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Abstract

We propose an information criterion for multistep ahead predictions. It is also used
for extrapolations. For the derivation, we consider multistep ahead predictions under local
misspecification. In the prediction, we show that Bayesian predictive distributions asymp-
totically have smaller Kullback–Leibler risks than plug-in predictive distributions. From the
results, we construct an information criterion for multistep ahead predictions by using an
asymptotically unbiased estimator of the Kullback–Leibler risk of Bayesian predictive dis-
tributions. We show the effectiveness of the proposed information criterion throughout the
numerical experiments.

1 Introduction

Consider multistep ahead predictions as follows: let x(N) = (x1, . . . , xN ) be data from distribu-
tion p(x(N)) and let y(M) = (y1, . . . , yM ) be target variables from distribution q(y(M)). We as-
sume that sample size M is given as the constant multiplication of sample size N , i.e., we assume
that M = cN . We predict the distribution of the target variables on the basis of the data. Here,
distributions p(x(N)) and q(y(M)) may be different but we assume that x1, . . . , xN , y1, . . . , yM
are independent.

For the prediction, we consider mfull parametric models of the distributions of the data
and the target variables as follows: for m ∈ {1, . . . ,mfull}, the m-th model Mm is given as
{pm(x(N)|θm)qm(y(M)|θm) : θm ∈ Θm}. Here, Θm is a dm-dimensional parametric space. For
simplicity, we denote parameter θmfull

by ω, distribution pmfull
(x(N)|ω) by p(x(N)|ω), and dis-

tribution qmfull
(y(M)|ω) by q(y(M)|ω). We denote parameter space Θmfull

by Θ and dimension
dmfull

by dfull. After the model selection, we construct the predictive distribution in the selected
model.

As an example, consider the curve fitting. We obtain the values of the unknown curve at
points (z1, . . . , zi, . . . , zN ) and predict the distribution of the values at points (zN+1, . . . , zN+j , . . . , zN+M ).

We use regression models with the basis set {ϕa}dfulla=1: for m ∈ {1, . . . , dfull}, for i ∈ {1, . . . , N},
and for j ∈ {1, . . . ,M}, the i-th data and the j-th target variable in the m-th model are given
by

xi =
m
Σ
a=1

ϕa(zi)θ
a
m + ϵi and yj =

m
Σ
a=1

ϕa(zN+j)θ
a
m + ϵN+j ,

respectively. Here, θm = (θ1m, . . . , θmm) represents an unknown vector. Two random vectors
ϵ = (ϵ1, . . . , ϵN )⊤ and ϵ̃ = (ϵN+1, . . . , ϵN+M )⊤ are independent and distributed according to
Gaussian distributions with mean zero and diagonal covariance matrices σ2IN×N and σ2IM×M ,
respectively.

We measure the performance of the predictive distribution q̂ by the Kullback–Leibler risk:

R(p(·)q(·), q̂) =

∫
p(x(N))

∫
q(y(M)) log

q(y(M))

q̂(y(M);x(N))
dy(M)dx(N).
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In this paper, we consider the asymptotics as the sample sizes N and M simultaneously go
to infinity. Note that since M = cN we consider that N goes to infinity. We show that for any
smooth prior π, the Bayesian predictive distribution qm,π(y

(M)|x(N)) in submodel Mm

qm,π(y
(M)|x(N)) =

∫
qm(y(M)|θm)pm(x(N)|θm)π(θm)dθm∫

pm(x(N)|θm)π(θm)dθm
(1)

asymptotically has smaller Kullback–Leibler risk than the plug-in predictive distribution qm(y(M)|θ̂m(x(N)))
with the maximum likelihood estimator in submodel Mm. Further, the Kullback–Leibler risk of
the Bayesian predictive distribution varies according to the Fisher information matrices of the
data and the target variables; in the i.i.d. settings, the risk varies according to the multiplicative
constant c.

From the results, we construct an information criterion for the multistep ahead prediction
by using an asymptotically unbiased estimator of the Kullback–Leibler risk of the Bayesian
predictive distribution. Several numerical experiments show the performance of the proposed
information criterion.

This paper is organized as follows: in Section 2, we prepare the notations and state the
assumptions to be used. In Section 3, we show that Bayesian predictive distributions have smaller
Kullback–Leibler risks than plug-in predictive distributions in multistep ahead predictions. In
Section 4, we propose information criteria for multistep ahead predictions. By considering the
variance of proposed information criteria, we propose their bootstrap adjustments. In Section
5, we show two numerical experiments: the curve fitting and the normal regression model with
an unknown variance. In Section 6, we present our conclusions.

2 Notations and Assumptions

We consider that the true distributions p(x(N)) and q(y(M)) belong to the full model Mmfull
:

p(x(N)) = p(x(N)|ω∗) and q(y(M)) = q(y(M)|ω∗),

where ω∗ is a certain point in Θ. We refer to this parameter point ω∗ as the true parameter
point.

We consider that the full model Mmfull
contains submodel Mm. Then, we decompose the

parameter ω in the full model Mmfull
into ω(θm, γm). We denote the parameterization (θm, γm)

by ξ. Under parameterization ξ, we denote the true parameter point by ξ∗.
To avoid the collision of indices, we use index i, j, k for observation xi, index s, t, u for

parameter ωs, and index a, b, c for parameter θam. We use index κ, λ, µ for parameter γκm, index
α, β, γ for parameter ξα, and index m,n, l for submodel Mm.

For simplicity, we denote the Kullback–Leibler risk by R(ω∗, q̂), i.e., the function of the true
parameter point ω∗ and predictive distribution q̂. We denote the expectation with respect to
the distribution with the parameter point ω by Eω.

We consider two maximum likelihood estimators. We denote the maximum likelihood estima-
tor of p(x(N)|ω) by ω̂(x(N)) and the restricted maximum likelihood estimator of p(x(N)|ω(θm, 0))
by θ̂m(x(N)).

We consider the projection of the true parameter point into Θm. We denote the best ap-

proximating point of ω∗ with respect to pm(x(N)|θm) by θ
(p)
m . In other words, θ

(p)
m is defined

by

θ(p)m = argmax
θm∈Θm

Eω∗ [log p(x(N)|ω(θm, 0))].

We denote the (i, j)-component of the Fisher information matrix of p(x(N)|ω) by g
(p)
ij (ω)

and that of q(y(M)|ω) by g
(q)
ij (ω), and we denote the (α, β)-components of those with respect
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to parameter ξ by g
(p)
αβ (ξ) and g

(q)
αβ (ξ), respectively. We denote the (a, b)-component of the sub-

matrix with respect to θm of Fisher information matrix g
(p)
αβ (ξ) by g

(p)
ab (θm) and that of g

(q)
αβ (ξ)

by g
(q)
ab (θm). We denote the sub-matrices with (a,b)-components as g

(p)
ab (θm) and g

(q)
ab (θm) by

g(p)(θm) and g(q)(θm), respectively.
We write the upper index −1 to denote the inverse of the matrix; we denote the inverses

of Fisher information matrices g(p)(ω), g(q)(ω), g(p)(ξ), and g(q)(ξ) by g(p)−1(ω), g(q)−1(ω),
g(p)−1(ξ), and g(q)−1(ξ), respectively. We use the upper index for the components of the inverse
of the Fisher information matrix; we denote the (i, j)-components of the inverse Fisher infor-
mation matrices g(p)−1 and g(q)−1 by g(p)ij(ω) and g(q)ij(ω), respectively. We denote the (a, b)-

components of the inverse Fisher information matrices g(p)−1(θm) and g(q)−1(θm) by g
(p)ab
m (θm)

and g
(q)ab
m (θm), respectively. Note that the (a, b)-component of the inverse Fisher information

matrix with (α, β)-component as g(p)αβ(ξ(θm, 0)) is not generally identical to g
(p)ab
m (θm). We

adopt Einstein summation convention: if the same indices appear in any one term, it implies
summation over that index.

For the model selection, we consider local misspecification. The local misspecification is that
the true parameter point ξ∗ and submodel Mm satisfy the following equation:

√
N{ξ∗α − ξα(θ(p)m , 0)} = hα for α = 1, . . . , dfull. (2)

If h vanishes, the assumption means that the true distribution is included in submodel Mm.
Thus, the assumption is an extension of the assumption that the true distribution is included
in submodel Mm. The assumption is known as local alternatives in statistical test theory. See
van der Vaart (1998). The local misspecification in the model selection context is argued, for
example, in Shimodaira (1997), Hjort and Claeskens (2003), and Claeskens and Hjort (2003). See
also Leeb and Pötscher (2005). Note that the assumption does not depend on parameterizations:
if we adopt parameterization ω, the assumption (2) is denoted by

√
N{ω∗s − ωs(θ(p)m , 0)} =

∂ωs

∂ξα
(ξ∗)hα + o(1) for s = 1, . . . , dfull. (3)

In this parameterization, we denote ∂ωs

∂ξα (ξ
∗)hα in (3) by hs.

3 Multi-step ahead predictions under local misspecification

First, we expand the Kullback–Leibler risk of the Bayesian predictive distribution in multistep
ahead predictions under local misspecification. Next, we show that the Kullback–Leibler risk of
the Bayesian predictive distribution is asymptotically smaller than that of the plug-in predictive
distribution.

Theorem 3.1. Assume that the true parameter point ξ∗ and submodel Mm satisfy (2). Then,
for any smooth prior π, the Kullback–Leibler risk of the Bayesian predictive distribution qm,π in
submodel Mm is asymptotically expanded as

R(ω∗, qm,π) =
1

2N
Sαβ(ξ

∗)hαhβ +
1

2
log

|g(p)(θ(p)m ) + g(q)(θ
(p)
m )|

|g(p)(θ(p)m )|
+ o(1), (4)

where | · | is a determinant and Sαβ(ξ
∗) is the (α, β)-component of the matrix given by

S(ξ∗) =

(
g(q)−1(ξ∗) +

(
g
(p)−1
m (θ

(p)
m ) 0⊤(dfull−dm)×dm

0(dfull−dm)×dm 0(dfull−dm)×(dfull−dm)

))−1

.

Here, 0(dfull−dm)×dm is the (dfull − dm)× dm-dimensional zero matrix and 0(dfull−dm)×(dfull−dm) is
the (dfull − dm)× (dfull − dm)-dimensional zero matrix.
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The proof is given in the appendix. The expansion is invariant up to constant order under
the reparameterization ω in the full model. See (44) in the appendix.

Remark 3.2. Note that the asymptotic Kullback–Leibler risk of the Bayesian predictive dis-
tribution does not depend on priors up to constant order. This corresponds to the fact that
the asymptotic Kullback–Leibler risk of the Bayesian predictive distribution in one-step ahead
predictions does not depend on priors up to the N−1 order. If h vanishes and if the data and
the target variables are identically and identically distributed, then, R(ω∗, qm,π) is given by
d log{(N +M)/N}/2 up to constant order. In one-step ahead predictions, it is known that the
asymptotic Kullback–Leibler risk of the Bayesian predictive distributions is given as d/(2N) up
to the N−1 order. The Bayesian predictive distribution qm,π is decomposed as

qm,π(y
(M)|x(N)) = qm,π(yM |x(N), y(M−1))qm,π(yM−1|x(N), y(M−2)) . . . qm,π(y1|x(N)).

Since the Kullback–Leibler risk of the Bayesian predictive distribution is decomposed according
to the above decomposition, R(ω∗, qm,π) is also calculated as limN→∞ΣM

j=1d/(2N +2j). This is
equal to d log{(N +M)/N}/2.

By using the above theorem, we show that the Bayesian predictive distribution has smaller
Kullback–Leibler risk than the plug-in predictive distribution in the multistep ahead prediction.

Theorem 3.3. Assume that the true parameter point ξ∗ and submodel Mm satisfy (2). Then,
for any smooth prior π, the Kullback–Leibler risk R(ω∗, qm,π) of the Bayesian predictive distribu-

tion in submodel Mm is smaller in constant order than the Kullback–Lebler risk R(ω∗, qm(·|θ̂m))
of the plug-in predictive distribution with the maximum likelihood estimator in submodel Mm:

lim
N→∞

R(ω∗, qm,π) ≥ lim
N→∞

R(ω∗, qm(·|θ̂m)).

Proof. From the Taylor expansion and from (39) in the appendix, the Kullback–Leibler risk
R(ω∗, qm(·|θ̂m)) is expanded as

R(ω∗, qm(·|θ̂m)) =
1

2
g
(q)
st (ω

∗)Eω∗ [{ω∗s − ωs(θ̂m(x(N)), 0)}{ω∗t − ωt(θ̂m(x(N)), 0)}] + o(1)

=
1

2N
g
(q)
αβ (ξ

∗)hαhβ +
1

2
g(q)abm (θ(p)m )g

(p)
ab (θ

(p)
m ) + o(1).

Since the Fisher information matrices g(p)(θ
(p)
m ) and g(q)(θ

(p)
m ) are positive semidefinite, the fol-

lowing inequality holds:

log
|g(p)(θ(p)m ) + g(q)(θ

(p)
m )|

|g(p)(θ(p)m )|
≥ g(p)abm (θ(p)m )g

(q)
ab (θ

(p)
m ).

From the inequality that g(q)(ξ∗) ⪰ S, we have

g
(q)
αβ (ξ

∗)hαhβ ≥ Sαβh
αhβ,

where the binary relation A ⪰ B means that A−B is positive semidefinite. Thus, we complete
the proof.

Remark 3.4. This theorem implies that we should use the Bayesian predictive distribution for
multistep ahead predictions instead of the plug-in predictive distribution from the viewpoint
of Kullback–Leibler risk. Thus, we consider the information criteria when we use the Bayesian
predictive distribution in the selected model. In one-step ahead prediction, it is well-known
that the Bayesian predictive distribution has smaller Kullback–Leibler risk than the plug-in
predictive distribution up to the N−2 order. See Komaki (1996), Hartigan (1998), and Komaki
(2015). Konishi and Kitagawa (2003) construct information criteria when using the Bayesian
predictive distribution in one-step ahead predictions.
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Remark 3.5. The result is related to the prediction in the locally asymptotically mixed normal
(LAMN) models as follows: due to the LAMN property, we consider the prediction of the target
variables based on the data conditioning on the two Fisher information matrices of the data and
the target variables. In our setting, we also consider the prediction of the target variables based
on the data conditioning on the two Fisher information matrices of the data and the target
variables. Indeed, the Kullback–Leibler risk of the Bayesian predictive distributions (4) has the
same form as (2) in Sei and Komaki (2007).

4 Information criteria for multistep ahead predictions

On the basis of the results in the previous section, we construct an information criterion by
using an asymptotically unbiased estimator of the Kullback–Leibler risk.

Theorem 4.1. Let R̂(m) be an estimator of the Kullback–Leibler risk of the Bayesian predictive
distribution in submodel Mm given by

R̂(m) =
1

2N
Ŝαβĥ

αĥβ +
1

2
Ŝabg

(p)ab
m (θ̂m)− 1

2
Ŝαβg

(p)αβ(ξ̂)

+
1

2
log

|g(p)(θ̂m) + g(q)(θ̂m)|
|g(p)(θ̂m)|

, (5)

where Ŝαβ is the (α, β)-component of the matrix given by

Ŝ =

(
g(q)−1(ξ̂) +

(
g
(p)−1
m (θ̂m) 0⊤(dfull−dm)×dm

0(dfull−dm)×dm 0(dfull−dm)×(dfull−dm)

))−1

and for α ∈ {1, . . . , dfull}, ĥα is given by ĥα/
√
N = ξ̂α − ξα(θ̂m, 0). Assume that the true

parameter point ξ∗ and submodel Mm satisfy (2). Then, R̂(m) is an asymptotically unbiased
estimator of the Kullback–Leibler risk R(ω∗, qm,π).

The proof is given in the appendix.
From Theorem 4.1, we propose the following model selection criterion as the multistep pre-

dictive information criterion (MSPIC):

MSPIC(m) = 2R̂(m)

=
1

N
Ŝαβĥ

αĥβ + Ŝabg
(p)ab
m (θ̂m)− Ŝαβg

(p)αβ(ξ̂) + log
|g(p)(θ̂m) + g(q)(θ̂m)|

|g(p)(θ̂m)|
.

Here, we multiply R̂(m) by 2 to make the definition consistent with AIC (Akaike, 1973). If
two Fisher information matrices g(p)(θm) and g(q)(θm) are identical, MSPIC coincides with PIC
(Kitagawa, 1997) when using the uniform prior and with predictive likelihood (Akaike, 1980).

We also consider the bootstrap adjustment of MSPIC. First, we generate B bootstrap

samples x
(N)
1 , . . . , x

(N)
b , . . . , x

(N)
B via a parametric or non-parametric bootstrap method using

the full model. Second, for each b in {1, . . . , B}, we calculate the value of MSPIC1(m;x
(N)
b )

where MSPIC1(m;x
(N)
b ) is the value of

1

N
Ŝαβĥ

αĥβ + Ŝabg
(p)ab
m (θ̂m)− Ŝαβg

(p)αβ(ξ̂)

using x
(N)
b instead of x(N). Finally, we obtain

MSPICBS(m) =
1

B
ΣB
b=1MSPIC1(m;x

(N)
b ) + log

|g(p)(θ̂m) + g(q)(θ̂m)|
|g(p)(θ̂m)|

.
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Consider the first three terms in the definition of MSPIC. These terms are an asymptotically
unbiased estimator of Sαβh

αhβ/N . However, this estimator may have excessive variance because

the matrix Ŝ is not equal to the asymptotic variance of ĥα. To avoid the excessive variance of the
estimator, we use the bootstrap method. Lv and Liu (2014) applied the bootstrap adjustment
of TIC (Takeuchi, 1976).

5 Numerical experiments

We show that the proposed information criteria are effective for the multistep ahead prediction
through two numerical experiments. After the model selections by AIC, PIC, MSPIC, and
its bootstrap adjustment MSPICBS, we evaluate the predictive performance of the selected
models as follows: the derivation of AIC is based on the plug-in predictive distribution with
the maximum likelihood. In contrast, those of PIC, MSPIC, and MSPICBS are based on the
Bayesian predictive distribution. Thus, the predictive performance of the AIC-best model is
evaluated by the goodness of the plug-in predictive distribution qm(·|θ̂m) in the AIC-best model.
In contrast, the predictive performance of the PIC-best, the MSPIC-best, and the MSPICBS-
best models is evaluated by the goodness of the Bayesian predictive distributions qm,π(·|·) in the
PIC-best, the MSPIC-best, and the MSPICBS-best models.

We consider the empirical goodness of the predictive distribution as follows. We generate the
data and the target variables R times and calculate the mean of minus log predictive densities

−ΣR
r=1 log q̂(y

(M)
r |x(N)

r ) of each information criterion. Here, for r = 1, . . . , R, x
(N)
r and y

(M)
r are

the r-th data and the r-th target variables. It is preferable that the value −ΣR
r=1 log q̂(y

(M)
r |x(N)

r )
is small because it is an estimator of the Kullback–Leibler risk up to the term related to the
predictive distribution. We set R = 100 in the first numerical experiment and R = 10 in the
second numerical experiment.

5.1 The extrapolation in the curve fitting

First, consider the extrapolation in the curve fitting in the introduction. For m ∈ {1, . . . , dfull},
the data and the target variables in the m-th model are given by

x(N)⊤ = Φmθm + ϵN×N and y(M)⊤ = Φ̃mθm + ϵ̃M×M ,

where Φm and Φ̃m are design matrices defined by

Φm =

ϕ1(z1) . . . ϕdm(z1)
. . . . . . . . .

ϕ1(zN ) . . . ϕdm(zN )

 and Φ̃m =

 ϕ1(zN+1) . . . ϕdm(zN+1)
. . . . . . . . .

ϕ1(zN+M ) . . . ϕdm(zN+M )

 ,

respectively. For simplicity, we denote Φdfull , Φ̃dfull , and θdfull by Φ, Φ̃, and θ, respectively. We

denote the maximum likelihood estimator of θ by θ̂.
The information criteria AIC, PIC, and MSPIC are given by

AIC(m) = (θ̂ −
(
θ̂m
0

)
)⊤SAIC(θ̂ −

(
θ̂m
0

)
) + 2dm − dfull, (6)

PIC(m) = (θ̂ −
(
θ̂m
0

)
)⊤SPIC(θ̂ −

(
θ̂m
0

)
) + dm log 2 + dm − dfull, (7)

and

MSPIC(m) = (θ̂ −
(
θ̂m
0

)
)⊤SMSPIC(θ̂ −

(
θ̂m
0

)
) + log

|Φ⊤
mΦm + Φ̃⊤

mΦ̃m|
|Φ⊤

mΦm|

+tr

(
σ2(Φ⊤

mΦm)−1 0⊤(dfull−dm)×dm

0(dfull−dm)×dm 0(dfull−dm)×(dfull−dm)

)
SMSPIC

−tr(Φ⊤Φ)−1SMSPIC, (8)
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Table 1: The mean of the minus log predictive densities when the true function is f1 and α is
1. The lowest value in each row is underlined.

N and M AIC PIC MSPIC MSPICBS

100 and 100 −4.43 −8.71 −8.71 −9.11
100 and 200 −9.52 −21.84 −22.20 −23.04
100 and 500 −19.26 −62.33 −65.96 −67.51
100 and 1000 −40.93 −139.66 −150.30 −152.55

where SAIC, SPIC, and SMSPIC are given by

SAIC =
1

σ2
Φ⊤Φ, (9)

SPIC =
1

σ2

(
(Φ⊤Φ)−1 +

(
(Φ⊤

mΦm)−1 0⊤(dfull−dm)×dm

0(dfull−dm)×dm 0(dfull−dm)×(dfull−dm)

))−1

, (10)

and

SMSPIC =
1

σ2

(
(Φ̃⊤Φ̃)−1 +

(
(Φ⊤

mΦm)−1 0⊤(dfull−dm)×dm

0(dfull−dm)×dm 0(dfull−dm)×(dfull−dm)

))−1

, (11)

respectively.
As the sets of functions {ϕa}dfulla=1, we use trigonometric functions {ϕtri,a}dfulla=1:

ϕtri,a(z) =


1 (a = 1),√
2 cos(2π a

2z) (a : even),√
2 sin(2π a−1

2 z) (a : odd).

For all i ∈ {1, . . . , N +M}, we design zi as α× (i/N) where α is in [0,1].
We generate the data and the target variables as follows:

x(N)⊤ =


f(z1)
f(z2)
. . .

f(zN )

+ ϵN×N and y(M)⊤ =


f(zN+1)
f(zN+2)

. . .
f(zM )

+ ϵ̃M×M .

In this experiment, we compare the minus log plug-in predictive distribution with the maximum
likelihood estimator in the AIC-best model and the minus log Bayesian predictive distribution
with the uniform prior given by

− log qm,π(y
(M)|x(N)) =

1

2σ2

∣∣∣∣(x(N)⊤

y(M)⊤

)
−
(
Φm

Φ̃m

)
θ̂m(x(N), y(M))

∣∣∣∣2 − 1

2σ2

∣∣∣x(N)⊤ − Φmθ̂m(x(N))
∣∣∣2

+
M

2
log(2πσ2) +

1

2
log

|Φ⊤
mΦm + Φ̃⊤

mΦ̃m|
|Φ⊤

mΦm|

of the PIC-best, the MSPIC-best, and the MSPICBS-best models. Here, we denote the maximum
likelihood estimator of rm(x(N), y(M)|θm) by θ̂m.

First, we consider the setting where the true function f1 is given by

f1(z) = 2 sin(2π × z) + 0.2 sin(2π × 4z)

+0.1 sin(2π × 8z) + 0.1 sin(2π × 12z),

where σ2 = (0.2)2 and α = 1.0. We let dfull = 31. Table 1 shows that MSPICBS has the lowest
value, regardless of N and M when α is 1.
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Table 2: The mean of the minus log predictive densities when the true function is f2 and α is
1. The lowest value in each row is underlined.

N and M AIC PIC MSPIC MSPICBS

100 and 100 −11.44 −13.28 −13.28 −13.57
100 and 200 −21.53 −28.08 −28.32 −28.58
100 and 500 −60.21 −79.27 −79.94 −81.73

100 and 1000 −116.74 −158.14 −161.33 −165.81

Table 3: The mean of the minus log predictive densities when the true function is f2 and α is
0.9. The lowest value in each row is underlined.

N and M AIC PIC MSPIC MSPICBS

100 and 100 −8.91 −13.48 −12.98 −13.23
100 and 200 −14.88 −27.08 −26.98 −27.38
100 and 500 −20.99 −68.47 −70.99 −72.98
100 and 1000 −75.39 −154.72 −158.20 −163.44

Second, we consider the setting where the true function f2 is given by

f2(z) =
π2

6
− π

2
(zmod 2π) +

1

4
(zmod 2π)2.

We set σ2 = (0.2)2 and dfull = 16. We consider the settings with α = 1 and α = 0.9. Table 2
shows that when α is 1, MSPICBS has the lowest value of the minus log predictive distribution,
regardless of the ratio of N and M . Table 3 shows that when α is 0.9, MSPICBS has the lowest
value except when N and M are 100 and 100, respectively.

There is difference between the first and second settings. In the first setting, the true function
f1 is included in the full model. In the second setting, the true function f2 is not included in
the full model. See Shibata (1981) for details related to the second setting. However, the
experiments indicate that MSPICBS works well in both settings and that the dominance of
MSPICBS is enlarged as the ratio of N and M grows.

5.2 Normal regression model with an unknown variance

Next, consider the normal regression model with an unknown variance. We consider the full
model given by

x(N)⊤ = Φθ + σϵN×N and y(M)⊤ = Φ̃θ + σϵ̃M×M ,

respectively. Here, Φ and Φ̃ are N×10 and M×10 design matrices, respectively. The parameters
θ and σ are unknown. We consider 511 submodels given by the models with the restriction that
some components of θ vanish. We denote the design matrix in the m-th model by Φm and
denote the m-th model Mm by

x(N)⊤ = Φmθm + σϵN×N and y(M)⊤ = Φ̃mθm + σϵ̃M×M ,

respectively.
We set N = 50 and M = 250. In this setting, we generate the full design matrices given by

Φ = Φr and Φ̃ =


Φr

Φr

. . .
Φr

+ λ

(
I10×10

0(M−10)×10

)
,

where Φr is given randomly and λ is the parameter. Here, I10×10 is the 10× 10 identity matrix
and 0(M−10)×10 is the (M − 10)× 10 zero matrix.
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Table 4: The mean of the minus log predictive densities in the setting where the parameter λ is
1, 10, 50, and 100 and the sample sizes N and M are 50 and 250, respectively. The lowest value
in each row is underlined.

λ AIC PIC MSPIC MSPICBS

1 −176.77 −201.92 −202.07 −205.40
10 −126.97 −211.60 22.55 −209.33
50 1176.34 −180.16 544.08 −188.78
100 5496.64 −75.54 750.14 −180.80
150 14922.99 −75.41 871.94 −178.16
200 33812.08 38.62 957.92 −182.71

Table 5: The mean of the minus log predictive densities in the setting where the parameter λ
is 1, 10, 50, and 100 and the sample sizes N and M are 100 and 500, respectively. The lowest
value in each row is underlined.

λ AIC PIC MSPIC MSPICBS

1 −418.87 −438.15 −438.15 −436.18
10 −361.78 −418.92 −419.22 −416.92
50 124.53 −408.42 −408.42 −420.98
100 2273.35 −340.89 1287.12 −405.19
150 4437.98 −285.04 1528.31 −392.05
200 9491.38 −191.91 1698.95 −406.93

We compare the minus log plug-in predictive distribution given by

− log qm(y(M)|θ̂m(x(N))) =
M

2
log(2π) +

M

2
log(|x(N)⊤ − Φm(Φ⊤

mΦm)−1Φ⊤
mx(N)⊤|2/N)

+
1

2

|y(M)⊤ − Φ̃m(Φ⊤
mΦm)−1Φ⊤

mx(N)|2

|x(N)⊤ − Φm(Φ⊤
mΦm)−1Φ⊤

mx(N)|2/N

of the AIC-best model and the minus log Bayesian predictive distribution with π(θm, σ) = 1/σ
given by

− log qm,π(y
(M)|x(N)) =

N +M − dm
2

log

(∣∣∣∣(x(N)⊤

y(M)⊤

)
−
(
Φm

Φ̃m

)
θ̂m(x(N), y(M))

∣∣∣∣2
)

−N − dm
2

log

(∣∣∣x(N)⊤ − Φmθ̂m(x(N))
∣∣∣2)

+
1

2
log

|Φ⊤
mΦm + Φ̃⊤

mΦ̃m|
|Φ⊤

mΦm|
− log

Γ(M+N−dm
2 )

Γ(N−dm
2 )

of the PIC-best, the MSPIC-best, and the MSPICBS-best models. The choice of the prior
distribution is asymptotically irrelevant according to Theorem 3.1. The reason why we use the
above Bayesian distribution is because it is mini-max under the Kullback–Leibler risk. See Liang
and Barron (2004). Tables 4 and 5 show that MSPICBS has the lowest value of the minus log
predictive distribution, except for the setting where λ is 10. The dominance of MSPICBS is
enlarged depending on the degree of the extrapolation, i.e., the value of λ.

6 Discussion and Conclusion

In this paper, we have considered the multistep ahead prediction under local misspecification.
We have shown that the Bayesian predictive distribution has smaller Kullback–Leibler risk in
the setting than the plug-in predictive distribution, regardless of the prior choice. From the
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results, we have proposed the information criterion MSPIC for the multistep ahead predic-
tion. The proposed information criterion MSPIC is an asymptotically unbiased estimator of the
Kullback–Leibler risk of the Bayesian predictive distribution. By considering the variance of the
information criterion MSPIC, we have proposed the bootstrap adjustment MSPICBS. Numerical
experiments show that our proposed information criterion is effective.

Appendix

In this appendix, we provide proofs of Theorems 3.1 and 4.1. The proofs consist of three parts:
the connection formula of the best approximating points (Lemma Appendix.1), the expansions of
the maximum likelihood estimators (Lemma Appendix.2), and the expansions of the Kullback–
Leibler risk R(ω∗, qm,π).

We need some additional notations for the proofs. In the appendix, we write θ instead of θm
because we fix the submodel Mm and make expansions easier to see. The simultaneous distribu-
tion of (x(N), y(M)) is denoted by r(x(N), y(M)|ω∗). In our setting, distribution r(x(N), y(M)|ω∗)
is given as the product p(x(N)|ω∗)q(y(M)|ω∗). We use notations g(r)(ω) and g(r)(θ) for the
Fisher information matrices of r(x(N), y(M)|ω) and r(x(N), y(M)|ω(θ, 0)), respectively. Note that

g(r)(ω) = g(p)(ω)+ g(q)(ω). We denote g
(p)
aα

∂ξα

∂ωs by g
(p)
as and use g

(r)
as and g

(q)
as in the same manner.

We denote the maximum likelihood estimator of r(x(N), y(M)|ω) by ω̂(x(N), y(M)) and the
restricted maximum likelihood estimator of r(x(N), y(M)|ω(θ, 0)) by θ̂(x(N), y(M)). We denote
embeddings of θ̂(x(N)) and θ̂(x(N), y(M)) into parameter ω by ω̂m(x(N)) and ω̂m(x(N), y(M)),
respectively. We denote the best approximating point of ω∗ with respect to r(x(N), y(M)|ω(θ, 0))
by θ(r). In other words, θ(r) is defined by

θ(r) = argmax
θ∈Θm

Eω∗ [log r(x(N), y(M)|ω(θ, 0))]. (12)

In the appendix, we write ω(p) and ω(r) instead of ω(θ(p), 0) and ω(θ(r), 0), respectively. We
write ξ(p) instead of ξ(θ(p), 0).

We denote the (a, b)-components of the observed Fisher information matrices of p(x(N)|ω(θ, 0))
and r(x(N), y(M)|ω(θ, 0)) by Ĝ

(p)
ab (θ̂(x

(N))) and Ĝ
(r)
ab (θ̂(x

(N), y(M))), respectively. We denote the
stochastic large and small orders with respect to the distribution with the parameter ω by Oω

and oω, respectively.

Lemma Appendix.1. Under local misspecification, the following two equations hold: for a ∈
{1, . . . , dm}

ha = −g(p)abm (θ(p))g
(p)
bκ (ξ(p))hκ +O(1/

√
N) (13)

and

θ(r)am − θ(p)am = g(r)abm (θ(p))g
(r)
bs (ω(p))

hs√
N

+O(1/N). (14)

Proof. First, we show that the former equation holds. From (3), we obtain for i ∈ {1, . . . , N},

p(xi|ω∗) = p(xi|ω(p))

[
1 + ∂s log p(xi|ω(p))

hs√
N

+Oω(p)(1/N)

]
, (15)

and for j ∈ {1, . . . ,M},

q(yj |ω∗) = q(yj |ω(p))

[
1 + ∂s log q(yj |ω(p))

hs√
N

+Oω(p)(1/N)

]
, (16)

respectively.
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Consider the definition of ω(p):

1√
N

Eω∗

[
∂a log p(x

(N)|ω(p))
]

= 0. (17)

From the independence of x(N) and from (15), the LHS in (17) is expanded as

1√
N

Eω∗

[
∂a log p(x

(N)|ω(p))
]

=
1√
N

N
Σ
i=1

Eω∗

[
∂a log p(xi|ω(p))

]
=

1√
N

N
Σ
i=1

Eω(p)

[{
1 + ∂s log p(xi|ω(p))

hs√
N

+Oω(p)(1/N)

}
{∂a log p(xi|ω(p))}

]
=

1√
N

N
Σ
i=1

Eω(p)

[
∂a log p(xi|ω(p))

]
+

N
Σ
i=1

Eω(p)

[
∂s log p(xi|ω(p))∂a log p(xi|ω(p))

] hs
N

+O(1/
√
N)

=
1

N
g(p)as (ω

(p))hs +O(1/
√
N). (18)

By comparing (17) with (18) up to constant order, we obtain

1

N
g(p)as (ω

(p))hs = O(1/
√
N).

By the reparameterization of ω to ξ, we obtain

1

N
g(p)aα (ξ

(p))hα = O(1/
√
N). (19)

Thus we obtain (13).
Next, we show the latter equation holds. Consider the definition of ω(r):

1√
N

Eω∗

[
∂a log r(x

(N), y(M)|ω(r))
]

= 0. (20)

From the independence of x(N) and y(M), from (15) and (16), and from the Taylor expansions
of ∂a log p(xi|ω(r)) and ∂a log q(yj |ω(r)) around ω(p), the LHS in (20) is expanded as

1√
N

Eω∗

[
∂a log r(x

(N), y(M)|ω(r))
]

=
1√
N

N
Σ
i=1

Eω∗

[
∂a log p(xi|ω(r))

]
+

1√
N

M
Σ
j=1

Eω∗

[
∂a log q(yj |ω(r))

]
=

1√
N

ΣN
i=1Eω(p)

[{
1 + ∂s log p(xi|ω(p))

hs√
N

+Oω(p)(1/N)

}
∂a log p(xi|ω(r))

]
+

1√
N

ΣM
j=1Eω(p)

[{
1 + ∂s log q(yj |ω(p))

hs√
N

+Oω(p)(1/N)

}
∂a log q(yj |ω(r))

]
=

1√
N

N
Σ
i=1

Eω(p)

[{
1 + ∂s log p(xi|ω(p))

hs√
N

}
×
{
∂a log p(xi|ω(p)) + ∂ab log p(xi|ω(p))(θ(r)b − θ(p)b) + Oω(p)(||θ(r) − θ(p)||2)

}]
+

1√
N

M
Σ
j=1

Eω(p)

[{
1 + ∂s log q(yj |ω(p))

hs√
N

}
×
{
∂a log q(yj |ω(p)) + ∂ab log q(yj |ω(p))(θ(r)b − θ(p)b) + Oω(p)(||θ(r) − θ(p)||2)

}]
=

1√
N

Eω(p)

[
∂a log r(x

(N), y(M)|ω(p))
]

+g(r)sa (ω
(p))

hs

N
− 1√

N
g
(r)
ab (θ

(p))(θ(r)b − θ(p)b) + O(
√
N ||θ(r) − θ(p)||2). (21)
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Thus, we obtain (14) by comparing (20) with (21) up to constant order.

Lemma Appendix.2. Under local misspecification, the following equations hold: for a ∈
{1, . . . , dm},

θ̂a(x(N), y(M))− θ(r)a = g(r)abm (θ(r))∂b log r(x
(N), y(M)|ω(r)) + Oω∗(1/N) (22)

and

θ̂a(x(N))− θ(p)a = g(p)abm (θ(p))∂b log p(x
(N)|ω(p)) + Oω∗(1/N), (23)

respectively.
For s ∈ {1, . . . , dfull},

ω̂s(x(N), y(M))− ω∗s = g(r)st(ω∗)∂t log r(x
(N), y(M)|ω∗) + Oω∗(1/N) (24)

and

ω̂s(x(N))− ω∗s = g(p)st(ω∗)∂t log p(x
(N)|ω∗) + Oω∗(1/N), (25)

respectively.

Proof. Consider the estimative equations:

∂a log r(x
(N), y(M)|ω̂m(x(N), y(M))) = 0 (26)

and

∂a log p(x
(N)|ω̂m(x(N))) = 0. (27)

We apply the Taylor expansions around ω(r) and ω(p) to equations (26) and (27), respectively.

Since ∂ab log r(x
(N), y(M)|ω(r)) + g

(r)
ab (θ

(r)) = Oω(r)(
√
N) and ω∗ − ω(r) = O(1/

√
N), we obtain

the following expansion:

∂a log r(x
(N), y(M)|ω̂m(x(N), y(M)))

= ∂a log r(x
(N), y(M)|ω(r)) + ∂ab log r(x

(N), y(M)|ω(r))
{
θ̂b(x(N), y(M))− θ(r)b

}
+Oω(r)(

√
N ||θ̂(x(N), y(M))− θ(r)||) + Oω(r)(N ||θ̂(x(N), y(M))− θ(r)||2)

= ∂a log r(x
(N), y(M)|ω(r))− g

(r)
ab (θ

(r))
{
θ̂b(x(N), y(M))− θ(r)b

}
+Oω∗(1).

Likewise, we obtain the following expansion:

∂a log p(x
(N)|ω̂m(x(N)))

= ∂a log p(x
(N)|ω(p)) + ∂ab log p(x

(N)|ω(p))
{
θ̂b(x(N))− θ(p)b

}
+Oω(p)(

√
N ||θ̂(x(N))− θ(p)||) + Oω(p)(N ||θ̂(x(N))− θ(p)||2)

= ∂a log p(x
(N)|ω(p))− g

(p)
ab (θ

(p))
{
θ̂b(x(N))− θ(p)b

}
+Oω∗(1).

Thus, we obtain (22) and (23). Equations (24) and (25) immediately follow from the esti-
mative equations of ω̂. For example, see Theorem 5.39 in van der Vaart (1998).

Proof of Theorem 3.1. We prove Theorem 3.1 by using the above lemmas. Consider the follow-
ing decomposition of the Kullback–Leibler risk:

R(ω∗, qm,π) = Eω∗

[
log

r(x(N), y(M)|ω∗)

rm,π(x(N), y(M))

]
− Eω∗

[
log

p(x(N)|ω∗)

pm,π(x(N))

]
. (28)
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The marginal distributions rm,π(x
(N), y(M)) and pm,π(x

(N)) are expanded as

rm,π(x
(N), y(M)) = (2π)dm/2 π(θ̂(x(N), y(M)))

|Ĝ(r)(θ̂(x(N), y(M)))|1/2

×r(x(N), y(M)|ω̂m(x(N), y(M))){1 + o(1)} (29)

and

pm,π(x
(N)) = (2π)dm/2 π(θ̂(x(N)))

|Ĝ(p)(θ̂(x(N)))|1/2
p(x(N)|ω̂m(x(N))){1 + o(1)}, (30)

respectively. See p. 117 in Ghosh et al. (2006).
By using the marginal expansions (29) and (30), the above decomposition is expanded as

R(ω∗, qm,π)

= Eω∗

[
log

r(x(N), y(M)|ω∗)

r(x(N), y(M)|ω̂m(x(N), y(M)))

]
− Eω∗

[
log

p(x(N)|ω∗)

p(x(N)|ω̂m(x(N)))

]

+Eω∗

[
1

2
log

|Ĝ(r)(θ̂(x(N), y(M)))|
|Ĝ(p)(θ̂(x(N)))|

]
− Eω∗

[
log

π(θ̂(x(N), y(M)))

π(θ̂(x(N)))

]
+ o(1). (31)

From (3), (14), and (22), the following equation holds:

ω̂s
m(x(N), y(M))− ω∗s

= ωs
m(x(N), y(M))− ω(r)s + ω(r)s − ω(p)s + ω(p)s − ω∗s

=
∂ωs

∂θa
(θ(r))g(r)abm (θ(r))∂b log r(x

(N), y(M)|ω(r))

+
∂ωs

∂θa
(θ(p))g(r)abm (θ(p))g

(r)
bs (ω(p))

hs√
N

− hs√
N

+Oω∗(1/N). (32)

First, consider the first term in (31). By using the Taylor expansion, we expand the negative
of the first term as

Eω∗

[
log

r(x(N), y(M)|ω̂m(x(N), y(M)))

r(x(N), y(M)|ω∗)

]
= Eω∗

[
∂s log r(x

(N), y(M)|ω∗){ω̂s
m(x(N), y(M))− ω∗s}

]
+
1

2
Eω∗

[
∂st log r(x

(N), y(M)|ω∗){ω̂s
m(x(N), y(M))− ω∗s}{ω̂t

m(x(N), y(M))− ω∗t}
]

+o(1). (33)

From the Taylor expansion of ∂b log r(x
(N), y(M)|ω(r)) around ω∗, we obtain the following equa-

tion for the first term in (33):

Eω∗ [∂s log r(x
(N), y(M)|ω∗){ω̂s

m(x(N), y(M))− ω∗s}]

= Eω∗

[
∂s log r(x

(N), y(M)|ω∗)

{
∂ωs

∂θa
(θ(r))g(r)abm (θ(r))∂b log r(x

(N), y(M)|ω(r))

+
∂ωs

∂θa
(θ(p))g(r)abm (θ(p))g

(r)
bs (ω(p))

hs√
N

− hs√
N

}]
+ o(1)

= dm + o(1). (34)
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From (32), we expand the second term in (33) as

1

2
Eω∗ [∂st log r(x

(N), y(M)|ω∗){ω̂s
m(x(N), y(M))− ω∗s}{ω̂t

m(x(N), y(M))− ω∗t}]

= −1

2
g
(r)
st (ω

∗)Eω∗ [{ω̂s
m(x(N), y(M))− ω∗s}{ω̂t

m(x(N), y(M))− ω∗t}] + o(1)

= −1

2
g
(r)
st (ω

∗)Eω∗

[{
∂ωs

∂θa
(θ(r))g(r)abm (θ(r))∂b log r(x

(N), y(M)|ω(r))

+
∂ωs

∂θa
(θ(p))g(r)abm (θ(p))g

(r)
bs (ω(p))

hs√
N

− hs√
N

}
×
{
∂ωt

∂θc
(θ(r))g(r)cdm (θ(r))∂d log r(x

(N), y(M)|ω(r))

+
∂ωt

∂θc
(θ(p))g(r)cdm (θ(p))g

(r)
dt (ω

(p))
ht√
N

− ht√
N

}]
+ o(1)

= −1

2
g(r)ac (ω

(r))g(r)abm (θ(r))g(r)cdm (θ(r))Eω∗

[
∂b log r(x

(N), y(M)|ω(r))∂d log r(x
(N), y(M)|ω(r))

]
−1

2
g
(r)
st (ω

∗)
hsht

N

−1

2
g
(r)
st (ω

∗)
∂ωs

∂θa
(θ(p))

∂ωt

∂θc
(θ(p))g(r)abm (θ(p))g

(r)
bu (ω(p))

hu√
N

g(r)cdm (θ(p))g
(r)
dv (ω

(p))
hv√
N

+g
(r)
st (ω

∗)
hs√
N

∂ωt

∂θc
(θ(p))g(r)cdm (θ(p))g

(r)
dv (ω

(p))
hv√
N

+ o(1). (35)

From the independence of x(N) and y(M) and from the Taylor expansions of ∂a log p(xi|ω(r)) and
∂a log q(yj |ω(r)) around ω∗,

Eω∗

[
∂a log r(x

(N), y(M)|ω(r))∂b log r(x
(N), y(M)|ω(r))

]
= ΣN

i=1Eω∗ [∂a log p(xi|ω(r))∂b log p(xi|ω(r))] + ΣM
j=1Eω∗ [∂a log q(yj |ω(r))∂b log q(yj |ω(r))]

+ΣN
i̸=kEω∗ [∂a log p(xi|ω(r))∂b log p(xk|ω(r))] + ΣM

j ̸=lEω∗ [∂a log q(yj |ω(r))∂b log q(yl|ω(r))]

+2Σi=N,j=M
i,j Eω∗ [∂a log p(xi|ω(r))∂b log q(yj |ω(r))]

= g
(r)
ab (ω

(r)) + O(
√
N). (36)

By substituting (36) into the first term in (35), we obtain the following further expansion of
(35):

1

2
Eω∗ [∂st log r(x

(N), y(M)|ω∗){ω∗s − ω̂s
m(x(N), y(M))}{ω∗t − ω̂t

m(x(N), y(M))}]

= −1

2
g
(r)
st (ω

(p))
hsht

N
+

1

2
g(r)abm (θ(p))g(r)as (ω

(p))g
(r)
bt (ω(p))

hsht

N
− 1

2
dm + o(1). (37)

By combining (34) and (37), we obtain the following equation for (33):

Eω∗

[
log

r(x(N), y(M)|ω̂m(x(N), y(M)))

r(x(N), y(M)|ω∗)

]

= −1

2

[
g
(r)
st (ω

(p))− g(r)abm (θ(p))g(r)as (ω
(p))g

(r)
bt (ω(p))

]hsht
N

+
1

2
dm + o(1). (38)

Next, consider the second term in (31). The estimator ω̂m(x(N)) is expanded as

ω̂s
m(x(N))− ω∗s =

∂ωs

∂θa
(θ(p))g(p)abm (θ(p))∂b log p(x

(N)|ω(p))− hs√
N

+Oω∗(1/N). (39)
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By using the Taylor expansion, we expand the negative of the second term in (31) as

Eω∗

[
log

p(xN)|ω̂m(x(N)))

p(x(N)|ω∗)

]
= Eω∗ [∂s log p(x

(N)|ω∗){ω̂s
m(x(N))− ω∗s}]

+
1

2
Eω∗ [∂st log p(x

(N)|ω∗){ω̂s
m(x(N))− ω∗s}{ω̂t

m(x(N))− ω∗t}] + o(1). (40)

From (39), we obtain

Eω∗

[
∂s log p(x

(N)|ω∗){ω̂s
m(x(N))− ω∗s}

]
= Eω∗

[
∂s log p(x

(N)|ω∗)

{
∂ωs

∂θa
(θ(p))g(p)abm (θ(p))∂b log p(x

(N)|ω(p))− hs√
N

+Oω∗(1/N)

}]
= g

(p)
ab (ω

(p))g(p)abm (θ(p)) + o(1)

= dm + o(1) (41)

and

Eω∗ [g
(p)
st (ω

∗){ω̂m(x(N))− ω∗s}{ω̂m(x(N))− ω∗t}]

= g
(p)
st (ω∗)

hsht

N
+ g

(p)
st (ω∗)

∂ωs

∂θa
(θ(p))

∂ωt

∂θb
(θ(p))g(p)acm (θ(p))g(p)bdm (θ(p))g

(p)
bd (ω(p)) + o(1)

= g
(p)
st (ω∗)

hsht

N
+ dm + o(1). (42)

From (41) and (42), we obtain the following equation for (40):

Eω∗

[
log

p(x(N)|ω̂m(x(N)))

p(x(N)|ω∗)

]
= −1

2
g
(p)
st (ω

∗)
hsht

N
+

1

2
dm + o(1). (43)

The Taylor expansions around θ(p) and equation (14) show that the third and fourth terms
in (31) are equal to o(1). Thus, from (38) and (43), the Kullback–Leibler risk R(ω∗, qm,π) is
expanded as

R(ω∗, qm,π)

=
1

2N

[
g
(r)
st (ω

∗)− g
(p)
st (ω

∗)− g(r)abm (θ(p))g(r)sa (ω
(p))g

(r)
tb (ω(p))

]
hsht

+
1

2
log

|g(r)(θ(p))|
|g(p)(θ(p))|

+ o(1). (44)

Note that this is invariant up to o(1) under the reparameterization of ω.
Let P be a matrix whose (α, β)-component is given by

Pαβ = g
(r)
αβ (ξ

∗)− g
(p)
αβ (ξ

∗)− g(r)abm (θ(p))g(r)aα (ξ
(p))g

(r)
bβ (ξ(p)). (45)

To complete the proof of Theorem 3.1, we show

Pαβh
αhβ/N = Sαβh

αhβ/N + o(1). (46)

From (13), we obtain

Pabh
ahb

=
{
g
(r)
ab (ξ

(p))− g
(p)
ab (ξ

(p))− g(r)cdm (θ(p))g(r)ac (ξ
(p))g

(r)
bd (ξ(p))

}
hahb

= −g
(p)
ab (ξ

(p))hahb

= −g
(p)
ab (ξ

(p))
{
−g(p)acm (θ(p))g(p)cκ (ξ(p))hκ + o(1)

}{
−g(p)bdm (θ(p))g

(p)
dλ (ξ

(p))hλ + o(1)
}

= −g(p)abm (θ(p))g(p)aκ (ξ
(p))g

(p)
bλ (ξ(p))hκhλ + o(N) (47)
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and

Paκh
ahκ

=
{
g(r)aκ (ξ

(p))− g(p)aκ (ξ
(p))− g(r)cdm (θ(p))g(r)ac (ξ

(p))g
(r)
dκ (ξ

(p))
}
hahκ

=
{
g(r)aκ (ξ

(p))− g(p)aκ (ξ
(p))− g(r)aκ (ξ

(p))
}{

−g(p)aem (θ(p))g
(p)
eλ (ξ

(p))hλ + o(1)
}
hκ

= g(p)aκ (ξ
(p))g(p)abm (θ(p))g

(p)
bλ (ξ(p))hκhλ + o(N). (48)

We have

Pκλh
κhλ =

{
g
(r)
κλ (ξ

(p))− g
(p)
κλ (ξ

(p))− g(r)abm (θ(p))g(r)aκ (ξ
(p))g

(r)
bλ (ξ(p))

}
hκhλ. (49)

From (47), (48), and (49), we obtain

Pαβh
αhβ = Pabh

ahb + 2Paκh
ahκ + Pκλh

κhλ

= {g(q)κλ (ξ
(p)) + g(p)abm (θ(p))g(p)aκ (ξ

(p))g
(p)
bλ (ξ(p))

−g(r)abm (θ(p))g(r)aκ (ξ
(p))g

(r)
bλ (ξ(p))}hκhλ + o(N). (50)

By applying Sherman–Morisson–Woodbury identity to matrix S, the following equation
holds:

S =

[
g(q)−1(ξ∗) +

(
g
(p)−1
m (θ(p)) 0⊤(dfull−dm)×dm

0(dfull−dm)×dm 0(dfull−dm)×(dfull−dm)

)]−1

=

[
g(q)−1(ξ∗) +

(
I

0(dfull−dm)×dm

)
g(p)−1
m (θ(p))

(
I 0⊤(dfull−dm)×dm

)]−1

= g(q)(ξ∗)

−g(q)(ξ∗)

(
I

0(dfull−dm)×dm

)[
g(p)m (θ(p)) +

(
I 0⊤(dfull−dm)×dm

)
g(q)(ξ∗)

(
I

0(dfull−dm)×dm

)]−1

(
I 0⊤(dfull−dm)×dm

)
g(q)(ξ∗)

= g(q)(ξ∗)− g(q)(ξ∗)

(
g
(r)−1
m (θ(p)) 0⊤(dfull−dm)×dm

0(dfull−dm)×dm 0(dfull−dm)×(dfull−dm)

)
g(q)(ξ∗), (51)

where I is the dm-dimensional identity matrix, 0(dfull−dm)×dm is the (dfull−dm)×dm-dimensional
zero matrix, and 0(dfull−dm)×(dfull−dm) is the (dfull − dm) × (dfull − dm)-dimensional zero matrix.
From (13), we obtain

Sabh
ahb

= g(q)ac (ξ
(p))g(r)cdm (θ(p))g

(r)
db (ξ

(p))hahb − g(q)ac (ξ
(p))g(r)cdm (θ(p))g

(q)
db (ξ

(p))hahb

= g(p)ac (ξ
(p))g(r)cdm (θ(p))g

(q)
bd (ξ(p))hahb

= g(p)ac (ξ
(p))g(r)cdm (θ(p))g

(q)
bd (ξ(p))

{
−g(p)aem (θ(p))g(p)eκ (ξ

(p))hκ + o(1)
}{

−g(p)bfm (θ(p))g
(p)
fλ (ξ

(p))hλ + o(1)
}

= g(p)aκ (ξ
(p))g(r)abm (θ(p))g

(q)
bc (ξ(p))g(p)cdm (θ(p))g

(p)
dλ (ξ

(p))hκhλ + o(N)

= g(p)aκ (ξ
(p))g(r)abm (θ(p)){g(r)bc (ξ(p))− g

(p)
bc (ξ(p))}g(p)cdm (θ(p))g

(p)
dλ (ξ

(p))hκhλ + o(N)

= g(p)aκ (ξ
(p))g(p)abm (θ(p))g

(p)
bλ (ξ(p))hκhλ − g(p)aκ (ξ

(p))g(r)abm (θ(p))g
(p)
bλ (ξ(p))hκhλ + o(N). (52)
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From (13) and the relationship that g(q) = g(r) − g(p), we have

Saκh
ahκ

= g(p)ac (ξ
(p))g(r)cdm (θ(p))g

(q)
dκ (ξ

(p))hahκ

= g(p)ac (ξ
(p))g(r)cdm (θ(p))g

(q)
dκ (ξ

(p))
{
−g(p)aem (θ(p))g

(p)
eλ (ξ

(p))hλ + o(1)
}
hκ

= −g(p)ac (ξ
(p))g(r)cdm (θ(p))

{
g
(r)
dκ (ξ

(p))− g
(p)
dκ (ξ

(p))
}
g(p)aem (θ(p))g

(p)
eλ (ξ

(p))hλhκ + o(N)

= −g(p)aκ (ξ
(p))g(r)abm (θ(p))g

(r)
bλ (ξ(p))hκhλ

+g(p)aκ (ξ
(p))g(r)abm (θ(p))g

(p)
bλ (ξ(p))hκhλ + o(N) (53)

and

Sκλh
κhλ

=
[
g
(q)
κλ (ξ

(p))− g(q)κa (ξ
(p))g(r)abm (θ(p))g

(q)
bλ (ξ(p))

]
hκhλ

=
{
g
(q)
κλ (ξ

(p))−
{
g(r)κa (ξ

(p))− g(p)κa (ξ
(p))
}
g(r)abm (θ(p))

{
g
(r)
bλ (ξ(p))− g

(p)
bλ (ξ(p))

}}
hκhλ

= g
(q)
κλ (ξ

(p))hκhλ − g(r)κa (ξ
(p))g(r)abm (θ(p))g

(r)
bλ (ξ(p))hκhλ − g(p)κa (ξ

(p))g(r)abm (θ(p))g
(p)
bλ (ξ(p))hκhλ

+2g(p)κa (ξ
(p))g(r)abm (θ(p))g

(r)
bλ (ξ(p))hκhλ. (54)

From (52), (53), and (54), we obtain the following equation:

Sαβh
αhβ =

{
g
(q)
κλ (ξ

(p)) + g(p)aκ (ξ
(p))g(p)m (θ(p))g

(p)
bλ (ξ(p))− g(r)aκ (ξ

(p))g(r)m (θ(p))g
(r)
bλ (ξ(p))

}
hκhλ + o(N).

Thus, we obtain (46) and complete the proof of Theorem 3.1.

Proof of Theorem 4.1. Since ĥα is decomposed as

ĥα√
N

= ξ̂α(x(N))− ξ∗α + ξ∗α − ξ(p)α + ξ(p)α − ξα(θ̂(x(N)), 0)

= g(p)αβ(ξ∗)∂β log p(x
(N)|ξ∗) + hα√

N

−δαa g
(p)ab
m (θ(p))∂b log p(x

(N)|ω(p)) + O(1/N), (55)

the expectation of Ŝαβĥ
αĥβ/N is given as

Eω∗ [Ŝαβĥ
αĥβ]/N

= Eω∗ [Sαβĥ
αĥβ]/N + o(1)

= Eω∗

[
Sαβ

{
g(p)αγ(ξ∗)∂γ log p(x

(N)|ξ∗) + hα√
N

− δαa g
(p)ac
m (θ(p))∂c log p(x

(N)|ω(p))

}
×
{
g(p)βδ(ξ∗)∂δ log p(x

(N)|ξ∗) + hβ√
N

− δβb g
(p)bd
m (θ(p))∂d log p(x

(N)|ω(p))

}]
+o(1)

= Sαβ
hαhβ

N
+ Sαβg

(p)αβ(ξ∗) + Sabg
(p)ab
m (θ(p))− 2Sabg

(p)ab
m (θ(p)) + o(1)

= Sαβ
hαhβ

N
+ Sαβg

(p)αβ(ξ∗)− Sabg
(p)ab
m (θ(p)) + o(1).

Thus, we complete the proof.
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