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Abstract

One of the main results of “Order-Based Cost Optimization in Assemble-to-Order Systems” by
Y. Lu and J-S. Song,Operations Research, 53, 151–169 (2005) is Proposition 1 (c), which states that
the cost function of an assemble-to-order (ATO) inventory system satisfies a discrete convexity prop-
erty called L♮-convexity. We construct a counterexample showing that this result is incorrect. We
then show how to use two existing algorithms to solve the underlying problem in pseudopolynomial
time, and that such problems cannot in general be solved in polynomial time. Lastly we note that our
counterexample can be adapted to show that some ideas for trying to show discrete convexity in this
ATO model do not work.
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1 Introduction

Lu and Song (2005) modeled an assemble-to-order (ATO) inventory system with random demands and
lead time. We follow their notation and terminology. Their system consists of a setI = {1, 2, . . . ,m}
of items(components) and a family oforders (final products ordered by customers). Order typeK is
assembled just-in-time from a subset of items, and soK ⊆ I. Type-K orders arrive as a Poisson process
at rateλK . Their general model allows random, item-dependent lead times for replenishment of items,
but here we assume that lead time is the item-independent deterministic numberL of time units.

Incoming demand is serviced via a first-come, first-served (FCFS) policy, not only within each order
type, but also across multiple order types: If a type-K order arrives and everyi ∈ K is in stock, then the
order is assembled and fulfilled. If one or morei ∈ K are not in stock, the order is backlogged: anyi ∈ K
that are in stock areearmarkedand set aside for this order until the arrival of the out-of-stocki ∈ K. Any
earmarked unit of an item cannot be used to satisfy another unit of demand that it is not earmarked for.

Lu and Song analyze base-stock inventory policies, based on the inventory position (inventory that
is on-hand and not earmarked plus inventory on order minus backorders) of each item. The decision
variables aresi , the base-stock inventory level for itemi ∈ I. Notice that eachsi can take only non-
negative integer values. There is a unit inventory holding cost ratehi for i ∈ I, and a backorder cost
ratebK for type-K orders. Defining̃bK = bK +

∑
i∈K hi andBK(s) as the number of backorders for each

order-typeK, then equation (7) of Lu and Song (2005) develops the expression

C(s) =
∑

i

hi si +
∑

K

b̃KE(BK(s)), (1)

whose minimization is equivalent to minimizing the expected total cost of the system under base-stock
levelss. The objective is to minimizeC(s) over non-negatives ∈ Zm.

A main result in Lu and Song (2005) is Proposition 1, which states three properties ofC(s). Property
(a) is thatC(s) is coordinate-wise discretely convex, i.e.,C(s+ ei)−C(s) (whereei is thei-th unit vector)
is non-decreasing ini. To describe property (b), we note that pointss ∈ Zm form a lattice under the
operationss′∧ s′′ (“meet”) as the coordinate-wise minimum, ands′∨ s′′ (“join”) as the component-wise
maximum. Then Proposition 1 shows thatC(s) is lattice submodular, i.e.,

C(s′) +C(s′′) ≥ C(s′ ∧ s′′) +C(s′ ∨ s′′).

Property (c) in Proposition 1 is L♮-convexity, which is one of several concepts of convexity over
integer vectors that make up the field ofdiscrete convexity, see Murota (2003). These concepts are
important because such notions have been used to show structural properties of various inventory systems
as long ago as Miller (1971), then more recently by, e.g., Zipkin (2008), Huh and Janakiraman (2010),
Pang et al. (2012), and Li and Yu (2014). Also, functions having one of these properties typically have
polynomial minimization algorithms which are useful in, e.g., scheduling applications such as Begen
and Queyranne (2011) or Koole and van der Sluis (2010).

A defining property of L♮-convexity calledDiscrete Midpoint Convexitywas first stated by Favati
and Tardella (1990) to characterize “submodular integrally convex” functions. A different definition in
terms of submodularity inm+ 1 variables was stated by Murota (1998) to characterize “L♮-convexity”.
The equivalence between Murota’s definition of L♮-convexity and Favati and Tardella’s definition of
submodular integrally convex was shown in Fujishige and Murota (2000). We say thatC(s) is L♮-convex
if for all s′, s′′ ∈ Zm with maxi |s′i − s′′i | ≤ 2 it satisfies the Discrete Midpoint Convexity property

C(s′) +C(s′′) ≥ C
(⌈ s′ + s′′

2

⌉)
+C
(⌊ s′ + s′′

2

⌋)
, (2)

where⌈x⌉ is the least integerk ≥ x, and⌊x⌋ is the greatest integerk ≤ x, see Figure 1. It is known
(see Murota (2003)) that L♮-convexity implies lattice submodularity, but that the reverse is not true. (In
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Figure 1: The blue point is the actual midpoint of the two black points, whereas the red points are the
discrete midpoints.

fact, knowing that (2) is true when maxi |s′i − s′′i | ≤ 1 suffices to imply lattice submodularity, see Topkis
(1978).) Also, there are polynomial algorithms for minimizing L♮-convex functions.

A goal of this note is to construct and explain a counterexample showing that Proposition 1 (c)
of Lu and Song (2005) is wrong in its claim thatC(s) is L♮-convex, and to show what algorithms are
possible in the absence of L♮-convexity. Section 2 constructs an instance of the ATO model that violates
(2). Section 3 shows how to adapt two known algorithms to solve the problem in pseudopolynomial
time, and that no algorithm can minimize every submodular and coordinate-wise convex function in
polynomial time. Finally, Section 4 briefly discusses that our counterexample can be adapted to show
that some ideas for trying to show discrete convexity in this ATO model do not work.

2 A Counterexample

Our counterexample instance is a special case of the ATO model given in Lu and Song (2005). It has
I = {1,2} (so m = 2), and order typesP = {1,2} andQ = {1}. Let s = (s1, s2) denote the vector of
base-stock levels, and defineBP(s1, s2) andBQ(s1, s2) as the steady-state distributions of backorders for
demandsP andQ, respectively. Then (1) for this instance specializes to

C(s) = h1s1 + h2s2 + b̃PE[BP(s1, s2)] + b̃QE[BQ(s1, s2)]

(whereh1 and h2 denote the per-unit holding cost rates of items 1 and 2, andb̃P and b̃Q denote the
modified per-unit backorder cost rates for order typesP andQ). Further assume thatb̃Q = h1 = h2 = 0
andb̃P = 1, and then (1) for this instance further specializes to

C(s) = E[BP(s1, s2)]. (3)

To show thatC(s) is not always L♮-convex, we consider particular values fors′ ands′′ to construct a
violation of (2). Defines′ = (0,0) ands′′ = (2, 1). Since⌈ 1

2(s
′ + s′′)⌉ = (1, 1) and⌊ 1

2(s
′ + s′′)⌋ = (1, 0)

(see Figure 1), from (3) it suffices to show that

E[BP(0,0)] + E[BP(2,1)] < E[BP(1, 1)] + E[BP(1,0)] (4)

in order to show thatC(s) is not always L♮-convex.
If ( s1, s2) = (0,0), then every unit of demand for either order type triggers the ordering of required

items, and thus is backordered during the lead time. If (s1, s2) = (1,0), there is no unit of item 2 in stock,
and every unit of demand for order typeP triggers the ordering of item 2; it follows that each demand for
P is backordered for the duration of the replenishment lead timeL. Therefore,E[BP(0, 0)] = E[BP(1, 0)].
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Now we compareE[BP(2, 1)] andE[BP(1,1)]. Clearly,E[BP(2,1)] ≤ E[BP(1, 1)]. We now show
that this inequality is strict. Fix timet, and suppose that there is no demand in the interval (t − 2L, t − L]
(and so there are no backorders of either order type att − L), and the demand realization during the
interval (t − L, t] is one unit ofQ followed by one unit ofP. Clearly, this event occurs with a strictly
positive probability. Furthermore, conditioned on this event, the system managed with the base-stock
vector (s1, s2) = (2,1) has no backorder att, whereas the system managed with (s1, s2) = (1, 1) has one
unit of P backordered att (this happens because a unit of item 1 is used to satisfy demand forQ before
another unit can be used forP by the FCFS allocation policy). It follows thatE[BP(2,1)] < E[BP(1, 1)].
Putting these results together, we obtain (4), which implies thatC(s) is not always L♮-convex.

3 Two Algorithms

Proposition 6 in Lu and Song (2005) shows how to compute an upper boundu on the optimals so that
the optimals∗ is in thebox B(u) = [0, u] := {s ∈ Zm | 0 ≤ s ≤ u}. DefineU = maxi ui . Thus we are
interested in minimizing a submodular (but not necessarily L♮-convex) functionf on a box. Notice that
this box is a lattice, as it is closed under meet and join. Every lattice has a unique minimum element (the
meet of all elements); for this box lattice the minimum element is the0 vector.

3.1 From a Distributive Lattice to Submodular Function Minimization

In fact this box lattice is adistributive lattice, as this meet and join distribute over each other. Due to
Birkhoff’s Representation Theorem (Birkhoff (1937)), every finite distributive latticeD has a represen-
tation as a familyR of subsets of a finite setE. The familyR is a ring family, i.e., it is closed under
intersection and union. A lattice submodular functionf onD naturally induces an ordinary submodular
function f̃ on R, where meet and join inD become intersection and union inR. Then minimizing f
overD is equivalent to minimizingf̃ overR. This is useful because minimizing a submodular function
like f̃ on a ring family likeR is a well-understood problem. There are standard methods for reducing
this problem tosubmodular function minimization(SFM, see (Orlin 2009, Section 8), (Schrijver 2000,
Section 6), or (McCormick 2006, Section 5.2)). There are various strongly and weakly polynomial SFM
algorithms available.

Here is how this reduction from a distributive latticeD to a ring familyR works, see (Murota 2003,
Note 10.15) or (Queyranne and Tardella 2004, Section 4). We calld ∈ D join-irreducible if d = d′ ∨ d′′

implies thatd = d′ or d = d′′. DefineJ(D) as the set of join-irreducible elements ofD other than its
minimum element; this will be the ground setE for the ring family. For the boxB(u) = [0,u] it is known
that J(B(u)) = {s ∈ B(u) | all but one component ofs are zero}. We denote the partial order associated
withD by “⪯”. Now for s ∈ D defineϕ(s) = { j ∈ J(D) | j ⪯ s}, a subset ofJ(D).

Then the family of subsetsϕ(D) = {ϕ(s) | s ∈ D} is a ring family, withϕ(s′) ∩ ϕ(s′′) = ϕ(s′ ∧ s′′)
andϕ(s′) ∪ ϕ(s′′) = ϕ(s′ ∨ s′′). ForS ∈ ϕ(D) corresponding toϕ(s) (i.e.,ϕ(s) = S ⊆ J(D)), it is natural
to define f̃ (S) = f (s). Then the lattice submodularity off onD translates into ordinary submodularity
of f̃ on the ring familyϕ(D). Therefore the problem of minimizingf onD translates into the problem
of minimizing f̃ on the ring familyR = ϕ(D).

Thus we can solve mins∈B(u) C(s) by solving SFM forC̃ overϕ(B(u)) in time polynomial in|J(B(u))|.
It is straightforward to see that all operations needed by an SFM algorithm are easy to compute via
evaluations ofC(s) on B(u). We call this algorithm theRing Family SFM Algorithm. Unfortunately, the
size of isJ(B(u)) is O(mU). SinceU is actually exponential in the data of the ATO instance, this means
that Ring Family SFM is only pseudopolynomial, and not polynomial.

It is natural to wonder whether our ATO objective functionC(s) has any extra structure that can help.
Recall that (Lu and Song 2005, Proposition 1 (a)–(b)) shows thatC(s) is not only submodular, but also
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coordinate-wise convex. The next proposition shows that no polynomial algorithm can minimizes every
submodular and coordinate-wise convex function.

Proposition 3.1. There exists a functionf defined onB(u) that is submodular and coordinate-wise
convex that cannot be minimized in polynomial time.

Proof. Proof: Choosem = 2, some positive integerp, and setu = (p, p). For 0≤ i ≤ p choose some
integersvi ∈ [0, p] and definef (i, j) = p(i − j)2 if i , j, and f (i, j) = vi if i = j. It is easy to check that
this f is submodular and coordinate-wise convex for any set ofvi .

Since f has the required properties no matter what values we assign to thevi , any optimization
algorithm must evaluatef (i, i) for all 0 ≤ i ≤ p in order to be sure that it has truly found the minimum
value. Thus any algorithm must spend at leastp evaluations on thef (i, i). But hereU = p is not
polynomial in the size of the input, and so no algorithm can be polynomial. □

Notice that Proposition 3.1 is stronger than saying that the problem is NP-hard, in that it says that
no polynomial algorithm can exist independent of whether P, NP or not. We can easily show that the
function f in Proposition 3.1 is not L♮-convex: Fors′ = (0, 0) ands′′ = (2, 2) we get that⌈ 1

2(s
′ + s′′)⌉) =

⌊ 1
2(s
′ + s′′)⌋ = (1, 1). Thus we get thatf (0,0)+ f (2,2) = v0 + v2, whereasf (1,1)+ f (1,1) = 2v1, and

we can easily choose values such thatv0 + v2 ̸≥ 2v1. This demonstrates that L♮-convexity is indeed a
significantly stronger concept than submodularity plus coordinate-wise convexity.

3.2 The Favati-Tardella Heuristic

Despite the negative result in Proposition 3.1, in practice the boundu will probably not be too large,
and so the Ring Family SFM algorithm could be useful despite being only pseudopolynomial. Within
the realm of pseudopolynomial algorithms, another possibly simpler algorithm can be adapted from an
algorithm in Favati and Tardella (1990). Their algorithm was developed for L♮-convex functions ((Lu and
Song 2005, p. 156) suggest using it), but even without L♮-convexity we can use it as a heuristic to try to
shrink the box [0,u] before applying the Ring Family SFM Algorithm. We call this theFavati-Tardella
Heuristic.

The properties needed for the Favati-Tardella Heuristic are lattice submodularity and coordinate-wise
convexity, which (Lu and Song 2005, Proposition 1 (a)–(b)) shows are true forC(s). The idea is to start
with l̄ = 0 andū = u and to sequentially shrink them towards each other. The Favati-Tardella Heuristic
works as follows:

Step 0: Initially put l̄ := 0, ū := u.

Step 1: For eachi = 1, . . . ,m, find integerθ ∈ [0, ūi − l̄ i ] that minimizesf ( l̄ + θei), and updatēl := l̄ + θei .

Step 2: For eachi = 1, . . . ,m, find integerθ ∈ [0, ūi − l̄ i ] that minimizesf (ū−θei), and updatēu := ū−θei .

Step 3: Find z+ ∈ {0,1}m that minimizesf ( l̄ + z+), and updatēl := l̄ + z+.

Step 4: Find z− ∈ {0,1}m that minimizesf (ū − z−), and updatēu := ū − z−.

Step 5: If z+ = z− = 0, then output [̄l, ū] and stop. Otherwise, go to Step 1.

The minimizations in Steps 1 and 2 can be done by binary search (a fast and simple algorithm) since
f is coordinate-wise convex. The minimizations in Steps 3 and 4 can be done by SFM (a slower and
more complicated algorithm) since the lattice submodularity off implies that f ( l̄ + z+) and f (ū − z−)
are submodular inz+. Thus each iteration takes polynomial time, though the number of iterations can
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again beO(mU), i.e., pseudopolynomial. Section 7 of Favati and Tardella (1990) reports on some com-
putational experience with this algorithm on quadratic functions (where SFM can be solved via min cut),
where it was found that re-doing the binary search steps after each round of SFM steps often sped up the
optimization. We are guaranteed that the output interval [l̄, ū] contains a global minimum by (Favati and
Tardella 1990, Proposition 6.1). Thus if we are lucky andl̄ = ū then the common value is the minimum.
If not, then we can apply the Ring Family SFM Algorithm to the smaller interval [l̄, ū].

4 Discussion

In view of the lack of L♮-convexity, it is tempting to look for another type of discrete convexity relevant
to the ATO objective functionC(s) in (1). A natural candidate isintegral convexityas defined in (Favati
and Tardella 1990, Definition 3.1), as the class of integral convex functions includes L-convex functions,
L♮-convex functions, M-convex functions, and M♮-convex functions (see Murota (2003)). An integral
convex function is not necessarily lattice submodular, but within the class of lattice submodular functions,
integral convexity is equivalent to L♮-convexity (Favati and Tardella 1990, Corollary 5.2.2). SinceC(s)
is submodular, our counterexample showing that it is not L♮-convex also shows that it is not integrally
convex.

It is also tempting to think that the violation of Discrete Midpoint Convexity (2) happens only for
sufficiently small vectorss. But this is not the case: Section 3.5 of Bolandnazar (2013) shows that for
m= 2 and any choice ofs1 > 0 ands2 ≥ s1 + 1, our counterexample can be adapted to show a violation
of Discrete Midpoint Convexity (2) fors′ = (s1, s2) ands′′ = (s1 + 1, s2 + 2). Thus counterexamples to
(2) exist for arbitrarily large values ofs.

Finally we mention that our counterexample has been constructed from an insight about equation (4)
of Lu and Song (2005). That equation expressesBK(s) as the maximum among sums of Bernoulli random
variablesYi

k, i.e.,BK(s) = maxi∈K
∑

k Yi
k, where the range ofk in the summation is determined bys. These

Yi
k are independent within each itemi, but not necessarily independent across items (Bolandnazar 2013,

Section 3.4).
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