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Abstract

In the evaluation of network reliability, the objectives are to model reliability of networks ap-
propriately and to compute it in a realistic time. We can consider various models of reliability of
networks, and Bienstock (1991) first introduced a geographical failure model where each failure is
represented by a 2-dimensional region. In this model, we consider the situation that geographical
networks such as road networks may be damaged by externally caused disasters, and such disas-
ters may destroy several links of the networks simultaneously, rather than each link independently.
Recently, Neumayer–Efrat–Modiano (2012) investigated the max-flow problem and the min-cut
problem under the Circular Disk Failure Model, in which the shape of each failure is restricted to
be a disk. Under this model, Kobayashi–Otsuki (2014) gave polynomial time algorithms to find
optimal solutions of these two problems. In this paper, we improve the algorithms and evaluate
their performance by computational experiments. Owing to the improvements, we can find in a
realistic time optimal solutions of the max-flow problem and the min-cut problem in large networks
under the Circular Disk Failure Model. As a realistic instance, we analyze reliability of a road
network in NewYork consisting of 264,346 nodes.

1 Introduction

Recently, with the development of various networks such as road networks and the Internet, there is
urgent need to evaluate reliability of large networks. In the evaluation of reliability, the crucial points
are how to model reliability of networks appropriately and how to compute it in a realistic time.
We can conceive various ways to formulate reliability of networks (see e.g. [4]), but a complicated
formulation of reliability would make it hard to design an efficient algorithm for computing reliability.

∗This work was partially supported by JST, ERATO, Kawarabayashi Large Graph Project, Japan. The second and
third authors are supported by Grant-in-Aid for Science Research, MEXT, Japan.
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In most previous studies, connectivity of networks is regarded as one of the most significant factors
of network reliability, where connectivity is defined as the minimum number of link-failures (or node-
failures) that disconnect the network. Connectivity is a simple and natural model for reliability of
networks, and an advantage of using connectivity is that we have efficient algorithms for computing
it (see [10]). In particular, there are many studies on the problem of finding a minimum number of
link-failures that disconnect two specified nodes s and t (which we call the min-cut problem) and
its dual problem called the max-flow problem. It is known as the max-flow min-cut theorem [3, 6]
that the optimal values of the min-cut problem and the max-flow problem are equal, and the proof of
this theorem leads to algorithms for these two problems. Since then, many faster algorithms for the
max-flow problem and the min-cut problem have been proposed (see [10]), and currently we can solve
these problems for huge networks in a realistic time.

In this paper, we consider variants of the max-flow problem and the min-cut problem, motivated by
modeling geographical failures on geographical networks such as road networks. Geographical networks
may be damaged by externally caused disasters like earthquakes or floods. Such disasters, occurring
in specific geographical regions, may often destroy several links of the networks simultaneously, rather
than each link independently. In 1991, Bienstock [2] first introduced a geographical failure model
where each failure is represented by a 2-dimensional region. Recently, various models which takes
such region failures into consideration have been drawing a great deal of attention [1, 8, 9, 11, 12].
In particular, Neumayer–Efrat–Modiano [7] adopted the Circular Disk Failure Model for the max-flow
problem and the min-cut problem, where each failure is represented by a disk with a predetermined
size. This model can be regarded as a special case of Bienstock’s model, in which the shape of each
failure is restricted to be a disk. Under that model, the min-cut problem is to find a minimum number
of disk failures that disconnect two specified nodes s and t of the given planar graph G, and the
max-flow problem is to find a maximum number of s-t paths such that no disk failure intersects a pair
of these paths.

Under the Circular Disk Failure Model, Neumayer–Efrat–Modiano [7] gave a polynomial time min-
cut algorithm and Kobayashi–Otsuki [5] gave a polynomial time max-flow algorithm. A faster and
simpler min-cut algorithm was also given in [5]. However, as we can see in [13], many of real road
networks consist of more than 100,000 nodes, which are too huge for the aforementioned algorithms
to solve in a realistic time.

In this paper, we improve the max-flow algorithm and the min-cut algorithm given in [5], and eval-
uate the performance of these algorithms by computational experiments. Owing to the improvements,
now we can find in a realistic time optimal solutions of the max-flow problem and the min-cut problem
under the Circular Disk Failure Model in huge networks consisting of more than 100,000 nodes. As a
practical instance, we analyze reliability of a road network in NewYork [13] with 264,346 nodes. We
can solve the problems in the network in about 30 seconds on a computer with Intel Core i7, 2.8 GHz
and 8 GB of memory, while it takes about 3 hours by the existing algorithms.

The remaining of this paper is organized as follows. In Section 2, we give formal descriptions of
the problems with some mathematical definitions. In Sections 3 and 4, we describe our improvements
of the max-flow algorithm and the min-cut algorithm, respectively. In Section 5, we evaluate the
performance of our algorithms and apply our algorithms to the road network in NewYork. Finally, in
Section 6, we conclude this paper.

2 Problem Settings

Let G = (V,E) be a graph drawn in the plane with a node set V , a link set E, and two distinct
nodes s, t ∈ V . Throughout this paper we assume that each link is drawn as a line segment, and a
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link is sometimes called an edge. Let rB be a hole radius, where each hole represents a failure of the
network. We consider two disks of another radius rP whose centers are s and t, respectively. We call
them protective disks and their radius rP protective radius. Define H(rB, rP) as the set of all disks of
radius rB whose centers are not contained in the protective disks of radius rP. We call each element
of H(rB, rP) a hole in this paper. We shall think of each hole as a closed set, including its boundary.

The geographical min-cut problem and the geographical max-flow problem introduced by Neumayer–
Efrat–Modiano [7] are defined as below. Solutions of the problems represent connectivity of the graph
between two nodes s and t under the Circular Disk Failure Model.

Geographical Min-Cut by Circular Disasters (GMCCD)

Input: a graph G = (V,E) drawn in the plane, two distinct nodes s and t, a hole radius rB, and a
protection radius rP(> rB).

Find: a minimum cardinality set of holes in H(rB, rP) that disconnect s from t.

Geographical Max-Flow by Circular Disasters (GMFCD)

Input: a graph G = (V,E) drawn in the plane, two distinct nodes s and t, a hole radius rB, and a
protection radius rP(> rB).

Find: a maximum cardinality set of s-t paths such that no hole in H(rB, rP) intersects a pair of these
paths.

In what follows, we say that two s-t paths are hole-disjoint if there is no hole in H(rB, rP) that
intersects both of them. Let MIN-CUT and MAX-FLOW denote the optimal values of the GMCCD
and the GMFCD, respectively, and we call feasible solutions of the GMCCD and the GMFCD a hole
cut and a hole-disjoint flow, respectively. The reason we introduce protective disks is that the GMCCD
and the GMFCD will have trivial optimal solutions if a hole contains s or t. In terms of application,
we can assume that s and t are well-protected so that no failure can occur nearby nodes s and t.

Example 1. Consider the graph as in Figure 1. Small circles represent holes of radius rB and two large
circles represent protective disks of radius rP. In the graph, we can easily see that MAX-FLOW = 1
and MIN-CUT = 2. The thick s-t path represents an optimal solution of the GMFCD, and two small
circles represent an optimal solution of the GMCCD.

Figure 1: Example of the problems
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This example is given in [7] as an example to show that MIN-CUT = MAX-FLOW, which
is an analogy to Menger’s theorem, does not necessarily hold. Practically, however, MIN-CUT =
MAX-FLOW holds in most cases. Indeed, it is claimed in [7] that among 1000 randomly generated
instances with 13 nodes, MIN-CUT = MAX-FLOW holds for 99% of the instances and MIN-CUT =
MAX-FLOW+1 holds for the remaining 1%. Later, it is proved in [5] that MAX-FLOW ≤ MIN-CUT ≤
MAX-FLOW + 1 holds for any instances.

In this paper, we improve the existing polynomial time algorithms [5] for the GMCCD and the
GMFCD under the assumption that MIN-CUT = MAX-FLOW. Although we need the extra assump-
tion that MIN-CUT = MAX-FLOW for our improvements, this equality holds in almost all practical
cases. Indeed, MIN-CUT = MAX-FLOW holds in a large practical network considered in Section 5,
which motivates us to focus on the case meeting this assumption.

Here we introduce some mathematical definitions concerning the GMCCD and the GMFCD, fol-
lowing [5]. For any s-t path P , we think of P as being oriented from s to t, and denote by P−1 the path
oriented from t to s along s-t path P . For two s-t paths P ′ and P ′′ without crossings, let R(P ′, P ′′)
denote the closed region encircled by P ′ · (P ′′)−1 in clockwise orientation, where P ′ · (P ′′)−1 is the
closed curve obtained by concatenating P ′ and (P ′′)−1. Let |R(P ′, P ′′)| be the number of faces of G
contained in R(P ′, P ′′). For two s-t paths P ′, P ′′ without crossings, we call a pair (P ′, P ′′) clockwise
hole-disjoint if for any hole H ∈ H(rB, rP), R(P ′, P ′′)−H is connected. Note that if two s-t paths P ′

and P ′′ are hole-disjoint, (P ′, P ′′) is clockwise hole-disjoint, while the opposite is not always true. P ′

and P ′′ are hole-disjoint if and only if both pairs (P ′, P ′′) and (P ′′, P ′) are clockwise hole-disjoint.

For a pair of edges e, e′ ∈ E, if there exists a hole H ∈ H(rB, rP) that intersects both edges, we
take two points we,e′ on e and we′,e on e′ arbitrarily that are contained in hole H. Then, define

W := {we,e′ , we′,e | e, e′ ∈ E contained in a common hole}.

Theoretically, |W | is obviously bounded by |E|2. In practical networks, |W | = O(|E|), that is, |W | =
O(|V |), since there are only a small number of pairs that are close enough to be contained in a common
hole in H(rB, rP).

3 Max-Flow Algorithms

3.1 Existing Max-Flow Algorithm

In this subsection, we review the algorithm for the GMFCD given by Kobayashi–Otsuki [5]. Algo-
rithm 1 either finds pairwise hole-disjoint k+1 s-t paths or reports the non-existence of such s-t paths,
under the assumption that we already have pairwise hole-disjoint k s-t paths.

Lemma 1 ([5]). Suppose that we are given a graph G = (V,E) drawn in the plane, two distinct
nodes s and t, a hole radius rB, and a protection radius rP(> rB). Moreover suppose that we have
pairwise hole-disjoint k s-t paths P1, . . . , Pk, and an s-t path Pk+1 in R(Pk, P1) such that (Pk, Pk+1) is
clockwise hole-disjoint. If Algorithm 1 reports the non-existence of pairwise hole-disjoint k s-t paths,
then MAX-FLOW = k.

An example of iterations in Algorithm 1 is given in Figure 2. Now, by using Algorithm 1 with
k = 1, 2, . . . in order, an optimal solution of the GMFCD can be computed in polynomial time (see
Algorithm 2).

Theorem 2 ([5]). An optimal solution of the GMFCD can be computed in polynomial time.
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Proof. Lemma 1 implies that an optimal solution of the GMFCD can be computed by using Algo-
rithm 1 with k = 1, 2, . . . in order at most |V | times (see Algorithm 2). For each k, the number of
iterations in Algorithm 1 is at most |W |. Since each iteration runs in O(|W |) time, the total running
time is O(k|W |2) (k := MAX-FLOW), which is polynomial.

As pointed out in [5], in most practical cases, the running time is O(|V |2) since k is small and
|W | = O(|V |).

Algorithm 1 　 Induction step
Input: pairwise hole-disjoint k s-t paths P1, . . . , Pk and an s-t path Pk+1 in R(Pk, P1) such that

(Pk, Pk+1) is clockwise hole-disjoint
Output: pairwise hole-disjoint k + 1 s-t paths
1: for l = k + 1, k + 2, . . . , k + |W | + 2 do
2: if (Pl, Pl−k) is clockwise hole-disjoint then
3: return Pl−k, . . . , Pl−1, Pl, which are pairwise hole-disjoint paths
4: else
5: let Pl+1 be the s-t path in R(Pl−k, Pl−k+1) such that (Pl, Pl+1) is clockwise hole-disjoint and

R(Pl+1, Pl−k+1) is maximized under this condition
6: end if
7: end for
8: reports the non-existence of pairwise hole-disjoint k + 1 s-t paths

Algorithm 2 　Hole-disjoint max-flow algorithm
Output: a maximum cardinality set of pairwise hole-disjoint s-t paths
1: if two nodes s, t are not connected then
2: return ∅ (MAX-FLOW = 0)
3: else
4: find an s-t path P1

5: for l = 1, 2, . . . , |V | do
6: let Pl+1 be an s-t path in R(Pl, P1) such that (Pl, Pl+1) is clockwise hole-disjoint
7: apply Algorithm 1 with k = l
8: if Algorithm 1 reports the non-existence of pairwise hole-disjoint k + 1 s-t paths then
9: return pairwise hole-disjoint l s-t paths (MAX-FLOW = l)

10: else
11: obtain pairwise hole-disjoint l + 1 s-t paths P1, . . . , Pl+1

12: end if
13: end for
14: end if

3.2 　 Improvement of Max-Flow Algorithm

We improve the max-flow algorithm (Algorithm 2) of [5] in this subsection. As we reviewed in the
previous subsection, the running time of the algorithm is O(|V |2) practically. The improvement does
not change the theoretical computational time complexity; in other words, it still takes O(|V |2) time
to solve the GMFCD in the worst case. Practically, however, the running time of the algorithm is
decreased drastically in most cases, as we will see in Section 5.2.
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Figure 2: Example of iterations in Algorithm 1 (k = 3). We begin with pairwise hole-disjoint three s-t
paths P1, P2, P3, and another path P4 lying in R(P3, P1) such that (P3, P4) is clockwise hole-disjoint. In
this example, MAX-FLOW = 3, and so Algorithm 1 reports the non-existence of pairwise hole-disjoint
four s-t paths after finite iterations. This figure shows the first five iterations. Note that P7 and P4

coincide with each other, and similarly P8 = P5 and P9 = P6 hold. Moreover we can easily see that
Pl+3 = Pl holds for l ≥ 4.
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Recall that Algorithm 2 uses Algorithm 1 with k = 1, 2, . . . in order, where Algorithm 1 either
finds pairwise hole-disjoint k + 1 s-t paths or reports the non-existence of such s-t paths, under the
assumption that we already have pairwise hole-disjoint k s-t paths P1, . . . , Pk.

Let k′ := MAX-FLOW. The most time-consuming part of Algorithm 2 is Algorithm 1 with k = k′,
which needs |W | iterations, whereas the total running time of Algorithm 1 with k = 1, 2, . . . , k′ − 1 is
much smaller since only a small number of iterations are necessary. Therefore, to improve the running
time of Algorithm 2, we have to aim at improving Algorithm 1 with k = k′ so that it needs a smaller
number of iterations.

Suppose that we have pairwise hole-disjoint k′ s-t paths P1, . . . , Pk′ . We note that it is sufficient
to retain only k s-t paths Pl−k+1, . . . , Pl−1, Pl in the l-th iteration in Algorithm 1 with k = k′. Then,
we show that if Pl+1 = Pl−k+1 holds in some k consecutive iterations indexed by l, it will hold in the
following iterations (Theorem 3 below). For example, in Figure 2, Pl+3 = Pl holds for l ≥ 4.

This fact shows that if Pl+1 = Pl−k+1 holds in some k consecutive iterations in Algorithm 1, we
can break iterations and terminate Algorithm 1 (see Algorithm 3).

Algorithm 3 　 Improvement of Algorithm 1
Input: same as Algorithm 1
Output: same as Algorithm 1
1: for l = k + 1, k + 2, . . . , k + |W | + 2 do
2: if (Pl, Pl−k) is clockwise hole-disjoint then
3: return Pl−k, . . . , Pl−1, Pl, which are pairwise hole-disjoint paths
4: else
5: let Pl+1 be the s-t path in R(Pl−k, Pl−k+1) such that (Pl, Pl+1) is clockwise hole-disjoint and

R(Pl+1, Pl−k+1) is maximized under this condition
6: if Pl′+1 = Pl′−k+1 holds for l′ = l − k + 1, . . . , l then
7: break iterations and goto Line 11
8: end if
9: end if

10: end for
11: reports the non-existence of pairwise hole-disjoint k + 1 s-t paths

Theorem 3. Algorithm 3, when used as a subroutine in Algorithm 2 in place of Algorithm 1, can
find an optimal solution of the GMFCD.

Proof. It is sufficient to show that if there exists an integer l such that

• (Pl′ , Pl′−k) is clockwise hole-disjoint, and

• Pl′+1 = Pl′−k+1

for l′ = l − k + 1, l − k + 3, . . . , l when Algorithm 1 is applied with k = MAX-FLOW, the above
conditions also hold for l′ = l + 1, l + 2, . . . , k + |W | + 2.

Consider the case of l′ = l + 1. Since (Pl−k+1, Pl−2k+1) is clockwise hole-disjoint, Pl+1 = Pl−k+1,
and Pl−k+1 = Pl−2k+1, (Pl+1, Pl−k+1) is also clockwise hole-disjoint. Furthermore Pl+2 = Pl−k+2 also
holds since Pl−k+2 = Pl−2k+2, Pl−k+3 = Pl−2k+3, . . . , Pl+1 = Pl−k+1.

By applying this argument repeatedly, (Pl′ , Pl′−k) is clockwise hole-disjoint and Pl′+1 = Pl′−k+1

for l′ = l + 1, l + 2, . . . , k + |W | + 2.
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3.3 Convergence Property of the Improved Algorithm

The improvement that we gave in the previous subsection can reduce the running time of computing
an optimal solution of the GMFCD only if Pl+1 = Pl−k+1 holds in some k consecutive iterations in
Algorithm 3, where k = MAX-FLOW. This naturally raises the question whether there always exists
an integer l such that Pl′+1 = Pl′−k+1 for l′ = l − k + 1, . . . , l in Algorithm 3 with k = MAX-FLOW.

The objective of this subsection is to show that Pl+1 = Pl−k+2 holds for sufficiently large l under
the assumption that MIN-CUT = MAX-FLOW. See Section 2 for the validity of this assumption. We
mention that this question is for pure theoretical interest and that we can apply Algorithm 3 regardless
of this issue.

Theorem 4. Suppose that we are given a graph G = (V,E) drawn in the plane, two distinct nodes
s and t, a hole radius rB, and a protection radius rP(> rB). Moreover suppose that MIN-CUT =
MAX-FLOW. Then, even if Algorithm 3 is modified so as not to stop after the iteration where
l = k + |W | + 2 and when the modified algorithm is applied with k = MAX-FLOW, there exists an
integer l such that Pl′+1 = Pl′−k+2 for l′ = l − k + 1, . . . , l.

Proof. Since MIN-CUT = MAX-FLOW(= k), we can take a hole cut {H1,H2, . . . ,Hk} of size k. By
the definition of hole cuts, each of P1, P2, . . . , Pk intersects at least one hole of {H1,H2, . . . ,Hk}. Since
k paths P1, P2, . . . , Pk are pairwise hole-disjoint, no pairs of these paths intersect a single hole Hi.
Therefore, each hole of H1,H2, . . . ,Hk intersects one path of P1, P2, . . . , Pk, respectively. By changing
the indices if necessary, suppose that path Pi intersects hole Hi for i = 1, 2, . . . , k. (see Figure 3).

Figure 3: Correspondence between paths and holes.

For two s-t paths P ′, P ′′ that intersect a single hole H, we say “P ′ is on the left side of P ′′ with
respect to H” if P ′ and P ′′ do not cross with each other, and two nodes s, t are disconnected in
R(P ′, P ′′) − H. Then, for i = 1, 2, . . . , k and j ≥ 0, since path Pi+(j+1)k is in R(Pi+jk−1, Pi+jk) and
both Pi+(j+1)k and Pi+jk intersect hole Hi, path Pi+(j+1)k is on the left side of path Pi+jk with respect
to hole Hi (see Figure 4).

For i = 1, 2, . . . , k, define

gi(n) :=
n−1∑
j=1

|R(Pi+jk, Pi+(j−1)k)|.
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Figure 4: Sequence of paths P1, P5, P9, P13, . . . intersecting hole H1 (k = 4). P1, P5, P9, P13, . . . move
to the left starting from P1. Note that P13 and P1 cross each other.

That is, gi(n) represents the total number of faces of G which sequence of paths Pi, Pi+k, . . . , Pi+(n−1)k

traverse starting from path Pi. If Pi+(n−1)k and Pi do not cross each other,

gi(n) = |R(Pi, Pi+(n−1)k)| ≤ |F (G)|

holds, where F (G) is the face set of G. Even when Pi+(n−1)k and Pi cross each other, which happens
indeed (see Figure 4), they cross at most |Pi|(≤ |V (G)|) times, and hence

gi(n) ≤ |V (G)||F (G)|

holds for any n. Here we define

f(n) :=
n∑

i=k+1

|R(Pi, Pi−k)|

for n ≥ k + 1. Then, since

f(n) =
k∑

i=1

gi(n′) ≤ k|V (G)||F (G)|

for n = n′k, f(n) ≤ k|V (G)||F (G)| also holds for any n ≥ k.
Since f is an integer-valued non-decreasing function, there exists an integer l such that f(l′ + 1) =

f(l′) for l′ = l − k + 1, . . . , l. That is, Pl′+1 = Pl′−k+1 holds for l′ = l − k + 1, . . . , l.

The above proof shows that Algorithm 3 terminates after at most k2|V (G)||F (G)| + 1 iterations.
Since the bound is finite, a sort of “convergence property” of the hole-disjoint max-flow algorithm
is ensured theoretically under the assumption that MIN-CUT = MAX-FLOW holds. Practically,
Algorithm 3 completes iterations after about 10-50 iterations in most cases, and hence the running
time of the algorithm is decreased drastically in most cases (see Section 5.2).
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4 Min-Cut Algorithms

4.1 Existing Min-Cut Algorithm

In this subsection we review the polynomial min-cut algorithm for the GMCCD given in [5]. The
following theorem ensures that either MIN-CUT = MAX-FLOW or MIN-CUT = MAX-FLOW + 1
holds, which plays a significant role in the min-cut algorithm.

Theorem 5 ([5]). Suppose that we are given a graph G = (V,E) drawn in the plane, two distinct
nodes s and t, a hole radius rB, and a protection radius rP(> rB). Then,

MAX-FLOW ≤ MIN-CUT ≤ MAX-FLOW + 1.

Moreover, we can compute a hole-cut whose size is at most MAX-FLOW + 1 in polynomial time.

This theorem implies that in order to find an optimal solution of the GMCCD, it is sufficient to
check whether there exists a hole-cut of size MAX-FLOW or not. In what follows, for i = 1, . . . , k, let
Fi be the set of all faces of G contained in R(Pi−1, Pi), where P0 := Pk.

Theorem 6 ([5]). An optimal solution of the GMCCD can be computed in polynomial time (by using
Algorithm 4).

Algorithm 4 　Hole-disjoint min-cut algorithm
Input: pairwise hole-disjoint k s-t paths P1, . . . , Pk and a hole cut of size k + 1
Output: a hole cut of minimum size
1: construct the directed graph D = (F , A) defined as follows:

F :=
∪
i

Fi,

A := {(fi, fi+1) | i ∈ {1, . . . , k}, fi ∈ Fi, fi+1 ∈ Fi+1,

∃H ∈ H(rB, rP) intersecting fi, Pi, and fi+1}.

2: for all f ∈ F1 do
3: try to find a minimum-length directed cycle Qf in D containing f by a breadth-first-search from

f
4: if the length of Qf is k then
5: return a hole cut of size k corresponding to directed cycle Qf

6: end if
7: end for
8: return a hole cut of size k + 1

Note that if we have a directed cycle in D = (F , A), which is defined in Algorithm 4, we can obtain
a hole cut whose size is the same as the length of the directed cycle. The running time of Algorithm 4
is bounded by O(|V ||W |), since the number of nodes and edges of the directed graph D = (F , A) is
|F| = O(|V |) and |A| = O(|W |), respectively. Thus, in Line 3 of Algorithm 4, finding a minimum-
length directed cycle takes O(|F1|(|F|+ |A|)) = O(|V ||W |) time. Practically, since |W | = O(|V |), the
running time of Algorithm 4 is O(|V |2).
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4.2 Improvement of Min-Cut Algorithm

We improve the min-cut algorithm (Algorithm 4) of [5] for the GMCCD in this subsection. As we
reviewed in the previous subsection, the running time of this min-cut algorithm is O(|V |2) practically.
The improvement does not change the theoretical computational time complexity, in the same way as
our Improvement for the GMFCD. Practically, however, the running time of the algorithm is decreased
drastically in most cases, as we will see in Section 5.2.

Let k := MAX-FLOW. First, we note that we can obtain pairwise hole-disjoint k s-t paths
P1, . . . , Pk satisfying the following property, by using the improved max-flow algorithm (see Sec-
tion 3.3).

Property A: The first edges of P1, . . . , Pk, which are incident to s, occur in this order
clockwise at s, and for i = 1, . . . , k, Pi is the s-t path such that (Pi−1, Pi) is clockwise
hole-disjoint and R(Pi−1, Pi) is minimized under this condition (P0 := Pk).

Here we use the following lemma, which we can show by applying the argument in the proof of Theorem
3 in [5] to the case with Property A.

Lemma 7 ([5]). Suppose that we are given a graph G = (V,E) drawn in the plane, two distinct nodes
s and t, a hole radius rB, and a protection radius rP(> rB). Moreover suppose that there exist pairwise
hole-disjoint k s-t paths P1, . . . , Pk that satisfy Property A. Then, there exists a closed curve C which
does not intersect with itself, separates s and t, and is a concatenation of J1, L1, J2, L2, . . . , Jk, Lk in
this order, where

• for j = 1, 2, . . . , k, Jj is a curve contained in a face fj ∈ Fj, and face fj and path Pj share an
edge of G in common, and

• for j = 1, 2, . . . , k, Lj is a line segment in R2 that can be covered by a hole H ∈ H(rB, rP).

By using the lemma, we obtain Algorithm 5.

Theorem 8. Suppose that we are given a graph G = (V,E) drawn in the plane, two distinct nodes
s and t, a hole radius rB, and a protection radius rP(> rB). Moreover suppose that we have pairwise
hole-disjoint k s-t paths P1, . . . , Pk that satisfy Property A. Then, Algorithm 5 can find an optimal
solution of the GMCCD.

Proof. By Lemma 7, there exists a closed curve C which does not intersect with itself, separates s and
t, and is a concatenation of J1, L1, J2, L2, . . . , Jk, Lk in this order, where

• for j = 1, 2, . . . , k, Jj is a curve contained in a face fj ∈ Fj , and face fj and path Pj share an
edge of G in common, and

• for j = 1, 2, . . . , k, Lj is a line segment in R2 that can be covered by a hole H ∈ H(rB, rP).

Since each face fj shares a common edge with path Pj , the directed graph D′ in Algorithm 5, which is
a subgraph of D, has a directed cycle of length k. Then, if a minimum-length directed cycle is found
in D′, its length is k because D′ has no directed cycle whose length is less than k. We can find a
minimum-length directed cycle of D′ by Algorithm 5, which completes the proof.

Although the improvement does not change the theoretical computational time complexity, practi-
cally the running time is decreased drastically in most cases. We note that in order to use Algorithm 5,
it is necessary that MIN-CUT = MAX-FLOW (= k) and we have pairwise hole-disjoint k s-t paths
P1, . . . , Pk satisfying Property A. In most cases, MIN-CUT = MAX-FLOW holds and we can find
such s-t paths efficiently by using Algorithm 3.
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Algorithm 5 　 Improved hole-disjoint min-cut algorithm
Input: pairwise hole-disjoint k s-t paths P1, . . . , Pk which satisfy Property A
Output: a hole cut of minimum size
1: construct the directed graph D′ = (F ′, A′) defined as follows:

F ′
i := the set of all faces in Fi

that share a common edge of G with Pi,

F ′ :=
∪
i

Fi
′,

A′ := {(fi, fi+1) | i ∈ {1, . . . , k}, fi ∈ Fi
′, fi+1 ∈ Fi+1

′,

∃H ∈ H(rB, rP) intersecting fi, Pi, and fi+1}.

2: for all f ∈ F ′
1 do

3: try to find a minimum-length directed cycle Qf in D′ containing f by a breadth-first-search
from f

4: if the length of Qf is k then
5: return a hole cut of size k corresponding to directed cycle Qf

6: end if
7: end for

5 Experimental Results

In this section, we describe our experimental results. We implemented the algorithms for the GMFCD
and the GMCCD, and evaluated their performance by computational experiments. Our experiments
were conducted on a computer with Intel Core i7, 2.8 GHz and 8 GB of memory. All programs are
implemented in Java.

5.1 Experimental Evaluation of the Algorithms

We evaluate the performance of the improved max-flow algorithm and the improved min-cut algorithm
by comparing them with the existing algorithms.

We generated 10 input plane graphs with 100, 300, 1000, 3000, 10000, 30000, 100000 nodes,
respectively, randomly in a 300 × 400 rectangular. We randomly chose the positions of s and t in the
rectangular and let rB = 7 and rP = 30.

Figure 5 shows the result comparing the average running time of the improved max-flow algorithm
with that of the existing max-flow algorithm to the 10 input graphs consisting of the respective
number of nodes. Figure 6 shows the result comparing the average running time of the improved
min-cut algorithm with that of the existing min-cut algorithm, in the same way. We can see that
the running time of the algorithms were improved from O(|V |2.172) to O(|V |1.266) for the GMFCD,
and from O(|V |1.811) to O(|V |1.162) for the GMCCD, where we estimated the time complexity by the
least-squares method (in double-logarithmic scale).
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Figure 5: Relationship between the running time for the GMFCD and the numbers of nodes

Figure 6: Relationship between the running time for the GMCCD and the numbers of nodes

5.2 Application to NewYork Road Network

As we can see in the previous subsection, our improvements of the algorithms for the GMFCD and the
GMCCD enable us to find in a realistic time optimal solutions in huge networks with more than 100,000
nodes. As a practical instance, we analyze reliability between John F. Kennedy International Airport
(JFK) and Newark Liberty International Airport (EWR) in NewYork road network [13] consisting of
264,346 nodes and 366,923 edges.
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We set two nodes s and t to be JFK and EWR, respectively, and let the hole radius rB be 2km
(approximately), and the protection radius rP be about 7km (approximately). The solutions of the
GMFCD and the GMCCD are shown in Figure 7. We can see MAX-FLOW = MIN-CUT = 4. It took
32 seconds to solve the GMFCD by Algorithm 3, and 14 seconds to solve the GMCCD by Algorithm 5
(after solving the GMFCD).

The solutions show that even if three failures of radius 2km happen simultaneously, at least one
transit routes remain intact. We can also see that all the disks of the optimal hole cut are placed
on the bridges, which means that the bridges are vulnerable when we consider reliability of NewYork
road network between JFK and EWR.

Here we focus on vulnerability of bridges. We can expect that if we protect one of the bridges, that
is, if we introduce a new protective disk around the bridge and prohibit placing a hole whose center
is contained in the protective disk, connectivity of the network will increase. Indeed, Figure 8 shows
that connectivity increases from 4 to 5 by protecting the bridge.

In this way, by using our algorithms, we can not only find optimal solutions of the GMFCD and
the GMCCD, but also identify vulnerable regions we should protect particularly.

We also note that our algorithms can be applied to the case with new protective disks, or with
holes of different shapes under some conditions. More specifically, we can replace H(rB, rP) with any
set H of convex shapes satisfying the property below (see the concluding remarks in [5]).

Property B: If two line segments L1 in H1 ∈ H and L2 in H2 ∈ H are crossing, then, H1

contains an endpoint of L2 or H2 contains an endpoint of L1.

Figure 7: Case that the bridges are not protected: MIN-CUT = 4. Note that the figure shows a part
of NewYork road network. The path starting from the lower-left part of the protective disk around
JFK goes down outside the figure once, travels half round NewYork, comes in from the top of the
figure, and finally reaches EWR.
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Figure 8: Case that a bridge is protected: MIN-CUT = 5.

5.3 Shortening Hole-disjoint Paths

In the previous subsection, we successfully found optimal solutions of the GMFCD and the GMCCD
in NewYork road network. However, each path of the hole-disjoint flow looks quite unnatural. In
particular, as we can see in Figures 7 and 8, the path starting from the lower-left part of the protective
disk around JFK goes down outside the figure once, travels half round NewYork, comes in from the
top of the figure, and finally reaches EWR, which is extremely long. Since a solution of the GMFCD
represents a set of transit routes, it is not desirable that each transit route is unnecessarily long.

In this subsection, we shorten the paths by the following local search method. Let k := MAX-FLOW.
We choose a path P from among pairwise hole-disjoint k s-t paths P1, P2, . . . , Pk, fix the remaining
k − 1 paths, and then find a shortest path P ′ which is hole-disjoint from any of the remaining k − 1
paths by a depth-first-search, and replace path P with another path P ′, repeatedly, until the set of
the paths is not updated.

We note that this algorithm stops in finite iterations since the total number of edges contained in
P1, P2, . . . , Pk is non-increasing. Figure 9 shows the result of this algorithm applied to Figure 7. We
can see that each path turns shorter. The number of iterations was 12 in this case.
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Figure 9: Result that we shorten the hole-disjoint paths in Figure 7.

6 Conclusion

In this paper, we discussed the geographical max-flow and the geographical min-cut in the Circular
Disk Failure Model introduced by Neumayer–Efrat–Modiano [7]. We improved the algorithms to
find optimal solutions of the GMFCD and the GMCCD given by Kobayashi–Otsuki [5]. We also
evaluated the performance of these algorithms by computational experiments. The running time of
the algorithms was improved from O(|V |2.172) to O(|V |1.266) for the GMFCD, and from O(|V |1.811) to
O(|V |1.162) for the GMCCD in random instances.

The improvements enable us to compute in a realistic time connectivity of huge networks consisting
of more than 100,000 nodes. We analyzed connectivity of NewYork road network with 264,346 nodes.
We showed that by using our algorithms, we can not only find optimal solutions of the GMFCD
and the GMCCD, but also identify vulnerable regions we should protect particularly. Moreover, we
proposed a heuristic based on a local search method to shorten each path of a hole-disjoint flow.
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