss how to perturb the matrices to obtain a regular Bézout matrix
pencil. Recall that Mi(λ1, λ2) = Ci + λ1D1 + λ2D2 where Ci, Di are as defined in
(2.14).

To show that the projected Bézout matrix B̃(λ2) is a regular matrix pencil, it

suffices to ensure that for one fixed value of λ2, B̃(λ2) is a nonsingular matrix. For
simplicity, let us take λ2 = 0; we can take λ2 to be any fixed value by replacing Ci
with Ci + λ2D2 in what follows. Our goal is to derive a sufficient condition so that
(or rather a perturbation strategy to guarantee) B̃(0) is nonsingular, which implies

that B̃(λ2) is a regular matrix pencil. Note that

M1(λ1, 0) = C1 + λ1D1,(4.1)

M2(λ1, 0) = C2 + λ1D1.(4.2)
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We shall first perturb C1 and C2 so that they are nonsingular; this can be done by
perturbing Q0 (and γi if they are zero), as the determinant expansion of Ci contains
a term of the form ±det(Q0)γi. This forces M1(λ1, 0) and M2(λ1, 0) to be regular
matrix pencils. Therefore, Lemma 3.1 holds for P1(λ1) = I2n+1 ⊗ M1(λ1, 0) and

P2(λ1) = M2(λ1, 0)⊗ I2n+1. Moreover, in the formulation of B̃(λ2), we projected out
v, which is a common eigenvector of M1(∞, 0) and M2(∞, 0). Hence, by Lemma 3.1

again, B̃(0) is nonsingular if and only if M1(λ1, 0) and M2(λ1, 0) share no eigenvalue
λ1 other than |λ1| =∞.

Now suppose to the contrary that detM1(λ1, 0) = detM2(λ1, 0) = 0 has a solution
with |λ1| <∞, and there exist nonzero vectors x, y such that

M1(λ1, 0)x = (C1 + λ1D1)x = 0,(4.3)

M2(λ1, 0)y = (C2 + λ1D1)y = 0.(4.4)

More generally, we need to allow M1(λ1, 0),M2(λ1, 0) to have nullity possibly larger
than one: suppose that M1(λ1, 0)[x1, . . . , xs] = O,M2(λ1, 0)[y1, . . . , yt] = O for some
integers s and t.

We shall introduce a perturbation strategy that preserves the structure in (2.14),
in particular such that the zero terms remain zero.

Partition xi conformally to C1 as



xi1
xi2
xi3


. Then take the SVD of the matrix of

top and bottom parts:

[
x11, . . . , xs1
x13, . . . , xs3

]
= UΣV >. We then define x̂i by [x̂1, . . . , x̂s] =

[x1, . . . , xs]V , so that the first s1 vectors of the top and bottom parts have full column
rank. Note that [x̂1, . . . , x̂s] still forms a complete set of eigenvectors for M1(λ1, 0).
Generically we have s1 = s = 1.

Now we describe the perturbation. To force the first s1 vectors to yieldM1(λ1, 0)x̂i 6=
0, we can perturb C1 as follows: if x1 6= 0 then add εX1X

>
1 to Q1, where X1 =

[x̂1, . . . , x̂s1 ]. Note that (M1(λ1, 0) + εX1X
>
1 )[x̂1, . . . , x̂s1 ] is full rank, so no linear

combination of x̂1, . . . , x̂s1 is a null vector of (M1(λ1, 0) + εX1X
>
1 ), and by taking ε

small enough we can ensure the perturbation in the other eigenvalues of M1(λ1, 0) do
not spawn a newly generated solution for detM1(λ1, 0) = detM2(λ1, 0) = 0.

If s > s1 holds, for the remaining s − s1 vectors, we have x̂i =




0n
x̂i2
0


 where

i = s1 + 1, . . . , s. So it turns out that (4.3) and (4.4) both lead to the same equation




−Q0

O
−q>0


+ λ1



−Q1

O
−q>1




 x̂i2 = 0.

We rewrite this as

−Q0x̂i2 = λ1Q1x̂i2,(4.5)

(−q0 − λ1q1)>x̂i2 = 0.(4.6)

In words, x̂i2 must be an eigenvector of the matrix pencil −Q0−λQ1 for the eigenvalue
λ = λ1, and orthogonal to the vector −q0 − λ1q1. Since Q1 � O by Assumption 2.1,
we see the matrix pencil −Q0 − λQ1 is regular. Therefore, we can perturb q0 to rule
out the existence of such x̂i2 and λ1.
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By the perturbation just described, we obtain a Bézout matrix pencil B(λ2) such
that B(0) has no null vector except for the one corresponding to |λ1| =∞, i.e., v⊗ v
where v is the null vector of D1. As discussed in Section 3.3, we project out w = v⊗v
from B(λ2) to form B̃(λ2). Therefore, by perturbing matrices and projecting out

the null vector w = v ⊗ v, we obtain the projected Bézout matrix B̃(λ2) such that

det B̃(0) 6= 0. This means the projected Bézout matrix pencil B̃(λ2) is regular and
(3.10) has finitely many eigenvalues.

Note that the above argument shows how to force M1(λ1, 0),M2(0, λ2) to be
regular matrix pencils. We use the same process to deal with the singular case of
(2.15) and (2.16). This completes the description of the perturbation process as we
summarize below.

Algorithm 4.1 Perturbation process to enforce regularity when necessary.

1: Solve detM1(λ1, 0) = detM2(λ1, 0) = 0 via the QZ algorithm. If there is no
solution, no need to perturb; exit.

2: If C1 and C2 are singular, perturb Q0 (and γi if they are zero) to modify its
determinant so that detC1C2 6= 0. Solve detM1(λ1, 0) = detM2(λ1, 0) = 0
again; if no solution, exit. Otherwise proceed.

3: Find null space [x1, . . . , xs] of M1(λ1, 0).

4: Compute the SVD

[
x11, . . . , xs1
x13, . . . , xs3

]
= UΣV >. Let s1 be the number of positive

singular values.
5: Perturb C1 := C1 + εX1X

>
1 .

6: If s > s1, compute the eigenvectors of −Q0 − λ1Q1 and perturb q0 so that it is
orthogonal to none of them.

5. Summary of the algorithm. In this section, we summarize the whole al-
gorithm for solving 2QCQP. Complexity analysis is given to see that the runtime of
our algorithm is O(n6).

5.1. Outline of the algorithm. We now show the pseudocode for the whole
algorithm for solving 2QCQP.

Algorithm 5.1 Outline of algorithm for solving 2QCQP.

1: Test whether the problem is feasible by solving (2.1).
2: Let (0, 0) be one of the candidates of (λ1, λ2).
3: Solve detM1(λ1, 0) = 0 and add its solutions (λ1, 0) to the candidates of Lagrange

multipliers. Similarly, solve detM2(0, λ2) = 0 and get (0, λ2) as candidates.
4: Solve detM1(λ1, λ2) = detM2(λ1, λ2) = 0 and add its solutions (λ1, λ2) to the

candidates of Lagrange multipliers.
5: For every (λ1, λ2) with λ1, λ2 ≥ 0 thus obtained, compute the corresponding x.
6: For every x obtained in Step 5, check the feasibility and rule out infeasible x.
7: For every x obtained in Step 6, compute the objective function values: The vector
x corresponding to the smallest is a global solution.

Remark 5.1. In practice, since our algorithm requires the numerical solutions
of eigenvalue problems such as det B̃(λ2) = 0 and linear systems H(λ1, λ2)x = y,
the computed solution may have relatively large numerical error, depending on the
condition numbers. Thus the computed solution may slightly violate the constraints
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g1(x) ≤ 0 and g2(x) ≤ 0. To refine the computed solution x so that it satisfies the
constraints to working precision, we update the computed solution as follows: if our
algorithm yields some candidates x for the global solution such that g1(x) > ε or
g2(x) > ε, we increment x by a small vector ∆x so that the refined solution x + ∆x
satisfies the constraints to first order. Since gi(x+∆x) = gi(x) + 2(x>Qi + q>i )∆x+
∆x>Qi∆x, ignoring the quadratic terms in ∆x we compute ∆x as the minimum-norm
solution of

[
x>Q1 + q>1
x>Q2 + q>2

]
∆x = −

[
max(0, g1(x)/2)
max(0, g2(x)/2)

]
.(5.1)

If ∆x satisfies (5.1) exactly and ∆x>Qi∆x < ε holds, we have gi(x+∆x) < ε.
We have observed in our experiments that this refinement indeed improves the

feasibility and accuracy of the computed solution.

5.2. Complexity analysis. The algorithm requires a solution of the linear gen-
eralized eigenvalue problem det B̃(λ2) = 0 or det B̃(λ1) = 0, whose size is bounded
by (2n + 1)2. Since the standard QZ algorithm for computing the eigenvalues of an
N×N linear generalized eigenvalue problem requires about 30N3 floating point oper-
ations [11, §7.7.7], the computational cost is about 30(2n+ 1)6 ≈ (1.9× 103)n6 flops.
This is the dominant cost in our algorithm.

We now examine the computational costs of other steps.
• Step 2 of Algorithm 3.1: As we mentioned in Section 3.3, the projection

matrix W can be formed in O(n4) time by the Householder transformation.
Hence Step 2 of Algorithm 3.1 requires O(n4) time.

• Step 4 of Algorithm 3.1: The number of positive λ̂2 obtained by solving
det B̃(λ2) = 0 is bounded by (2n + 1)2. Therefore, in Step 4 of Algo-
rithm 3.1, the two (2n + 1) × (2n + 1) linear generalized eigenvalue prob-

lems detM1(λ1, λ̂2) = detM2(λ1, λ̂2) = 0 are solved in O(n3) time at most
(2n+ 1)2 times, which means the computational cost required in this step is
at most O(n5).

• Step 5 of Algorithm 5.1: H(λ1, λ2)x = y is solved for x among all nonnegative
pairs of (λ1, λ2) satisfying λ1 detM1(λ1, λ2) = λ2 detM2(λ1, λ2) = 0. By
Bézout’s theorem (e.g., [14]), the number of common solutions satisfying these
determinantal equations is bounded by (2n+ 2)2. Therefore, all KKT points
x are computed in O(n5) time, once the pairs of (λ1, λ2) are obtained.

6. Numerical experiments. In this section, we present numerical experiments
on runtime of our algorithm and comparison with the SDP relaxation. All experiments
were conducted in Matlab R2010b on a Core i7 machine with 16GB RAM, and we
solved SDP by SeDuMi 1.3.

6.1. Runtime analysis of our algorithm. We generated random instances
of 2QCQP for n = 5, 10, . . . , 40 and examined the runtime of our algorithm. The
random instances are generated as in Burer and Anstreicher [7] and they are also
used in Section 6.2.2. In addition to the total runtime of our algorithm, we measured
the runtime breakdown of the following major parts:

• Solving a linear generalized eigenvalue problem det B̃(λ2) = 0.

• Finding λ1 from the computed λ̂2 via detM1(λ1, λ̂2) = detM2(λ1, λ̂2) = 0.
• Computing KKT points x from λ1, λ2 by solving H(λ1, λ2)x = y.
• Solving detM1(λ1, 0) = 0 and detM2(0, λ2) = 0 for the λ1λ2 = 0 cases.
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Fig. 6.1. Double-logarithmic graph of runtime for varying n. We name the computational time
of four parts shown above as “det B̃(λ2) = 0”, “λ1 from λ2”, “Hx = y”, and “λ1λ2 = 0 cases” in
the legend in order of appearance.

The dominant cost of our algorithm is solving a linear generalized eigenvalue problem
det B̃(λ2) = 0, which requires O(n6) time. In all cases with n ≥ 25, at least 90%

of the runtime was spent on solving det B̃(λ2) = 0. Figure 6.1 illustrates that the

computational times spent for the whole algorithm and solving det B̃(λ2) = 0 scales
asymptotically as O(n6).

6.2. Comparing our algorithm with the SDP relaxation. Here we apply
our algorithm and the SDP relaxation to some 2QCQP instances and compare their
outcomes. The basic SDP relaxation of 2QCQP is formulated as

minimize
x

Q0 •X + 2q>0 x+ γ0(6.1)

subject to Qi •X + 2q>i x+ γi ≤ 0 (i = 1, 2)

X � xx>.

It is known that the SDP relaxation is tight if rank (X) = 1. Numerically, we define
rank (X) by the number of eigenvalues of X whose absolute value is larger than 10−4,
following Ai and Zhang [1].

We denote the objective function values obtained by our algorithm and the SDP
relaxation by vprop and vSDP, respectively. We let ε = 10−8 and regard a solution x
feasible if g1(x) ≤ ε and g2(x) ≤ ε hold. If our algorithm yields some candidates x for
a global solution such that g1(x) > ε or g2(x) > ε, we apply the refinement method
shown in Remark 5.1.

6.2.1. Two-dimensional instance from Burer and Anstreicher. For ease
of visualization we first consider the following two-dimensional instance as described
in Burer and Anstreicher [7]:

minimize
x

x>
[
−4 1
1 −2

]
x+

[
1
1

]>
x(6.2)

subject to ‖x‖22 ≤ 1, x>
[
3 0
0 1

]
x ≤ 2.
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Fig. 6.2. Two-dimensional instance from Burer and Anstreicher and its global solution.

We illustrate the objective function value and the feasible region for this problem
in Figure 6.2. The global solutions of this problem are x∗ = (±1,∓1)/

√
2 with

objective value −4. Our algorithm computed the solution (0.70711,−0.70711) with
vprop = −4.0000. As Burer and Anstreicher [7] show, the SDP relaxation of this
problem is not tight and one obtains vSDP = −4.25 by solving this problem via the
SDP relaxation. By applying their strengthened approach, one can obtain objective
value −4.0360, which still leaves a 0.9% gap from the exact value.

6.2.2. Random instances from Burer and Anstreicher. In [7], Burer and
Anstreicher also present a practical method to generate CDT1 random instances.
They consider generating CDT instances with several candidates for a global solution,
which makes the instances challenging. For n = 2, 5, 10, 20, we generated 100 such
instances in the same way and solved by our algorithm and the SDP relaxation.

First we check whether a global solution obtained by our algorithm satisfies the
necessary condition for global optimality (unfortunately, to our knowledge, no effective
way of guaranteeing global optimality is available). As Yuan [25] proved, the Hessian
of Lagrangian H(λ1, λ2) has at most one negative eigenvalue at a global solution of
the CDT problem. Denoting the number of negative eigenvalues of H(λ1, λ2) at a
global solution by ψ(H(λ1, λ2)), we show in Table 6.1 the number of instances with
ψ(H(λ1, λ2)) = 0 and ψ(H(λ1, λ2)) = 1 for H(λ1, λ2) at the global solution computed
by our algorithm. Table 6.1 shows that ψ(H(λ1, λ2)) ∈ {0, 1} in all cases, indicating
that no solution obtained by our algorithm violates the necessary condition for the
global optimality.

1More precisely, TTRS (two trust-region subproblem) as Burer and Anstreicher call in [7]. TTRS
is a 2QCQP with Q2 � O, which is a special case of CDT.
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Table 6.1
The number of instances (among 100) whose H(λ1, λ2) has zero or one negative eigenvalue at

the global solutions.

n ψ(H(λ1, λ2)) = 0 ψ(H(λ1, λ2)) = 1
2 99 1
5 90 10

10 90 10
20 92 8

Now we consider solving these instances by the SDP relaxation. Indeed, as shown
in [1], the SDP relaxation solved CDT if and only if ψ(H(λ1, λ2)) = 0. For all
instances, we applied the SDP relaxation and checked this fact numerically by con-
firming that rank (X) = 1 is satisfied if and only if ψ(H(λ1, λ2)) = 0 holds2.

6.2.3. Random instances with indefinite Q2. Based on the idea Burer and
Anstreicher [7] present, we generate random instances of 2QCQP with indefinite Q2

as follows:

1. Fix the dimension n and set Q1 = I, q1 = 0n, γ1 = −n2 so that g1(x) =
‖x‖22 − n2.

2. Let Q0 be a diagonal matrix with diagonal entries uniformly distributed in
[−1, 1] and generate q0 with uniform entries in [−1/2, 1/2]. Set γ0 = 0. Then
the objective function is written as f(x) = x>Q0x+ 2q>0 x.

3. Solve TRS: minimize f(x) subject to g1(x) ≤ 0, and save its global solution
x∗. Construct an orthogonal matrix V such that x∗/‖x∗‖2 = V >e1. Since
g1(x∗) = ‖x∗‖22 − n2 = 0 with high probability, the TRS instances with
f(x) = x>V Q0V

>x + 2q>0 V
>x, g1(x) = ‖x‖22 − n2 has an optimal solution

ne1. Update Q0 ← V Q0V
>, q0 ← V q0 to facilitate the construction of g2(x)

in the next step.
4. Form an instance of 2QCQP by enforcing the additional quadratic constraint
x>Q2x + 2q>2 x + γ2 ≤ 0, where q2 = 0n, γ2 = −n2. Q2 is a diagonal matrix
where first diagonal entry is fixed to be one and the other diagonal entries are
generated uniformly in [−1, 1]. This construction of Q2 makes the optimal
solution of TRS in step 3, ne1, infeasible for 2QCQP.

For n = 2, 5, 10, 20, we generated 100 such instances and solved them by our
algorithm and the SDP relaxation. We summarize the result in Table 6.2. Compared
with the number of instances with ψ(H(λ1, λ2)) = 0 in Table 6.1, the number of
instances solved via the SDP relaxation decreases. On the other hand, our algorithm
computes a global solution regardless of whether or not Q2 is positive definite. These
results indicate the effectiveness of our proposed algorithm for computing a global
solution of 2QCQP with indefinite Q2.

2In the experiments of Burer and Anstreicher [7], the SDP relaxation method solved 24.6% of 1000
instances for n = 10 and 4.1% for n = 20. However, for n = 10, 20, Table 6.1 shows ψ(H(λ1, λ2)) = 0
holds for almost 90% of 100 instances, which means 90% of all instances can be solved by the SDP
relaxation. This gap is probably due to the evaluation criteria of rank (X) in Section 6.2.
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Table 6.2
Outcome of solving random instances with indefinite Q2 via the SDP relaxation.

n % solved by SDP
2 81
5 52

10 46
20 44

Accuracy. Let us remark on the accuracy of the computed solution. Typically
our algorithm gives solutions that are more accurate than the SDP-based ones by
about 10−7; for example with 100 random instances with n = 10, our solution always
had objective value smaller than the SDP solution (when it had no relaxation gap)
by between [10−9, 2 × 10−5]. To make the comparison fair we used the refinement
process in Remark 5.1 also for the SDP solution to ensure that all the computed
solutions are feasible to working accuracy. Note that the comparison here depends
on SeDuMi precision setting; in our experiments we have used the default setting
(pars.eps= 10−8).

7. Conclusion and discussion. We have developed a polynomial-time algo-
rithm for finding a global solution of 2QCQP. Our algorithm solves 2QCQP as follows:
find all Lagrange multipliers by solving a system of bivariate determinantal equations,
compute the KKT points corresponding to the multipliers and then obtain a global
solution with the smallest objective value among the KKT points. The key step of
our algorithm is to convert the KKT conditions into a pair of bivariate determinantal
equations, which is reduced to a two-parameter eigenvalue problem of size O(n), which
in turn is reduced to two linear generalized eigenvalue problems of size O(n2). For the
case where some of these eigenvalue problems are singular, we propose a perturbation
process as a remedy. The computational complexity of our algorithm is shown to be
O(n6) in total. Numerical experiments are conducted to illustrate the runtime of our
algorithm and to compare the outcome with the SDP relaxation method.

We now remark on possible future work. First, since the O(n6) complexity is a
bottleneck when n is large, the design of a more efficient algorithm is a problem await-
ing solution. In addition, our algorithm perturbs the input data of original 2QCQP
if some eigenvalue problems are singular and it is desirable to have an approach that
does not need such treatment.

Finally, consider applying our algorithm to the nonconvex quadratic minimization
problem with m quadratic constraints (mQCQP):

minimize
x

f(x) = x>Q0x+ 2q>0 x+ γ0(7.1)

subject to gi(x) = x>Qix+ 2q>i x+ γi ≤ 0 (i = 1, 2, . . . ,m).(7.2)

Just as we computed the Lagrange multipliers of 2QCQP via a two-parameter eigen-
value problem, the Lagrange multipliers ofmQCQP can be obtained via am-parameter
eigenvalue problem. Therefore, an algorithm for m-parameter eigenvalue problem
would enable us to compute a global solution of mQCQP.
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Appendix A. A lower bound of the optimal value. From (1.2), we have

x>Q1x+ 2q>1 x+ γ1 ≤ 0 ⇐⇒ ‖Q1/2
1 (x+Q−11 q1)‖22 ≤ ‖Q

−1/2
1 q1‖22 − γ1.

Therefore, the value of objective function is bounded from below as follows:

x>Q0x+ 2q>0 x+ γ0

=
(
Q

1/2
1 (x+Q−11 q1)

)>
Q
−1/2
1 Q0Q

−1/2
1

(
Q

1/2
1 (x+Q−11 q1)

)

+ 2
(
Q
−1/2
1 (q0 −Q0Q

−1
1 q1)

)> (
Q

1/2
1 (x+Q−11 q1)

)
+ q>1 Q

−1
1 Q0Q

−1
1 q1 − 2q>0 Q

−1
1 q1 + γ0

≥ σmin(Q
−1/2
1 Q0Q

−1/2
1 )

∥∥∥Q1/2
1 (x+Q−11 q1)

∥∥∥
2

2

− 2
∥∥∥Q−1/21 (q0 −Q0Q

−1
1 q1)

∥∥∥
2

∥∥∥Q1/2
1 (x+Q−11 q1)

∥∥∥
2

+ q>1 Q
−1
1 Q0Q

−1
1 q1 − 2q>0 Q

−1
1 q1 + γ0

≥ min{σmin(Q
−1/2
1 Q0Q

−1/2
1 ), 0}

(
‖Q−1/21 q1‖22 − γ1

)

− 2
∥∥∥Q−1/21 (q0 −Q0Q

−1
1 q1)

∥∥∥
2

√∥∥∥Q−1/21 q1

∥∥∥
2

2
− γ1 + q>1 Q

−1
1 Q0Q

−1
1 q1 − 2q>0 Q

−1
1 q1 + γ0,

where σmin(Q
−1/2
1 Q0Q

−1/2
1 ) is the minimum eigenvalue of Q

−1/2
1 Q0Q

−1/2
1 .

Appendix B. Discussion on the Karush-John optimality conditions.
Here we discuss how to find local solutions that violate the LICQ via the Karush-John
optimality conditions, which is the necessary conditions for local optimality without
any constraint qualification. The Karush-John optimality conditions for 2QCQP can
be written as follows:

(λ0Q0 + λ1Q1 + λ2Q2)x = −(λ0q0 + λ1q1 + λ2q2),(B.1)

x>Qix+ 2q>i x+ γi ≤ 0 (i = 1, 2),(B.2)

λi
(
x>Qix+ 2q>i x+ γi

)
= 0 (i = 1, 2),(B.3)

λi ≥ 0 (i = 1, 2).(B.4)

We show that a global solution of 2QCQP can be obtained if at least one multiplier
of λ0, λ1, λ2 in the Karush-John optimality conditions is nonzero.

Note that, if λ0 6= 0 holds, the Karush-John optimality conditions are equivalent
to the KKT conditions. Hence, in what follows we consider finding x that satisfies
the Karush-John optimality conditions with λ0 = 0.

Here we define a matrix G(λ1, λ2) := λ1Q1 + λ2Q2 and a vector z(λ1, λ2) :=
−(λ1q1 + λ2q2). Now our goal is to find x such that

G(λ1, λ2)x = z(λ1, λ2),(B.5)

x>Qix+ 2q>i x+ γi ≤ 0 (i = 1, 2),(B.6)

λi
(
x>Qix+ 2q>i x+ γi

)
= 0 (i = 1, 2),(B.7)

λi ≥ 0 (i = 0, 1, 2).(B.8)

Note that these conditions are similar to the KKT conditions shown in Section 2.2:
In fact, they become equivalent by replacing G(λ1, λ2) with H(λ1, λ2) and z with y.
As we did for finding KKT points, we first consider computing λ1, λ2 that satisfy
(B.5)–(B.8). We now introduce two cases of λ1, λ2.
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1. Exactly one of λ1, λ2 is zero. For definiteness, suppose λ1 > 0 and λ2 = 0. In
this case, whether the conditions (B.5)–(B.8) hold or not does not depend on
the value of λ1 as long as it is positive. Therefore, we have (λ1, λ2) = (1, 0)
as a candidate for the multipliers satisfying (B.5)–(B.8). Similarly, we have
(λ1, λ2) = (0, 1) when λ1 = 0 and λ2 > 0.

2. λ1 > 0 and λ2 > 0. In this case, defining µ := λ2/λ1, we see the conditions
(B.5)–(B.8) are written as follows:

G(1, µ)x = z(1, µ),(B.9)

x>Qix+ 2q>i x+ γi = 0 (i = 1, 2).(B.10)

Then, as in Lemma 2.1, the following determinantal equations hold for every
µ satisfying (B.9),(B.10):

(B.11) detN1(µ) = detN2(µ) = 0

where

(B.12) Ni(µ) :=




Qi −G(1, µ) qi
−G(1, µ) O z(1, µ)

q>i z(1, µ)> γi


 (i = 1, 2).

The proof is completely analogous to that of Lemma 2.1. These equations can
be solved for µ as generalized eigenvalue problems. If both N1(µ) and N2(µ)
are singular matrix pencils, (B.11) has infinitely many solutions. In this case,
we apply the perturbation method described in Section 4 to make N1(0) or
N2(0) regular. By finding positive solutions of (B.11), we get (λ1, λ2) = (1, µ)
as candidates for λ1, λ2 satisfying (B.5)–(B.8).

Note that the multipliers (λ0, λ1, λ2) = (0, 0, 0) satisfies the Karush-John conditions
and it may correspond to the global solution. Unfortunately, however, we cannot
compute x from λ0, λ1, λ2 in this case.

For each (λ1, λ2) thus obtained, we compute x from (B.5) and check whether it
satisfies (B.6)–(B.8). If G(λ1, λ2) is singular, we compute x as we do for computing
KKT points x from H(λ1, λ2)x = y with singular H(λ1, λ2): Specifically, apply what
we show in Appendix C replacing H by G. Adding these x to the KKT points
computed by the proposed algorithm, we have all candidates for x satisfying the
Karush-John optimality conditions except for the one that corresponds to λ0 = λ1 =
λ2 = 0. We compute objective function values for these x and output x which gives
the smallest one.

Appendix C. How to obtain a KKT point from singular H(λ1, λ2). We
now discuss how to obtain a KKT point x from H(λ1, λ2)x = y when λ1, λ2 are
computed but H(λ1, λ2) is singular, which we mentioned in Section 2.2. Specifically,
we show how to compute v ∈ Rr such that x = x∗+H0v satisfies the KKT conditions
(2.3)–(2.6). In Section C.1, we first introduce three cases of λ1, λ2 depending on
whether they are zero or positive. In two of these three cases, we need to solve
quadratic optimization problems with one quadratic equality constraint. We discuss
how to solve them in Section C.2.

C.1. Three cases of λ1, λ2 for finding an appropriate vector v. We now
consider the following three cases with respect to λ1, λ2 to compute v.
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1. λ1 = λ2 = 0. In this case, we need to find v satisfying g1(x∗ +H0v) ≤ 0 and
g2(x∗+H0v) ≤ 0, which can be obtained by solving the following TRS for v:

minimize
v

g2(x∗ +H0v)(C.1)

subject to g1(x∗ +H0v) ≤ 0.

This problem can be solved via a SDP reformulation (see [22]). If the optimal
value of (C.1) is positive, there is no feasible x for this case and we remove
(λ1, λ2) = (0, 0) from the candidates for the Lagrange multipliers.

2. Exactly one of λ1, λ2 is zero and the other is positive. For definiteness,
suppose λ1 > 0 and λ2 = 0. In this case, we need to find v satisfying
g1(x∗+H0v) = 0 and g2(x∗+H0v) ≤ 0, which we do by solving the following
minimization problem for v:

minimize
v

g2(x∗ +H0v)(C.2)

subject to g1(x∗ +H0v) = 0.

We show how to solve this quadratic minimization problem with one quadratic
equality constraint in Appendix C.2. If the optimal value of (C.2) is positive,
there is no feasible x and we remove the pair (λ1, λ2) from the candidates for
the Lagrange multipliers. Similarly, if λ1 = 0 and λ2 > 0 hold, we compute v
by solving

minimize
v

g1(x∗ +H0v)(C.3)

subject to g2(x∗ +H0v) = 0.

3. λ1 > 0 and λ2 > 0. In this case, we need to find v satisfying g1(x∗+H0v) = 0
and g2(x∗ +H0v) = 0, i.e., we solve the following quadratic equations for v:

v>H>0 Q1H0v + 2(Q1x∗ + q1)>H0v + x>∗ Q1x∗ + 2q>1 x∗ + γ1 = 0,(C.4)

v>H>0 Q2H0v + 2(Q2x∗ + q2)>H0v + x>∗ Q2x∗ + 2q>2 x∗ + γ2 = 0.(C.5)

We denote Ai = H>0 QiH0, bi = Qix∗ + qi, ci = x>∗ Qix∗ + 2q>i x∗ + γi for
i = 1, 2 and consider solving

h1(v) = v>A1v + 2b>1 v + c1 = 0,(C.6)

h2(v) = v>A2v + 2b>2 v + c2 = 0(C.7)

where A1 � O. First, we solve the following two quadratic optimization
problems with one quadratic equality constraint by applying the technique
shown in Appendix C.2:

minimize
v

h2(v) subject to h1(v) = 0,(C.8)

maximize
v

h2(v) subject to h1(v) = 0.(C.9)

Let v1, v2 be the optimal solutions of these problems respectively. Since
h2(v1) ≤ 0 and h2(v2) ≥ 0 must hold in order for (C.6) and (C.7) to have a
common solution, we remove (λ1, λ2) from the candidates for the Lagrange
multipliers if h2(v1)h2(v2) > 0.
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Now we define the following two sets:

E = {v ∈ Rr | h1(v) = 0},(C.10)

H = {v ∈ Rr | v = c1v1 + c2v2, c1, c2 ∈ R}.(C.11)

E represents the boundary of the ellipsoid h1(v) = 0 andH is a two-dimensional
subspace containing the origin and v1, v2. In the definition of H, if v1, v2 are
linearly dependent, we replace v1 by an arbitrary v′1 ∈ E such that v1, v2
are linearly independent. Note that the intersection E ∩ H is connected and
v1, v2 ∈ E ∩ H. Since h2(v1) ≤ 0, h2(v2) ≥ 0 and the value of h2(v) changes
continuously in E ∩ H, there are some α1, α2 satisfying

h1(α1v1 + α2v2) = 0,(C.12)

h2(α1v1 + α2v2) = 0.(C.13)

So we obtain a vector v = α1v1 + α2v2 satisfying (C.6) and (C.7) by solving
the following system for α1, α2:

h1(α1v1 + α2v2) = (α1v1 + α2v2)>A1(α1v1 + α2v2) + 2b>1 (α1v1 + α2v2) + c1 = 0,

h2(α1v1 + α2v2) = (α1v1 + α2v2)>A2(α1v1 + α2v2) + 2b>2 (α1v1 + α2v2) + c2 = 0.

These bivariate quadratic scalar equations can be solved by taking the Bézoutian
of the polynomials p1(α1, α2) = h1(α1v1 + α2v2) and p2(α1, α2) = h2(α1v1 +
α2v2) (see [4, 17]).

C.2. The quadratic minimization problem with one quadratic equality
constraint. In Appendix C.1, we need to solve the following minimization problems
(C.2) and (C.3) where g1(x∗ + H0v) and g2(x∗ + H0v) are defined by the left side
of (C.4) and (C.5) respectively. We denote Ai = H>0 QiH0, bi = Qix∗ + qi, ci =
x>∗ Qix∗ + 2q>i x∗ + γi and rewrite (C.2) and (C.3) as follows:

minimize
v

v>A2v + 2b>2 v + c2 subject to v>A1v + 2b>1 v + c1 = 0,(C.14)

minimize
v

v>A1v + 2b>1 v + c1 subject to v>A2v + 2b>2 v + c2 = 0.(C.15)

Now we focus on solving (C.15); (C.14) can be solved analogously. The technique is
similar to the one for computing the Lagrange multipliers in Section 2. The KKT
conditions for (C.15) can be written as follows:

(A1 + λA2)v = −(b1 + λb2),(C.16)

v>A2v + 2b>2 v + c2 = 0.(C.17)

Note that, in one constraint minimization problems (C.14) and (C.15), LICQ is natu-
rally satisfied and the KKT conditions are necessary conditions for global optimality.
Let A(λ) = A1 + λA2 and b(λ) = −b1 − λb2. Then, similarly to Lemma 2.1, we see
that detL(λ) = 0 holds for every λ satisfying (C.16) and (C.17) where

(C.18) L(λ) =




A2 −A(λ) b2
−A(λ) O b(λ)
b>2 b(λ)> c2


 .

This determinantal equation can be solved for λ as a generalized eigenvalue problem.
If L(λ) is singular for every λ, we perturb matrices to force L(λ) to be a regular
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matrix pencil; as we perturbed Q0 (and γi if they are zero) in Section 4, we perturb
A1 and c2 to ensure that L(0) is nonsingular.

For each λ thus obtained, one can compute v by solving A(λ)v = b. If A(λ)
is nonsingular, v is uniquely determined and it satisfies (C.17) naturally. If A(λ) is
singular, we find one of the solutions v satisfying (C.16), (C.17) as follows: Let v∗
be the minimum-norm solution of (C.16) and v0 be an arbitrary null vector of A(λ)
such that ‖v0‖2 = 1. We see that the solutions of (C.16) can be expressed as v∗+ tv0
where t ∈ R is an arbitrary constant. Then we substitute v = v∗ + tv0 into (C.17)
and solve for t to obtain a solution satisfying (C.16) and (C.17). If no real solution t
is obtained, the corresponding λ gives no feasible solution of (C.15). By an argument
analogous to that in Section 2.2, one can verify that the value of the objective function
is independent of t, which means the obtained solution v = v∗+tv0 is one of the global
solutions.


