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Abstract

In discrete convex analysis, L-convexity and M-convexity are defined for functions in both dis-
crete and continuous variables. Polyhedral L-/M-convex functions connect discrete and continuous
versions. Specifically, polyhedral L-/M-convex functions with certain integrality can be identified
with discrete versions. Here we show another role of polyhedral L-/M-convex functions: every closed
L-/M-convex function in continuous variables can be approximated by polyhedral L-/M-convex func-
tions, uniformly on every compact set. The proof relies on L-M conjugacy under Legendre-Fenchel
transformation.

1 Introduction

In discrete convex analysis [4, 9, 10, 12], “convexity” concepts are defined for functions in both discrete
and continuous variables. Specifically, three types of functions:

f : Zn→ Z, f : Zn→ R, f : Rn→ R

are considered in discussing “convexity.” Furthermore, polyhedral and non-polyhedral (typically smooth)
functions are distinguished for functions of typeRn → R. Set functions form a remarkable subclass of
functions of typeZn→ Z or Zn→ R.

L-convexity and M-convexity in discrete convex analysis are convexity concepts of combinatorial
nature, defined for each of these classes of functions. L♮-convexity and M♮-convexity are variants of L-
convexity and M-convexity, respectively. Submodular set functions are captured as L♮-convex functions
of typeZn → R, and matroids (basis families) are captured as M-convex functions of typeZn → Z.
L-convex functions of typeZn → R or Rn → R find applications in operations research, queueing and
inventory in particular (e.g., [1, 8, 20, 21]), through the equivalence between L-convexity and multimod-
ularity [11]. M-convex functions play substantial roles in economics and game theory (e.g., [3, 5, 6, 17])
due to the equivalence between M-convexity and gross substitutes property.

Polyhedral L-/M-convex functions connect discrete and continuous versions in two directions: (i)
convex extensions of L-/M-convex functions in discrete variables are (locally) polyhedral L-/M-convex
functions in continuous variables, and (ii) discretization (or restriction to integer vectors) of polyhedral
L-/M-convex functions with a certain integrality property results in L-/M-convex functions in discrete
variables. Although polyhedral L-/M-convex functions are continuous functions of typeRn → R, they
are endowed with combinatorial properties, sometimes called “discreteness in direction” [10].
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In this paper we demonstrate another role of polyhedral L-/M-convex functions by establishing the-
orems stating that every closed L-/M-convex function in continuous variables can be approximated by
polyhedral L-/M-convex functions, uniformly on every compact set. These theorems will serve to rein-
force the connection between discrete and continuous versions of L-/M-convex functions.

As a motivation of the present work, a subtle technical aspect in polyhedral (or piecewise-linear)
approximation of L-/M-convex functions is explained here. A standard technique of constructing a
piecewise-linear convex approximation of a given functionf : Rn→ R is to evaluatef (x) at finitely many
sample points, say,x = x1, . . . , xN, and then take the convex lower envelope of the points (x1, f (x1)), . . .,
(xN, f (xN)) in Rn+1. A natural choice of the sample points for an L-/M-convex functionf : Rn → R
is those points of (1kZ)n contained in a finite interval, wherek is an integer. It can be shown that this
standard technique basically works for L- or L♮-convex functions. However, it does not work for M- or
M♮-convex functions. To be specific, a quadratic functionf (x) = 1

2x⊤Ax in x ∈ R3 with

A =


3 2 1
2 4 2
1 2 3


is an example of an M♮-convex function for which the standard procedure results in a piecewise-linear
function that is not M♮-convex. We overcome this difficulty via conjugacy under the Legendre–Fenchel
transformation. Givenf , we first consider its Legendre–Fenchel transform, say,g. We apply the above-
mentioned standard technique tog to obtain a piecewise-linear approximation, say,gk to g. We definefk
to be the Legendre–Fenchel transform ofgk, and adoptfk as a piecewise-linear approximation tof . It
can be shown that this method of construction works for M- or M♮-convex functions.

The rest of the paper is organized as follows. Section 2 offers preliminaries from discrete convex
analysis, Section 3 presents the theorems (Theorems 3.1, 3.2 and 3.3) for L-convex functions, and Sec-
tion 4 gives the corresponding results (Theorems 4.1 and 4.2) for M-convex functions.

2 Preliminaries

2.1 Convex functions

For a functionf : Rn→ R ∪ {+∞,−∞}, the effective domain and the epigraph are defined as

dom f = {x ∈ Rn | −∞ < f (x) < +∞}, (2.1)

epi f = {(x, y) ∈ Rn+1 | y ≥ f (x)}. (2.2)

The interior and the relative interior of the effective domain off are denoted as int (domf ) and ri (domf ),
respectively.

Definition 2.1. A function f : Rn→ R∪{+∞} is said to beconvexif it satisfies the following inequality:

λ f (x) + (1− λ) f (y) ≥ f (λx+ (1− λ)y) (0 ≤ λ ≤ 1). (2.3)

Definition 2.2. A convex functionf : Rn → R ∪ {+∞} is said to beproper if dom f is nonempty, and
closedif epi f is a closed subset ofRn+1.

Definition 2.3. A function defined onRn is said to bepolyhedral convexif its epigraph is a convex
polyhedron inRn+1. A polyhedral convex function is exactly such a function that can be represented as
the maximum of a finite number of affine functions on a polyhedral effective domain.

Definition 2.4. A function is said to belocally polyhedral convexif it is a polyhedral convex function on
any finite closed interval [a, b] with a ≤ b.

See [7, 18] for more about convex functions.
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2.2 L-convex functions

L-convex and L♮-convex functions are defined as follows.

Definition 2.5. A function g : Rn → R ∪ {+∞} is calledL-convexif it is a convex function that satisfies
the following two conditions:
• [Submodularity]:

g(p) + g(q) ≥ g(p∨ q) + g(p∧ q) (p, q ∈ Rn), (2.4)

wherep∨ q andp∧ q are, respectively, the componentwise maximum and minimum ofp andq.
• [Linearity in direction1]: There exists a real numberr such that

g(p+ α1) = g(p) + αr (α ∈ R, p ∈ Rn), (2.5)

where1 = (1,1, . . . , 1) ∈ Rn.

Definition 2.6. A functiong : Rn→ R ∪ {+∞} is calledL♮-convexif it is a convex function that satisfies
the following inequality:

g(p) + g(q) ≥ g((p− α1) ∨ q) + g(p∧ (q+ α1)) (0 ≤ α ∈ R, p,q ∈ Rn). (2.6)

The property expressed by (2.6) is referred to astranslation-submodularity.

Proposition 2.1([15, Proposition 3.10]). A function g is L-convex if and only if it is a convex function
that satisfies

g(p) + g(q) ≥ g((p− α1) ∨ q) + g(p∧ (q+ α1)) (α ∈ R, p,q ∈ Rn). (2.7)

Proof. 1 If g is an L-convex function, then

g(p) + g(q) = g(p) + g(q+ α1) − αr
≥ g(p∧ (q+ α1)) + g(p∨ (q+ α1)) − αr
= g((p∧ (q+ α1)) − α1) + g(p∨ (q+ α1))

= g((p− α1) ∨ q) + g(p∧ (q+ α1)).

Conversely, suppose thatg satisfies the inequality (2.7). Submodularity (2.4) follows as a special case of
(2.7) withα = 0. Linearity in direction1 in (2.5) can be derived as follows. The inequality (2.7) with
p = q = s, α = −β ≤ 0 yields 2g(s) ≥ g(s+ β1) + g(s− β1), whereas (2.7) withp = s+ β1, q = s− β1,
α = β yieldsg(s+ β1) + g(s− β1) ≥ 2g(s). Therefore,

g(s+ β1) + g(s− β1) = 2g(s) (0 ≤ β ∈ R, s ∈ Rn).

Sinceg is a convex function, this implies (2.5). □

The inequality (2.7) is the same as (2.6) in form, but different in the range ofα. Sinceα is nonnegative
in (2.6), whereas it can be both negative and positive in (2.7), L-convex functions form a subclass of L♮-
convex functions. Nevertheless, L-convex functions and L♮-convex functions are essentially the same,
in the sense that L♮-convex functions inn variables can be identified, up to the constantr in (2.5), with
L-convex functions inn+ 1 variables [10].

L♮-convex functions in discrete variables are defined in terms of a discrete version of translation-
submodularity.

Definition 2.7. A functiong : Zn→ R ∪ {+∞} is calledL♮-convexif it satisfies

g(p) + g(q) ≥ g((p− α1) ∨ q) + g(p∧ (q+ α1)) (0 ≤ α ∈ Z, p,q ∈ Zn). (2.8)

1The proof is given here as it is omitted in [15].
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2.3 M-convex functions

M-convex and M♮-convex functions are defined as follows. We denote byχi the i-th unit vector, i.e.,

χi = (0, . . . ,0,

i
∨
1,0, . . . ,0) for 1 ≤ i ≤ n, and the zero vector fori = 0, i.e.,χ0 = 0. The positive and

negative supports of a vectorx = (x1, x2, . . . , xn) ∈ Rn are denoted as

supp+(x) = {i | xi > 0, 1 ≤ i ≤ n}, supp−(x) = {i | xi < 0, 1 ≤ i ≤ n}. (2.9)

Definition 2.8. A function f : Rn→ R ∪ {+∞} is calledM-convexif it is a convex function that satisfies
the following exchange axiom:

(M-EXC) For anyx, y ∈ Rn and anyi ∈ supp+(x − y), there existsj ∈ supp−(x − y) and a
positive real numberα0 such that

f (x) + f (y) ≥ f (x− α(χi − χ j)) + f (y+ α(χi − χ j)) (0 ≤ α ≤ α0).

Definition 2.9. A function f : Rn→ R∪ {+∞} is calledM♮-convexif it is a convex function that satisfies
the following exchange axiom:

(M ♮-EXC) For anyx, y ∈ Rn and anyi ∈ supp+(x− y), there existsj ∈ supp−(x− y) ∪ {0}
and a positive real numberα0 such that

f (x) + f (y) ≥ f (x− α(χi − χ j)) + f (y+ α(χi − χ j)) (0 ≤ α ≤ α0).

Since j = 0 is allowed in (M♮-EXC) and not in (M-EXC), M-convex functions form a subclass of
M♮-convex functions. Nevertheless, M-convex functions and M♮-convex functions are essentially the
same, in the sense that M♮-convex functions inn variables can be obtained as projections of M-convex
functions inn+ 1 variables [10].

2.4 Conjugacy

Conjugacy between L-convex functions and M-convex functions plays an important role in this paper.
For a functionf : Rn→ R∪ {+∞} with dom f , ∅, the conjugate off is a functionf • : Rn→ R∪ {+∞}
defined by

f •(p) = sup{⟨p, x⟩ − f (x) | x ∈ Rn} (p ∈ Rn), (2.10)

where⟨p, x⟩ denotes the standard inner product of two vectorsp andx. The function f • is also called
the Legendre–Fenchel transform off , and the mappingf 7→ f • is referred to as the Legendre–Fenchel
transformation.

Theorem 2.2([14, Theorem 1.1]).
(1) The classes of closed proper M-convex functions and closed proper L-convex functions are in one-to-
one correspondence under the Legendre–Fenchel transformation(2.10). That is, if f is a closed proper
M-convex function and g is a closed proper L-convex function, then f• is a closed proper L-convex
function, g• is a closed proper M-convex function,( f •)• = f , and(g•)• = g.
(2) The classes of closed proper M♮-convex functions and closed proper L♮-convex functions are in one-
to-one correspondence under the Legendre–Fenchel transformation(2.10).

Polyhedral M-convex and L-convex functions are conjugate to each other.

Theorem 2.3([13, Theorem 5.1],[10, Theorem 8.4]).
(1) The classes of polyhedral M-convex functions and polyhedral L-convex functions are in one-to-one
correspondence under the Legendre–Fenchel transformation(2.10).
(2) The classes of polyhedral M♮-convex functions and polyhedral L♮-convex functions are in one-to-one
correspondence under the Legendre–Fenchel transformation(2.10).
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3 Approximation of L-convex Functions

3.1 Theorems

Theorem 3.1.
(1) If a sequence of L♮-convex functions gk : Rn → R ∪ {+∞} (k = 1,2, . . .) converges to a function
g : Rn→ R ∪ {+∞} at every point ofRn, then g is an L♮-convex function2.
(2) The same statement with “L♮-convex” replaced by “L-convex” also holds.

Proof. The proof is given in Section 3.2.1. □

Theorem 3.2.
(1) For any closed proper L♮-convex function g: Rn→ R ∪ {+∞}, there exists a nonincreasing sequence
{gk} of polyhedral L♮-convex functions gk : Rn → R ∪ {+∞} (k = 1,2, . . .) that converges to g uniformly
on every compact subset ofri (domg) (the relative interior of the effective domain of g). In particular,
for each p∈ ri (domg), we have g(p) = lim

k→∞
gk(p).

(2) The same statement with “L♮-convex” replaced by “L-convex” also holds.

Proof. The proof is given in Section 3.2.2. □

Example 3.1. The functiong defined by

g(p) =

{ 1
p+1 (p > −1)
+∞ (otherwise)

is a closed proper L♮-convex function (n = 1) with domg = (−1,+∞). This function can be represented
as the limit of a sequence of polyhedral L♮-convex functions that converges tog uniformly on every
compact subset of the interval (−1,+∞) = ri (domg). This fact follows from Theorem 3.2.

Example 3.2. The functiong defined by

g(p) =


p log p (p > 0)
0 (p = 0)
+∞ (p < 0)

is a closed proper L♮-convex function (n = 1) with domg = [0,+∞). At the end pointp = 0 of domg,
it has no subgradients. This function can be represented as the limit of a sequence of polyhedral L♮-
convex functions that converges tog uniformly on every compact subset of domg = [0,+∞). To see this,
consider the piecewise-linear function that interpolatesg at 1

kZ and letgk be its restriction to the interval
[0, k]. Then eachgk is a polyhedral L♮-convex function and the sequence{gk} converges tog uniformly
on every compact subsetS of domg = [0,+∞). In particular, the sequence converges tog uniformly
on S = [0,1], say. But this fact does not follow from Theorem 3.2, sinceS = [0,1] is not contained in
ri (domg).

In Theorem 3.2 above the convergence is established in ri (domg), whereas in the next theorem
(Theorem 3.3) we extend this to domg under the assumption of compactness of domg.

2The assumption means that for eachp ∈ Rn, the limit lim
k→∞

gk(p) exists inR ∪ {+∞} andg(p) = lim
k→∞

gk(p). In particular, the

possibility ofgk(p)→ −∞ is excluded.
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Theorem 3.3.
(1) Let g : Rn→ R ∪ {+∞} be a closed proper L♮-convex function with compact effective domaindomg.
Then there exists a sequence3 {gk} of polyhedral L♮-convex functions gk : Rn → R ∪ {+∞} (k = 1,2, . . .)
that converges to g uniformly ondomg, i.e.,

lim
k→∞

sup
p∈domg

|gk(p) − g(p)| = 0. (3.1)

(2) The same statement with “L♮-convex” replaced by “L-convex” also holds.

Proof. The proof relies on Theorem 3.2. See Section 3.2.3. □

Example 3.3. The functiong defined by

g(p) =


p2 (|p| < 1)
2 (|p| = 1)
+∞ (|p| > 1)

is a (non-closed) L♮-convex function (n = 1) with domg = [−1,1]. This function cannot be equal to the
uniform limit of a sequence of polyhedral L♮-convex functions. This example shows the necessity of the
closedness assumption ong in Theorem 3.3. We add that a pointwise convergent sequence of polyhedral
L♮-convex functions does exist. For example, letgk be the piecewise-linear function that interpolates
g at 1

kZ; we havegk(1) = gk(−1) = 2 andgk(i/k) = gk(−i/k) = (i/k)2 for i = 0,1, . . . , k − 1. Then
lim
k→∞

gk(p) = g(p) for eachp ∈ [−1, 1].

Remark 3.1. Here are two remarks about Theorems 3.2 and 3.3. First, in Theorem 3.2 we have a
nonincreasing sequence{gk}, but this may not be the case in Theorem 3.3. Second, it seems difficult to
derive Theorem 3.2 from Theorem 3.3.

3.2 Proofs

We first recall a fundamental fact.

Lemma 3.4. The pointwise limit of convex functions is a convex function.

Proof. The proof is given for completeness. Assume that a sequence of convex functionsgk : Rn →
R ∪ {+∞} (k = 1, 2, . . .) converges pointwise, and denote byg(p) the limit of gk(p) for eachp, i.e.,
g(p) = lim

k→∞
gk(p). It may be thatg(p) = −∞ for somep or g(p) ≡ +∞. In the inequality

λgk(p) + (1− λ)gk(q) ≥ gk(λp+ (1− λ)q) (0 ≤ λ ≤ 1)

for the convexity ofgk, we letk→ ∞ with λ fixed, to obtain

λg(p) + (1− λ)g(q) ≥ g(λp+ (1− λ)q) (0 ≤ λ ≤ 1).

Henceg is convex. □

3Unlike in Theorem 3.2, this sequencegk is not necessarily nonincreasing.
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3.2.1 Proof of Theorem 3.1

Convexity of the limit function follows from Lemma 3.4 above. In addition, L♮-convexity and L-
convexity of the limit function can be proved as follows.

(1) Eachgk, being L♮-convex, has translation-submodularity in (2.6), i.e.,

gk(p) + gk(q) ≥ gk((p− α1) ∨ q) + gk(p∧ (q+ α1)) (0 ≤ α ∈ R, p, q ∈ Rn).

By lettingk→ ∞, we obtain translation-submodularity (2.6) forg.
(2) By a similar argument with the use of (2.7) in place of (2.6).

3.2.2 Proof of Theorem 3.2

We make use of the following general convergence theorem.

Lemma 3.5 ([18, Th.10.8]). Let C be a relatively open convex set, and let f1, f2, . . . be a sequence of
finite convex functions on C. Suppose that the sequence converges pointwise on a dense subset of C, i.e.,
that there exists a subset C′ of C such thatcl C′ ⊇ C and, for each x∈ C′, the limit of f1(x), f2(x), . . .
exists and is finite. The limit then exists for every x∈ C, and the function f , where

f (x) = lim
k→∞

fk(x),

is finite and convex on C. Moreover the sequence of f1, f2, . . . converges to f uniformly on each closed
bounded subset of C.

Lemma 3.6. Let g : Rn→ R ∪ {+∞} be an L♮-convex function, and p0 ∈ domg.
(1) [ Discretization with1/2k−1 mesh] For k = 1, 2, . . ., define hk : Zn→ R ∪ {+∞} by

hk(q) = g(p0 +
q

2k−1
) (q ∈ Zn).

Then hk is an L♮-convex function in discrete variables.
(2) Letĥk : Rn→ R∪{+∞} be the convex extension (convex closure) of hk, and definêgk : Rn→ R∪{+∞}
by

ĝk(p) = ĥk(2
k−1(p− p0)), i.e., ĝk(p0 +

q

2k−1
) = ĥk(q).

Then eacĥgk is a locally polyhedral L♮-convex function that satisfieŝgk ≥ g on Rn. Moreover, the
sequence(ĝk | k = 1, 2, . . .) is monotone nonincreasing.
(3) Let gk : Rn→ R∪{+∞} be the restriction of̂gk onto Dk = {p ∈ Rn | |p(i)− p0(i)| ≤ k (i = 1, 2, . . . ,n)}.
Each gk is a polyhedral L♮-convex function that satisfies gk ≥ g onRn. Moreover, the sequence(gk | k =
1,2, . . .) is monotone nonincreasing.
(4) (gk | k = 1, 2, . . .) converges to g uniformly on every compact subset ofri (domg).

Proof. (1) Obviously,hk is endowed with the discrete translation-submodularity (2.8).
(2) It is known [10] that an L♮-convex function in discrete variables is convex-extensible, and its

convex closure is a locally polyhedral L♮-convex function. Therefore, ˆgk is a locally polyhedral L♮-
convex function. The monotonicity is obvious.

(3) Dk is a bounded L♮-convex set, and an L♮-convex function remains to be L♮-convex when it is
restricted to an L♮-convex set. Therefore,gk is a polyhedral L♮-convex function. The monotonicity of
{gk} follows from the monotonicity of{ĝk} and the inclusionDk ⊆ Dk+1.
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(4) Take any compact setS contained in ri (domg). There exists a bounded convex setC that is open
relative to the affine hull of domg and4

S ⊂ C ⊂ cl C ⊂ ri (domg).

By the construction ofgk, there exists an integerk(C) such that domgk ⊇ C for all k ≥ k(C). For
k ≥ k(C), let gC

k denote the restriction ofgk to C. Then (gC
k | k ≥ k(C)) is a sequence of finite convex

functions onC, to which we apply Lemma 3.5 with

C′ = {p ∈ C | 2k−1p ∈ Zn for somek ≥ k(C), k ∈ Z}.

Note thatC′ is a dense subset ofC, i.e., clC′ ⊇ C.
For eachp ∈ C′ there existsk = k(p) such that 2k−1p ∈ Zn, where we may assumek(p) ≥ k(C).

Sincegk(p) = gk(p)(p) = g(p) for all k ≥ k(p), the sequence (gC
k | k ≥ k(C)) converges pointwise onC′.

The first half of Lemma 3.5 shows that for eachp ∈ C, the limit gC(p) = limk→∞ gC
k (p) = limk→∞ gk(p)

exists, and the functiongC is a convex function, which is finite-valued onC. By the latter half of Lemma
3.5, the sequence (gC

k | k ≥ k(C)) converges togC uniformly on each compact subset ofC. Obviously, we
havegC(p) = g(p) for p ∈ C′, and hencegC(p) = g(p) for p ∈ C, since a convex function is continuous
in the relative interior of the effective domain. Therefore, (gC

k | k ≥ k(C)) converges tog uniformly on
every compact subset ofC, and, in particular, onS. Thus we conclude that (gk | k = 1, 2, . . .) converges
to g uniformly onS. □

Theorem 3.2 follows from Lemma 3.6 above.

Example 3.4. The functiong defined by

g(p) =

 −√
2− p2 (|p| ≤

√
2)

+∞ (|p| >
√

2)

is a closed proper L♮-convex function with domg = [−
√

2,
√

2]. In the construction in Lemma 3.6 we
may choosep0 = 0 to obtain polyhedral L♮-convex functionsgk. Since

√
2 < domgk andgk(

√
2) = +∞

for everyk, the sequencegk(p) does not converge tog(p) at p =
√

2 ∈ domg. Thus {gk} does not
converge tog on domg, although it certainly does on ri (domg) = (−

√
2,
√

2).

3.2.3 Proof of Theorem 3.3

We first recall two fundamental facts that we use.

Lemma 3.7 ([16, Theorem 1.2]). A closed proper L♮-convex function is continuous on its effective do-
main.

Lemma 3.8(Dini’s theorem, e.g., [2, Theorem 8.2.6], [19, Theorem 7.1.2]). If a monotone sequence of
continuous functions on a compact set converges pointwise to a continuous function, then the conver-
gence is uniform on the compact set.

In proving Theorem 3.3 we may assume that domg is full-dimensional, since otherwise, we may
project it onto an appropriate coordinate plane while preserving L♮-convexity. For any positive number
a > 0, define

ga(p) = min{g(q) | ∥p− q∥∞ ≤ a}. (3.2)

4We may assume that clC is a bounded L♮-convex set.
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We shall first apply Theorem 3.2 toga to obtain a sequence of polyhedral L♮-convex functionsga
k (k =

1,2, . . .), and then extract a sequence ˜gm (m= 1,2, . . .) from {ga
k} by choosing appropriate pairs (am, km).

Our construction is summarized as:g→ ga→ ga
k → g̃m.

The functionsga have the following properties.

1. Eachga is an L♮-convex function.

(Proof) LetδS denote the indicator function ofS = {p ∈ Rn | ∥p∥∞ ≤ a}. ThenδS is a separable
convex function, andga is equal to the infimum convolution ofg andδS. The infimum convolution
of an L♮-convex function and a separable convex function is known to be L♮-convex.

2. domga = domg+ [−a1, a1] (Minkowski sum). In particular, int (domga) ⫌ domg.

3. The sequence{ga} is nondecreasing asa ↓ 0. That is,ga(p) ≤ gb(p) if a > b > 0.

4. For eachp ∈ domg, the sequence{ga(p)} converges tog(p) asa ↓ 0, i.e.,

lim
a↓0

ga(p) = g(p) (p ∈ domg). (3.3)

(Proof) By Lemma 3.7,g is continuous on domg. Then (3.3) follows from the definition (3.2).

5. Asa ↓ 0, the sequence{ga} converges tog uniformly on domg, i.e.,

lim
a↓0

sup
p∈domg

|ga(p) − g(p)| = 0. (3.4)

(Proof) The effective domain domg is a compact set by the assumption, andga andgare continuous
on domg by Lemma 3.7. Moreover, asa ↓ 0, the sequence{ga} is nondecreasing and converges
pointwise tog, as shown above. Therefore, the convergence is uniform by Dini’s theorem (Lemma
3.8).

Example 3.5. For the function

g(p) =

 −√
2− p2 (|p| ≤

√
2),

+∞ (|p| >
√

2)

treated in Example 3.4, we have

ga(p) =


−
√

2 (|p| ≤ a),
−

√
2− (|p| − a)2 (a ≤ |p| ≤

√
2+ a),

+∞ (|p| >
√

2+ a),

and hence

sup
p∈domg

|ga(p) − g(p)| = |ga(
√

2)− g(
√

2)| =
√

2
√

2a− a2 → 0 (a ↓ 0).

For eacha > 0 we apply Theorem 3.2 toga to obtain a sequence of polyhedral L♮-convex functions
ga

k (k = 1,2, . . .) that converges toga on every compact set contained in ri (domga) = int (domga). Since
domg is a compact set contained in int (domga), we have

lim
k→∞

sup
p∈domg

|ga
k(p) − ga(p)| = 0. (3.5)
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By (3.4), on the other hand,{ga} converges tog uniformly on domg asa ↓ 0, which implies that for any
ε > 0, there exists ˆa = â(ε) > 0 such that

sup
p∈domg

|gâ(p) − g(p)| < ε. (3.6)

By (3.5) for â = â(ε), there existŝk = k̂(ε) such that

sup
p∈domg

|gâ
k(p) − gâ(p)| < ε (3.7)

for all k ≥ k̂. In particular, withk = k̂, we obtain

sup
p∈domg

|gâ
k̂
(p) − gâ(p)| < ε. (3.8)

A combination of (3.6) and (3.8) yields

sup
p∈domg

|gâ
k̂
(p) − g(p)| ≤ sup

p∈domg
|gâ

k̂
(p) − gâ(p)| + sup

p∈domg
|gâ(p) − g(p)| < 2ε. (3.9)

By choosingε asε = 1/m for m= 1,2, . . ., we construct a sequence{g̃m} as

g̃m = gâ(1/m)
k̂(1/m)

(m= 1, 2, . . .). (3.10)

Then we have the following.

1. domg̃m = domgâ(1/m)
k̂(1/m)

⫌ domg.

2. Eachg̃m is a polyhedral L♮-convex function.

3. {g̃m} converges tog uniformly on domg.

(Proof) By (3.9) withε = 1/mwe have

sup
p∈domg

|g̃m(p) − g(p)| < 2/m. (3.11)

Therefore,
lim

m→∞
sup

p∈domg
|g̃m(p) − g(p)| = 0. (3.12)

The proof of Theorem 3.3 is completed.

4 Approximation of M-convex Functions

4.1 Theorems

Theorem 4.1.
(1) If a sequence of closed proper M♮-convex functions fk : Rn → R ∪ {+∞} (k = 1, 2, . . .) converges to
a function f : Rn → R ∪ {+∞} at every point ofRn, then f is an M♮-convex function (not necessarily
closed)5.
(2) The same statement with “M♮-convex” replaced by “M-convex” also holds.

5The assumption means that for eachx ∈ Rn, the limit lim
k→∞

fk(x) exists inR ∪ {+∞} and f (x) = lim
k→∞

fk(x). In particular, the

possibility of fk(x)→ −∞ is excluded.
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Proof. The proof is based on Theorem 3.2 and the conjugacy theorems (Theorems 2.2 and 2.3). See
Section 4.2.1. □

Example 4.1. Consider functionsfk(x) = max(1−kx, 0) with dom fk = [0, 1]. Eachfk is a closed proper
M♮-convex function, and the limit

lim
k→∞

fk(x) =


1 (x = 0),
0 (0< x ≤ 1),
+∞ (x < [0,1])

is an M♮-convex function, which is not closed.

Theorem 4.2.
(1) For any closed proper M♮-convex function f: Rn→ R∪ {+∞} there exists a nondecreasing sequence
{ fk} of polyhedral M♮-convex functions fk : Rn → R ∪ {+∞} (k = 1,2, . . .) that converges to f uniformly
on every compact subset ofdom f . In particular, for each x∈ dom f , we have f(x) = lim

k→∞
fk(x).

(2) The same statement with “M♮-convex” replaced by “M-convex” also holds.

Proof. The proof is given in Section 4.2.2. □

Remark 4.1. Note that Theorem 4.2 asserts uniform convergence on every compact subset of domf
(that may not be a subset of ri (domf )). Also note that no compactness assumption is imposed on domf .

Remark 4.2. In applications, M♮-convex functions often appear as laminar convex functions, for which
a polyhedral approximation can be constructed easily. By alaminar familywe mean a nonempty family
T of subsets of{1, . . . , n} such thatA ∩ B = ∅ or A ⊆ B or A ⊇ B for any A, B ∈ T . A function
f : Rn→ R ∪ {+∞} is calledlaminar convexif it can be represented as

f (x) =
∑
A∈T
φA(x(A)) (x ∈ Rn)

for a laminar familyT and a family of univariate convex functionsφA : R → R ∪ {+∞} indexed by
A ∈ T , wherex(A) =

∑
i∈A xi for x = (x1, . . . , xn). A laminar convex function is M♮-convex.

To construct a polyhedral approximation off , let φ̂A
k be the piecewise-linear function that interpolates

φA at 1
kZ, and letφA

k denote its restriction to the interval [−k, k]. Then the functionfk defined by

fk(x) =
∑
A∈T
φA

k (x(A)) (x ∈ Rn)

is a polyhedral M♮-convex function, and the sequence{ fk} converges (pointwise) tof . It is noted, how-
ever, that, unlike in Theorem 4.2, the sequence{ fk} is nonincreasing and the convergence is not neces-
sarily uniform on every compact subset of domf .

4.2 Proofs

4.2.1 Proof of Theorem 4.1

It suffices to consider the case of M-convex functions. First recall from Lemma 3.4 that the limit of
convex functions is a convex function.
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To show (M-EXC) for f , take distinctx, y ∈ dom f and i ∈ supp+(x − y). Since fk converges tof
pointwise, we havex, y ∈ dom fk for all sufficiently largek. Each fk is an M-convex function, and, by
Lemma 4.3 below, there existsjk ∈ supp−(x− y) such that

fk(x) + fk(y) ≥ fk(x− α(χi − χ jk)) + fk(y+ α(χi − χ jk)) (0 ≤ α ≤ α0),

where

α0 =
x(i) − y(i)

2|supp−(x− y)| > 0.

Since supp−(x − y) is a finite set, there exists somej ∈ supp−(x − y) such thatjk equalsj for infinitely
manyk. Fix such j and take a subsequencek1 < k2 < · · · < kl < · · · with j = jkl (l = 1, 2 . . .). Then we
have

fkl (x) + fkl (y) ≥ fkl (x− α(χi − χ j)) + fkl (y+ α(χi − χ j)) (0 ≤ α ≤ α0),

whereα0 is independent ofl. Letting l → ∞ we obtain

f (x) + f (y) ≥ f (x− α(χi − χ j)) + f (y+ α(χi − χ j)) (0 ≤ α ≤ α0),

which shows (M-EXC) forf .

Lemma 4.3([14, Theorem 3.11]). Let f : Rn → R ∪ {+∞} be a closed proper convex function. Then, f
satisfies(M-EXC) if and only if it satisfies

(M-EXC s) For any x, y ∈ dom f and any i∈ supp+(x − y), there exists j∈ supp−(x − y)
such that

f (x) + f (y) ≥ f (x− α(χi − χ j)) + f (y+ α(χi − χ j))

(
0 ≤ α ≤ x(i) − y(i)

2|supp−(x− y)|

)
.

4.2.2 Proof of Theorem 4.2

Recall the notation (2.10) for the conjugate function:

g•(x) = sup{⟨p, x⟩ − g(p) | p ∈ Rn} (x ∈ Rn). (4.1)

Our proof uses the following general facts about conjugate functions.

Lemma 4.4([18, Corollary 12.2.2]). For any convex function g: Rn→ R ∪ {+∞}, we have

g•(x) = sup{⟨p, x⟩ − g(p) | p ∈ ri (domg)} (x ∈ Rn). (4.2)

Lemma 4.5. Let g : Rn → R ∪ {+∞} and gk : Rn → R ∪ {+∞} (k = 1, 2, . . .) be convex functions
with domg , ∅ and domgk , ∅ (k = 1, 2, . . .). Assume that for each p∈ Rn, the sequence{gk(p)} is
nonincreasing, bounded from below by g(p), i.e.,

g1(p) ≥ g2(p) ≥ · · · ≥ gk(p) ≥ gk+1(p) ≥ · · · ≥ g(p) (p ∈ Rn), (4.3)

and that{gk} converges to g pointwise onri (domg), i.e.,

lim
k→∞

gk(p) = inf
k

gk(p) = g(p) (p ∈ ri (domg)). (4.4)

Also assume that g• is continuous ondomg•. Then the following hold.
(1) The sequence{g•k} is nondecreasing and converges to g• pointwise ondomg•. That is, for each
x ∈ domg•, we have g•k(x) ≤ g•k+1(x) and lim

k→∞
g•k(x) = g•(x).

(2) The sequence{g•k} converges to g• uniformly on every compact subset ofdomg•.
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Proof. (1) It follows from the monotonicity (4.3) ofgk and

g•k(x) = sup{⟨p, x⟩ − gk(p) | p ∈ Rn} (x ∈ Rn) (4.5)

thatg•k(x) ≤ g•k+1(x) ≤ · · · ≤ g•(x). Define

h(x) = sup
k

g•k(x) = lim
k→∞

g•k(x) (x ∈ Rn),

whereh(x) ∈ R ∪ {+∞}.
[Proof ofh(x) ≤ g•(x)] By (4.5) and (4.3) we have

g•k(x) = sup
p∈Rn
{⟨p, x⟩ − gk(p)} ≤ sup

p∈Rn
{⟨p, x⟩ − g(p)} = g•(x) (4.6)

for any x ∈ Rn. Taking the supremum overk and using the definition ofh(x), we obtainh(x) ≤ g•(x).
This implies, in particular, that{g•k(x)} has a finite limit forx ∈ domg•.

[Proof ofh(x) ≥ g•(x)] For x ∈ domg• we have

h(x) = sup
k

g•k(x) = sup
k

sup
p∈Rn
{⟨p, x⟩ − gk(p)}

 = sup
p∈Rn

(
sup

k
{⟨p, x⟩ − gk(p)}

)
= sup

p∈Rn
{⟨p, x⟩ − inf

k
gk(p)} ≥ sup

p∈ri (domg)
{⟨p, x⟩ − inf

k
gk(p)}

= sup
p∈ri (domg)

{⟨p, x⟩ − g(p)} = g•(x),

where the last equality is due to (4.2) in Lemma 4.4.
(2) Let S ⊆ domg• be a compact set. The sequence{g•k} is nondecreasing and converges tog•

pointwise onS, whereg• is continuous by the assumption. Then, by Dini’s theorem (Lemma 3.8),{g•k}
converges tog• uniformly onS. □

The following two lemmas show properties specific to M♮-convex and L♮-convex functions.

Lemma 4.6 ([16, Theorem 1.1]). A closed proper M♮-convex function is continuous on its effective
domain.

Lemma 4.7. For a closed proper L♮-convex function g: Rn → R ∪ {+∞}, define polyhedral L♮-convex
functions gk : Rn→ R ∪ {+∞}, as in Lemma 3.6.
(1) (g•k | k = 1, 2, . . .) is nondecreasing and converges to g• pointwise ondomg•. That is, for each
x ∈ domg•, we have g•k(x) ≤ g•k+1(x) and lim

k→∞
g•k(x) = g•(x).

(2) (g•k | k = 1,2, . . .) converges to g• uniformly on every compact subset ofdomg•.
(3) Each g•k is a polyhedral M♮-convex function.

Proof. (1) & (2) We haveg1 ≥ g2 ≥ · · · ≥ g onRn by Lemma 3.6(3), and the sequence{gk} converges
to g pointwise on ri (domg) by Lemma 3.6(4). The conjugate functiong• is a closed proper M♮-convex
function by Theorem 2.2, and is continuous on domg• by Lemma 4.6. Hence Lemma 4.5 applies.

(3) g•k is a polyhedral M♮-convex function by the polyhedral version of M-L conjugacy theorem
(Theorem 2.3). □

We now begin the proof of Theorem 4.2. For a closed proper M♮-convex functionf , its conjugate
g = f • is a closed proper L♮-convex function andf = g• by Theorem 2.2. From thisg constructgk as in
Lemma 3.6, and then definefk = g•k. Then Lemma 4.7 shows that,fk is a polyhedral M♮-convex function,
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and fk converges tof uniformly on every compact subset of domf . Our construction is summarized as
follows:

(domĝk ⊆ domg) (domgk : bounded)
L : g → ĝk → gk

↑ ↓
M : f fk

(dom fk = Rn)

Remark 4.3. Here is an alternative proof, due to Shinji Ito, of the pointwise convergence in Lemma
4.5(1). Sincegk ≥ g we have domgk ⊆ domg. By the assumption (4.4), there exists somek′ such that
aff(domgk) = aff(domg) and ri(domgk) ⊆ ri(dom g) for all k ≥ k′, where aff(·) means the affine hull.
Then it follows from Lemma 4.4 that

g•(x) = sup{⟨p, x⟩ − g(p) | p ∈ ri(dom g)}, g•k(x) = sup{⟨p, x⟩ − gk(p) | p ∈ ri(domg)}.

Therefore,

lim
k→∞

g•k(x) = sup
k≥k′

g•k(x) = sup
k≥k′

 sup
p∈ri(dom g)

{⟨p, x⟩ − gk(p)}
 = sup

p∈ri(dom g)

(
sup
k≥k′
{⟨p, x⟩ − gk(p)}

)
= sup

p∈ri(dom g)
{⟨p, x⟩ − g(p)} = g•(x).
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