
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Faster Approximation Algorithms for
Maximizing a Monotone Submodular Function

Subject to a b-Matching Constraint

Kaito FUJII

(Communicated by Satoru IWATA)

METR 2015–12 March 2015

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.

Faster Approximation Algorithms for Maximizing
a Monotone Submodular Function Subject to a

b-Matching Constraint

Kaito FUJII

Department of Mathematical Engineering and Information Physics
School of Engineering

The University of Tokyo
fujii.kaito@gmail.com

March 30, 2015

Abstract

Maximizing a monotone submodular function subject to a b-matching
constraint is increasing in importance due to the application for the
content spread maximization problem, but few practical algorithms
are known other than the greedy algorithm. The best approximation
scheme so far is the local search algorithm, proposed by Feldman, Naor,
Schwartz, Ward (2011). It obtains a 1/(2+ 1

k +ϵ)-approximation for an
arbitrary positive integer k and positive real number ϵ. For graphs with
n vertices and m edges, the running time of the local search algorithm
is O(bk+1nk+1mϵ−1), which is impractical for large problems.

In this paper, we present two new algorithms for this problem.
One is the find walk algorithm that runs in O(bm) time and achieves
a 1/4-approximation. It is faster than the greedy algorithm whose
approximation ratio is 1/3. The other is the randomized local search
algorithm that is a faster variant of the local search algorithm in the
case of k = 2. In expectation, it runs in O(b3mn log 1

ϵ) time and obtains
a (2/5− ϵ)-approximate solution.

1 Introduction

Maximizing a monotone submodular function has been attracting much at-
tention recently. This is motivated by various applications in many fields.
For example, the social welfare maximization problem, which is an important
problem in combinatorial auction, is a special case of maximization under a
matroid constraint [14]. Another application involves social networks. The

1

influence of a set of nodes can be described as a monotone submodular func-
tion [12]. There are other applications such as sensor placements [10] and
document summarization [15].

The content spread maximization problem is one such applications. It
is introduced by Chaoji, Ranu, Rastogi, Bhatt [3] for friend suggestions in
social networks. It considers which pairs should come to be friends in order
to maximize the spreadability of contents. This problem can be reduced to
maximizing a submodular function subject to a b-matching constraint, which
we deal with in this paper.

There are several approaches to this problem. The most simple ap-
proach is to use the classical greedy algorithm that was introduced in Fisher,
Nemhauser, Wolsey [8] for general constraints. Jenkyns [11] suggested that
this algorithm achieves a 1/(p+1)-approximation for a p-system constraint,
and Calinescu, Chekuri, Pál, Vondrák [2] gave the full proof. A b-matching
constraint is a special case of a 2-system constraint, so that the greedy algo-
rithm can be used for b-matching constraints. This algorithm can achieve a
1/3-approximation in O(bnm) time, where n is the number of vertices and
m is the number of edges.

The greedy algorithm with decreasing threshold was devised by Badani-
diyuru, Vondrák [1]. This algorithm speeds up the greedy algorithm while
almost keeping the approximation ratio. Specifically, it can obtain a (1/3−ϵ)-
approximation in O(mϵ log m

ϵ) time.
Feldman, Naor, Schwartz, Ward [7] designed the local search algorithm,

which is a 1/(p+ 1
k + ϵ)-approximation for a p-exchange system constraint,

where k is an arbitrary positive integer and ϵ is an arbitrary positive real
number. A b-matching constraint is a special case of a 2-exchange system,
therefore a 1/(2 + 1

k + ϵ)-approximation can be achieved. In the case of
k = 1, the approximation ratio is almost equal to the greedy algorithm,
and as k becomes larger, the approximation ratio increases asymptotically
toward 1/2, which is the best known so far. However, the running time is
O(bk+1nk+1mϵ−1) and not practical for large graphs.

Another approach is the continuous greedy algorithm and pipage round-
ing. In this approach, we obtain an approximate solution of a continuous
relaxation problem by the continuous greedy algorithm and round it to get
an integer solution. It is first introduced by [2] as a (1− 1/e)-approximation
algorithm for a matroid constraint. The continuous greedy algorithm can
be applied to various constraints including b-matching constraints, but there
is no efficient rounding method for a b-matching constraint. [3] proposed a
simple rounding method for a b-matching constraint, but the overall running
time is Õ(n7) and the approximation ratio is worse than that of the greedy
algorithm.

We present two new approximation algorithms for maximizing a mono-
tone submodular function subject to a b-matching constraint.

One is the find walk algorithm. This approach was first proposed by

2

Drake, Hougardy [6] in the design of a linear time 1/2-approximation algo-
rithm for the maximum weighted matching problem. Mestre [16] extended
it to the b-matching problem for any positive integer b while keeping the ap-
proximation ratio and the time complexity. We show that this approach can
be used to derive a 1/4-approximation scheme for a monotone submodular
function.

The other is a randomized local search algorithm. This approach was
first used by Pettie, Sanders [18] for the maximum weighted matching prob-
lem and extended by Mestre [16] for the b-matching. For both problems,
the resulting algorithms run in O(bm log 1

ϵ) time in expectation and return a
(2/3− ϵ)-approximation in expectation. We extend this approach for maxi-
mizing a monotone submodular function and prove that the approximation
ratio is (2/5− ϵ) and the running time is O(b3nm log 1

ϵ) in expectation.

2 Preliminaries

2.1 Monotone Submodular Functions

Let E be a finite set. First of all, we define some notation. For an arbitrary
subset S ⊆ E and an arbitrary element e ∈ E, let S + e = S ∪ {e} and
S − e = S \ {e}. Similarly, f(e) = f({e}) for any set function f : 2E → R≥0

and e ∈ E. Given a set function f : 2E → R≥0 and a subset A ⊆ E,
fA : 2E → R≥0 is defined by fA(S) = f(A ∪ S)− f(A) for every set S ⊆ E.

A set function f : 2E → R≥0 is submodular if f(A)+ f(B) ≥ f(A∪B)+
f(A ∩ B) for all A,B ⊆ E. For each A ⊆ E, fA is also submodular. A set
function f : 2E → R≥0 is monotone if f(A) ≤ f(B) for all A ⊆ B ⊆ E. It
is widely known that f is submodular if and only if fA(e) ≥ fB(e) for all
A ⊆ B ⊆ E and e ∈ E.

We assume that f is normalized, i.e., f(∅) = 0. Given a monotone
submodular function f that is not normalized, we can obtain a normalized
monotone submodular function f̃ by letting f̃(S) = f(S)−f(∅) for all S ⊆ E.

We use the following two properties of submodular functions proved by
Lee, Sviridenko, Vondrák [13].

Lemma 2.1. ([13, Lemma 1.1])
Let f be a non-negative submodular function on N . Let S′ ⊆ S ⊆ N ,

and let {Tl}tl=1 be a collection of subsets of S \ S′ such that each element of
S \ S′ appears in exactly k of these subsets. Then

t∑
l=1

[f(S)− f(S \ Tl)] ≤ k
(
f(S)− f(S′)

)
.

3

Lemma 2.2. ([13, Lemma 1.2])
Let f be a non-negative submodular function on N . Let S ⊆ N and

C ⊆ N , and let {Tl}tl=1 be a collection of subsets of C \ S such that each
element of C \ S appears in exactly k of these subsets. Then

t∑
l=1

[f(S ∪ Tl)− f(S)] ≥ k (f(S ∪ C)− f(S)) .

2.2 b-matching Constraints

Let G = (V,E) be an undirected graph and b a positive integer. A subgraph
of G is a b-matching if the degree of each vertex is no more than b. Under a
b-matching constraint, a solution set S ⊆ E must satisfy the condition that
(V, S) is a b-matching of the graph. We define I as a set family of all sets of
edges satisfying a b-matching constraint.

Let n be the number of vertices and m the number of edges. Let δE(v)
denote the degree of vertex v ∈ V in graph (V,E). Let Ev be the set of all
edges incident to v in E for each vertex v ∈ V .

From now on, we deal with the monotone submodular function maxi-
mization subject to a b-matching constraint. In this problem, the ground
set E of the objective function f is the set of all edges in the graph that
represents the constraint, and if we regard f as a weight function on edges,
the solution is a set of edges that has the maximum weight. Assume that
the structure of the graph that represents the constraint is known a priori
and can be used in algorithms.

When considering the time complexity of algorithms, we assume the value
oracle and the independence oracle. In this assumption, we can obtain the
value f(S) and judge whether S ∈ I or not in O(1) time for an arbitrary set
S ⊆ E.

3 The Find Walk Algorithm

The find walk algorithm was first introduced by Drake and Hougardy [6] as a
linear time 1/2-approximation scheme for the maximum weighted matching
problem. Mestre [16] proved that it can be generalized for the maximum
weighted b-matching problem with the same approximation ratio. Here, we
extend this algorithm to monotone submodular functions and prove that it
returns a 1/4-approximate solution.

This algorithm runs as follows. To begin with, initialize some variables.
Let S := ∅ and c(u) := b for all vertices u ∈ V . Then, find a walk from
an arbitrary vertex that satisfies c(u) > 0 and δE(u) > 0, using FindWalk
procedure iteratively.

In FindWalk(u) procedure, start with reducing c(u) by one. Next, find
the edge (u, v) that has the maximum marginal value fS((u, v)) in all edges

4

incident to u. If there remains no edge incident to u, make u be the end
vertex of the current walk. After finding the edge of the maximum marginal
value, remove it from E, and move the focus to u. If c(u) = 0, delete all
edges incident to u from E. Then, repeat FindWalk procedure until we come
to a dead end.

If one walk ends, find another walk from a vertex such that c(u) > 0 and
δE(u) > 0, and repeat. When there is no vertex such that c(u) > 0 and
δE(u) > 0, partition S into S1 and S2 so that an edge added to S in odd
numbered time is taken into S1, and even numbered time into S2. Since the
number of calling FindWalk(u) is no more than b for all u ∈ V , and at each
calling, the degree of the vertex increases by at most two, it follows that
both S1 and S2 are b-matchings. Then, return argmax{f(S1), f(S2)} as an
output.

Algorithm 1 Find Walk Algorithm
1: S := ∅.
2: c(u) := b for all u ∈ V .
3: while there is u ∈ V such that c(u) > 0 and δE(u) > 0 do
4: S := S ∪ FindWalk(u).
5: split S into S1 and S2.
6: return argmax{f(S1), f(S2)}

Algorithm 2 FindWalk(u)

1: c(u) := c(u)− 1.
2: if δS(u) = 0 then
3: return ∅.
4: (u, v) := argmax{fS(e) | e ∈ Eu}.
5: E := E − (u, v).
6: if c(u) = 0 then
7: E := E \ Eu.
8: return (u, v) + FindWalk(v).

Theorem 3.1. The find walk algorithm runs in O(bm) time and returns a
1/4-approximate solution.

Proof. At the end of the algorithm, δE(u) = 0 or c(u) = 0 for all vertices
u ∈ V . For each edge (u, v), if c(u) = 0 or c(v) = 0, (u, v) was removed from
E when c(u) or c(v) became 0. If δE(u) = 0 and δE(v) = 0, (u, v) must have
been removed from E. Then, E is empty at the end of the algorithm.

Let S∗ be an optimal set. For the proof, assume that S∗ is known from
the beginning of the algorithm and we consider making a map ϕ : S∗ → S
during the algorithm as follows. When we add (u, v) to S, if (u, v) ∈ S∗

then let ϕ((u, v)) = (u, v), else choose an arbitrary edge (u, ṽ) ∈ S∗ and let

5

ϕ((u, ṽ)) = (u, v). Then, remove the assigned edge from S∗. If δS∗(u) = 0,
assign no edge.

First, we show that when the algorithm stops, the map ϕ is completed,
i.e., S∗ = ∅. For all (u, v) ∈ S∗, if c(u) = 0 then u is passed b times and all
edges in S∗ incident to u are assigned. The same applies to the case c(v) = 0.
At the end of the algorithm, c(u) = 0 or c(v) = 0 holds. This is because if
c(u) ̸= 0 and c(v) ̸= 0, (u, v) is not removed and we can make a new walk
from u or v.

Next, we show that fS(S∗) ≤ f(S). For all e ∈ S, let Se be S just before
e is added to S, then we obtain:

fS(S
∗) ≤

∑
e∈S∗

fS(e) ≤
∑
e∈S∗

fSϕ(e)
(e) ≤

∑
e∈S∗

fSϕ(e)
(ϕ(e)) ≤

∑
e∈S

fSe(e) = f(S).

The first and second inequalities are due to the submodularity. The last
inequality holds because we chose the edge that has the maximum marginal
value at each step.

Due to the monotonicity, f(S∗)− f(S) ≤ f(S∗ ∪ S)− f(S) ≤ f(S), and
hence f(S∗) ≤ 2f(S). From the submodularity, f(S) ≤ f(S1) + f(S2), and
it follows that max{f(S1), f(S2)} ≥ 1

4f(S
∗).

The running time is bounded as follows. The number of calling FindWalk(u)
is no more than b for each vertex u ∈ V , and the marginal value of each edge
(u, v) is evaluated only in FindWalk(u) and FindWalk(v), so that the number
of oracle calls for each edge is O(b). Therefore, the overall running time is
O(bm).

4 The Randomized Local Search

Feldman, Naor, Schwartz, Ward [7] designed the local search algorithm for
maximizing various functions under a p-exchange system constraint. For a
monotone submodular function, the approximation ratio of this algorithm
is 1/(p + 1

k + ϵ) for an positive integer parameter k. Since b-matching con-
straints are a subset of 2-exchange systems, we can obtain a 1/(2 + 1

k + ϵ)-
approximation by using the local search algorithm. This is almost the same
as the greedy algorithm when k = 1, and better when k > 2. But the local
search algorithm is slower and not very practical.

We propose a randomized approximation scheme for this problem, which
can get a (2/5− ϵ)-approximation in expectation. This approximation ratio
is the same as that of the local search in the case of k = 2 . The running time
of the new algorithm is O(b3mn log 1

ϵ) in expectation. On the other hand,
the local search algorithm in the case of k = 2 runs in O(b3n3mϵ−1) time
even if we consider that we should check only alternating paths at each step
of improvement1. Thus, our new algorithm is faster than the local search in

1In the local search algorithm, we can obtain the same approximation ratio if restrict

6

the case of k = 2.
The randomized local search was first devised by Pettie, Sanders [18]

as a (2/3 − ϵ)-approximation for maximizing a linear function subject to
the maximum weighted matching problem. Mestre [16] extended it to b-
matching constraints while keeping the approximation ratio. We show that
this approach can be applied to monotone submodular functions and the
approximation ratio is 2/5 − ϵ. This algorithm also can be interpreted as
an accelerated variant of the local search algorithm in the case of k = 2 by
randomizing.

Before explaining the algorithm, we define some notation. The random-
ized local search considers alternating paths, as with the local search algo-
rithm, and for an arbitrary alternating path A, we call f(S△A)− f(S) the
benefit of A. At each step of improvement, we consider two kinds of alter-
nating paths: pieces and arms introduced by Mestre [16]. An arm A out of
an vertex u is an alternating path that consists of an edge (u, v) ∈ E \ S
and maybe an edge (v, x) ∈ S. A piece P about an edge (u, v) ∈ S is an
alternating path that consists of (u, v) itself, maybe an arm out of u and
maybe an arm out of v. We assume that an alternating cycle including e
whose length is four is also a piece about e. In the algorithm and the proof,
we consider only feasible exchanges, in other words, an arm or a piece A
such that S△A ∈ I.

The randomized local search starts by obtaining an initial feasible set
using the greedy algorithm and substituting it for the current solution S. It
then repeats an improvement step (bn5 log 1

ϵ) times. At each step, we pick up
one vertex u out of n vertices uniformly at random, and choose case 1 with
probability δS(u)/b or case 2 otherwise. If case 1 is chosen, pick an edge e
out of all edges incident to u in S uniformly at random and find the most
beneficial piece about e. If case 2 is chosen, find the most beneficial arm out
of u. Then improve the current solution with the selected piece or arm.

Algorithm 3 Randomized Local Search
1: S := ∅.
2: for (i := 0; i < bn

5 log 1
ϵ ; i := i+ 1) do

3: choose a vertex u out of V uniformly at random.
4: if with probability δS(u)/b then
5: choose an edge e ∈ S out of edges incident to u uniformly at random.
6: find the most beneficial piece about e and improve S with it.
7: else
8: find the most beneficial arm out of u and improve S with it.
9: return S.

the searching area to alternating paths. Feldman, Naor, Schwartz, Ward [7] did not claim
this fact explicitly, but it follows naturally from their proof.

7

Theorem 4.1. The randomized local search algorithm runs in O(b3mn log 1
ϵ)

time in expectation and returns a (2/5 − ϵ)-approximate solution in expec-
tation.

Proof. In this proof, let S∗ be one of the optimal sets, and S the current
solution. Both S∗ and S are feasible.

First, we evaluate the approximation ratio of this algorithm. The ex-
pected value of one step benefit can be bounded from below by the average
benefit of a certain multiset of alternating paths.

We show that S△S∗ can be partitioned into alternating paths satisfying
these conditions:

• for any vertex u such that δS(u) > δS∗(u), there are exactly δS(u) −
δS∗(u) alternating paths that starts with or ends at a edge (u, v) ∈
S \ S∗, and

• for any vertex u such that δS∗(u) > δS(u), there are exactly δS∗(u) −
δS(u) alternating paths that starts with or ends at a edge (u, v) ∈ S∗\S.

We start with non-cycle paths. If there is a vertex u such that δS(u) >
δS∗(u), start a path with an arbitrary edge (u, v) ∈ S \ S∗. Then, we move
the focus to v. If δS(v) ≤ δS∗(v), there should be an edge (v, x) ∈ S∗ \ S,
and we can move the focus to the next vertex x. If δS(v) > δS∗(v), end
this path and let v be the other end vertex. Repeat this process exchanging
S \ S∗ and S∗ \ S each time until the path ends. After that, remove this
path from S△S∗ and repeatedly get such paths until there is no vertex such
that δS(u) > δS∗(u). Then, obtain alternating paths from vertex u such that
δS∗(u) > δS(u) in the same way.

Next, we get alternating cycles. From an arbitrary vertex u such that
δS(u) > 0, we find an alternating path in the same way as before. For each
vertex v, δS(v) = δS∗(v) holds and it follows that this path does not termi-
nate until it reaches the start vertex. Since the number of remaining edges
decreases monotonically, S△S∗ will be empty at the end. Therefore, S△S∗

can be partitioned into alternating paths satisfying the above conditions.
Let A1, · · · , Ah be these paths.

We will next consider obtaining a multiset P = {P1, · · · , Pl} and a map
ϕ : P → (S \ S∗) ∪ V such that each Pi is an arm or a piece, and ϕ satisfies
the following two conditions:

• ∀e ∈ S \ S∗, |ϕ−1(e)| ≤ 2,

• ∀u ∈ V, |ϕ−1(u)| ≤ b− δS(u).

For each Ai, we consider separately whether Ai is a cycle or not. If Ai

is not a cycle, for all e ∈ (S \ S∗) ∩ Ai, take the piece P from e that is a
subpath of Ai into P and let ϕ(P) = e. In addition, if the end edge e of Ai

8

is an element of S∗ \ S, take the arm A that consists of e and the next edge
in Ai into P and assign ϕ(A) to the end vertex u. Next, we consider the
case where Ai is a cycle. If |Ai| = 4, assume {e1, e2} = Ai ∩ (S \ S∗), then
duplicate Ai as C1, C2, take them into P, and let ϕ(C1) = e1 and ϕ(C2) = e2.
If |Ai| ≥ 6, for all e ∈ Ai ∩ (S \ S∗), let P be the subpath of Ai that is also
a piece about e and add P to P. Then let ϕ(P) = e.

We show that ϕ fulfills the above two conditions. Since A1, · · · , Ah is
the partition of S△S∗, each e ∈ S \ S∗ belongs to only one Ai. Hence ϕ−1

is a singleton of the piece about e. This is the reason the first condition is
satisfied. On the other hand, ϕ−1(u) consists of arms out of u in P, and the
number of such arms is the number of Ai that starts with or ends at a edge
(u, v) ∈ S∗ \ S with a certain v. Hence, |ϕ−1(u)| is max{δS∗(u)− δS(u), 0}.
From δS∗(u) ≤ b and δS(u) ≤ b, the second condition follows.

Next, we consider the number of occurrences of each edge (u, v) ∈ S△S∗

in P. For any (u, v) ∈ S∗ \ S, if there is no neighboring edge of (u, v) on
the u side in Ai, there is an arm out of u including (u, v) in P. If the next
edge (u, x) exists, P has a piece about (u, x) including (u, v). The same is
true with the v side. In addition, (u, v) does not appear in other paths of
P. Accordingly, (u, v) appears in exactly 2 alternating paths of P. For any
(u, v) ∈ S \S∗, there is a piece about (u, v) in P. If (u, v) has a neighboring
edge (x, u) in Ai, there is an arm out of x or a piece about the edge next
to (x, u) in P. The same is true with the v side, and there is no other path
including (u, v) in P. Consequenetly, (u, v) appears in at most 3 alternating
paths of P.

Let Pe be the most beneficial arm about e ∈ S and Pu be the most
beneficial piece out of u ∈ V . Using the above decomposition, we can bound
the expected value of improvement at each step:

E[one step benefit]

=
1

n

∑
u∈V

{
1

b

∑
e∈Su

(f(S△Pe)− f(S)) +

(
1− δS(u)

b

)
(f(S△Pu)− f(S))

}

≥ 1

bn

{∑
e∈S

2 (f(S△Pe)− f(S)) +
∑
u∈V

(b− δS(u)) (f(S△Pu)− f(S)))

}

≥ 1

bn

 ∑
e∈S\S∗

∑
P∈P:ϕ(P)=e

(f(S△P)− f(S)) +
∑
u∈V

∑
P∈P:ϕ(P)=u

(f(S△P)− f(S))

≥ 1

bn

∑
P∈P

{f(S△P)− f(S)}

≥ 1

bn

∑
P∈P

{f(S ∪ P))− f(S) + f(S \ P)− f(S)} .

The last inequality holds because of f(S△P)− f(S \P) ≥ f(S ∪P)− f(S),

9

which is obtained by the submodularity.
Now we use the two lemmas 2.1 and 2.2. Each element of S \S∗ appears

in less than three elements of P and each element of S∗\S appears in exactly
two elements of P. Using the above two lemmas, we obtain:

E[one step benefit]

≥ 1

bn
{2fS(S∗)− 3f(S)}

≥ 1

bn
{2f(S∗)− 5f(S)}

=
5

bn

{
2

5
f(S∗)− f(S)

}
.

The second inequality is due to the monotonicity.
If f(S) ≥ 2

5f(S
∗), the solution is already a 2/5-approximation. If f(S) <

2
5f(S

∗), through one step of this algorithm, the difference between f(S)
and 2

5f(S
∗) decreases at least a factor (1 − 5

bn). At the beginning of the
algorithm, 2

5f(S
∗) − f(S) is no more than 2

5f(S
∗), so that after (bn5 log 1

ϵ)
times of improvement, S satisfies:

2

5
f(S∗)− f(S) ≤ 2

5
f(S∗) ·

(
1− 5

bn

) bn
5

log 1
ϵ

≤ ϵf(S∗).

We conclude that we obtain a (25 − ϵ)-approximation in expectation.
Next, we evaluate the running time. For an arbitrary u ∈ V and an

arbitrary edge e incident to u, the time of finding the most beneficial piece
about e is O(δE(u)b

2n) and the time of finding the most beneficial arm out of
u is O(δE(u)b). Using this, we can bound the expected value of the running
time at each step:

E[one step time]

=
1

n

∑
u∈V

{
δS(u)

b
δE(u)b

2n+

(
1− δS(u)

b

)
δE(u)b

}
≤ 1

n

∑
u∈V

δE(u)b
2n

≤ 1

n
· 2mb2n

= O(b2m).

We need (bn5 log 1
ϵ) times of updates, so that the running time is O(b3mn log 1

ϵ)
in expectation.

10

5 Conclusion

In this paper, we proposed two approximation algorithms for maximizing
monotone submodular functions subject to a b-matching constraint. One is
the find walk algorithm that is executed in linear time and returns a 1/4-
approximation, and the other is the randomized local search algorithm that
is a faster variant of the local search algorithm with the parameter k = 2. It
is an open problem whether the same result can be obtained using a similar
randomization when k > 2.

Acknowledgement

This paper is based on the author’s bachelor thesis at the University of
Tokyo. The author thanks the thesis adviser, Satoru Iwata, very much for
his helpful guidance. I would like to thank Jan Vondrák for informing us of
the previous work [7]. I also thank Yuji Nakatsukasa and Tasuku Soma for
the inspiring discussions.

References

[1] A. Badanidiyuru, and J. Vondrák, Fast algorithms for maximizing sub-
modular functions, Proceedings of the 25th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1497–1514, 2014.

[2] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, Maximizing a sub-
modular set function subject to a matroid constraint, SIAM Journal on
Computing, 40, pp. 1740–1766, 2011.

[3] V. Chaoji, S. Ranu, R. Rastogi, and R. Bhatt, Recommendations to
boost content spread in social networks, Proceedings of 21st Interna-
tional World Wide Web Conference, pp. 529–538, 2012.

[4] C. Chekuri, J. Vondrák, and R. Zenklusen, Dependent randomized
rounding via exchange properties of combinatorial structures, Proceed-
ings of the 51st Annual IEEE Symposium on Foundations of Computer
Science, pp. 575–584, 2010.

[5] C. Chekuri, J. Vondrák, and R. Zenklusen, Multi-budgeted matchings
and matroid intersection via dependent rounding, Proceedings of the
22nd Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 1080–
1097, 2010.

[6] D. E. Drake, and S. Hougardy, A simple approximation algorithm for
the weighted matching problem, Information Proceedings Letters, 85(4),
pp. 211–213, 2003.

11

[7] M. Feldman, J. Naor, R. Schwartz, and J. Ward, Improved approxi-
mations for k-exchange systems, Proceedings of 19th Annual European
Symposium on Algorithms, pp. 784–798, 2011.

[8] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, An analysis of ap-
proximations for maximizing submodular set functions. II., Mathemat-
ical Programming Studies, no. 8, pp. 73–87, 1978.

[9] H. N. Gabow, An efficient reduction technique for degree-constrained
subgraph and bidirected network flow problems, Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, pp. 448–456, 1983.

[10] Carlos Guestrin, Andreas Krause, and Ajit Paul Singh, Near-optimal
sensor placements in gaussian processes, Proceedings of the 22nd Inter-
national Conference on Machine Learning, pp. 265–272, 2005.

[11] T. Jenkyns, The efficacy of the greedy algorithm, Proceedings of the 7th
Southeastern Conference on Combinatorics, Graph Theory and Com-
puting, pp. 341–350, 1976.

[12] D. Kempe, J. M. Kleinberg, and É. Tardos, Maximizing the spread of in-
fluence through a social network, Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp.137–146, 2003.

[13] J. Lee, M. Sviridenko, and J. Vondrák, Submodular maximization over
multiple matroids via generalized exchange properties, Mathematics of
Operations Research 35, pp. 795–806, 2010.

[14] B. Lehmann, D. Lehmann, and N. Nisan, Combinatorial auctions with
decreasing marginal utilities, Games and Economic Behavior, 55(2):
pp.270–296, 2006.

[15] H. Lin, and J. Bilmes, Multi-document summarization via budgeted
maximization of submodular functions, Proceedings of Human Lan-
guage Technologies: The 11th Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pp.912–920,
2010.

[16] J. Mestre, Greedy in approximation algorithms, Proceedings of 14th
Annual European Symposium on Algorithms, pp. 528–539, 2006.

[17] M. Minoux, Accelerated greedy algorithms for maximizing submodular
set functions, Optimization Techniques, J. Stoer, ed., Springer-Verlag,
Berlin, pp. 234–243, 1977.

[18] S. Pettie, and P. Sanders, A simpler linear time 2/3− ϵ approximation
to maximum weighted matching, Information Processing Letters, 91(6):
pp.271–276, 2004.

12

