
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Solving the Trust Region Subproblem by a
Generalized Eigenvalue Problem

Satoru ADACHI, Satoru IWATA,
Yuji NAKATSUKASA and Akiko TAKEDA

METR 2015–14 April 2015

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Solving the trust region subproblem
by a generalized eigenvalue problem

Satoru Adachi Satoru Iwata Yuji Nakatsukasa Akiko Takeda∗

March 31, 2015

Abstract

The trust region subproblem is usually solved via an iterative process of solving
linear systems or eigenvalue problems. An alternative approach is to use semidefinite
programming, but this also involves solving linear systems iteratively. In some cases,
many iterations are needed for convergence. In this work we advocate an algorithm that
solves just one generalized eigenvalue problem, or more specifically just one eigenpair.
In addition to being easy to implement and to analyze and predict the efficiency (due
to lack of iterations), our algorithm allows for a non-standard norm without a change
of variables and is suited both to the dense and the large-sparse cases. We also discuss
how to deal with the so-called hard case. Experiments suggest that our algorithm is
superior to existing ones both in accuracy and especially efficiency, particularly for
large-sparse problems.

keywords: Trust-region subproblem, generalized eigenvalue problem, non-standard
inner product, hard-case

1 Introduction

The trust region subproblem (TRS)

minimize
‖p‖B≤γ

g>p+
1

2
p>Ap, (1)

where g ∈ Rn, A,B ∈ Rn×n are symmetric and B � O is symmetric positive definite, is com-
monly solved as a subproblem for dealing with general nonlinear optimization problems [5],
[22, Ch. 4], in which A is the Hessian and g is the gradient of the objective function at the
current approximate solution. Note that we allow for the constraint ‖p‖B ≤ γ in a nonstan-

dard norm defined by a general positive definite B 6= I, in which ‖p‖B = ‖B1/2p‖ =
√
p>Bp;

an appropriate and nontrivial choice B 6= I can be important for example when working in

∗This work was supported by JSPS Scientific Research Grants No. 26540007 and No. 26870149.

1

a properly scaled trust region to solve the nonlinear problem efficiently [19]. For more on
TRS and its solution see the book [5].

The necessary and sufficient condition for the global solution to the TRS is the following:

Theorem 1.1 A vector p∗ is an optimal solution to the TRS (1) if and only if there exists
λ∗ ≥ 0 such that

‖p∗‖B ≤ γ, (2)

(A+ λ∗B)p∗ = −g, (3)

λ∗(γ − ‖p∗‖B) = 0, (4)

A+ λ∗B � O. (5)

This result is well known when B = I and mentioned in [5, Thm. 7.4.1] and [14] as a
necessary condition, and can be obtained by modifying the discussion in [21, 22] to general
B � O by a change of variables, or by finding the KKT (Karush-Kuhn-Tucker) conditions
and invoking the result in [6]; we give more details in Section 2.

To our knowledge, most existing methods for solving TRS assume B = I and involve
an iterative process during which a parameter is adjusted to one that corresponds to the
solution. For example,

1. Moré and Sorensen [21]: iteratively solves symmetric positive-definite linear systems
via the Cholesky factorization. During the iteration a shift parameter is adjusted.
Safeguard techniques are sometimes necessary to ensure convergence to the solution.
This is the standard approach for dense and moderate size problems, say n ≤ 1000.

2. Sorensen [29], refined and implemented by Rojas et. al [26, 27]: iteratively computes
the smallest eigenvalue of a parameterized matrix P (α), where α is adjusted during
the iteration to find the solution. Some safeguard technique is needed to guarantee
convergence. This method is well suited when A is large and sparse.

3. Rendl and Wolkowicz [25]: solves TRS via semidefinite programming (SDP). The
standard SDP solver based on an interior-point method also involves an iteration of
linear systems. More generally, quadratic programming with one quadratic constraint
can be solved by an SDP [3, App. B].

4. Gould et al. [12]: pursues a more practical goal of reducing the overall cost of solving
the nonlinear optimization problem via TRS, in which a Krylov subspace K(A, x) is
computed iteratively (or K(P−1A, x) with a preconditioner P) by the Lanczos method
and a projected trust-region problem of smaller size is solved. This algorithm makes
little attempt to obtain high accuracy in the TRS solution.

The traditional approach to deal with B 6= I is to reduce the problem to an equivalent
one with B = I by a change of variables: defining p̃ := B

1
2p, one can reduce (1) to an

equivalent TRS with B = I, i.e., the minimization of (B−
1
2 g)>p̃+ 1

2
p̃>(B−

1
2AB−

1
2)p̃ subject

2

to ‖p̃‖ ≤ γ. However, this reduction involves computing the matrix square root or the
Cholesky factor of B and their inverse, which can be expensive when n is large and B is not
easily invertible, and numerically unstable when B is ill-conditioned. Furthermore, even if
the Cholesky factorization of B is easy to compute (e.g., when it is tridiagonal or banded),

the matrix B−
1
2AB−

1
2 generally loses the problem structure: e.g., the inverse of an irreducible

tridiagonal matrix is dense.
The algorithms in [21, 25] are designed for B = I, and so are most publically available

implementations [25, 27]: an extension is described in [5, Sec. 7.5.6] by generalizing their

parameterized (n+ 1)× (n+ 1) matrix N(α) :=

[
α g>

g A

]
to the pencil

[
α g>

g A

]
− λ

[
1

B

]
where λ is the Lagrange multiplier, but this would still involve iterations with respect to
α, and our focus here is to remove such iterations. We note that Gould et. al. [12] deal
with general norms ‖ · ‖B for positive definite B (their algorithm requires that B is easily
invertible and that B approximates A).

While [12] suggests stopping the iteration for TRS once it attains a sufficient reduction in
the objective value for the original optimization problem, showing numerical evidence that it
often suffices to obtain an approximate solution to the TRS, in this paper we treat TRS as a
problem of independent interest and attempt to solve the TRS as accurately as possible. Just
as those employed in [25, 29], our approach is based on eigenvalue problems. However, unlike
most algorithms proposed in the literature we look for an algorithm that solves the TRS by
a single generalized eigenvalue problem. Other approaches that iteratively solve the TRS
include the dogleg method [22, Sec. 4.1], optimization of difference of convex functions [31],
an improvement of the Moré-Sorensen algorithm using Taylor series approximation [14],
and one based on the BFGS method [1]. All these algorithms require iteratively running a
computational routine, and the number of iterations is often unpredictable and potentially
large.

Another aspect of our method is that it can compute all the KKT points in addition to
the global solution. For example, the global maximizer can also be obtained. We note that
Martinez [18] shows that there can be at most two local minima for the TRS, and we can
check the number of local minima (whether it is one or two).

One exception to the iteration-based methods is the one by Gander, Golub and von
Matt [9], which reduces TRS to a quadratic eigenvalue problem, which they linearize to
a standard eigenvalue problem of size 2n. However, in that paper they report that their
eigenvalue-based approach is slower and less accurate than the method based on the secular
equation by Moré and Sorensen [21]. This is perhaps why this approach appears to have
received less attention than those mentioned above.

The algorithm we advocate here, however, results in an extension of [9], which turns out
to be both efficient and accurate. It seems that the slow speed and loss of accuracy reported
in [9] was largely due to the relatively unrefined eigenvalue solver available those days. In
addition to showing that the accuracy and speed are both greatly improved by today’s much
developed eigensolvers, our approach, which is based on a different derivation but results in
closely related eigenvalue problems, further improves the algorithm by allowing B 6= I and

3

preserving symmetry. Moreover, the paper [9] does not discuss how to deal with the “hard
case”, which we do in detail here.

This work was initially motivated by the following observation. Consider the simple case
B = I and let A = V DV > be the eigenvalue decomposition with eigenvalues di, i = 1, . . . , n.
We focus on the solution with ‖p‖ = γ, which is generally the more difficult case than
‖p‖ < γ (see Section 2.1). Then by (3) we have p = −V (D + λI)−1V >g, and writing out
the condition ‖p‖ = γ and defining ĝ = V >g, one sees that the solution can be obtained via
a rational equation in λ of the form

γ2 =
n∑
j=1

ĝ2j
(dj + λ)2

. (6)

This equation has been presented in the literature [10, 21, 22], but it is usually treated as a
“difficult” nonlinear equation that needs to be solved through an iterative process. Nonethe-
less, (6) is nothing else than a rational rootfinding problem, which can mathematically be
reduced to a polynomial rootfinding problem by multiplying out

∏n
j=1(dj + λ)2, which can

then be solved by a single eigenvalue problem via linearization such as the companion ma-
trix, without iterations (except those used within the eigensolver). Although numerically this
“polynomialization” is usually not recommended (and we will not pursue it), this observation
does suggest that a method based on iterations is perhaps unnecessary.

In this work we show (or rather rediscover) that indeed we can solve the TRS in one
step by a generalized eigenvalue problem. The lack of iterations makes the algorithm easy
to implement, and the runtime predictable. Moreover, our algorithm flexibly adapts to the
structure of the problem. For example, it can appropriately deal with the case where A,B
are large sparse matrices.

This paper is organized as follows. In Section 2 we detail the optimality conditions and
the KKT conditions. We then describe our algorithm in Section 3. Section 4 discusses how
to deal with the hard case. In Section 6 we compare our algorithm with existing methods.
Section 7 shows numerical experiments to illustrate and compare the performance.

2 Optimality conditions

By introducing in (1) the change of variables Ã = B−
1
2AB−

1
2 , g̃ = B−

1
2 g, and p̃ = B

1
2p, we

obtain the following equivalent problem:

minimize g̃>p̃+
1

2
p̃>Ãp̃, (7)

subject to ||p̃|| ≤ γ.

This is the standrad TRS with B = I, and the necessary and sufficiency condition for the
global solution is known as follows [10, 21, 22].

4

Lemma 2.1 A vector p̃∗ is an optimal solution for (7) if and only if there exists λ∗ ≥ 0
such that

||p̃∗|| ≤ γ,

(Ã+ λ∗I)p̃∗ = −g̃,
λ∗(γ − ||p̃∗||) = 0,

Ã+ λ∗I � O.

It is also known that λ∗ is unique. From the equivalence between (7) and (1) and the fact
that ||p̃|| = ||p||B, we obtain Theorem 1.1 by reverting the change of variables.

2.1 Complementary slackness

Equation (4) shows that the TRS solution belongs to either of the following two cases, which
are not necessarily disjoint.

1. λ∗ = 0,

2. γ − ‖p∗‖B = 0.

Roughly, the two cases represent the TRS solutions in the interior (first case) or on the
boundary (second) of the trust region ‖p∗‖B ≤ γ. Dealing with the first case is immediate as
is well known [21]; in this case Ap∗ = −g, which determines p∗ uniquely if A is nonsingular,
and we need to check whether ‖p∗‖B ≤ γ is satisfied; if it is, then this gives a candidate
for the TRS solution that lies in the interior (boundary if ‖p∗‖B = γ happens to hold) of
the trust region. If further A � O (which may not be easily verifiable), then this is the
TRS solution, we give more details in Section 5. If A is singular then the linear system
Ax = −g is generically not solvable, and the TRS solution is in the second case ‖p∗‖B = γ.
If Ax = −g happens to be solvable then p∗ is of the form p∗ = −A†g+Nv where A† denotes
the pseudoinverse and N is a basis for the null space of A, which has to be orthogonal to g
so it has no effect on the objective value. We choose v so that ‖p∗‖B = γ (details are given
in Section 4).

In practice, checking the positive semidefiniteness of A may be a costly operation (re-
quiring O(n3) if A is dense), so instead of checking it we simply solve Ap = −g for p via a
direct solver or via MINRES (or the conjugate gradient (CG) algorithm if A is known to be
positive definite), and if p is within the trust region we keep it as a candidate solution and
compare it with the solution obtained from the second case.

In what follows we elaborate on the second case ‖p∗‖B = γ.

2.2 KKT conditions

The first three conditions (2)–(4) of the TRS optimality conditions in Theorem 1.1 represent
the KKT conditions. The last (5) will turn out to show that indeed the solution corresponds
to the KKT point with the largest Lagrange multiplier.

5

By (3), for any KKT multiplier λ, unless the matrix A + λB is singular we can write p
as a function of λ as

p(λ) = −(A+ λB)−1g. (8)

Since we focus on the case ‖p‖B = γ, plugging (8) into this equation we obtain

g>(A+ λB)−1B(A+ λB)−1g = γ2. (9)

Now let W be the matrix that achieves the simultaneous diagonalization by congruence [11]

W>(A,B)W = (D, I) (10)

where D = −diag(µ1, . . . , µn) (note the minus sign as here we define µi as the eigenvalues of
the pencil A+ λB, not A− λB) with µ1 ≤ µ2 ≤ · · · ≤ µn. Then (9) can be written as

γ2 = (W>g)>(D + λI)−2(W>g).

Writing W = [w1, . . . , wn] this is equivalent to

(h(λ) :=)
n∑
j=1

(w>j g)2

(λ− µj)2
= γ2, (11)

which is a rational equation with respect to λ. Our aim will be to construct a generalized
eigenvalue problem whose eigenvalues contain the values of λ satisfying (11).

One can verify that exactly one value of λ exists such that (9) holds with A + λB � O.
To see this, note that the poles of h(λ) are at the eigenvalues of the pencil A+ λB, and on
the interval λ ∈ (µn,∞) the function h(λ) is strictly decreasing. This establishes the claim
when w>n g 6= 0; see Section 4 for a treatment of the case w>n g = 0. In either case, this value
of λ will be equal to the Lagrange multiplier λ∗ in the TRS solution that our algorithm shall
compute, as we show in the next section.

3 Algorithm

The methodology here parallels that of [16], in which a more specialized problem of finding
the point-ellipsoid distance was considered.

For the matrix pencil A + λB, we denote its range and null space by R(A + λB) and
N (A+ λB), respectively.

3.1 Solution via generalized eigenvalues

The starting point is to introduce two matrix pencils whose eigenvalues include the desired
KKT multiplier λ∗. We define the (2n+ 1)× (2n+ 1) matrix pencil

M(λ) =

γ2 0 g>

0 −B A+ λB
g A+ λB O

 (12)

6

and the 2n× 2n matrix pencil

M̃(λ) =

[
−B A+ λB

A+ λB −gg>

γ2

]
. (13)

The crucial facts are that the eigenvalues of these pencils provide the values of λ satisfying
the KKT conditions, and furthermore we can obtain the pair (λ∗, p∗) satisfying the optimality
conditions (3)–(5) by computing the largest real eigenpair. We establish these facts in the
next two results.

Lemma 3.1 For every KKT multiplier λ 6= 0 satisfying (2)–(4), we have detM(λ) =
det M̃(λ) = 0.

Proof. Let λ be a KKT Lagrange multiplier satisfying (2)–(4). If det(A + λB) = 0 at λ,
then it follows from g ∈ R(A+ λB) that detM(λ) = det M̃(λ) = 0.

We now deal with λ such that det(A+ λB) 6= 0. Define p(λ) = −(A+ λB)−1g as in (8),

and let X(λ) =

 1
p(λ) I

I

. Then X(λ) is unimodular detX(λ) ≡ 1, and we have

detM(λ) = detX(λ)TM(λ)X(λ) (14)

= det

γ2 − p(λ)>Bp(λ) p(λ)>B 0
Bp(λ) −B A+ λB

0 A+ λB O


= (−1)n det(A+ λB)2{γ2 − p(λ)>Bp(λ)}. (15)

If (λ, p(λ)) satisfies the KKT conditions with λ 6= 0, then recalling (9) we have γ2 −
p(λ)>Bp(λ) = 0, and so detM(λ) = 0.

Now defining T =

1 − 1
γ2
g>

In
In

, we have

T>M(λ)T =

γ2 −B A+ λB
A+ λB − 1

γ2
gg>

 =

[
γ2

M̃(λ)

]
. (16)

It then follows that detM(λ) = γ2 det M̃(λ), and hence together with the above result
det M̃(λ) = detM(λ) = 0 at any nonzero KKT multiplier λ. �

The above lemma shows that the TRS solution on the boundary satisfies detM(λ) = 0
and det M̃(λ) = 0, both of which can be solved via a generalized eigenvalue problem. The
eigenvalues λ contain the Lagrange multipliers at the KKT points, so the multiplier for the
TRS solution must be one of the 2n finite eigenvalues (note that M(λ) has one eigenvalue
at infinity, which is not the one of interest).

7

Fortunately, both M(λ) and M̃(λ) are regular matrix pencils, that is, their determinants
are nonzero for some λ and the number of eigenvalues is equal to their size. To see this,

observe that M̃(∞) :=

[
O B
B O

]
is nonsingular, and that M̃(λ) is obtained from M(λ) by

taking its Schur complement. Therefore the number of eigenvalues is finite, more precisely,
2n+ 1 and 2n, respectively, and 2n of them match the 2n roots of the rational equation (6).
Furthermore, (16) shows that the eigenvectors corresponding to the finite eigenvalues of M
and M̃ are closely related:

M̃(λ)

[
y1
y2

]
= 0 ⇒ M(λ)

− 1
γ2
g>y2
y1
y2

 = 0. (17)

Note that the converse implication⇐ also holds unless y1 = y2 = 0, which is an eigenvec-
tor of M(λ) at∞. The next results show that in fact the λ∗ of the TRS solution corresponds
to the largest real eigenvalue of M(λ) and M̃(λ), and generically the solution p∗ can be
obtained from the corresponding eigenvector.

Theorem 3.1 For the TRS solution (λ∗, p∗) on the boundary ‖p∗‖B = γ satisfying (2)–(5),
the multiplier λ∗ is equal to the largest real eigenvalue of M(λ) (excluding λ =∞) and M̃(λ).
Furthermore, if λ∗ > µn (where µn is the largest eigenvalue of A + λB), then denoting the

eigenvectors of M(λ) and M̃(λ) at λ = λ∗ by

 θy1
y2

 and

[
y1
y2

]
, both θ and g>y2 are nonzero,

and p∗ can be obtained by

p∗ = − γ2

g>y2
y1 =

1

θ
y1. (18)

Proof. The fact λ∗ = λmax has been shown in [6, 16] for special cases: [6] for B = I and [16]
for A = I, g = 0; see also [20]. By a change of coordinates we can extend these results to
the TRS (1).

Alternatively, we can directly obtain the fact as follows. First, from A+ λ∗B � O in (5)
we must have λ∗ ≥ µn where µn is the largest eigenvalue of A + λB. To see this, recall
from (15) that each eigenvalue of M, M̃ is either an eigenvalue of A + λB, or a solution to
h(λ) = γ2 in (11), and h(λ) is strictly decreasing on (µn,∞) and h(∞) = 0. Since if w>n g 6= 0
then limλ→µn+0 h(λ) = +∞, so exactly one λmax ∈ (µn,∞) satisfies h(λ) = γ2. If w>n g = 0
then either h(µn) ≥ γ2 or h(µn) < γ2. If h(µn) ≥ γ2 then λ∗ = λmax ∈ [µn,∞) by the same
argument. If h(µn) < γ2 then we must have λ∗ = λmax = µn by (5) (this is the only case
where h(λ∗) 6= γ2: the “hard case”).

We next discuss how to obtain p∗. We first note that in view of (11), h(λ) has a pole at
µn unless g is orthogonal to N (A+ µnB), (the eigenspace of A+ λB corresponding to µn),
so the assumption λ∗ > µn must hold.

From the eigenvector
[
y1
y2

]
such that M̃(λ∗)

[
y1
y2

]
= 0, that is,[

−B A

A −gg>

γ2

] [
y1
y2

]
= −λ∗

[
0 B
B 0

] [
y1
y2

]
(19)

8

with λ∗ > µn, the TRS solution p∗ is a multiple of y1: to verify this we shall show that
(A+ λ∗B)y1 is a multiple of g, which suffices as A+ λ∗B is nonsingular since λ∗ > µn, and
hence p∗ = −(A+ λ∗B)−1g.

From the lower block of (19), we have (A + λ∗B)y1 = g(g>y2)
γ2

, which is a scalar multiple

of g. Therefore, provided that g>y2 6= 0, we obtain (18) as required. The last equality

− γ2

g>y2
y1 = 1

θ
y1 follows from (17).

It remains to show that θ, g>y2 are nonzero if λ∗ > µn. By (17) and the discussion
following it, for θ 6= 0 is equivalent to g>y2 6= 0, so it suffices to prove θ 6= 0. First observe
that the eigenvalues of M, M̃ that are larger than µn must be simple, from the determinant
expansion (15), hence y1, y2 are unique up to scalar scaling. We can show that the first
element θ of the eigenvector of M(λ) at λ∗ is 0 only if λ∗ is an eigenvalue of A + λB,
contradicting the assumption λ∗ > µn. Indeed if θ = 0 then y2 is also 0; this is becauseγ2 0 g>

0 −B A+ λ∗B
g A+ λ∗B O

 0
y1
y2

 = 0 implies (A + λ∗B)y1 = −By1 + (A + λ∗B)y2 = 0, and

hence (A + λ∗B)B−1(A + λ∗B)y2 = 0. Using the diagonalization W>(A,B)W = (D, I),
this yields W>(λ∗I + D)2Wy2 = 0, from which we obtain W>(λ∗I + D)Wy2 = 0, which is
equivalent to (A+ λ∗B)y2 = 0. We cannot have y2 = 0, as then we need

[−B
A+λ∗B

]
y1 = 0, so

y1 = 0, meaning the whole eigenvector is zero. Hence (λ∗, y2) is an eigenpair of A + λB, a
contradiction. Hence θ 6= 0. �

How to Compute the Optimal Solution p∗

In practice, computing the solution p∗ from (18) may introduce unnecessary numerical errors,
and we choose simply to obtain

p∗ = −sign(g>y2)γ
y1
‖y1‖B

, (20)

which is on the boundary to working precision: ‖p∗‖B = γ.
We note that the 2n size of the matrix pencil M̃(λ) is the smallest possible since (11) is a

rational equation, which genericallly becomes a degree 2n polynomial when the denominator
is multiplied out.

In the hard case finding the solution is not straightforward; this is described in Section 4.

Which matrix pencil to use, M(λ) or M̃(λ)?

The generalized eigenvalue problem M(λ) has one additional eigenvalue at ∞, but the ma-
trices involved are explicitly sparse. On the other hand, M̃ is one size smaller with no
eigenvalue at infinity, but contains gg>, which is rank-one but dense. Thus the choice be-
tween M and M̃ should be made based on the properties of the eigensolver available. Some
eigensolvers–such as Matlab’s eigs–allow the user to provide just a routine that multiplies
the matrices to a vector; in this case the rank-one structure can be exploited. For this reason
we use M̃ in our Matlab experiments.

9

Comparison with the algorithm by Gander, Golub and von Matt

The algorithm by Gander, Golub and von Matt [9] considers the case B = I and finds the
largest eigenvalue of the 2n× 2n matrix[

A −I
−gg>

γ2
A

]
. (21)

This is a nonsymmetric matrix, with a dense bottom-left block. We can obtain (21) when
B = I by the equivalence transformation of right-multiplying

[
O I
I O

]
to M̃ . Therefore, we

arrived at a different derivation of (21) and generalized it to B 6= I. In [9] solving TRS
via (21) is not recommended over the secular equation approach based on [18], observing the
inaccurate results in their experiments.

As we shall see in our experiments, this seems to have been largely due to the relatively
undeveloped eigenvalue solvers available at the time: with today’s eigensolvers the algorithm
is both fast and accurate. This paper revives such approaches based on a generalized eigen-
problem and extends their applicability to general B, proposes a way to exploit symmetry
and deals with the hard case.

3.2 The rightmost eigenvalue is real

We have seen that λ∗ at the TRS solution is equal to the largest real eigenvalue of M(λ)
and M̃(λ). For the eigensolver it helps to further know that λ∗ is indeed the rightmost
eigenvalue, that is, there is no nonreal eigenvalue that lies to the right of λ∗.

Proposition 3.1 The rightmost eigenvalues of M̃(λ) and M(λ) (excluding ∞) are both real
and equal to λ∗.

Proof. It suffices to show that the rightmost eigenvalue of M̃(λ) is real. Suppose that
λ̃ = α + βi where α, β ∈ R, α > µn and β > 0 is a nonreal eigenvalue. Then α − βi must

also be an eigenvalue. Now if α > λ∗ ≥ µn, then recalling (11) we have h(λ) =
∑n

j=1

(w>j g)
2

(λ−µj)2 ,

and since the imaginary part of 1
(λ̃−µj)2

is strictly negative for all j, we conclude that the

imaginary part of h(λ̃) must also be strictly negative. Hence h(λ̃) cannot be equal to γ2, so
λ̃ is not an eigenvalue of M̃(λ). �

We have shown that the TRS solution can be obtained from the rightmost (which is the
largest real) eigenpair of M(λ) or M̃(λ), so we need to compute only the largest eigenvalue,
for which in many cases solvers are available that are more efficient than computing the
whole eigenvalues via the standard QR or QZ algorithms; for example the Arnoldi algorithm
provides an effective means for computing extremal eigenvalues of large-sparse matrices. In
view of Proposition 3.1, we can compute the desired eigenpair for example by the Matlab
command eigs(M,’lr’).

10

4 Dealing with the “hard case”

The so-called “hard case” is a difficulty that is known to arise in the standard B = I case,
and it is of course present also when B � O is a general positive definite matrix. Although
mathematically the hard case happens only on a set of problems of measure zero, it can
happen for matrices with structures and numerically there are “nearly hard cases,” which
can be equally challenging. Indeed a number of studies such as [21, 26] have focused on the
hard case with B = I.

We first state its definition for general B � 0 and explain why the difficulties arise.

Definition 4.1 When λ∗ for the TRS solution is the largest eigenvalue µn of the pencil
A+ λB and g ⊥ N (A+ λ∗B), the TRS is called the “hard case”.

The reason this case is difficult is the following: Recall (11). Assuming that at least one
of the terms w>i g for all i such that µi = µn is nonzero, the rational function h(λ) can be
easily seen to have a pole at µn and therefore the real solution to h(λ) = γ2 to the right of
µn corresponds to the TRS solution.

This argument is invalid in one situation1: as alluded to in Section 2.1, when w>i g = 0 for
all such i, or equivalently when g is orthogonal to all the eigenvectors corresponding to µn.
This is precisely the condition g ⊥ N (A + λ∗B). In this case the rational equation cannot
be guaranteed to have a solution at λ larger than µn. Under the condition g ⊥ N (A+ λ∗B)
there are still two cases: (i) λ∗ > µn, and (ii) otherwise, λ∗ = µn. The second case is the
hard case by our definition. Note that in the literature sometimes the hard case is defined
simply by g ⊥ N (A + λ∗B) [22]. In [7] the hard case is further separated into two cases as
we did here.

The reason we choose to define the hard case as above is that our algorithm faces diffi-
culty only in that situation. In our algorithm, in which the generalized eigenvalue problem
essentially solves (9), the case (i) is no problem at all because the computed eigenvalue is
strictly larger than µn, and the soluton p∗ can be extracted from the eigenvector of M or M̃
just as when w>n g 6= 0.

In the second case, however, we do face difficulties: The largest eigenvalue of M̃ and
M is λ∗ = µn, but the matrix A + λ∗B is singular and recalling (15), the vector p(λ∗) (or
(A+λ∗B)†g) does not provide the TRS solution. Indeed the linear system (A+λ∗B)x = −g
has infinitely many solutions. The challenge is therefore to find the solution p∗ such that
(A+ λ∗B)p∗ = −g and ‖p∗‖B = γ.

The hard case has been a major challenge in the literature for B = I, and many ap-
proaches have been introduced; see for example [21, 26]. Here our solution is based on that
in [7], which we modify to adapt to a general positive definite B.

1It is worth noting that the condition w>i g = 0 means g is orthogonal to the eigenvector in the standard
inner product, not B-orthogonal w>i Bg = 0 as one might expect since the TRS (1) employs the B-norm.

11

4.1 Solution for the hard case

Theorem 4.1 Suppose the TRS problem (1) belongs to the “hard case” and p∗, λ∗ satisfy
(3)–(5) and ||p∗||B = γ with λ∗ = µn. Let d = dim(N (A+ λ∗B)) and V := [v1, · · · , vd] be a
basis of N (A+ λ∗B) that is B-orthogonal, i.e., V >BV = I. Then, defining

H := (A+ λ∗B + α

d∑
i=1

Bviv
>
i B),

where α > 0 is an arbitrary positive scalar, H is positive definite, and hence nonsingular.
Furthermore,

q := −H−1g = argmin{‖p‖B|(A+ λ∗B)p = −g}. (22)

that is, q is the minimum-norm solution to the linear system (A + λ∗B)p = −g in the B-
norm, and therefore for any nonzero v ∈ N (A + λ∗B) there exists a scalar η ∈ R such that
the TRS solution is p∗ = q + ηv.

Proof. First, we prove that H is nonsingular. Let W be the matrix that simultaneously
diagonalize A,B as in (10). Then W>(A+ λ∗B)W = diag(λ∗ − µ1, · · · , λ∗ − µn−d, 0, · · · , 0)
is a diagonal matrix and W>BW = I.

We claim that defining G =
∑d

i=1Bvi(Bvi)
> = BV V >B we have

W>GW = diag(0, . . . , 0, Id).

To see this, writing W = [W1 W2] we have (A+λ∗B)W2 = (A+λ∗B)V = 0 and W>
2 BW2 =

V >BV = Id. Since V,W2 are of the same size, these two equalities imply that there exists
an orthogonal matrix Q ∈ Rd×d such that V = W2Q, and therefore

W>(BV V >B)W = [W1 W2]
>BW2Q(W2Q)>B[W1 W2]

=
(
[W1 W2]

>BW2

)
W>

2 B[W1 W2]

=

[
O
Id

] [
O Id

]
=

[
O

Id

]
,

where we have used the fact W>BW = [W1 W2]
>B[W1 W2] = In.

Therefore,

W>HW = (W>AW + λ∗In + α

d∑
i=1

W>Bviv
>
i BW)

= diag(λ∗ − µ1, · · · , λ∗ − µn−d, αId)

is positive definite, so by Sylvester’s law of inertia it follows that H is also positive definite,
hence nonsingular.

12

We next show that q := −H−1g is a solution to the singular linear system (A+ λ∗B)p =
−g, which necessarily has infinitely many solutions. To see that (A+λ∗B)q = −g, note that
−g = (A+ λ∗B)p implies (below I stands for In−d)

−g = W−>
[
D + λ∗I

0

]
W−1p,

and also that

q := −H−1g = −W
[
D + λ∗I

αI

]−1
W>g

from which we obtain

(A+ λ∗B)q = −W−>
[
D + λ∗I

0

]
W−1W

[
D + λ∗I

αI

]−1
W>g

= −W−>
[
I

0

]
W>g

= W−>
[
I

0

]
W>W−>

[
D + λ∗I

0

]
W−1p

= W−>
[
D + λ∗I

0

]
W−1p = −g.

To prove (22), note that we can write a general solution to (A+λ∗B)p = −g as p = q+v
where v ∈ N (A+ λ∗B). We shall show that ‖q‖B ≤ ‖q + v‖B for any such v. We have

‖q + v‖2B = (q + v)>B(q + v) = q>Bq + 2v>Bq + v>Bv.

Since B is positive definite the third term is nonnegative, it suffices to show that v>Bq = 0
for all v ∈ N (A+ λ∗B). To see this, using q = −H−1g = H−1(A+ λ∗B)q we obtain

Bq = BH−1(A+ λ∗B)q,

and note that
BH−1(A+ λ∗B) = (A+ λ∗B)H−1B

which we can also verify using the decomposition with respect to W (essentially because
diagonal matrices commute):

BH−1(A+ λ∗B) = W−>W−1

(
W

[
D + λ∗I

αId

]−1
W>

)(
W−>

[
D + λ∗I

0

]
W−1

)
= W−>

[
I

0

]
W−1

=

(
W−>

[
D + λ∗I

0

]
W−1

)(
W

[
D + λ∗I

αId

]−1
W>

)
W−>W−1

= (A+ λ∗B)H−1B.

13

Therefore we obtain for all v ∈ N (A+ λ∗B)

v>Bq = v>(BH−1(A+ λ∗B)q) = v>((A+ λ∗B)H−1Bq) = (v>(A+ λ∗B))H−1Bq = 0,

as required.
Since in the hard case the solution is on the boundary with Lagrange multiplier λ∗ equal

to µn, we are able to obtain a vector q + ηv on the boundary by choosing the scalar η
appropriately to obtain a global solution to the TRS satisfying (2)–(5). Put another way,
if even the minimum-norm solution had norm ‖q‖B > γ then this implies the situation was
not the hard case. �

Note that, as the proof of the theorem suggests, in the hard case the TRS solution p∗ is
generally not unique; the goal is to find one solution, which we denote simply by p∗.

This theorem says that p∗ can be computed by finding a null vector z of A+λ∗B, forming
H, and solving the nonsingular linear system Hx + g = 0. Finding η is then an easy task
of solving a scalar quadratic equation. Note that due to the low-rank term α

∑d
i=1Bviv

>
i B,

H can be dense even when A,B are sparse. Nonetheless, the linear system Hx + g = 0
can be solved efficiently by the CG algorithm (employing an appropriate preconditioner if
available), which (as with any Krylov-type algorithm) only requires a routine for computing
matrix-vector multiplications with respect to the coefficient matrix.

4.2 Detecting the hard case in our algorithm

Let us consider what will happen in the hard case. Suppose that λ∗ = µn and that Ay2 =
λ∗By2 with y>2 g = 0. Then we see that

M̃(λ∗)

[
0
y2

]
=

[
−B A+ λB

A+ λB −gg>

γ2

][
0
y2

]
= 0. (23)

This means the top part of the eigenvector for M̃(λ), which we usually extract as the solution
p∗, is zero. The two conditions in the hard case is precisely the situation in which the vector
that we attempt to extract becomes zero.

This suggests that we can detect the hard case by looking at the first half elements y1

of the computed eigenvector y =

[
y1
y2

]
which we take to have unit norm ‖y‖ = 1: the hard

case is when y1 = 0. In practice, due to roundoff errors the computed vector ŷ1 (here and
below, quantities wearing a hat represent computed approximations) has nonzero but smalll
elements in the hard case, so we need a threshold for ‖y1‖ below which we regard the problem
as belonging to the hard case. Note that if the top part ŷ1 is small, denoting it by ε, we have

M̃(λ̂∗)

[
ε
ŷ2

]
=

[
−B A+ λ̂∗B

A+ λ̂∗B −gg>

γ2

] [
ε
ŷ2

]
. (24)

For this to be (numerically) zero, by the first block row we have

(A+ λ̂∗B)ŷ2 = Bε.

14

Since the right-hand side is O(ε), it follows that (λ̂∗, ŷ2) can be regarded as a numerically
stable eigenpair for (A,B).

To choose an appropriate threshold we analyze the accuracy of the computed ŷ1 as an
approximation to p∗. The computed eigenvector ŷ =

[
ŷ1
ŷ2

]
is normalized to have unit norm,

and has accuracy O(residual
gap) [30, Ch. 5]. Here the residual is ‖M(λ̂∗)ŷ‖, which is generally

O(u) with a numerically stable algorithm2, where u is the unit roundoff, and gap is the
distance between the eigenvalues: mini |λ∗−µi|. Moreover, the loss of accuracy in extracting
a vector of norm ‖y1‖ as a part of a unit-norm vector is a factor O(1

‖y1‖). Overall the accuracy

is estimated to be O(1
‖y1‖gap).

On the other hand, if we treat the problem as the hard case, we need to compute the
null vectors N (A + λ̂∗B). Numerically these are the vectors v for which ‖(A + λ̂∗B)v‖ is
negligible. With the tolerance τ for detecting the hard case, recalling (24), we expect the
vectors we consider will have ‖(A + λ̂∗B)v‖ = O(τ), suggesting this entails an error of size
O(τ).

We suggest choosing the threshold τ based on which is likely to give the more accurate
solution: roughly, based on the above discussion τ satisfies

u

τgap
= τ. (25)

In double precision arithmetics u ≈ 10−16, and we choose τ to be about 10−8
√

1/gap. Since
the gap is unknown beforehand, by default we choose to take τ = 10−4. A possible further
improvement would be to estimate the gap within the algorithm.

5 Pseudocode

We now describe a pseudocode of our TRS algorithm in Algorithm 5.1.
We note that there can be slight modifications in the process depending on the situation.

For example, we can conclude that p0 is the (unique) optimal TRS solution if (i) it is feasible
‖p0‖B ≤ γ2, and (ii) A � O. Therefore, if the positive definiteness of A is known or easily
verifiable, then after step 1 in Algorithm 5.1, we check if ‖p0‖B ≤ γ2 and A � O, and if they
both hold, then we can dismiss the remaining steps in Algorithm 5.1 and take p0 as the TRS
solution.

Note that the CG algorithm is originally designed for positive definite linear systems,
and if CG does not converge then this implies that A is not positive definite. However, in
practice CG often converges even when A is indefinite [23], so we cannot conclude that A is
positive definite just because the linear system Ap0 = −g was solved by CG.

Another situation is when A is known (or easily verifiable) to be indefinite with one or
more negative eigenvalues. In this case a TRS solution must lie on the boundary, and so
there is no point in executing step 1; we directly proceed to step 2.

2To avoid unnecessary cluttering we assume ‖A‖, ‖B‖ are O(1). This causes no loss of generality as we
can scale the matrices without changing the TRS solution: A ← c1A by taking g ← c1g, and B ← c2B by
taking γ ← c2γ.

15

Algorithm 5.1 Solve the TRS (1).

1: (Consider the case λ∗ = 0) Solve Ap0 = −g by the CG algorithm, and keep p0 if it is
feasible, i.e., ‖p0‖B ≤ γ.

2: Compute the rightmost eigenvalue λ∗ of M̃(λ) and an eigenvector

[
y1
y2

]
such that

[
−B A

A −gg>

γ2

] [
y1
y2

]
= −λ∗

[
0 B
B 0

] [
y1
y2

]
. (26)

3: If ‖y1‖ ≤ τ (default: τ = 10−4), then treat as hard case: run Algorithm 5.2 to obtain p1.
4: Otherwise, obtain p1 by p1 := −sign(g>y2)γ

y1
‖y1‖B

.

5: The solution p∗ is either p1 or p0 (if it exists), whichever gives the smaller objective value.

As noted previously, when the matrices are large and sparse it is advisable to use a suitable
eigensolver such as Arnoldi [2]. In addition to the desired eigenvalues, such algorithms
generally also provide the associated eigenvectors.

The process to deal with the hard case TRS is as follows.

Algorithm 5.2 Algorithm for hard-case TRS. By default, τ = 10−4.

1: Compute the eigenvectors of (A,B) corresponding to λ∗ (i.e., the null vectors of A+λ∗B).
2: Solve Hq + g = 0 for q by the CG method.
3: Take an eigenvector v ∈ N (A + λ∗B) computed above, and find η ∈ R such that
‖q + ηv‖B = γ.

4: Return q + ηv as a candidate for the global TRS solution.

6 Comparison with existing methods

Here we compare our algorithm with previous methods and argue that ours has attractive
properties in terms of efficiency and simplicity. Moreover, numerical experiments suggest
that its accuracy can be notably better; see Section 7.

6.1 Efficiency

The complexity of our algorithm is O(n3) for dense A,B, and when A,B are large and sparse
it is essentially the cost of an Arnoldi-type method for computing one rightmost eigenpair,
which is typically in the order of a constant times the cost of a matrix-vector product, or
a shifted-and-inverted linear system (M0 + σM1)x = b (for the generalized eigenproblem
M̃(λ) = M0 + λM1; the cost also depends on the separataion of eigenvalues etc). Roughly
speaking, this is in the same ballpark as the cost of the existing algorithms [12, 21, 29] when
B = I, both in the dense and large-sparse cases.

16

Recall that conventional algorithms solve n × n linear systems or eigenvalue problems
iteratively, whereas ours solves a double-sized 2n× 2n eigenproblem once. The advantage of
a noniterative approach becomes significant especially when the eigenproblem scales mildly
with n. For example, in the dense case where eigensolvers (and linear systems) require O(n3)
cost, our approach is roughly comparable to a conventional algorithm that iterates 8 times.
If the eigensolver needs O(np) cost with p < 3, then this number reduces to 2p.

Furthermore, note that our algorithm is applicable to any positive definite B without a
change of variables, which makes it significantly faster when B 6= I, see the experiments.
In other words, another advantage of our approach is that it does not require altering the
algorithm completely when the situation changes from dense to large-sparse or B = I to
general B � O; all we need is to choose an appropriate eigensolver (e.g., eig or eigs).

Another important aspect is that it is possibly less than twice as expensive to solve the
2n × 2n eigenvalue problem M̃ rather than the size-(n + 1) eigenproblem with respect to

the matrix N(α) =
[
α g>

g A

]
. This is because the dominant cost in the Arnoldi iteration is

in matrix-vector multiplication, and multiplying the matrix (21) to a vector

[
x1
x2

]
can be

done by computing A[x1 x2] and a vector-vector multiplication g>[x1, x2]. Now, computing
A[x1, x2] is usually faster than two independent matrix-vector multiplications Ax1, Ax2 due
to the use of a higher level blas routine [11].

See the experiments to observe the practical speed, which illustrate that it is much faster
than existing approaches especially when the matrices are sparse.

6.2 Ease of implementation

As mentioned before, the main feature of our approach is that the TRS can essentially (i.e.
except in the hard case) be solved in one step by a generalized eigenvalue problem.

Besides the aesthetic pleasure of directly giving a solution without iterations, another
advantage of our approach is its ease of implementation. For example, in Matlab we can
solve step 2 (which is the essential part of solving the generic TRS) in just four lines (in
which M̃(λ) = M0 + λM1):

M0 = [-B A;A -g*g’/gamma^2];

M1 = [zeros(n) B;B zeros(n)];

lam = max(eig(M0,-M1));

p = -(A+lam*B)\g;

This is strikingly simple when compared with those of the existing algorithms. When
A,B are large-scale and sparse, it is advised to replace eig with eigs and M̃ with M .
Specifically, in the large-scale case, after the second line the code should be

[v,lam] = eigs(@(x)M0x(x),2*n,-M1,1,’lr’);

p = v(n+1:end);

p = p/sqrt(p’*B*p)*gamma;

17

The last line is a normalization to force ‖p‖B = γ, because the computed eigenvector is
normalized so that ‖v‖2 = 1. Here M0x(x) is a function handle that left-multiplies M0 to the
input x. This saves memory over storing the matrix M0 because this way we essentially only
need to store the matrices A and B, along with the vectors g, v. This way, although M, M̃
are of doubled size compared with A,B or N(α) =

[
α g>

g A

]
, when A,B are sparse, storing

M, M̃ requires no more storage, essentially requiring only A,B and g.

6.3 TRS as a subproblem

Our approach appears to be the first that solves the TRS exactly and is suited to the large-
scale sparse case with B 6= I without requiring a change of variables or outer iterations.
However, its performance for efficiently solving the overall nonlinear optimization problem
using TRS as a subproblem is not easily predictable, especially in view of the observation
made in [12] that it is sometimes not necessary to solve the TRS to very high accuracy. While
we suspect that our approach is also amenable to situations where a low accuracy would
suffice (e.g. by stopping the Arnoldi iteration early), a comprehensive speed comparison
with existing methods is outside the scope of this work, and in our experiments we attempt
to solve TRS as accurately as numerically possible.

7 Numerical experiments

We now turn to experiments to examine the performance of the proposed methods for the
hard case. All experiments were carried out in Matlab 2013A on a Blade server machine
with Xeon CPU and 64 GB memory.

We compare Algorithm 5.1 based on a generalized eigenvalue problem, shown as GEP in
the figures, with the code by Fortin-Wolkowicz [8] which is based on the algorithm by Rendl
and Wolkowicz [25] (shown as FRW), along with Rojas, Santos and Sorensen [27], shown as
RSS. We examine the performance in the following cases: (i) B = I and A is sparse, (ii)
B = I and A is dense, (iii) B 6= I and A,B are sparse, and (iv) the hard case with B = I.
The reason we experiment mainly with B = I is that unlike ours, the other implementations
do not directly handle B 6= I.

In each set of experiments, we ran the codes 20 times and report the average runtime
and accuracy. To measure the accuracy, we have computed the relative objective function
difference as follows:

f(p̂∗)− f(p̂best)

|f(p̂best)|
. (27)

Here p̂∗ denotes the computed solution of each method and p̂best is the solution with the
smallest objective value among the three algorithms. The reason the accuracy measure
is always positive in the plots below is that the algorithm that achieves p̂best varies from
problem to problem, and we report the average of 20 runs.

18

When B = I and A is sparse We first set B = I and let A be a random sparse matrix
generated by the Matlab command sprandsym(n,density) with density=1e-4, which
means the number of nonzero elements in A is about 10−4n. This construction follows the
experiments in [8]. The vector g is randomly generated by randn(n,1). Throughout we
take γ = 1, unless otherwise specified.

We vary the matrix size n in [103, 105]. With the eigensolvers available today, when A,B
are sparse, we expect the algorithm to be applicable to very large problems.

Figure 1 (left) shows the runtime in seconds. We see that our algorithm is significantly
faster than the rest. The result indicates the method scales somewhere between O(n) and
O(n2). Recalling Section 6.1, this makes our non-iterative algorithm preferable, because the
iterative algorithms often need to solve more than 10 eigenproblems of half the size.

The right plot of Figure 1, which shows the difference in the objective values, illustrates
that our algorithm obtained solutions within about 10−15 of the optimal for every problem,
which are accurate enough to be regarded as exact solutions in finite precision arithmetic.

10
3

10
4

10
5

10
−2

10
−1

10
0

matrix size

FRW
RSS
GEP

10
3

10
4

10
5

10
−15

10
−10

10
−5

10
0

matrix size

FRW
RSS
GEP

Figure 1: Runtime (left) and accuracy (right) when B = I and A is sparse.

When B = I and A is dense We next examine the dense case. We generate A by
forming n random real numbers µi, then generating a random orthogonal matrix Q and
setting A = Q>diag(µi)Q. Clearly we are limited to much smaller matrix size n than in the
previous sparse case; here we take n ≤ 5000.

The results are shown in Figure 2. The accuracy behaved much the same as in the dense
case. For the speed, the difference is more benign than in the sparse case. We can explain
this qualitatively as follows: in the dense case all the algorithms require O(n3) operations,
and recalling the discussion in Section 6, our algorithm is expected to be fast especially when
the generalized eigenproblem can be solved efficiently. In the sparse case its cost is often
much less than O(n3) as we saw above, and this is why we achieve significant speedup in
Figure 1. Nonetheless, our algorithm has comparable efficiency with other approaches even
in the dense case.

19

10
2

10
3

10
−3

10
−2

10
−1

10
0

matrix size

FRW
RSS
GEP

10
2

10
3

10
−15

10
−10

10
−5

10
0

matrix size

FRW
RSS
GEP

Figure 2: Runtime (left) and accuracy (right) when B = I and A is dense.

When B � 0 and A is sparse We now examine problems with B 6= I. We let A,B be
tridiagonal matrices (the Hessian A is tridiagonal if the objective function in the nonlinear
optimization problem depends only on adjacent variables xi−1, xi, xi+1), defined as

A = sprandsym(n, density), B = tridiag(1, 3, 1), (28)

and g is a random vector as before.
Note that the other approaches are not directly applicable when B 6= I; previously using

a change-of-variables has been suggested. Therefore to invoke these algorithms we first
compute the Cholesky factorization B = LL>, then form L−1AL−> and apply the codes to
A ← L−1AL−>, g ← L−1g and B ← I. Our algorithm does not require this; it handles the
B 6= I case exactly the same way as when B = I.

Figure 3 shows the results. In this example the Cholesky factorization and triangular
substitution are taking the dominant runtime of the other algorithms, and the matrix A after
the transformation is dense; these are why ours achieves a speedup of a very large factor.
As before, our algorithm consistently produced accurate solutions.

10
2

10
3

10
−2

10
−1

matrix size

FRW
RSS
GEP

10
2

10
3

10
−15

10
−10

10
−5

10
0

matrix size

FRW
RSS
GEP

Figure 3: Runtime (left) and accuracy (right) when B 6= I, B � 0 and A are sparse.

20

Hard case We now turn to the hard case. As discussed in Section 4, the algorithm needs
special treatments; just like in other algorithms. We also introduced a solution in such cases
as described in Section 4.1.

We let B = I and A be a random sparse matrix generated by the Matlab command
sprandsym(n,1e-4). To generate a ”hard case”, we first set g to be a random vector and
calculate the largest eigenvalue λ∗ of the pencil A+ λB with a corresponding eigenvector v.
We then update g as g ← g − (v>g/||v||2)v. To enforce the hard case we set γ to be large:
γ = 103. Indeed we verified that all the examples thus generated belonged to the hard case.

We set the convergence criteria of the CG method as follows: the relative residual is less
than 10−8, or the maximum allowed number of iterations 500 is reached.

10
3

10
4

10
5

10
−2

10
0

10
2

matrix size

FRW
RSS
GEP

10
3

10
4

10
5

10
−15

10
−10

10
−5

10
0

matrix size

FRW
RSS
GEP

Figure 4: Runtime (left) and accuracy (right) for hard case when B = I and A is sparse.

Observe that our algorithm is still the fastest, and gave the most reliable solutions.

Problems whose exact solution is known We can generate a TRS problem in the hard
case with known exact solutions as follows: first, set

A = diag(−1, 2, 3, · · · , n), g = (0,−3αγ, 0, · · · , 0)>,

B = I, γ = 1 and α = 10−2. In this case, the optimal value of TRS (1) is m = −(1+3α2)γ2/2.
We then generate an orthogonal matrix Q by the Matlab command qr(rand(n)) and
update A, g as A← QAQ>, g ← Qg, which does not change the optimal objective value.

This way we are able to examine the actual error of the algorithms, and have confirmed
that our algorithm indeed computes good approximants to exact solutions, and the previous
accuracy plots give reliable estimates for the errors.

Summary of experiments

The results of our experiments can be summarized as follows.

• Algorithm 5.1 based on one generalized eigenproblem is consistently reliable and its
accuracy is often significantly better than other methods.

21

• Algorithm 5.1 is faster, especially when the matrices are sparse and/or B 6= I.

8 Discussion

As described in [16], the real eigenvalues of M(λ) correspond to the KKT points for the
TRS, and as discussed above, the largest eigenvalue provides a solution that minimizes the
objective function g>p + 1

2
p>Ap. In fact, more can be said: as shown in [6], the objective

function value is an increasing function of λ, so we can also maximize the objective function
by finding the smallest real eigenvalue of M(λ). Further analysis of the KKT points is given
in [17]. The fact that we can both maximize and minimize the objective function is perhaps
unsurprising as we impose no positive definiteness assumption on A, so the objective function
is nonconvex and there is no fundamental difference between minimizing and maximizing it.

Future directions include performance benchmarking on parallel systems and comparing
with recent algorithms such as [13, 14, 15], and also in the context of solving nonlinear opti-
mization problems [12]. Also worth considering are extending the eigenvalue-based approach
to solve other trust-region type problems [4, 24], and dealing with a general QCQP with one
constraint. We note that a related algorithm for QCQP with two constraints is developed
in [28], which also mentions in its appendix an algorithm for one constraint. However, that
algorithm involves the computation of all the eigenvalues, and thus has O(n3) complexity in
all cases. It remains open to develop a more efficient algorithm when e.g. the matrices are
sparse.

Acknowledgement

We thank Nick Gould for comments on an early draft and providing references.

References

[1] M. S. Apostolopoulou, D. G. Sotiropoulos, C. A. Botsaris, and P. Pintelas. A practical
method for solving large-scale TRS. Optimization Letters, 5(2):207–227, 2011.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia,
PA, USA, 2000.

[3] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[4] S. Burer and K. M. Anstreicher. Second-order-cone constraints for extended trust-region
subproblems. SIAM J. Optim., 23(1):432–451, 2013.

[5] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust Region Methods, volume 1. SIAM,
Philadelphia, PA, USA, 2000.

22

[6] G. E. Forsythe and G. H. Golub. On the stationary values of a second-degree polynomial
on the unit sphere. J. SIAM, 13(4):1050–1068, 1965.

[7] C. Fortin and H. Wolkowicz. The trust region subproblem and semidefinite program-
ming. Optim. Method. Softw., 19(1):41–67, 2004.

[8] C. Fortin and H. Wolkowicz. Trust region subroutine algorithm, algorithm with
links to documentation, 2010. http://www.math.uwaterloo.ca/~hwolkowi/henry/

software/trustreg.d.

[9] W. Gander, G. H. Golub, and U. von Matt. A constrained eigenvalue problem. Linear
Algebra Appl., 114:815–839, 1989.

[10] D. M. Gay. Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comp.,
2(2):186–197, 1981.

[11] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, 4th edition, 2012.

[12] N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint. Solving the trust-region subproblem
using the Lanczos method. SIAM J. Optim., 9(2):504–525, 1999.

[13] N. I. M. Gould, D. Orban, and P. L. Toint. GALAHAD, a library of thread-safe fortran
90 packages for large-scale nonlinear optimization. ACM Trans. Math. Soft., 29(4):353–
372, 2003.

[14] N. I. M. Gould, D. P. Robinson, and H. S. Thorne. On solving trust-region and other
regularised subproblems in optimization. Math. Prog. Comp., 2(1):21–57, 2010.

[15] E. Hazan and T. Koren. A linear-time algorithm for trust region problems.
arXiv:1401.6757, 2014.

[16] S. Iwata, Y. Nakatsukasa, and A. Takeda. Global optimization methods for extended
Fisher discriminant analysis. In Proc. Seventh AISTATS, JMLR W&CP 33, pages
411–419, 2014.

[17] S. Lucidi, L. Palagi, and M. Roma. On some properties of quadratic programs with a
convex quadratic constraint. SIAM J. Optim., 8(1):105–122, 1998.

[18] J. M. Mart́ınez. Local minimizers of quadratic functions on Euclidean balls and spheres.
SIAM J. Optim., 4(1):159–176, 1994.

[19] J. J. Moré. Recent developments in algorithms and software for trust region methods.
Mathematical Programming: the State of the Art, Springer, 1983.

[20] J. J. Moré. Generalizations of the trust region problem. Optim. Method. Softw., 2(3-
4):189–209, 1993.

23

[21] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM J. Sci. Stat.
Comp., 4(3):553–572, 1983.

[22] J. Nocedal and S. J. Wright. Numerical Optimization. Springer New York, 2nd edition,
1999.

[23] C. C. Paige, B. N. Parlett, and H. A. Van der Vorst. Approximate solutions and
eigenvalue bounds from Krylov subspaces. Numer. Lin. Alg. Appl., 2(2):115–133, 1995.

[24] T. K. Pong and H. Wolkowicz. The generalized trust region subproblem. Comput.
Optim. Appl., 58(2):273–322, 2014.

[25] F. Rendl and H. Wolkowicz. A semidefinite framework for trust region subproblems
with applications to large scale minimization. Math. Prog., 77(1):273–299, 1997.

[26] M. Rojas, S. A. Santos, and D. C. Sorensen. A new matrix-free algorithm for the
large-scale trust-region subproblem. SIAM J. Optim., 11(3):611–646, 2001.

[27] M. Rojas, S. A. Santos, and D. C. Sorensen. Algorithm 873: LSTRS: MATLAB software
for large-scale trust-region subproblems and regularization. ACM Trans. Math. Soft.,
34(2):11:1–11:28, 2008.

[28] S. Sakaue, Y. Nakatsukasa, A. Takeda, and S. Iwata. A polynomial-time algorithm
for nonconvex quadratic optimization with two quadratic constraints. METR 2015-03,
University of Tokyo, January 2015.

[29] D. C. Sorensen. Minimization of a large-scale quadratic function subject to a spherical
constraint. SIAM J. Optim., 7(1):141–161, 1997.

[30] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory (Computer Science and
Scientific Computing). Academic Press, 1990.

[31] P. D. Tao and L. T. H. An. A DC optimization algorithm for solving the trust-region
subproblem. SIAM J. Optim., 8(2):476–505, 1998.

24

