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Abstract

Discrete versions of basic inequalities in functional analysis such as the
Sobolev inequality play key role in theoretical analysis of finite difference
schemes. They have been shown for some simple difference operators, but
are still left open for general operators, even including the standard central
difference operators. In this paper, we propose a systematic approach
for deriving such inequalities for a certain class of central-difference type
operators. We illustrate the results by giving a generic a priori estimate
for certain conservative schemes for the nonlinear Schrödinger equation.

1 Introduction

In this paper, we are concerned with numerical computation of evolutionary
partial differential equations (PDEs), with our special interest on its theoretical
analysis. Such numerical computation is an indispensable tool in modern science
and engineering, and thus there is a long history with vast amount of studies
based on wide range of methods—finite difference, finite element, discontinuous
Galerkin, mesh free, and so on—both from practical and theoretical aspects.
For theoretical aspects, we may say that the finite element methods are most
developed, since they are supported directly by functional analysis theory, and
thus now have very sophisticated theoretical backgrounds (see, for example,
[3, 4] for basic results for elliptic problems, and [22] for parabolic problems). The
backgrounds of other newer methods, for example the discontinuous Galerkin
methods, are still rather weaker, but recently they have been extensively studied
to rapidly catch up the finite element methods by reconstructing the functional
analysis theory so that it allows discontinuous functions.

In contrast to these maturity or rapid developments, the theoretical aspects
of classical finite difference methods for evolutionary PDEs seem to remain at
a primitive level, and recently relatively few efforts have been newly devoted
in this direction. The main reason for this might be that it is generally quite
difficult to import the tools from functional analysis to the world of discrete grid
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points, and thus it seems most people believe that finite difference methods are
not suitable for hard theoretical analysis except for very simple cases. Let us
below illustrate this taking the history of the numerical schemes of the nonlinear
Schrödinger (NLS) equation as an example. In the rest of this section, we use
some notation without declaring; they will be given in Section 2.

Let us consider the cubic NLS on the circle T:

iut = −uxx − γ|u|2u.

This has been challenged numerically in various ways (see, for example, a clas-
sical review by Taha–Ablowitz [21] and a modern review by Faou [7]). A
milestone of such studies might be the celebrated finite difference scheme by
Delfour–Fortin–Payre [6] in 1981, which had discrete counterparts of the invari-
ants of NLS on the real line (i.e., when we consider the infinite number of grid
points), and thus exhibited excellent long time numerical behavior. No theo-
retical error estimate for the DFP scheme had been given at this point. Then
Akrivis–Dougalis–Karakashian [1] (1991) considered a Galerkin version of the
DFP scheme, and with the aid of functional analysis theory, gave a complete
error estimate. The crucial step of this estimate was to draw an a priori estimate
∥u∥∞ < ∞ out of the invariants

∥u∥2=const. and
γ

2
∥u∥44 − ∥ux∥22=const.

The key tools there were the Sobolev inequality:

∥u∥∞ ≤ C∥u∥W 1,2(T), (1)

and the Gagliardo–Nirenberg (GN) inequality (with the index of NLS type):

∥u∥44 ≤ C∥u∥W 1,2(T)∥u∥32. (2)

In fact, combining the invariants and the GN we get the bound ∥u∥W 1,2(T) < ∞,
which then implies by the Sobolev inequality the desired estimate (see Sec-
tion 4). Note that in this process we can directly use the inequalities in con-
tinuous functional analysis theory, which clearly shows a strong advantage of
finite element (or Galerkin) methods over finite difference methods. Once we
have such a boundedness estimate, we can easily bound the nonlinear term, and
accordingly gain an error estimate by standard argument. Afterwards, in 1998,
Matsuo–Sugihara–Mori [20] (see also [10]) reconsidered the DFP scheme again
in the context of structure-preserving methods and showed that the discrete
“invariants” corresponding to the two continuous invariants mentioned above
are actually strictly kept in finite domain with realistic boundary conditions.
Then they considered discrete versions of the Sobolev and Gagliardo–Nirenberg
inequalities to follow the argument of Akrivis et al. [1]. There, the main diffi-
culty was the establishment of the discrete Gagliardo–Nirenberg inequality—let
us below briefly look at the heart of this discussion.

In [20], “discrete” functional spaces Lp
d and W 1,p

d (δ+) and their associated
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norms:

∥U∥Lp
d
:=

(
N−1∑
k=0

|Uk|p∆x

)1/p

, (3)

∥U∥W 1,p
d (δ+) :=

(
N−1∑
k=0

(
|Uk|p +

∣∣∣∣Uk+1 − Uk

∆x

∣∣∣∣p)∆x

)1/p

(4)

were considered. Note that the latter depends explicitly on how we approximate
the derivative ux; above is the simplest version which employs the forward differ-
ence operator δ+. Associated to these norms, the following discrete inequalities
were shown in [20]: the discrete Sobolev inequality

∥U∥∞ ≤ C∥U∥W 1,2(δ+), (5)

and the discrete GN

∥U∥4L4
d
≤ C∥U∥W 1,2(δ+)∥U∥3L2

d
. (6)

The Sobolev inequality had been known in some works (for example, John [16]),
but the proof of the discrete GN was more complicated, and was first proved in
this work. Then it was shown that the periodic DFP scheme has the discrete
invariants

∥U (m)∥L2
d
=const. and

γ

2
∥U (m)∥4L4

d
− ∥Dδ+U

(m)∥2L2
d
=const., (7)

where the symbol Dδ+ is the matrix representation of the forward difference
operator δ+. The key here is the fact that in all of the derivative terms above,
the forward difference operator δ+ is used throughout, which makes us possible
to precisely follow the discussion in the continuous case to deduce an a priori
estimate ∥U (m)∥∞ < ∞.

Let us get back to the history of NLS computations. Although the DFP
scheme was fine in terms of its long time behavior, it was sometimes not ac-
curate enough, since it employed the simplest low-order difference operators.
Among numerous studies to overcome this drawback, here we note two exam-
ples by Matsuo et al. [19] (2002) and Kanazawa–Matsuo–Yaguchi [17] (2014),
where high-order schemes keeping the discrete invariants were proposed by uti-
lizing high-order central difference operators and high-order compact difference
operators, respectively. The discrete invariants read

∥U (m)∥L2
d
=const. and

γ

2
∥U (m)∥4L4

d
− ∥Dδ⟨1⟩,2sU

(m)∥2L2
d
=const. (8)

in Matsuo et al.[19], where Dδ⟨1⟩,2s denotes the matrix representation of certain
high-order central operators, and

∥U (m)∥L2
d
=const. and

γ

2
∥U (m)∥4L4

d
− ∥D

δ
⟨1⟩
c

U (m)∥2L2
d
=const. (9)

in Kanazawa et al. [17], where D
δ
⟨1⟩
c

corresponds to some compact difference

operators. The discrete invariants not only gave good qualitative nature to the
schemes but also raised the expectation to the rigorous convergence analyses as
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before. But this expectation has not become a reality so far. We need the discrete
inequalities (1) and (2) for the corresponding high-order difference operators.
They, however, had not been known in the literature, and after some struggle
it turned out that they were much more difficult to establish than we simply
expected; even whether they actually hold or not were unclear.

The difficulty can be understood from the following two viewpoints. First
observation is that the high-order central difference operators and the compact
difference operators can have falsely larger kernel space. The kernel space of the
differential operator ∂x (under the periodic boundary condition) is span{1} (the
constants), and the same for the forward difference operator δ+: span{(1, 1, . . .)⊤}.
On the contrary, for example, the standard 2nd-order central difference operator

δ⟨1⟩,2 (δ
⟨1⟩,2
k Uk := (Uk+1−Uk−1)/2∆x) has the kernel of dimension two, spanned

by (1, 1, . . . , 1)⊤ and (1,−1, 1,−1, . . .)⊤, when N is even. An implication of this
is the relation

N−1∑
k=0

∣∣∣∣Uk+1 − Uk−1

2∆x

∣∣∣∣2 ∆x ≤
N−1∑
k=0

∣∣∣∣Uk+1 − Uk

∆x

∣∣∣∣2 ∆x, (10)

which in turn means that the discrete inequalities with respect to δ⟨1⟩,2 are
purely stronger than those of δ+, if they hold.

The second observation is simply that as the desired order is increased, the
expression of the high-order difference operators become much more compli-
cated involving wider stencils. In [20], the discrete inequalities were proved by
following the elementary proofs of the continuous ones. This strategy, however,
becomes soon infeasible for general operators. For example, the discrete Sobolev
inequality for the fourth order central difference operator should read

∥U∥L∞
d

≤ c

(
N−1∑
k=0

|Uk|2∆x+
N−1∑
k=0

∣∣∣∣−Uk+2 + 8Uk+1 − 8Uk−1 + Uk−2

12∆x

∣∣∣∣2 ∆x

)
, (11)

which is difficult to prove by a direct calculation. The situation would get worse
as the order is increased. Even worse, the compact difference operators are only
determined implicitly, and such a direct calculation cannot work.

From the reasons above, discrete inequalities for general difference operators
seem to have remained open, to the best of the present authors’ knowledge, and
accordingly convergence analyses for the finite difference schemes utilizing such
operators were few. Although we have restricted our attention to NLS up here,
the situation is true also for other PDEs.

Based on the background above, the aim of the present paper is to prove
the discrete inequalities for some central-difference type operators. There are
two keys in this challenge. The first key is a new result on the standard 2nd-
order central difference operator δ⟨1⟩,2 (Lemma 7); this associates the discrete
world to the continuous one, so that we can import the known results in contin-
uous world, avoiding cumbersome direct discrete calculations. The same idea
has been already employed for forward difference operators (see, for example,
Holden–Raynaud [14]), but it seems new for central-difference operator. The
second key is the idea of “equivalent operators.” We do not hope to establish
the association above for every complicated operators—instead, we propose to
collect operators that are in some sense equivalent to δ⟨1⟩,2, and establish the de-
sired inequalities by reducing them to δ⟨1⟩,2. This at the same time gives rise to
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a framework of abstract finite difference schemes—we consider a generic scheme
with a generic difference operator in a certain class, and discuss its property us-
ing the inequalities commonly shared by the operators in that class. Although
similar translations can be found in the literature, they were rather for specific
purposes, and it seems there has been no systematic study ever. Here let us men-
tion a series of studies on compact difference operators: [15, 23, 24]. There some
compact difference approximations of ∂xx were considered. It was pointed out
that in some cases such approximations can be expressed as (FDδ+)

⊤(FDδ+),
where F is some constant matrix and Dδ+ denotes the difference matrix for
δ+. Utilizing this expression, they reduced the convergence analysis of certain
compact difference operators to that of the simplest forward difference case.
Although they considered such translations for specific operators, the idea is
similar to the one in the present paper. Note that, however, the reason of their
success was the fact that on the circle T, dim(ker(∂xx)) = 1, and all the op-
erators mentioned above shares this property. Thus they could reduce their
discussions to the known results on the forward difference operator.

The present paper is organized as follows. In Section 2, the notation and
necessary definitions are surveyed. We will also introduce the concept of class
of difference operators. Section 3 shows the main results. In Section 4 we show
a simple a priori estimate example for NLS. Section 5 is for concluding remarks.

2 Basic definitions and results

In this section we introduce some basic definitions and resuls to be used
throughout this paper.

2.1 Some notation

We consider numerical methods for partial differential equations (PDEs) on
[0, T ]× [0, L] under the periodic boundary condition. We also often regard this

as PDEs on the torus T of length L. We denote the numerical solution as U
(m)
k ≃

u(k∆x,m∆t), where ∆x = L/N and ∆t are the mesh sizes in x, t, respectively.

Also we denote the solution vector as U (m) := [U
(m)
0 , U

(m)
1 , . . . , U

(m)
N−1]

⊤. The
time step (m) is omitted unless indispensable. Corresponding to the periodic
boundary condition, we demand the approximate solution satisfies U0 = UN ,
and accordingly we consider a space of such vectors (which is essentially finite-
dimensional):

SN := {(Uk ∈ C)k∈Z | Uk = Uk mod N}. (12)

We write theN -dimensional vectors 1N = (1, 1, . . .)⊤ and 1̂N = (1,−1, . . .)⊤.
We also denote the N ×N identity matrix by IN . We drop N in the above ex-
pressions when no confusion occurs. We will also use N × N matrices Li and
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Ri (i = 1, 2, . . .) defined by

L1 :=


0 1
1 0

1 0
. . .

. . .

1 0

 , R1 :=


0 1

0 1
. . .

. . .

0 1
1 0

 , (13)

L2 := L1
2, L3 = L1

3, . . . , R2 = R1
2, R3 = R1

3, . . . . (14)

To simplify the notation, we often use the two variable function Fk(x, y) (k ≥ 1)
satisfying Rk − Lk = Fk(R1, L1)(R1 − L1). It is easy to see Fk(R1, L1) =
R1

k−1 +R1
k−2L1 + · · ·+R1L1

k−2 +L1
k−1. Note that L1 and R1 are circulant

matrices and thus commutes. Also note L1R1 = R1L1 = I, and thus the above
expansion is equivalent to Fk(R1, L1) = R1

k−1 +R1
k−3 + · · ·+L1

k−3 +L1
k−1.

2.2 Finite difference operators

Next we introduce finite-difference operators approximating the differential
operator ∂x.

We denote the standard forward difference operator by δ+, whose concrete
form is

δ+Uk =
Uk+1 − Uk

∆x
.

We denote the matrix expression of δ+ by Dδ+ . For this simplest operator, the
discrete Sobolev inequality (5) and Gagliardo–Nirenberg inequality (6) hold [10].
Unless stated otherwise, the constant “C” appearing in such inequalities means
a generic constant. As mentioned above, the kernel space of this operator is one-
dimensional: ker(δ+) = span{1}. In this sense, δ+ is quite a natural operator
inheriting the correct kernel space from ∂x.

Next, we introduce central-difference type operators. In what follows, when
we discuss common properties of such operators, we will simply use the expres-
sion δ, which means a generic operator. Its matrix expression is Dδ. Since the
matrix actually depends on N , and actually its characteristic can vary on N ,
we should write Dδ,N ; however, since basically no confusion occurs, we prefer
to drop N . We denote (DδU)k+j by δUk+j .

Definition 1 (Central-difference type operators). For nonnegative integers A,B
and real coefficients αj , βj, which are independent of N , we say δ is a central-
difference type operator if it is in the formδUk +

A∑
j=1

αj(δUk+j + δUk−j)

 =
B∑

j=1

βj
Uk+j − Uk−j

2j∆x
, (15)

and δUk becomes an approximation of ∂x of at least O(∆x). We denote by ∆⟨1⟩

the set of all such δ’s.

Remark 1. Throughout this paper, we assume N ≥ max(2A + 1, 2B + 1) for
simplicity (i.e., difference operators are considered for such N ’s). But in most
of the discussions below, this can be relaxed by appropriately considering the
periodicity.
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Note that unless A = 0, it is a non-local operator, in the sense that (15) forms
a linear system with respect to δUk (k = 1, . . . , N), which should be solved in
order to obtain each value (see the compact difference operators below). The
matrix representation of (15) readsI +

A∑
j=1

αj(Rj + Lj)

Dδ =
B∑

j=1

βj
Rj − Lj

2j∆x
. (16)

Also note that here we are implicitly assuming that the coefficient matrix in the
left hand side is invertible (otherwise the operator is not well-defined).

The standard 2s-order central difference operators, which we denote by
δ⟨1⟩,2s, belong to this class with A = 0, B = s, and the appropriate coeffi-
cients βj ’s for achieving O(∆x2s) (see e.g. [8]). An interesting observation is
that the pseudospectral difference operator, δ⟨1⟩,∞, can be obtained from such
difference operators taking the limit s → ∞, whose concrete form (for even N)
reads

Dδ⟨1⟩,∞ := D−1
F diag (0, iπ, . . . , i(N/2− 1)π, 0,−i(N/2− 1)π, . . . ,−iπ)DF , (17)

where DF is the discrete Fourier transform matrix. Strictly speaking, this op-
erator does not belong to ∆⟨1⟩, since it cannot be expressed in the form (15).
Nevertheless, it shares some properties with δ⟨1⟩,2s, and thus in what follows
we will sometimes mention it. Note that, to keep the difference matrix real-
valued, pseudospectral difference operator is considered only for even N (see
Fornberg [8]).

Another typical class is the compact difference operators, δ
⟨1⟩
c , originally

introduced in Lele [18] for the use in the field of computational fluid dynamics.
The parameters A,B are chosen in A ≥ 1, B ≥ 1, and the coefficients αj , βj ’s
are chosen to achieve a desired accuracy. The number 2A + 1 is called the left
stencil width, and 2B + 1 the right stencil width. In this paper, we consider
the compact difference operator of A ≤ 2, B ≤ 3, which is satisfied in practice.
Some typical compact difference operators are described in Table 1 [18] (the
blank cells are zero).

Table 1: Constants and Accuracies of First Derivatives.
compact difference operator α1 α2 β1 β2 β3 accuracy

2nd-order central: C2 1 O(∆x2)

4th-order central: C4 4
3 - 1

3 O(∆x4)

6th-order central: C6 3
2 - 35

1
10 O(∆x6)

4th-order tridiagonal: T4 1
3

3
2 O(∆x4)

6th-order tridiagonal: T6 1
3

14
9

1
9 O(∆x6)

8th-order tridiagonal: T8 3
8

25
16

1
5 - 1

80 O(∆x8)

6th-order pentadiagonal: P6 17
57 - 1

114
90
57 O(∆x6)

8th-order pentadiagonal: P8 4
9

1
36

40
27

25
54 O(∆x8)

10th-order pentadiagonal: P10 1
2

1
20

17
12

101
150

1
100 O(∆x10)
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When α = β = 0, the operators reduce to the standard central difference
operators; i.e., C2=δ⟨1⟩,2, C4=δ⟨1⟩,4, and C6=δ⟨1⟩,6. The rest are the compact
difference operators. Observe that they achieve higher-order accuracy with nar-
rower stencils; for example, compare C6 and P10, both of which refer to 7 points.
The name “compact” comes from this feature.

The operators δ⟨1⟩,2s’s and δ
⟨1⟩
c ’s have a key property in common: they

share the same kernel space, which is quite crucial in the subsequent analyses.
In order to state this more precisely, let us introduce an important subclass of
∆⟨1⟩ (Def. 2 below). Let us rewrite (16) with the matrix TN ∈ RN×N by

TN := I +
A∑

j=1

αj(Rj + Lj),

and such a matrix SN ∈ RN×N satisfying

B∑
j=1

βj

(
Rj − Lj

2j∆x

)
= SNDδ⟨1⟩,2 . (18)

Such a matrix SN always exists.

Lemma 1. For every operator δ ∈ ∆⟨1⟩, there exists a matrix SN satisfy-
ing (18). It is not unique, but can be chosen to a banded matrix with the con-
stant band width 2B − 1 (except for the top right and bottom left elements due
to periodicity).

proof. Let us write the left hand side of (18) as D. First, it is easy to see the
existence of the banded version. Recalling Rj − Lj = Fj(R1, L1)(R1 − L1), we
see

Dδ⟨1⟩,2s =
B∑

j=1

βj

2j∆x
(Rj − Lj) =

 B∑
j=1

βj

j
Fj(R1, L1)

Dδ⟨1⟩,2 . (19)

This shows we can set SN =
(∑B

j=1(βj/j)Fj(R1, L1)
)
. Since Fj(R1, L1) =

R1
j−1 + R1

j−3 + · · · + L1
j−3 + L1

j−1 as mentioned before, we see we can find
a matrix SN of the form

SN = s0I +
B∑
i=1

si (Ri + Li) . (20)

The above argument only depends on the band width B, and thus the constants
si (i = 0, . . . , B) are independent of N .

The non-uniqueness arises from the kernel space of D and Dδ⟨1⟩,2 . Recall
that any circulant matrix can be diagonalized by the DFT matrix DF with the
column vectors of DF being the eigenvectors. In particular, the eigenvalues of
Rj−Lj are 2i sin(2jkπ/N) for k = 0, . . . , N−1. Thus we see that D and Dδ⟨1⟩,2

always share the same zero eigenvalue for k = 0 (with the eigenvector 1). Let
ΛD,Λ2,ΛS be the diagonalizations of D,Dδ⟨1⟩,2 and SN , respectively, supposing
a circulant SN . Then (18) implies ΛD = ΛSΛ2. Since ΛD and Λ2 shares the
same zero eigenvalue (for 1), the corresponding element of ΛS can be arbitrary.
This generates infinite number of (circulant) SN ’s.
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Let us look into the kernel issue a bit deeper. As mentioned in Introduction,
Dδ⟨1⟩,2 can have a spurious zero eigenvector. This depends on the parity of
N . When N is odd, Rj − Lj has only one zero eigenvalue for k = 0 (with the
notation above). Thus we conclude that ker(δ) = span{1} for any δ ∈ ∆⟨1⟩. In
this case, the operator is just normal (in terms of its kernel). When N is even,
however, the situation gets quite complicated. Our first observation is that the
matrices Rj − Lj (j ≥ 1) have at least two zero eigenvalues for k = 0, N/2,
with the eigenvectors 1, 1̂. Thus all δ ∈ ∆⟨1⟩ has a spurious zero eigenvector 1̂,
and dim(ker(δ)) ≥ 2. Next, we notice this inequality can be sometimes strict.
Let us for example consider R2 − L2 for N = 4m with some integer m; then it
has additional zero eigenvalue for k = N/4. Thus, depending on the values of
βj ’s, there remains the possibility that dim(ker(δ)) > 2. These observations tell
us that the central-difference type operator of the form (15) can behave quite
strangely, which makes the discrete functional analytic approach quite difficult.
This does not happen for δ+.

The primal goal of this paper is to control such strange behaviors. Motivated
by the above observations, let us group difference operators in view of their
kernel space. More specifically, if the matrices TN , SN are invertible, then such
an operator δ can be translated from/to δ⟨1⟩,2, sharing the common kernel space.
It naturally leads us to the following definition. The subscript “2” comes from
δ⟨1⟩,2. (It can also mean the false kernel dimension 2.)

Definition 2 (Set ∆
⟨1⟩
2 ). Let ∆

⟨1⟩
2 denote the set of all δ ∈ ∆⟨1⟩ such that SN

is invertible for all N for which the operator is defined.

This demands SN is invertible for every fixed N , but there remains the pos-
sibility that it tends to be singular when N → ∞. The next concept, equivalent
operators, is to exclude this possibility.

Definition 3 (p-reducibility and p-equivalence). We say δ ∈ ∆
⟨1⟩
2 is p-reducible

to δ⟨1⟩,2 if there exists a constant C, independent of N , such that ∥SN
−1TN∥p <

C holds. We say δ ∈ ∆
⟨1⟩
2 is p-equivalent to δ⟨1⟩,2, if it additionally satisfies

∥TN
−1SN∥p < C.

The p-equivalent operators can be safely translated from/to the represen-
tative element δ⟨1⟩,2 in terms of p-norm. The p-reducibility demands a weaker
property; it does not care if the translation from δ⟨1⟩,2 to δ is safe or not.

Since SN is circulant, 2-equivalence can be, in principle, discussed in terms
of the eigenvalues. When we need general p-equivalence for p ̸= 2, the next
lemma is useful.

Lemma 2. If δ ∈ ∆
⟨1⟩
2 is 1-equivalent (or -reducible, respectively) to δ⟨1⟩,2, then

it is p-equivalent (-reducible) to δ⟨1⟩,2 for all p ≥ 1.

proof. Recall the Riesz–Thorin theorem (for example, [13]): for every A ∈
RN×N and p ≥ 1, ∥A∥p ≤ ∥A∥1/p1 ∥A∥1−1/p

∞ . In particular, when A is symmetric,
∥A∥p ≤ ∥A∥1. The matrices TN and SN in (20) are symmetric.

The next lemma gives a simple sufficient condition for 1-equivalence.

Lemma 3. If TN and SN (in the form (20)) are diagonally dominant, then the
corresponding operator δ is 1-equivalent to δ⟨1⟩,2.
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proof. Let us write M =
∑B

i=1 si(Ri + Li). Note that SN = s0I +M is diag-
onally dominant if and only if ∥M∥1/s0 < 1. Thus by the Neumann expansion
we have

∥SN
−1∥1 ≤ 1

s0

∞∑
j=0

(
1

s0
∥M∥1

)j

≤ 1

s0 − ∥M∥1
. (21)

This bound does not depend on N . The bound for ∥SN∥1 is obvious, and the
same argument applies to TN . This implies the claim. (Note that the weaker
claim on 2-equivalence is immediate from the Gershgorin circle theorem: every
eigenvalue λ of SN lies on the disk {x ∈ R | |x− s0| ≤ ∥M∥1}.)

Some of the central difference operators δ⟨1⟩,2s and the compact difference

operators δ
⟨1⟩
c satisfies the sufficient condition, and thus 1-equivalent to δ⟨1⟩,2.

Lemma 4. δ⟨1⟩,2s (s ≤ 7) and δ
⟨1⟩
c in Table 1 are 1-equivalent to δ⟨1⟩,2.

proof. We show SN =
(∑B

j=1(βj/j)Fj(R1, L1)
)
obtained in Lemma 1 is diag-

onally dominant for s ≤ 7. For s = 2, for instance, from Table 1, β1 = 4/3,
β2 = −1/3. Thus

SN =
4

3
F1(R1, L1)−

1

6
F2(R1, L1) =

4

3
I − 1

6
(R1 + L1).

That is, now s0 = 4/3 and s1 = −1/6, which defines a diagonally dominant
matrix. Similarly,

s = 3: s0 =
23

15
, s1 = − 3

10
, s2 =

1

30
,

s = 4: s0 =
176

105
, s1 = − 57

140
, s2 =

8

105
, s3 = − 1

140
,

and so on. Since the coefficients in rational number expression would soon get
incredibly cumbersome, we omit them for s ≥ 5, and instead show the values of
s0 − 2

∑B
i=1 |si| for 2 ≤ s ≤ 8.

s = 2 : 1,

s = 3 : 13
15 ≃ 0.8667,

s = 4 : 73
105 ≃ 0.6952,

s = 5 : 23
45 ≃ 0.5111,

s = 6 : 1121
3465 ≃ 0.3235,

s = 7 : 6143
45045 ≃ 0.1364,

s = 8 : − 243
5005 ≃ −0.0486.

This shows that for s ≤ 7, the matrices SN ’s are diagonally dominant, and thus
the above discussion applies.

For the compact difference operator in Table 1, TN ’s are all diagonally dom-
inant. Hence, again, checking the diagonal dominance of SN suffices. For the
operators listed in Table 1, B ≤ 3, and thus we need to check the matrix

3∑
j=1

βj

j
Fj(R1, L1) = β1I +

β2

2
(R1 + L1) +

β3

3
(R1

2 +R1L1 + L1
2).

10



It is diagonally dominant if β1 + β3/3 > |β2| + 2|β3|/3. All the operators
in Table 1 satisfy this.

For the pseudospectral difference operator δ⟨1⟩,∞, SN is generally dense, and
thus Lemma 3 cannot be utilized. For this operator, a weaker result holds, which
corresponds to the 2-reducibility. Let us first construct a SN . Note that Dδ⟨1⟩,2

can be diagonalized as

DFDδ⟨1⟩,2D
−1
F = (0, λ1, λ2, . . . , λN

2 −1, 0,−λN
2 −1, . . . ,−λ1), (22)

λj = i
N

2
sin

(
2jπ

N

)
. (23)

This, together with (17), we obtain a matrix SN :

SN = D−1
F diag

(
1,

η1
λ1

, . . . ,
ηN/2−1

λN/2−1
, 1,

ηN/2−1

λN/2−1
, . . . ,

η1
λ1

)
DF , (24)

ηj = ijπ. (25)

Lemma 5. Let SN be the matrix defined in (24). Then there exists a constant
C independent of N such that ∥SN

−1∥2 < C holds.

proof. It suffices to show that ηj/λj (j = 1, . . . , N/2 − 1) is bounded from
below independent of N . This is obvious since they must lie on the curve f∞:

f∞(θ) =


θ

sin(θ)
θ ∈ (0, π),

1 θ = 0.
(26)

Since f∞(θ) ≥ 1 for θ ∈ [0, π), we have the claim.

Since f∞(θ) is not bounded from above, δ⟨1⟩,∞ does not have a property
corresponding to the 2-equivalence. This is a crucial difference between δ⟨1⟩,∞

and δ⟨1⟩,2s for s < ∞.

2.3 Discrete Norms

We use the following discrete analogues of the Lebesgue space Lp(T) and
the Sobolev space W 1,p(T).

Lp
d := {U ∈ SN | ∥U∥Lp

d
< ∞}, (27)

W 1,p
d (δ) := {U ∈ SN | ∥U∥W 1,p

d (δ) < ∞}. (28)

They are essentially the same space as SN for each fixed N , since the discrete
norm is always bounded. Nevertheless we use this definition for convergence
analysis where the limit N → ∞ is taken into account.

The discrete norms are defined below.

Definition 4 (Discrete Norms). For every U ∈ SN and δ ∈ ∆⟨1⟩,

∥U∥Lp
d
:=

(
N−1∑
k=0

|Uk|p∆x

)1/p

, (29)

∥U∥W 1,p
d (δ) :=

(
N−1∑
k=0

(|Uk|p + |δUk|p)∆x

)1/p

. (30)

11



Observe that ∥U∥W 1,p
d (δ) explicitly depends on the difference operator δ, and

accordingly the space W 1,p
d (δ) differs for each δ. In order to clarify this point,

we include δ in the expression of the discrete Sobolev norm.
For the discussions below, it is convenient to note some properties of the

norms of the linear operators on Lp
d. Let L(Lp

d, L
p
d) be the space of linear

operators Lp
d → Lp

d. From the definition of Lp
d, we see the following result about

the equivalence between the operator norms of L(Lp
d, L

p
d) and the corresponding

matrix norms. From this reason, below we do not explicitly distinguish these
two concepts.

Lemma 6. Let M be an operator in L(Lp
d, L

p
d), whose representation matrix is

denoted again by M ∈ RN×N . Then

∥M∥L(Lp
d,L

p
d)

= ∥M∥p, (31)

where ∥ · ∥p is the standard matrix norm．

proof. From the definition of ∥ · ∥Lp
d
, it immediately follows fact that ∥U∥Lp

d
=

∥U∥p(∆x)1/p where ∥ · ∥p is the ordinary vector norm. Using this relation, we
get

∥M∥L(Lp
d,L

p
d)

= sup
U∈Lp

d

∥MU∥Lp
d

∥U∥Lp
d

= sup
U∈Lp

d

∥MU∥p
∥U∥p

= ∥M∥p. (32)

Note that, for each fixed N，U ∈ Lp
d if and only if U ∈ SN．

3 Main Results

In this section we establish the following theorems. The key there is the 2-
or p-reducibility of operators.

Theorem 1 (Discrete Sobolev inequality). Let δ ∈ ∆
⟨1⟩
2 be an operator that is

2-reducible to δ⟨1⟩,2. Then for every U ∈ SN the following inequality holds.

∥U∥∞ ≤ C∥U∥W 1,2(δ), (33)

where C is a constant which depends on δ but not on U and N .

Theorem 2 (Discrete Gagliardo–Nirenberg inequality (NLS type)). Let δ ∈
∆

⟨1⟩
2 be an operator that is 2-reducible to δ⟨1⟩,2. Then for every U ∈ SN the

following inequality holds.

∥U∥4L4
d
≤ C∥U∥W 1,2(δ)∥U∥3L2

d
, (34)

where C is a constant which depends on δ but not on U and N .

The discrete Gagliardo–Nirenberg inequality actually holds in more general
index, although the authors do not know if it has ever been explicitly pointed
out in the literature. We show the following result, which demands a stronger
assumption. Theorem 2 is a special case of it with p = 4, q = r = 2 and σ = 1/4.

12



Theorem 3 (Discrete Gagliardo–Nirenberg inequality (general case)). Let δ ∈
∆

⟨1⟩
2 be an operator that is 1-reducible to δ⟨1⟩,2. Let also 1 ≤ p, q, r ≤ ∞ and

0 ≤ σ ≤ 1 such that

1

p
= σ

(
1

r
− 1

)
+ (1− σ)

1

q
. (35)

Then for every U ∈ SN the following inequality holds.

∥U∥Lp
d
≤ C∥U∥σW 1,r(δ)∥U∥1−σ

Lq
d

, (36)

where C is a constant which depends on δ, p, q, r, σ but not on U and N .

Remark 2. By slightly modifying the discussion, we can also prove the general
version of the GN for δ+. This seems new as well.

We start by proving the key lemma, which relates the “discrete” (finite-
dimensional) to the “continuous” (infinite-dimensional) function space. The
association is essentially done for the simplest central-difference operator δ⟨1⟩,2,
and then extended to generic δ’s by translation.

Lemma 7. For every U ∈ SN , we associate the piecewise linear function Ũ ∈
C(T) defined by

Ũ(k∆x) =
|Uk|+ |Uk−1|

2
=: Vk (k = 0, 1, . . . N − 1), (37)

Ũ(x) =
Vk+1 − Vk

∆x
(x− k∆x) + Vk, x ∈ (k∆x, (k + 1)∆x). (38)

Then the following holds true with some constants C1,p, C2,p, C3,δ, C4,δ,p which
can depend on the specified elements but not on N .
(i) For every p ∈ {1, . . . ,∞}, it holds

C1,p∥U∥Lp
d
≤ ∥Ũ∥Lp ≤ C2,p∥U∥Lp

d
. (39)

(ii) For every δ ∈ ∆
⟨1⟩
2 that is 2-reducible to δ⟨1⟩,2, it holds

∥Ũ∥W 1,2 ≤ C3,δ∥U∥W 1,2
d (δ). (40)

(iii) For every δ ∈ ∆
⟨1⟩
2 that is 1-reducible to δ⟨1⟩,2, it holds for every p ∈

{1, . . . ,∞}

∥Ũ∥W 1,p ≤ C4,δ,p∥U∥W 1,p
d (δ). (41)

proof. (i) By easy calculation, we get the following identity for ∥Ũ∥Lp :

∥Ũ∥pLp =
N−1∑
k=0

∆x

p+ 1

(
Vk+1

p + Vk+1
p−1Vk + · · ·+ Vk+1Vk

p−1 + Vk
p
)
. (42)

First we obtain the left hand side of (39) by

∥Ũ∥pLp ≥
N−1∑
k=0

∆x

p+ 1
(Vk+1

p + Vk
p)

≥
N−1∑
k=0

∆x

p+ 1
(|Uk+1|p + 2|Uk|p + |Uk−1|p)

=
4

p+ 1
∥U∥p

Lp
d
.
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For the right hand side, we see

∥Ũ∥pLp ≤
N−1∑
k=0

∆x max (Vk+1
p, Vk

p)

≤
N−1∑
k=0

∆x (Vk+1
p + Vk

p)

≤
N−1∑
k=0

∆x (2p(|Uk+1|p + |Uk|p) + 2p(|Uk|p + |Uk−1|p))

≤ 2p+2∥U∥p
Lp

d
,

which proves (39).
(ii) To prove (40), we calculate the weak derivative of Ũ and use the triangle

inequality to find for x ∈ [k∆x, (k + 1)∆x]

|Ũx(x)| =
∣∣∣∣ |Uk+1| − |Uk−1|

2∆x

∣∣∣∣ ≤ ∣∣∣∣Uk+1 − Uk−1

2∆x

∣∣∣∣ ≤ |δ⟨1⟩,2k Uk|. (43)

This estimate together with (39) reveal

∥Ũ∥p
W 1,p

d

=
(
∥Ũ∥pLp + ∥Ũx∥pLp

)
≤ max(C2,p

2, 1)
(
∥U∥p

Lp
d
+ ∥δ⟨1⟩,2U∥p|Lp

d

)
. (44)

This leads to the assertion for δ⟨1⟩,2. For other δ ∈ ∆
⟨1⟩
2 that is 2-reducible,

from its definition there exist TN and SN such that ∥SN
−1TN∥2 has an upper

bound which does not depend on N . Thus we have

∥Ũ∥2W 1,2 ≤ C3∥U∥2
W 1,2

d (δ⟨1⟩,2)

= C3

(
∥U∥2L2

d
+ ∥Dδ⟨1⟩,2U∥2L2

d

)
= C3

(
∥U∥2L2

d
+ ∥(TN

−1SN )−1TN
−1SNDδ⟨1⟩,2U∥2L2

d

)
≤ C3

(
∥U∥2L2

d
+ ∥SN

−1TN∥2∥DδU∥2L2
d

)
≤ C∥U∥2

W 1,2
d (δ)

. (45)

(iii) For δ ∈ ∆
⟨1⟩
2 that is 1-reducible, we see similarly to above that

∥Ũ∥pW 1,p ≤ C3∥U∥p
W 1,p

d (δ⟨1⟩,2)

≤ C
(
∥U∥p

Lp
d
+ ∥SN

−1TN∥p∥DδU∥p
Lp

d

)
≤ C∥U∥p

W 1,p
d (δ)

. (46)

This completes the proof.

proof of Theorem 1 and Theorem 2. From Lemma 7 (i), (ii) and the
continuous version of the Sobolev inequality (see, for example, [5]), we see

∥U∥∞ = ∥Ũ∥∞ ≤ C∥Ũ∥W 1,2 ≤ C∥U∥W 1,2
d (δ). (47)
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Next, for Theorem 2, we use Lemma 7 (i), (ii) and the continuous version of
the Gagliardo–Nirenberg inequality (see, for example, [5]) to obtain

∥U∥4L4
d
≤ C∥Ũ∥4L4 ≤ C∥Ũ∥W 1,2∥Ũ∥3L2 ≤ C∥U∥W 1,2

d (δ)∥U∥3L2
d
, (48)

proof of Theorem 3. We use Lemma 7 (i), (iii) and the continuous version of
the Gagliardo–Nirenberg inequality (see, for example, [5]) to obtain

∥U∥p
Lp

d
≤ C∥Ũ∥pLp ≤ C∥Ũ∥σW 1,r∥Ũ∥1−σ

Lq ≤ C∥U∥σ
W 1,r

d (δ)
∥U∥1−σ

Lq
d

. (49)

The pseudospectral difference operator δ⟨1⟩,∞ has the property similar to
2-reducibility (Lemma 5). Thus Lemma 7 also holds for this operator. We omit
the proof.

Theorem 4 (Discrete inequalities for δ⟨1⟩,∞). For every U ∈ SN the following
inequalities hold :

∥U∥∞ ≤ C∥U∥W 1,2(δ⟨1⟩,∞),

∥U∥4L4
d

≤ C∥U∥W 1,2(δ⟨1⟩,∞)∥U∥3L2
d
,

where C is a constant which depends on δ⟨1⟩,∞ but not on U and N .

4 Application example

In this section we illustrate how the main results are useful, taking the
nonlinear Schrödinger equation (NLS) as our working example.

We consider the cubic NLS on the circle T:

i
∂u

∂t
= −∂2u

∂x2
− γ|u|2u, x ∈ T, t > 0, γ > 0. (50)

This equation has a conservative property in the sense that the solution u sat-
isfies the following property:∫

T

(
−|ux|2 +

γ

2
|u|4
)
dx = c1, (51)∫

T
u2dx = c2. (52)

Note that the estimate ∥u∥∞ < c < +∞ follows from these invariants.
From (51), we see

∥u∥2W 1,2 − c1 − c2 =
γ

2
∥u∥4L4 ≤ Cγ

2
∥u∥W 1,2∥u∥3L2 =

c2
3/2Cγ

2
∥u∥W 1,2 ,

where C is the constant in the GN inequality. This quadratic inequality implies
that ∥u∥W 1,2 is bounded. This, together with the Sobolev inequality, shows the
desired estimate.
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Let δ ∈ ∆
⟨1⟩
2 , and consider a generic scheme:

i

(
U

(m+1)
k − U

(m)
k

∆t

)
=−δ2

(
U

(m+1)
k + U

(m)
k

2

)

− γ

(
|U (m+1)

k |2 + |U (m)
k |2

2

)(
U

(m+1)
k + U

(m)
k

2

)
. (53)

It has two conservation laws corresponding to (51)–(52) (we denote them again
by c1, c2):

N−1∑
k=0

(
−|δU (m)

k |2 + γ

2
|U (m)

k |4
)
∆x = c1, (54)

N−1∑
k=0

|U (m)
k |2∆x = c2. (55)

Note that the same generic difference operator appears in the scheme (53) and
the discrete energy function (54). This is crucial in the analysis below. The

schemes with δ = δ⟨1⟩,2s were discussed in [19], and those with δ = δ
⟨1⟩
c in [17].

For both cases, no theoretical analysis was given, due to the lack of the corre-
sponding discrete inequalities. Now we have them, and can give such analyses.

Let us confirm that we can universally deduce the essential estimate ∥U (m)∥∞ <
Cδ < +∞.

Theorem 5 (A priori estimate on the approximate solution). Let δ ∈ ∆
⟨1⟩
2 be

an operator that is 2-reducible to δ⟨1⟩,2. Then for m = 0, 1, 2, . . .,

∥U (m)∥∞ ≤ Cδ,c1,c2,γ (56)

holds, where Cδ,c1,c2,γ is a constant that can depend on the specified elements
but not on N and m.

proof. The argument goes exactly the same as in the continuous case, thanks
to the new discrete inequalities.

From (54) and (55), and from the discrete Gagliardo–Nirenberg inequality
for δ (Theorem 2), we see

∥U (m)∥2
W 1,2

d (δ)
− c1 − c2 =

γ

2
∥U (m)∥44 ≤ c2

3/2Cγ

2
∥U (m)∥W 1,2

d (δ), (57)

where this time C denotes the constant in Theorem 2. This implies the bound-
edness of ∥U (m)∥W 1,2

d (δ). Then from the discrete Sobolev inequality for δ (The-

orem 1), we have the claim.

Once the estimate is at hand, we can obtain a full convergence result, by
following the discussion in [10]. Let us here just present the conclusion. Let

us denote the error in the numerical solution by e
(m)
k := u

(m)
k − U

(m)
k , where

u
(m)
k := u(k∆x,m∆t). We evaluate the error at a goal time T = M∆t: ∥e(M)∥2.
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Theorem 6. Let δ ∈ ∆
⟨1⟩
2 be the generic difference operator of order s, which

is 2-reducible to δ⟨1⟩,2, and u ∈ C2[[0, T ], Cs+2] be the true solution to NLS.
Assume that the constants c1 and c2 in Theorem 5 can be bounded from above
for all N . Then there exists a constant c, C which depends on δ, γ, c1, c2 and the
true solution u, such that the following estimate holds.

∥e(M)∥22 ≤ CT

1− c∆t
(∆t4 +∆x2s)e

cT
1−c∆t (58)

5 Conclusion

In this paper, we have provided a unified analysis of the discrete inequali-
ties regarding the central-difference type operators, which include the 2s-order
central difference schemes δ⟨1⟩,2s (s ≥ 1) and the compact difference operators

δ
⟨1⟩
c . There the key was to first prove the fundamental result for the represen-
tative difference operator δ⟨1⟩,2, and then reduce other cases to it by the idea of
equivalent (or reducible) operators. This sort of unified approach for difference
operators seems not so common in the literature, if not completely new. We
demonstrated the results taking NLS as an example. For NLS, the schemes
themselves had been known [19, 17], but the convergence analysis has been left
open, due to the lack of the required discrete inequalities. In the present paper,
we have filled this gap.

The results in the present paper can be applied to wide range of schemes
utilizing central-difference type operators. For example, there many dissipative
schemes for the Cahn–Hilliard equation [9, 11], the phase-field crystal equa-
tion [25, 26], among others. It is possible to consider their higher-order versions
by employing central-difference type operators, and for such schemes the results
in the present paper are expected to be useful.

Some possible future works are commented below. First, although in this

paper we proved the p-reducibility/equivalence for only limited member of ∆
⟨1⟩
2 ,

the present authors conjecture that they hold in wider subset of, or even all of

∆
⟨1⟩
2 . Preliminary numerical tests by the present authors support this view. In

order to theoretically establish this, however, we have to discard the argument
based on the diagonal dominance of the translation matrices, and find some
new mathematical tools. Second, in this paper we have established the discrete
Gagliardo–Nirenberg inequality for general index. It is an interesting and im-
portant topic to seek for PDE schemes where such an inequality is hoped. Last
but not least, we hope to extend the idea of equivalent operators to construct a
consistent big framework of discrete functional analysis, so that finite difference
methods become really competitive to finite element methods. This is quite a
big challenge, and should be beyond the ability of the present authors alone.
We hope this view is shared by many researchers in related fields.
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