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Abstract

In discrete convex analysis, L-convexity and M-convexity are defined for functions in both dis-
crete and continuous variables. Polyhedr@M-convex functions connect discrete and continuous
versions. Specifically, polyhedral IM-convex functions with certain integrality can be identified
with discrete versions. Here we show another role of polyhedf®dconvex functions: every closed
L-/M-convex function in continuous variables can be approximated by polyhedidddonvex func-
tions, uniformly on every compact set. The proof relies on L-M conjugacy under Legendre-Fenchel
transformation.

1 Introduction

In discrete convex analysis [4, 9, 10, 12], “convexity” concepts are defined for functions in both discrete
and continuous variables. Specifically, three types of functions:

f:z2"> 2z, f:zZ" >R, f:R"> R

are considered in discussing “convexity.” Furthermore, polyhedral and non-polyhedral (typically smooth)
functions are distinguished for functions of ty®@ — R. Set functions form a remarkable subclass of
functions of typeZ" — Z or Z" — R.

L-convexity and M-convexity in discrete convex analysis are convexity concepts of combinatorial
nature, defined for each of these classes of functiohgohvexity and M-convexity are variants of L-
convexity and M-convexity, respectively. Submodular set functions are capturéecasvex functions
of typeZ" — R, and matroids (basis families) are captured as M-convex functions ofAype Z.
L-convex functions of typ&" — R or R" — R find applications in operations research, queueing and
inventory in particular (e.g., [1, 8, 20, 21]), through the equivalence between L-convexity and multimod-
ularity [11]. M-convex functions play substantial roles in economics and game theory (e.g., [3, 5, 6, 17])
due to the equivalence between M-convexity and gross substitutes property.

Polyhedral L/M-convex functions connect discrete and continuous versions in two directions: (i)
convex extensions of M-convex functions in discrete variables are (locally) polyhedraeonvex
functions in continuous variables, and (ii) discretization (or restriction to integer vectors) of polyhedral
L-/M-convex functions with a certain integrality property results iiM-convex functions in discrete
variables. Although polyhedral [M-convex functions are continuous functions of typt — R, they
are endowed with combinatorial properties, sometimes called “discreteness in direction” [10].



In this paper we demonstrate another role of polyhedrdiiconvex functions by establishing the-
orems stating that every closed/M-convex function in continuous variables can be approximated by
polyhedral L{M-convex functions, uniformly on every compact set. These theorems will serve to rein-
force the connection between discrete and continuous versionghfdonvex functions.

As a motivation of the present work, a subtle technical aspect in polyhedral (or piecewise-linear)
approximation of LAM-convex functions is explained here. A standard technique of constructing a
piecewise-linear convex approximation of a given functiarR" — R is to evaluate (x) at finitely many
sample points, sayx = X1, ..., Xn, and then take the convex lower envelope of the poxtsf(x1)), ...,

(xn, T(xn)) in R™L. A natural choice of the sample points for aryM-convex functionf : R" — R

is those points ofﬂ(Z)n contained in a finite interval, wheteis an integer. It can be shown that this
standard technique basically works for L- drtonvex functions. However, it does not work for M- or
Mé-convex functions. To be specific, a quadratic functi¢r) = %XTAxin x € R3 with
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is an example of an Mconvex function for which the standard procedure results in a piecewise-linear
function that is not M-convex. We overcome thisftiiculty via conjugacy under the Legendre—Fenchel
transformation. Giverf, we first consider its Legendre—Fenchel transform, gaWe apply the above-
mentioned standard techniquegto obtain a piecewise-linear approximation, sgto g. We definefy
to be the Legendre—Fenchel transformgpfand adoptfy as a piecewise-linear approximation fto It
can be shown that this method of construction works for M- érddinvex functions.

The rest of the paper is organized as follows. Sectiorff@® preliminaries from discrete convex
analysis, Section 3 presents the theorems (Theorems 3.1, 3.2 and 3.3) for L-convex functions, and Sec-
tion 4 gives the corresponding results (Theorems 4.1 and 4.2) for M-convex functions.

2 Preliminaries

2.1 Convex functions

For a functionf : R" - R U {+00, —o0}, the dfective domain and the epigraph are defined as
domf = {xe R"| —oc0 < f(X) < +00}, (2.1)
epif = {(xy) e R™ |y> f(x)). (2.2)

The interior and the relative interior of théective domain of are denoted as int (doi) and ri (domf),
respectively.

Definition 2.1. A function f : R" — R U {+o0} is said to beconvexf it satisfies the following inequality:
AT) + (L= ) f(y) > f(Ax+ (1 - 2)y) 0<a<1). (2.3)

Definition 2.2. A convex functionf : R" — R U {+oo} is said to begproperif dom f is nonempty, and
closedif epi f is a closed subset &,

Definition 2.3. A function defined orR" is said to bepolyhedral convexf its epigraph is a convex
polyhedron irR™?1. A polyhedral convex function is exactly such a function that can be represented as
the maximum of a finite number offene functions on a polyhedratfective domain.

Definition 2.4. A function is said to béocally polyhedral conveif it is a polyhedral convex function on
any finite closed interval b] with a < b.

See [7, 18] for more about convex functions.
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2.2 L-convex functions
L-convex and B-convex functions are defined as follows.

Definition 2.5. A functiong : R" — R U {+o0} is calledL-convexf it is a convex function that satisfies
the following two conditions:
e [Submodularity]:

gp)+9(@=g(pva)+9(pAd  (p.geR"), (2.4)

wherep v gandp A g are, respectively, the componentwise maximum and minimupasfdg.
e [Linearity in directionl]: There exists a real numbesuch that

g(p+al)=9g(p) +ar (v eR,peR"), (2.5)
wherel = (1,1,...,1) e R".

Definition 2.6. A functiong : R" — R U {+co} is calledL‘-convexf it is a convex function that satisfies
the following inequality:

9(p) +9(@ = 9((p-al)va) +g(pA(@+al)  (0<aeR, pgeR) (2.6)
The property expressed by (2.6) is referred toragslation-submodularity

Proposition 2.1([15, Proposition 3.10]) A function g is L-convex if and only if it is a convex function
that satisfies

9P +9(@ 2 9((p-al) va) +g(pA(@+al))  (¢€R, pqeR"). (2.7)

Proof. 1 If gis an L-convex function, then

9(p) +9(a + al) —ar

> g(pA(@+al)+9(pV(q+al)) -ar

= o((pA(a+al))-al)+9(pV(q+al)

= 9((p-al)va)+9(pA(q+al)).
Conversely, suppose thgsatisfies the inequality (2.7). Submodularity (2.4) follows as a special case of
(2.7) witha = 0. Linearity in directionl in (2.5) can be derived as follows. The inequality (2.7) with
p=qg=sa=-8<0yields )(s) = g(s+ BL) + g(s— B1), whereas (2.7) witlp = s+ 81, q = s— 1,
a = Byieldsg(s+ B1) + g(s— B1) = 29(s). Therefore,

a(p) + 9(a)

g(s+pB1) +g(s-B1) =29() (0<BeR, seR.
Sinceg is a convex function, this implies (2.5). mi

The inequality (2.7) is the same as (2.6) in form, btifiedent in the range ef. Sincea is nonnegative
in (2.6), whereas it can be both negative and positive in (2.7), L-convex functions form a subcléss of L
convex functions. Nevertheless, L-convex functions ah@dnvex functions are essentially the same,
in the sense that®convex functions im variables can be identified, up to the constairt (2.5), with
L-convex functions im + 1 variables [10].

L5-convex functions in discrete variables are defined in terms of a discrete version of translation-
submodularity.

Definition 2.7. A functiong : Z" — R U {+co} is calledLb-convexf it satisfies

9P +9(@ 29((p-al) va)+g(pAr(@+al)) (0<aeZ pgeZ) (2.8)

1The proof is given here as it is omitted in [15].




2.3 M-convex functions

M-convex and M-convex functions are defined as follows. We denotecbthe i-th unit vector, i.e.,

v
xi =(0,...,0,1,0,...,0) for 1 < i < n, and the zero vector far= 0, i.e.,yo = 0. The positive and
negative supports of a vect®r= (xq, X, . .., X,) € R" are denoted as

supp(X)={i|x >0, 1<i<n} supp(X)={i|x <0, 1<i<n}. (2.9)

Definition 2.8. A function f : R" — R U {+o0} is calledM-convexf it is a convex function that satisfies
the following exchange axiom:

(M-EXC) For anyx,y € R"and anyi € supp (x —y), there exist§ € supp (x—y) and a
positive real numbedtq such that

fO)+ () = f(x—alvi—x)) + fly+alxi-xj)  (O=<a<a)

Definition 2.9. A function f : R" — R U {+co} is calledM¥-convexf it is a convex function that satisfies
the following exchange axiom:

(ME-EXC) For anyx,y € R" and anyi € supp (x —y), there exist§ e supp (x —y) U {0}
and a positive real numbeg such that

fO)+ 1) 2 fx—ali —xj) + fy+alxi—xj))  (O<a<ao).

Sincej = 0 is allowed in (M-EXC) and not in (M-EXC), M-convex functions form a subclass of
Mé-convex functions. Nevertheless, M-convex functions arfécbhvex functions are essentially the
same, in the sense that'Monvex functions im variables can be obtained as projections of M-convex
functions inn + 1 variables [10].

2.4 Conjugacy

Conjugacy between L-convex functions and M-convex functions plays an important role in this paper.
For a functionf : R" — R U {+o0} with domf # 0, the conjugate of is a functionf® : R" — R U {+oo}
defined by

f*(p) = sud(p,x) = f(x) [ xeR"}  (peR"), (2.10)
where(p, X) denotes the standard inner product of two vecfmendx. The functionf® is also called

the Legendre—Fenchel transform fafand the mappindg — f* is referred to as the Legendre—Fenchel
transformation.

Theorem 2.2([14, Theorem 1.1])

(1) The classes of closed proper M-convex functions and closed proper L-convex functions are in one-to-
one correspondence under the Legendre—Fenchel transform@id®) That is, if f is a closed proper
M-convex function and g is a closed proper L-convex function, tHeis & closed proper L-convex
function, ¢ is a closed proper M-convex functiaff,’)* = f, and(g*)* = g.

(2) The classes of closed propefidonvex functions and closed propértonvex functions are in one-
to-one correspondence under the Legendre—Fenchel transform@tibo)

Polyhedral M-convex and L-convex functions are conjugate to each other.

Theorem 2.3([13, Theorem 5.1],[10, Theorem 8.4])

(1) The classes of polyhedral M-convex functions and polyhedral L-convex functions are in one-to-one
correspondence under the Legendre—Fenchel transformé2idi0)

(2) The classes of polyhedral®Monvex functions and polyhedral-tonvex functions are in one-to-one
correspondence under the Legendre—Fenchel transformé2idi0)



3 Approximation of L-convex Functions

3.1 Theorems

Theorem 3.1.

(1) If a sequence of fconvex functions,g: R" — R U {+c0} (k = 1,2,...) converges to a function
g:R" = R U {+co} at every point oR", then g is an E-convex functiofi

(2) The same statement with *lconvex” replaced by “L-convex” also holds.

Proof. The proof is given in Section 3.2.1. O

Theorem 3.2.

(1) For any closed properi-convex function gR" — R U {+co}, there exists a nonincreasing sequence
{g«} of polyhedral I-convex functionsyg: R" — R U {+o0} (k = 1,2, ...) that converges to g uniformly
on every compact subsetrw{domg) (the relative interior of the gective domain of g). In particular,
for each pe ri (domg), we have @p) = ;!'_To ak(p).

(2) The same statement with *iconvex” replaced by “L-convex” also holds.
Proof. The proof is given in Section 3.2.2. O

Example 3.1. The functiong defined by

1
_[ & (p>-D)

9(p) { +o00  (otherwise)

is a closed properconvex function i = 1) with domg = (-1, +c0). This function can be represented

as the limit of a sequence of polyhedraktonvex functions that converges gouniformly on every

compact subset of the intervall, +o0) = ri (domg). This fact follows from Theorem 3.2. [

Example 3.2. The functiong defined by

plogp (p>0)
g(p) = { 0 (p=0)

+00 (p<0)
is a closed proper®convex function i = 1) with domg = [0, +0). At the end pointp = 0 of domg,
it has no subgradients. This function can be represented as the limit of a sequence of polyhedral L
convex functions that convergesgainiformly on every compact subset of dgm: [0, +o0). To see this,
consider the piecewise-linear function that interpol@tas%Z and letgk be its restriction to the interval
[0,K]. Then eachyy is a polyhedral E-convex function and the sequenigg} converges ta uniformly
on every compact subs8&tof domg = [0, +0). In particular, the sequence convergegtoniformly
onS = [0, 1], say. But this fact does not follow from Theorem 3.2, siSice [0, 1] is not contained in
ri (domg). [

In Theorem 3.2 above the convergence is established in ri@lomhereas in the next theorem
(Theorem 3.3) we extend this to dgmunder the assumption of compactness of dom

2The assumption means that for each R", the Iimitklim ok(p) exists inR U {+oco0} andg(p) = l!im ok(p)- In particular, the
possibility ofgk(p) — —co is excluded.



Theorem 3.3.

(1) Letg: R" — R U {+o0} be a closed propericonvex function with compacffective domairdomg.
Then there exists a sequefdgy} of polyhedral li-convex functions,g: R” — R U {+oo} (k= 1,2,..))
that converges to g uniformly aiomg, i.e.,

im sup |gk(p) —9(p)I = 0. (3.1)

I
k—c0 pedomg

(2) The same statement with *iconvex” replaced by “L-convex” also holds.

Proof. The proof relies on Theorem 3.2. See Section 3.2.3. |

Example 3.3. The functiong defined by

P> (pl<1)
gp =42 (p=1)
+oo (Ipl>1)

is a (non-closed) 1=convex function i = 1) with domg = [-1, 1]. This function cannot be equal to the
uniform limit of a sequence of polyhedrafdconvex functions. This example shows the necessity of the
closedness assumption gin Theorem 3.3. We add that a pointwise convergent sequence of polyhedral
L%-convex functions does exist. For example,dgtbe the piecewise-linear function that interpolates
g at %Z; we haveg(1l) = gk(-1) = 2 andge(i/k) = g(-i/k) = (i/k)2 fori = 0,1,...,k— 1. Then
lim g«(p) = g(p) for eachp € [-1,1].

[ ]

Remark 3.1. Here are two remarks about Theorems 3.2 and 3.3. First, in Theorem 3.2 we have a
nonincreasing sequenégx}, but this may not be the case in Theorem 3.3. Second, it sedhtsiltito
derive Theorem 3.2 from Theorem 3.3. [ |

3.2 Proofs

We first recall a fundamental fact.
Lemma 3.4. The pointwise limit of convex functions is a convex function.

Proof. The proof is given for completeness. Assume that a sequence of convex furgiios' —
R U {+o0} (k = 1,2,...) converges pointwise, and denote @fp) the limit of gk(p) for eachp, i.e.,
a(p) = I(Iim ok(p). It may be thag(p) = —oo for somep or g(p) = +oo. In the inequality

Ag(p) + (1 = Agk(a) = gk(Ap+(1-2)a)  (0<a<1)
for the convexity ofgk, we letk — oo with A fixed, to obtain

ag(p) + (L= Ag(@) 2 g(dp+(1-4)g  (0<a<1)

Henceg is convex. O

3Unlike in Theorem 3.2, this sequengeis not necessarily nonincreasing.
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3.2.1 Proof of Theorem 3.1

Convexity of the limit function follows from Lemma 3.4 above. In additiorf;donvexity and L-
convexity of the limit function can be proved as follows.
(1) Eachgy, being L*-convex, has translation-submodularity in (2.6), i.e.,

ak(p) + gk(@) = gk((p— 1) v a) + gk(p A (0 + al)) (O<aeR, pgeR").

By lettingk — oo, we obtain translation-submodularity (2.6) fpr
(2) By a similar argument with the use of (2.7) in place of (2.6).

3.2.2 Proof of Theorem 3.2

We make use of the following general convergence theorem.

Lemma 3.5([18, Th.10.8]) Let C be a relatively open convex set, and lgtff, ... be a sequence of

finite convex functions on C. Suppose that the sequence converges pointwise on a dense subset of C, i.e.,
that there exists a subset G6f C such thatlC’ 2 C and, for each » C’, the limit of f(x), f2(x),...

exists and is finite. The limit then exists for every &, and the function f, where

() = lim fi(x),

is finite and convex on C. Moreover the sequenceg obf... converges to f uniformly on each closed
bounded subset of C.

Lemma 3.6. Let g: R" — R U {+co} be an li-convex function, andgps domg.
(1) [ Discretization with1/25 1 mesh] Fork=1,2,..., define R : Z" — R U {+0o0} by

h(@=g(Po+ 507) @€z,

Then R is an L%-convex function in discrete variables.
(2) Lethk : R" — RU{+0o0} be the convex extension (convex closure)pdhd defindj, : R" — RU{+oo}

by
6(P) =A@ p-po)). i B(Po+ o) = (@)

Then eachjy is a locally polyhedral E-convex function that satisfigg > g onR". Moreover, the
sequencédx | k = 1,2,...) is monotone nonincreasing.

(3)Let gc : R" —» RU{+0c0} be the restriction ofjc onto D, = {p € R" | |p(i) — po()| < k(i =1,2,...,n)}.
Each g is a polyhedral E-convex function that satisfieg g g onR". Moreover, the sequendg | k =
1,2,...) is monotone nonincreasing.

(4) (gk | k=1,2,...) converges to g uniformly on every compact subséat(dbmg).

Proof. (1) Obviously,hx is endowed with the discrete translation-submodularity (2.8).

(2) It is known [10] that an E-convex function in discrete variables is convex-extensible, and its
convex closure is a locally polyhedraf-convex function. Thereforegyis a locally polyhedral E-
convex function. The monotonicity is obvious.

(3) Dy is a bounded f-convex set, and an‘tconvex function remains to beticonvex when it is
restricted to an f-convex set. Thereforey is a polyhedral E-convex function. The monotonicity of
{gk} follows from the monotonicity ofdx} and the inclusioDy C Dy, 1.



(4) Take any compact s&tcontained in ri (dong). There exists a bounded convex €ghat is open
relative to the &ine hull of domg and*

S c CcclC cri(domg).

By the construction ofy,, there exists an integdy(C) such that dongx 2 C for all k > k(C). For
k > k(C), let gf denote the restriction ajx to C. Then QE | k > k(C)) is a sequence of finite convex
functions onC, to which we apply Lemma 3.5 with

C' ={peC|2¢'peZ"for somek > k(C), k € Z}.

Note thatC’ is a dense subset €f i.e., cIC’ 2 C.

For eachp e C’ there existk = k(p) such that »1p € Z", where we may assunm€p) > k(C).
Sincegk(p) = gkp)(P) = 9(p) for all k > k(p), the sequencegf | k > k(C)) converges pointwise og@’.
The first half of Lemma 3.5 shows that for egele C, the limit g°(p) = liMy_co G5 (P) = iMoo Gk(P)
exists, and the functiog® is a convex function, which is finite-valued @n By the latter half of Lemma
3.5, the sequencgg | k > k(C)) converges t@® uniformly on each compact subset®f Obviously, we
haveg®(p) = g(p) for p € C’, and hencg®(p) = g(p) for p € C, since a convex function is continuous
in the relative interior of theféective domain. Thereforeg{f | k = k(C)) converges ta@ uniformly on
every compact subset @f, and, in particular, 01$. Thus we conclude thagg | k = 1,2,...) converges
to g uniformly onS. O

Theorem 3.2 follows from Lemma 3.6 above.

Example 3.4. The functiong defined by

g(p):{ - Vz_ p2 (|p|S \/é)
+00 (pl > V2)

is a closed properconvex function with dong = [- V2, V2]. In the construction in Lemma 3.6 we
may choosey = 0 to obtain polyhedral 1-convex functiongy,. Since V2 ¢ domgy andgy( V2) = +oo
for everyk, the sequencey(p) does not converge tg(p) at p = V2 € domg. Thus{gs} does not
converge tay on domg, although it certainly does on ri (dog) = (- V2, V2). n

3.2.3 Proof of Theorem 3.3
We first recall two fundamental facts that we use.

Lemma 3.7([16, Theorem 1.2]) A closed proper f-convex function is continuous on itgestive do-
main.

Lemma 3.8(Dini’s theorem, e.g., [2, Theorem 8.2.6], [19, Theorem 7.1.%Ja monotone sequence of
continuous functions on a compact set converges pointwise to a continuous function, then the conver-
gence is uniform on the compact set.

In proving Theorem 3.3 we may assume that dpiw full-dimensional, since otherwise, we may
project it onto an appropriate coordinate plane while preserviagphvexity. For any positive number
a> 0, define

g?(p) = min{g(a) | IIp - dlle < &} (3.2)

“We may assume thatClis a bounded L-convex set.



We shall first apply Theorem 3.2 & to obtain a sequence of polyhedrdltonvex functiongy} (k =
1,2,...), and then extract a sequergig(m = 1,2,...) from {gg} by choosing appropriate pairgn, km).
Our construction is summarized &g g% — g% — Gm.

The functiongg® have the following properties.

1. Eachg? is an Lf-convex function.

(Proof) Letss denote the indicator function & = {p € R" | ||pll. < a}. Thends is a separable
convex function, and? is equal to the infimum convolution gfandds. The infimum convolution
of an L-convex function and a separable convex function is known to*mhvex.

2. domg? = domg + [—al, al] (Minkowski sum). In particular, int (dorg?) 2 domg.
3. The sequencig?} is nondecreasing as| 0. That is,g3(p) < ¢°(p) if a> b > 0.

4. For eaclp € domg, the sequencf?(p)} converges tg(p) asa | 0, i.e.,

I;ing g*(p) =9(p)  (pedomg). (3.3

(Proof) By Lemma 3.7g is continuous on dom. Then (3.3) follows from the definition (3.2).

5. Asa | 0, the sequenc@?} converges t@ uniformly on dony, i.e.,

lim sup [g%(p) - g(p)l = O. (3.4)
al0 pedomg

(Proof) The &ective domain dorgis a compact set by the assumption, ghdndg are continuous

on domg by Lemma 3.7. Moreover, as | 0, the sequencg?} is nondecreasing and converges
pointwise tog, as shown above. Therefore, the convergence is uniform by Dini’s theorem (Lemma
3.8).

Example 3.5. For the function

g(p) ={ - V2_ p2 (lpl < \/2)9
+00 (pl > v2)

treated in Example 3.4, we have

-V2 (pl < a),
(P =3 —-v2-(pl-a? (a<l|pl< V2+a),
+00 (pl > V2 +a),

and hence

sup 163(p) - 9(p)l = Ig%(V2) - g(V2)| = Y2V2a-a2 —0 (alO).

pedomg | |

For eacha > 0 we apply Theorem 3.2 tg? to obtain a sequence of polyhedrdltonvex functions
gr (k= 1,2,...) that converges tg® on every compact set contained in ri (dgf) = int (domg?). Since
domg is a compact set contained in int (daf), we have

lim sup |gi(p) - g*(p)I = O. (3.5)

k—co pedomg



By (3.4), on the other handig?®} converges ta uniformly on domg asa | 0, which implies that for any

£ > 0, there existaa = a(¢) > 0 such that

sup Ig%(p) - g(p)l < &.
pedomg

By (3.5) ford = a(¢), there existk = k(¢) such that

sup 2(p) - (Pl < &

pedomg

for all k > k. In particular, withk = k, we obtain

sup I93(P) - FP(P)l < &.

pedomg

A combination of (3.6) and (3.8) yields

sup I95(P) — 9(p)l < sup I9:(p) — 9 ()l + sup 19*(p) - 9(P)l < 2.

pedomg pedomg pedomg

By choosings ase = 1/mform=1,2,..., we construct a sequen{,} as

= _ ~&(1/m) _
Om = gk(l/m) (m=12,..).

Then we have the following.

— a(l/m)D
1. domgny = domgk(l/) domg.

2. Eachgp, is a polyhedral E-convex function.

3. {§m} converges t@ uniformly on donmg.
(Proof) By (3.9) withe = 1/mwe have

sup [Gm(p) - 9(p)I < 2/m.
pedomg

Therefore,
lim ~ sup |Gm(p) - 9(P)I =
* pedomg

The proof of Theorem 3.3 is completed.

4  Approximation of M-convex Functions

4.1 Theorems

Theorem 4.1.

(1) If a sequence of closed properfionvex functionsif: R — R U {+o0} (k= 1,2, ..

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

.) converges to

a function f: R" — R U {+oo} at every point oR", then f is an M-convex function (not necessarily

closedy.
(2) The same statement with “Monvex” replaced by “M-convex” also holds.

5The assumption means that for each R", the Iimitklim fu(X) exists INR U {+oo} and f(X) = l!im f«(X). In particular, the

possibility of fy(X) — —oo is excluded.
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Proof. The proof is based on Theorem 3.2 and the conjugacy theorems (Theorems 2.2 and 2.3). See
Section 4.2.1. 0O

Example 4.1. Consider functiongy(x) = max(1-kx, 0) with domf, = [0, 1]. Eachfy is a closed proper
Mé-convex function, and the limit

1 (x=0),

lim fu(x) = { 0 (0O<x<1),
ko +oo (x¢[0,1])

is an Mi-convex function, which is not closed. []

Theorem 4.2.

(1) For any closed proper Fconvex function f R" — R U {+o0} there exists a nondecreasing sequence
{fx} of polyhedral M-convex functionsyf: R" — R U {+c0} (k = 1,2, ...) that converges to f uniformly
on every compact subsetadm f. In particular, for each x domf, we have {x) = k“_To f(X).

(2) The same statement with “Monvex” replaced by “M-convex” also holds.
Proof. The proof is given in Section 4.2.2. O

Remark 4.1. Note that Theorem 4.2 asserts uniform convergence on every compact subset of dom
(that may not be a subset of ri (daij). Also note that no compactness assumption is imposed orfdom
[ ]

Remark 4.2. In applications, M-convex functions often appear as laminar convex functions, for which
a polyhedral approximation can be constructed easily. Byrénar familywe mean a nonempty family

7 of subsets of1,...,n} suchthatANn B = 0 orA C Bor A2 BforanyA B € 7. A function

f : R" > R U {+o0} is calledlaminar convef it can be represented as

f0)= ) ¢"XA)  (xeR"

AT

for a laminar family7~ and a family of univariate convex functiogd : R — R U {+oco} indexed by
A e T, wherex(A) = Yica X for x = (X1, ..., X). A laminar convex function is Mconvex.

To construct a polyhedral approximationfqﬂetgﬁfk* be the piecewise-linear function that interpolates
oM at %Z, and |et(,0'|f‘ denote its restriction to the intervatk, k]. Then the functionfy defined by

()= > eh(x(A) (xR

AT

is a polyhedral M-convex function, and the sequendg} converges (pointwise) tb. It is noted, how-
ever, that, unlike in Theorem 4.2, the sequefiggis nonincreasing and the convergence is not neces-
sarily uniform on every compact subset of dém [

4.2 Proofs

4.2.1 Proof of Theorem 4.1

It suffices to consider the case of M-convex functions. First recall from Lemma 3.4 that the limit of
convex functions is a convex function.
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To show (M-EXC) forf, take distinctx,y € domf andi € supp(x — y). Sincefy converges tdf
pointwise, we have,y € dom fy for all sufficiently largek. Eachfy is an M-convex function, and, by
Lemma 4.3 below, there exisjg € supp (X — y) such that

k() + f(y) > k(X = alxi —xj) + iy +elxi —xj))  (0<a<ao),
where . .
vg = XD =0
2isupp (x - y)I
Since supp(x — y) is a finite set, there exists some= supp (X — y) such thatjx equalsj for infinitely
manyk. Fix suchj and take a subsequenke< ky < --- <k <--- with j = j, (I=1,2...). Then we
have

fik(¥) + T (Y) = fig(X—alyi —x)) + (Y +alxi —xj))  (0<a <o),
whereaqq is independent dof Lettingl — co we obtain
f)+ f(y) > f(x—alyi—xj) + f(y+alxi—xj))  (0<a<ao),
which shows (M-EXC) forf.

Lemma 4.3([14, Theorem 3.11])Let f: R" — R U {+o0} be a closed proper convex function. Then, f
satisfiegM-EXC) if and only if it satisfies

(M-EXCyg) For any xy € domf and any ie supp (x —y), there exists g supp (X —)
such that

4.2.2 Proof of Theorem 4.2
Recall the notation (2.10) for the conjugate function:
g°(¥) =sup{p.x) —g(p) | P€R™}  (xeR). (4.1)
Our proof uses the following general facts about conjugate functions.
Lemma 4.4([18, Corollary 12.2.2]) For any convex function gR" — R U {+0}, we have
9°(x) = sud(p,x) —g(p) | peri(domg)}  (xeR"). (4.2)

Lemma 4.5. Letg: R" - RU {+co} and ¢ : R" - R U {+o0} (k = 1,2,...) be convex functions
with domg # 0 anddomgyk # 0 (k = 1,2,...). Assume that for each ¢ R", the sequencég(p)} is
nonincreasing, bounded from below bipy i.e.,

01(p) = G2(P) = - = gk(P) = Gkea(P) = -~ = 9(p)  (PER), (4.3)
and that{gx} converges to g pointwise eihdomg), i.e.,
lim g«(p) = infge(p) =9g(p)  (p € ri(domg)). (4.4)

Also assume that®gs continuous omlomg®. Then the following hold.

(1) The sequencégy} is nondecreasing and converges tb gpintwise ondomg®. That is, for each
x € domg®, we have f(x) < g, ,(X) andklim gr(¥) = g°(%).

(2) The sequenciy} converges to Yuniformly on every compact subsetdafimg®.

12



Proof. (1) It follows from the monotonicity (4.3) ofk and

gk(¥) = supl(p.x) k() | PeR"} (X €R) (4.5)

thatgy(x) < g, ,(X) < --- < g°(x). Define
h(x) = sEpg;(X) = Jim gi(x)  (xeR),

whereh(x) € R U {+o0}.
[Proof of h(x) < g*(X)] By (4.5) and (4.3) we have

k(%) = sup{(p, x) — (p)} < sup(p. x) — g(P)} = 9°(X) (4.6)
peR" peR"
for any x € R". Taking the supremum ovérand using the definition df(x), we obtainh(x) < g*(x).
This implies, in particular, thagg(x)} has a finite limit forx € domg®.
[Proof of h(x) > g*(x)] For x € domg* we have

h(x) = SLKJpg;(X) = SLKJp(St%pr, Xy — gk(p)}) = SUD(SEp{(p, X) — ok(P)}
peR"

peR"

sup{(p, X) — igf (P} = sup {p.x)— ir;f ak(p)}

peR™ peri (domg)
= sup {(p.x)—9(p)} = g°(x),
peri (domg)

where the last equality is due to (4.2) in Lemma 4.4.

(2) Let S ¢ domg® be a compact set. The sequengp} is nondecreasing and convergesgto
pointwise onS, whereg® is continuous by the assumption. Then, by Dini’'s theorem (Lemma @3),
converges t@® uniformly onS. O

The following two lemmas show properties specific t-abnvex and E-convex functions.

Lemma 4.6 ([16, Theorem 1.1]) A closed proper Mtconvex function is continuous on it§estive
domain.

Lemma 4.7. For a closed proper f-convex function g R" — R U {+oo}, define polyhedral 1-=convex
functions g : R" — R U {+o0}, as in Lemma 3.6.

(1) (g | k = 1,2,...) is nondecreasing and converges tbgpintwise ondomg®. That is, for each
x € domg®, we have f(x) < g, ,(X) andkli_r)rgo gr(¥) = g°(x).

(2) (r 1 k=1,2,...) converges to uniformly on every compact subsetdufimg®.

(3) Each ¢ is a polyhedral M-convex function.

Proof. (1) & (2) We haveg; > g2 > --- > gonR" by Lemma 3.6(3), and the sequerigg} converges
to g pointwise on ri (dong) by Lemma 3.6(4). The conjugate functighis a closed proper fconvex
function by Theorem 2.2, and is continuous on dglnby Lemma 4.6. Hence Lemma 4.5 applies.

(3) g is a polyhedral M-convex function by the polyhedral version of M-L conjugacy theorem
(Theorem 2.3). O

We now begin the proof of Theorem 4.2. For a closed propecdmivex functionf, its conjugate
g = f*is a closed properfconvex function and = g* by Theorem 2.2. From thig construciyy as in
Lemma 3.6, and then defirfg = Or- Then Lemma 4.7 shows thdi,is a polyhedral M-convex function,
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and fx converges td uniformly on every compact subset of ddmOur construction is summarized as
follows:

(domgk € domg) (domg : bounded)
L: g - Ok — Ok
T l
M: f fi
(domfy, = R")

Remark 4.3. Here is an alternative proof, due to Shinji Ito, of the pointwise convergence in Lemma
4.5(1). Sincegk = g we have dongx € domg. By the assumption (4.4), there exists sdkhsuch that
aff(domgy) = aff(domg) and ri(domgg) C ri(dom g) for all k > k', where #(-) means theféine hull.
Then it follows from Lemma 4.4 that

g*(X) = sup(p, x) — g(p) | p € ri(domg)}, gr(X) = sup(p, x) — gk(p) | p € ri(domg)}.

Therefore,

lim g (x) = supg(x) = supl sup {p,x) - gk(p)}) = sup (sump, X) —gk(p)})
k—co k>k’ k>k’ \ peri(dom g) peri(dom g) \k>k’

= sup {p.x)—-9g(p)} = g"(X).
peri(dom g)
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