
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Finding a Low-Rank Basis in a Matrix
Subspace

Yuji NAKATSUKASA, Tasuku SOMA and
André USCHMAJEW

METR 2015–16 April 2015

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Finding a low-rank basis in a matrix subspace

Yuji Nakatsukasa · Tasuku Soma ·
André Uschmajew

Received: date / Accepted: date

Abstract For a given matrix subspace, how can we find a basis that consists
of low-rank matrices? This is a generalization of the sparse vector problem. It
turns out that when the subspace is spanned by rank-1 matrices, the matrices
can be obtained by the tensor CP decomposition. For the higher rank case, the
situation is not as straightforward. In this work we present an algorithm based
on a greedy process applicable to higher rank problems. Our algorithm first
estimates the minimum rank by applying soft singular value thresholding to
a nuclear norm relaxation, and then computes a matrix with that rank using
the method of alternating projections. We provide local convergence results,
and compare our algorithm with several alternative approaches. Applications
include data compression beyond the classical truncated SVD, computing
accurate eigenvectors of a near-multiple eigenvalue, image separation and
graph Laplacian eigenproblems.

Keywords low-rank matrix subspace · `1 relaxation · alternating projections ·
singular value thresholding · matrix compression

1 Introduction

Finding a succinct representation of a given object has been one of the central
tasks in the computer and data sciences. For vectors, sparsity (i.e., `0-norm) is

Y. Nakatsukasa · T. Soma
Graduate School of Information Science & Technology,
the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
E-mail: nakatsukasa@mist.i.u-tokyo.ac.jp

T. Soma
E-mail: tasuku soma@mist.i.u-tokyo.ac.jp

A. Uschmajew
Hausdorff Center for Mathematics & Institute for Numerical Simulation
University of Bonn, 53115 Bonn, Germany
E-mail: uschmajew@ins.uni-bonn.de

2 Yuji Nakatsukasa et al.

a common measure of succinctness. For example, exploiting prior knowledge
on sparsity of a model is now considered crucial in machine learning and
statistics [7]. Although the naive penalization of the `0-norm easily makes the
problem intractable, it turns out that exploiting the `1-norm as a regularizer
yields a tractable convex problem and performs very well in many settings [9,
11]. This phenomenon is strongly related to compressed sensing, which shows
under reasonable assumptions that the `1-recovery almost always recovers a
sparse solution for an undetermined linear system. Since matrices are more
complex objects, one may consider different criteria on succinctness for matrices,
namely the rank. Interestingly, a variety of concepts from sparse vector recovery
carry over to low-rank matrix recovery, for which the nuclear norm plays a
role analogous to the `1-norm for sparse vectors [20,21]. The nuclear norm
convex relaxation has demonstrated its theoretical and practical usefulness in
matrix completion and other low-rank optimization tasks, and is nowadays
accompanied by an endless array of optimization algorithms; see, e.g., [2,8,10,
12,41,42,50], and [51] for a general overview.

Recently, the sparse vector problem has been studied by several authors [5,
25,48,53]. In the sparse vector problem, we are given a linear subspace S in
Rn, and the task is to find the sparsest nonzero vector in S. The celebrated
results for `1-regularization are not directly applicable, and the sparse vector
problem is less understood. The difficulty arises from the nonzero constraints; a
natural `1-relaxation only yields the trivial zero vector. Thus the sparse vector
problem is nonconvex in its own nature. A common approach is based on the
hypercontractivity, that is, optimizing the ratio of two different norms. An
algorithm that optimizes the `1/`∞-ratio is studied in [25,53]. Optimization of
the `4/`2-ratio was recently considered by Barak, Kelner, and Steurer [5]. A
closely related problem is the sparse basis problem, in which we want to find a
basis of S that minimizes the sum of the `0-norms. In addition to imposing the
sparsity of vectors as in the sparse vector problem, a new difficulty arises of
controlling the linear independence of basis vectors in the sparse basis problem.

In this paper, we consider the following problem, which we call the low-rank
basis problem. Let M be a matrix subspace in Rm×n of dimension d. The goal
is to

minimize rank(X1) + · · ·+ rank(Xd)

subject to span{X1, . . . , Xd} =M.
(1)

The low-rank basis problem generalizes the sparse basis problem. To see this,
it suffices to identify Rn with the subspace of diagonal matrices in Rn×n. As a
consequence, any result on the low-rank basis problem (1) (including relaxations
and algorithms) will apply to the sparse basis problem with appropriate changes
in notation (matrix nuclear norm for diagonal matrices becomes 1-norm etc.).
Conversely, some known results on the sparse basis problem may generalize
to the low-rank basis problem (1). An obvious but important example of this
logic concerns the complexity of the problem: It has been shown in Coleman
and Pothen [14] that even if one is given the minimum possible value for
‖x1‖0 + · · ·+ ‖xd‖0 in the sparse basis problem, it is NP-hard to find a sparse
basis. Thus the low-rank basis problem (1) is also NP-hard in general.

Finding a low-rank basis in a matrix subspace 3

A closely related (somewhat simpler) problem is the following low-rank
matrix problem:

minimize rank(X)

subject to X ∈M, X 6= O.
(2)

This problem is a matrix counterpart of the sparse vector problem. Again, (2)
is NP-hard [14], even if M is spanned by diagonal matrices. Note that our
problem (2) does not fall into the framework of Cai, Candés, and Shen [8], in
which algorithms have been developed for finding a low-rank matrix X in an
affine linear space described as A(X) = b (matrix completion problems are of
that type). In our case we have b = 0, but we are of course not looking for
the zero matrix, which is a trivial solution for (2). This requires an additional
norm constraint, and modifications to the algorithms in [8].

1.1 Our contribution

We propose an alternating direction algorithm for the low-rank basis problem
that does (i) rank estimation, and (ii) obtains a low-rank basis. We also provide
convergence analysis for our algorithm. Our algorithm is based on a greedy
process, whose use we fully justify. In each greedy step we solve the low-rank
matrix problem (2) in a certain subspace, and hence our algorithm can also
solve the low-rank matrix problem.

Our methods are iterative, and switch between the search of a good low-rank
matrix and the projection on the admissible set. The second step typically
increases the rank again. The solution would be a fixed point of such a procedure.
We use two phases with different strategies for the first step, i.e., finding a
low-rank matrix.

In the first phase we find new low-rank guesses by applying the singular value
shrinkage operator (called soft thresholding) considered in Cai, Candés, and
Shen [8]. In combination with the subspace projection, this results in the matrix
analog of the alternating direction algorithm proposed very recently by Qu, Sun,
and Wright [48] for finding sparse vectors in a subspace. An additional difficulty,
however, arises from the fact that we are required to find more than one linearly
independent low-rank matrices in the subspace. Also note that our algorithm
adaptively changes the thresholding parameter during its execution, which
seems necessary for our matrix problem, although [48] fixes the thresholding
parameter before starting their algorithm. In our experiments it turns out that
the use of the shrinkage operator clearly outperforms alternative operations,
e.g., truncating singular values below some threshold, in that it finds matrices
with correct rank quite often, but that the distance to the subspace M is too
large. This is reasonable as the only fixed points of soft thresholding operator
are either zero, or, when combined with normalization, matrices with identical
nonzero singular values, e.g., rank-one matrices.

As we will treat the subspace constraint as non-negotiable, we will need
further improvement. We replace the shrinkage operator in the second phase

4 Yuji Nakatsukasa et al.

by best approximation of the estimated rank (which we call hard thresholding).
Combined with the projection onto the admissible set M, this then delivers
low-rank matrices in the subspace M astonishingly reliably (as we shall see,
this second phase is typically not needed when a rank-one basis exists).

Our convergence analysis in Section 4 provides further insights into the
behavior of the process, in particular the second phase.

1.2 Applications

The authors were originally motivated to consider the low-rank basis problem
by applications in discrete mathematics [24,34,43]. It can be useful also in
various other settings, some of which we outline below.

Compression of SVD matrices

Low-rank matrices arise frequently in applications and a low-rank (approximate)
decomposition such as the SVD is often used to reduce the storage to represent
the matrix A ∈ Rm×n: A ≈ UΣV T . Here Σ ∈ Rr×r where r is the rank. The
memory requirement for storing the whole A is clearly mn, whereas U,Σ, V
altogether require (m+ n)r memory (we can dismiss Σ by merging it into V).
Hence, the storage reduction factor is

(m+ n)r

mn
, (3)

so if the rank r is much smaller than min(m,n) then we achieve significant
memory savings.

This is all well known, but here we go one step further and try to reduce
the memory cost for representing the matrices U, V . Note that the same idea
of using a low-rank representation is useless here, as these matrices have
orthonormal columns and hence the singular values are all ones.

The idea is the following: if we matricize the columns of U (or V), those
matrices might have a low-rank structure. More commonly, there might exist
a nonsingular matrix W ∈ Rr×r such that the columns of UW have low-rank
structure when matricized. We shall see that many orthogonal matrices that
arise in practice have this property. The question is, then, how do we find such
W and the resulting compressed representation of U? This problem boils down
to the low-rank basis problem, in which M is the linear subspace spanned by
the matricized columns of U .

To simplify the discussion here we assume m = s2 for an integer s (otherwise,
e.g. when m is prime, a remedy is to pad zeros to the bottom). Once we find an

appropriate W for U ∈ Rs2×r, we represent the matricization of each column
as a low-rank (rank r̂) matrix Ur̂Σ̂Vr̂, which is represented using 2sr̂ memory,
totalling to 2srr̂ + r2 where r2 is for W . Since the original U requires s2r
memory with r � s2, this can significantly reduce the storage if r̂ � r.

Finding a low-rank basis in a matrix subspace 5

When this is employed for both U and V the overall storage reduction for
representing A becomes

4srr̂ + r2

mn
. (4)

For example, when m = n, r = δm and r̂ = δ̂s for δ, δ � 1 this factor is

4δδ̂ + δ2, (5)

achieving a “squared” reduction factor compared with (3), which is about 2δ.

Of course, we can further reduce the memory by recursively matricizing the
columns of Ur̂, as long as it results in data compression.

Computing and compressing an exact eigenvector of a multiple eigenvalue

Eigenvectors of a multiple eigenvalue are not unique, and those corresponding
to near-multiple eigenvalues generally cannot be computed to high accuracy.
We shall show that it is nonetheless sometimes possible to compute exact
eigenvectors of near-multiple eigenvalues, if additional property is present that
the eigenvectors are low-rank when matricized. This comes with the additional
benefit of storage reduction, as discussed above. We describe more details and
experiments in Section 5.4.

The rank-one basis problem

An interesting and important subcase of the low-rank basis problem is the
rank-one basis problem; in this problem, we are further promised that a given
subspace M is spanned by rank-one matrices. The rank-one basis problem has
been studied by several authors [24,34] in the area of theoretical computer
science and discrete mathematics. Gurvits [24] first considered the rank-one
basis problem in the context of max-rank matrix completion [27,28], and he
conjectured the rank-one basis problem is NP-hard.

Nevertheless, the task might be practically feasible within some numerical
tolerance via nonlinear optimization. For example, the rank-one basis problem
has an interesting connection to tensor decomposition: finding a rank-one
basis for a d-dimensional matrix subspace amounts to finding a CP decomposi-
tion (e.g., [36, Sec. 3]) of representation rank d for the third-order tensor with
slices Mk. For the latter task very efficient nonconvex optimization algorithm
like alternating least squares exist, which, however, typically come without
any convergence certificates. An alternative, less cheap, but exact method
uses simultaneous diagonalization, which are applicable when d ≤ min(m,n).
Applying these methods will often be successful when a rank-one basis exists,
but fails if not. This tensor approach seems to have been overseen in the discrete
optimization community so far, and we explain it in Appendix A.

6 Yuji Nakatsukasa et al.

1.3 Outline and notation

The rest of this paper is organized as follows. Section 2 proves that the low-rank
basis problem can be solved by a greedy approach. In Section 3, we present
our algorithm for the low-rank basis problem. We then analyze convergence of
phase II in our algorithm in Section 4. Experimental evaluation of our algorithm
is illustrated in Section 5. For the special case of the rank-one basis problem,
we describe the alternative approach via tensor decomposition in Appendix A.

Notation We summarize our notation: m× n is the size of the matrices in M;
d is the dimension of the subspace M⊆ Rm×n; r will denote a rank. We use
the notation mat(x) ∈ Rm×n for the matricization of a vector x ∈ Rmn, and
vec(X) ∈ Rmn denotes the inverse operation for X ∈ Rm×n.

2 The abstract greedy algorithm for the low-rank basis problem

As already mentioned, the low-rank basis problem (1) for a matrix subspace
M is a generalization of the sparse basis problem for subspaces of Rn. In [14] it
was shown that a solution to the sparse basis problem can be in principle found
using a greedy strategy. The same is true for (1), as we will show next. The
corresponding greedy algorithm is given as Algorithm 1. Indeed, this algorithm
can be understood as a greedy algorithm for an infinite matroid [47] of finite
rank. We can prove that Algorithm 1 finds a minimizer of (1), by adapting a
standard proof for greedy algorithms on finite matroids. Note that this fact
does not imply that (1) is tractable, since finding X∗` in the algorithm is a
nontrivial task.

Algorithm 1: Greedy meta-algorithm for computing a low-rank basis

Input: Subspace M⊆ Rm×n of dimension d.

Output: Basis B = {X∗1 , . . . , X∗d} of M.

1 Initialize B = ∅.
2 for ` = 1, . . . , d do

3 Find X∗` ∈M of lowest possible rank such that B ∪ {X∗` } is linearly independent.

4 B ← B ∪ {X∗` }
5 end

Lemma 1 Let X∗1 , . . . , X
∗
d denote matrices constructed by the greedy Algo-

rithm 1. Then for any 1 ≤ ` ≤ d and linearly independent set {X1, . . . , X`} ⊆
M with rank(X1) ≤ · · · ≤ rank(X`), it holds

rank(Xi) ≥ rank(X∗i) for i = 1, . . . , `.

Finding a low-rank basis in a matrix subspace 7

Proof The proof is by induction. By the greedy property, X∗1 is a (nonzero)
matrix of minimal possible rank inM, i.e., rank(X∗1) ≤ rank(X1). For ` > 1, if
rank(X`) < rank(X∗`), then rank(Xi) < rank(X∗`) for all i = 1, . . . , `. But since
one Xi must be linearly independent from X∗1 , . . . , X

∗
`−1, this would contradict

the choice of X∗` in the greedy algorithm. ut

We say a linearly independent set B` = {X̂1, . . . , X̂`} ⊆ M is of minimal
rank, if

∑̀
i=1

rank(X̂i) = min

{∑̀
i=1

rank(Xi) : {X1, . . . , X`} ⊆ M is linearly independent

}
.

The following theorem is immediate from the previous lemma.

Theorem 2 Let X∗1 , . . . , X
∗
d denote matrices constructed by the greedy Algo-

rithm 1, and let B` = {X1, . . . , X`} ⊆ M be a linearly independent set with
rank(X1) ≤ · · · ≤ rank(X`). Then B` is of minimal rank if (and hence only if)

rank(Xi) = rank(X∗i) for i = 1, . . . , `.

In particular, {X∗1 , . . . , X∗` } is of minimal rank.

A remarkable corollary is that the ranks of the elements in a basis of lowest
rank are essentially unique.

Corollary 3 The output B = {X∗1 , . . . , X∗d} of Algorithm 1 solves the low-rank
basis problem (1), that is, provides a basis for M of lowest possible rank. Any
other basis of lowest rank takes the same ranks rank(X∗`) up to permutation.

It is worth mentioning that even for the analogous sparse basis problem our
results are stronger than Theorem 2.1 in [14] (which only states that B will
be a sparsest basis). Moreover, our proof is different and considerably simpler.
We are unaware whether the above results on the particular low-rank basis
problem have been observed previously in this simple way.

3 Finding low-rank bases via thresholding and projection

In this main section of this article, we propose an algorithm that tries to
execute the abstract greedy Algorithm 1 using iterative methods on relaxed
formulations.

The greedy algorithm suggests finding the matrices X1, . . . , Xd one after
another, during which we monitor the linear dependence when computing
X` with respect to the previously computed X1, . . . , X`−1, and apply some
restart procedure when necessary. Alternatively, one can try to find low-rank
matrices X1, . . . , Xd ∈M in parallel, monitor their linear independence, and
reinitialize the ones with largest current ranks in case the basis becomes close
to linearly dependent. In both cases, the linear independence constraint, which

8 Yuji Nakatsukasa et al.

substantially increases the hardness of the problem, is in principle ignored as
long as possible, and shifted into a restart procedure. Therefore, we mainly
focus on iterative methods to solve the problem (2) of finding a single low-rank
matrix X in M. The complete procedure for the low-rank basis problem will
be given afterwards in Section 3.3.

The first algorithm we consider for solving the low-rank basis problem (2)
alternates between soft singular value thresholding (shrinkage) and projection
onto the subspaceM, and will be presented in the next subsection. During our
work on this paper, an analogous method for the corresponding sparse vector
problem of minimizing ‖x‖0 over x ∈ S, ‖x‖2 = 1 has been independently
derived and called a “nonconvex alternating direction method (ADM)” for
a modified problem in the very recent publication [48]. This reference also
contains a motivation for using the Euclidean norm for normalization. We have
decided to adopt this derivation, but will use the terminology block coordinate
descent (BCD) instead, which seems more in line with standard terminology
regarding the actual update rules. However, as it turns out, this algorithm alone
indeed provides good rank estimators, but very poor subspace representations.
This is very understandable when the target rank is higher than one, since
the singular value shrinkage operator explained below can have only rank-one
matrices as fixed points. Therefore, we turn to a second phase that uses hard
singular value thresholding (rank truncation) for further improvement, as will
be explained in Section 3.2.

3.1 Phase I: Estimating a single low-rank matrix via soft thresholding

The starting point is a further relaxation of (2): the rank function, that is, the
number of nonzero singular values, is replaced by the matrix nuclear norm
‖X‖∗, which equals the sum of singular values. This leads to the problem

minimize ‖X‖∗
subject to X ∈M, and ‖X‖F = 1.

(6)

The relaxation from rank to nuclear norm can be motivated by the fact that
in case a rank-one solution exists, it will certainly be recovered by solving (6).
For higher ranks, it is less clear under which circumstances the nuclear norm
provides an exact surrogate for the rank function under the given spherical
constraint. For an example of a space M spanned by matrices of rank at most
r for which the minimum in (6) is attained at a matrix of rank larger than r,
consider M1 = diag(1,−

√
ε,−
√
ε, 0, 0, 0, 0), M2 = diag(0, 1, 0,

√
ε,
√
ε, 0, 0), and

M3 = diag(0, 0, 1, 0, 0,
√
ε,
√
ε). Every linear combination involving at least two

matrices has at least rank four. So the Mi are the only matrices in their span of
rank at most three. After normalization w.r.t. the Frobenius norm, their nuclear
norm equals ‖Mi‖∗/‖Mi‖F = (1 + 2

√
ε)/
√

1 + 2ε = 1 + 2
√
ε+O(ε). But for ε

small enough, the rank five matrix X = M1−
√
εM2−

√
εM3 = (1, 0, 0, ε, ε, ε, ε)

has a smaller nuclear norm ‖X‖∗/‖X‖F = (1 + 4ε)/
√

1 + 4ε2 = 1 + 4ε+O(ε2)
after normalization.

Finding a low-rank basis in a matrix subspace 9

Soft thresholding and block coordinate descent

Nevertheless, such counterexamples are rather contrived, and we consider (6) a
good surrogate for (2) in the generic case. The problem is still very challenging
due to the non-convex constraint. In [48] a block coordinate descent (BCD)
method has been proposed to minimize the `1-norm of a vector on an Euclidean
sphere in a subspace of Rn. As we explained above, this problem is a special
case of (6), and the algorithm can be generalized as follows.

Given a current guess X ∈M we are looking for a matrix Y of lower-rank
in a neighborhood if possible. For this task, we use the singular value shrinkage
operator Sτ [8]: letting X = UΣV T be a singular value decomposition with
Σ = diag(σ1, . . . , σrank(X)), σ1 ≥ · · · ≥ σrank(X) > 0, we choose Y as

Y = Sτ (X) = USτ (Σ)V T , Sτ (Σ) = diag(σ1 − τ, . . . , σrank(X) − τ)+, (7)

where x+ := max(x, 0) and τ > 0 is a thresholding parameter. The rank of
Y now equals the number of singular values σi larger than τ . Note that even
if the rank is not reduced the ratios of the singular values increase, since
(σi−τ)/(σj−τ) > σi/σj for all (i, j) such that τ < σj < σi. Hence a successive
application of the shift operator will eventually remove all but the dominant
singular value(s), even if the iterates are normalized in between (without in-
between normalization it of course removes all singular values). This effect is
not guaranteed when simply deleting singular values below the threshold τ
without shifting the others, as it would preserve the ratios of the remaining
singular values, and might result in no change at all if τ is too small. But even
if this hard threshold was chosen such that at least one singular value is always
removed, we found through experiments that this does not work as well in
combination with projections onto a subspace M as the soft thresholding.

The new matrix Y in (7) will typically not lie inM, nor will it be normalized
w.r.t. the Frobenius norm. Thus, introducing the orthogonal projector (w.r.t.
the Frobenius inner product) PM from Rm×n ontoM, which is available given
some basis M1, . . . ,Md of M, we consider the fixed point iteration:

Y = Sτ (X), X =
PM(Y)

‖PM(Y)‖F
. (8)

The projection PM is precomputed at the beginning and defined as MMT

(only M is stored), where M is the orthogonal factor of the thin QR decom-
position [22, Sec. 5] of the matrix [vec(M1), . . . , vec(Md)] ∈ Rmn×d, where the
(not necessarily low-rank) matrices Mi spanM. It is used in the following way:

PM(Y) = mat(MMT vec(Y)), (9)

To obtain the interpretation as BCD, we recall the fact that the shrinkage
operation provides the unique solution to the strictly convex problem

minimize
Y

τ‖Y ‖2∗ +
1

2
‖Y −X‖2F , (10)

10 Yuji Nakatsukasa et al.

see [8]. Intuitively, (10) attempts to solve (6) in a neighborhood of the current
guess X, while ignoring the constraints. The parameter τ controls the balance
between small nuclear norm and locality: the larger it is the lower rank(Y)
becomes, but Y will be farther from X. Taking τ small has the opposite effect.
The explicit form (7) quantifies this qualitative statement, as the distance
between X and Y is calculated as

‖X − Y ‖2F =
∑
σi>τ

τ2 +
∑
σi≤τ

σ2
i .

As a result, we see that the formulas (8) represent the update rules when
applying BCD to the problem

minimize
X,Y

τ‖Y ‖∗ +
1

2
‖Y −X‖2F

subject to X ∈M, and ‖X‖F = 1,

which can be seen as a penalty approach to approximately solving (6).

Algorithm with adaptive shift τ

The considerations are summarized in the following Algorithm 2. We repeat
that it is more or less analogous to the algorithm in [48]. However, a new
feature is that the parameter τ is chosen adaptively in every iteration.

Algorithm 2: Phase I – Rank estimation
Input: Orthogonal projection PM on M; scalars δ,maxit, changeit > 0; initial guess

X ∈M, initialize r = n.

Output: X, Y , and r, where X = PM(Y) ∈M, and Y is a matrix of low rank r

which is close to or in M.

1 for it = 1, . . . ,maxit do

2 X = UΣV T // singular value decomposition

3 τ = δ/
√

rank(X) // set singular value shift

4 Y ← Sτ (X) // shrinkage

5 r ← min(r, rank(Y)) // new rank estimate

6 X ← PM(Y) // projection onto subspace

7 X ← X/‖X‖F // normalization

8 Terminate if r has not changed for changeit iterations.

9 end

The choice of the singular value shift τ in line 3 is made to achieve faster
progress, and motivated by the fact that a matrix X of Frobenius norm 1
has at least one singular value below and one above 1/

√
rank(X), unless all

singular values are the same. Therefore, the choice of τ = 1/
√

rank(X) would
always remove at least one singular value, but can also remove all but the

Finding a low-rank basis in a matrix subspace 11

largest singular value in case the latter is very dominant. However, since the
sought low-rank matrix may happen to have almost identical singular values,
it is important to choose a less aggressive shift by multiplying with 0 < δ < 1.
The value δ = 0.1 worked well in our experiments. We should note that the
value rank(X) is available at this point in the algorithm since an SVD of X has
been computed in the previous step anyway. In fact, in practice we used the
following slightly modified shift strategy: one first removes all singular values
of X below some threshold regarded as noise to obtain X̃ of rank s, and then
chooses τ = δ‖X̃‖F /

√
s, to achieve faster progress.

Of course, one can think of similar adaptive strategies such as τ ∼ ‖X‖∗/ rank(X)
or τ ∼ σrank(X). The choice τ = σ2 is equivalent to best rank-one approxima-
tion.

Choice of the initial guess Let us remark on the choice of the initial guess. As
we shall see later and can be easily guessed, with randomly generated initial
X ∈M, the output r is not always the rank of the lowest-rank matrix in M.
A simple way to improve the rank estimate is to repeat Phase I with several
initial matrices, and adopt the one that results in the smallest rank. Another
“good” initial guess seems to be the analogue of that suggested in [48], which in
our context is to take vT to be a row vector of a matrix of the current subspace
and take the initial guess to be X = PMv. A natural strategy is to take vT

to be several rows with the largest norms. This worked fine but not evidently
better than random initial guesses, and we therefore leave the issue of a good
initial guess an open problem.

The use as a rank estimator

In our experiments we observed that Algorithm 2 alone is often not capable of
finding a low-rank matrix in the subspace. Typically the two subsequences for
Y and X in (8) produce two different numerical limits: Y tends to a low-rank
matrix which is close to, but not in the subspace M; by contrast, the X
are always in the subspace, but are typically not observed to converge to a
low-rank matrix. In fact, we can only have X = Y in (8) for rank-one matrices.
Therefore, in the general case, further improvement will be necessary (phase II
below). However, as it turns out, the rank found by the sequence of Y provides
a surprisingly good estimate also for the sought minimal rank in the subspace.
Moreover, the obtained X also provides the starting guess X = PM for further
improvement in the second phase, described next. An analogous statement
was proven in [49] for the sparse vector problem (which can be regarded as a
special case of ours), but the analysis there assumes the existence of a sparse
vector in a subspace of otherwise random vectors; here we do not have such (or
related) assumptions. In Section 4.1 we give some qualitative explanation for
why we expect this process to obtain the correct rank, but we leave a detailed
and rigorous analysis of Algorithm 2 an open problem and call this preliminary
procedure “Rank estimation”.

12 Yuji Nakatsukasa et al.

3.2 Phase II: Extracting matrix of estimated rank via alternating projections
and hard thresholding

We now turn to the second phase, in which we find the matrix X ∈M such
that rank(X) = r, the output rank of Phase I.

Alternating projections

In Phase II of our algorithm we assume that we know a rank r such that M
contains a matrix of rank at most r. To find that matrix, we use the method
of alternating projection between the Euclidean (Frobenius) unit sphere in the
subspace M and the closed cone of matrices of rank at most r. The metric
projection (in Frobenius norm) on this cone is given by the singular value
truncation operator Tr defined as

Tr(X) = UTr(Σ)V T , Tr(Σ) = diag(σ1, . . . , σr, 0, . . . , 0),

where X = UΣV T is an SVD of X with Σ = diag(σ1, . . . , σmin(m,n)). The
method of alternating projections hence reads

Y = Tr(X), X =
PM(Y)

‖PM(Y)‖F
. (11)

Conceptually, this iteration is the same as (8) with the soft thresholding
operator Sτ replaced by the hard thresholding operator Tr. Alternatively, (11)
can be interpreted as employing BCD for the problem

minimize
X,Y

‖Y −X‖F

subject to X ∈M, ‖X‖F = 1, and rank(Y) ≤ r.

As a result, we obtain Algorithm 3.

Algorithm 3: Phase II – Alternating projections
Input: Orthogonal projection PM on M; rank r ≥ 1; scalars maxit, tol > 0; initial

guess X ∈M.
Output: X, Y , where X = PM(Y) ∈M, and Y is a matrix of rank r, and hopefully

‖X − Y ‖F ≤ tol.
1 while ‖X − Y ‖F > tol and it ≤ maxit do
2 X = UΣV T // singular value decomposition

3 Y ← Tr(X) // best rank-r approximation

4 X ← PM(Y) // projection onto subspace

5 X ← X/‖X‖F // normalization

6 end

The authors of the aforementioned reference [48], who proposed Algorithm 2
for the sparse vector problem, also suggest a second phase (called “rounding”),

Finding a low-rank basis in a matrix subspace 13

which is, however, vastly different from our Algorithm 3. It is based on linear
programming and its natural matrix analogue would be to solve

minimize ‖X‖∗
subject to X ∈M, and tr(X̃TX) = 1.

(12)

Here X̃ is the final matrix X from Algorithm 2. In [48,49] it is shown for the
vector case that if X̃ is sufficiently close to a global solution of (6) then we can
recover it exactly by solving (12).

Comparison with a convex optimization solver

Note that unlike our original problem (1) or its nuclear norm relaxation (6), (12)
is a convex optimization problem, since the constraints are now the linear
constraint tr(X̃TX) = 1 along with the restriction in the subspace X ∈
M. Nuclear norm minimization under linear constraints has been intensively
considered in the literature, see [8,51] and references therein for seminal work.
A natural approach is to attempt to solve (12) by some convex optimization
solver.

In view of this, we conduct experiments to compare our algorithm with one
where Phase II is replaced by the cvx optimization code [23]. For the test we
used the default tolerance parameters in cvx. We vary n while taking m = n
and generated the matrix subspace M so that the exact ranks are all equal
to five. Here and throughout, the numerical experiments were carried out in
MATLAB version R2014a on a desktop machine with an Intel Core i7 processor
and 16GB RAM.

The runtime and accuracy are shown in Table 1. Here the accuracy is mea-
sured as follows: letting X̂i for i = 1, . . . , d be the computed rank-1 matrices,
we form the mn × d matrix X̂ = [vec(X̂1), . . . , vec(X̂d)], and compute the
error as the subspace angle [22, Sec. 6.4.3] between X̂ and the exact subspace
[vec(M1), . . . , vec(Md)]. Observe that while both algorithms provide (approxi-
mate) desired solutions, Algorithm 5 is more accurate, and much faster with
the difference in speed increasing rapidly with the matrix size.

Table 1: Comparison between Alg. 5 and Phase II replaced with cvx.

(a) Runtime(s).

n 20 30 40 50
Alg. 5 1.4 2.21 3.38 4.97
cvx 28.2 186 866 2960

(b) Error

n 20 30 40 50
Alg. 5 2.9e-15 8.0e-15 9.5e-15 2.1e-14
cvx 6.4e-09 5.2e-10 5.7e-10 2.8e-10

Another approach to solving (12) is Uzawa’s algorithm as described in [8].
However, our experiments suggest that Uzawa’s algorithm gives poor accuracy
(in the order of magnitude 10−4), especially when the rank is not one.

14 Yuji Nakatsukasa et al.

In view of these observations, in what follows we do not consider a general-
purpose solver for convex optimization and focus on using Algorithm 3 for
Phase II.

3.3 A greedy algorithm for the low-rank basis problem

Restart for linear independence

Algorithms 2 and 3 combined often finds a low-rank matrix inM. To mimic the
abstract greedy Algorithm 1, this can now be done consecutively for ` = 1, . . . , d.
However, to ensure linear independence among the computed matrices Xi,
a restart procedure may be necessary. After having calculated X1, . . . , X`−1
and ensured that they are linearly independent, the orthogonal projector P`−1
onto span{X1, . . . , X`−1} is calculated. While searching for X` the norm of
X` − P`−1(X`) is monitored. If it becomes too small, it indicates (since X` is
normalized) that X` is close to linearly dependent on the previously calculated
matrices X1, . . . , X`−1. The process for X` is then randomly restarted in the
orthogonal complement of span{X1, . . . , X`−1} within M, which is the range
of Q`−1 = PM − P`−1.

Algorithm 4: Restart for linear independence
Input: Orthogonal projection Q`−1, matrix X` and tolerance restarttol > 0.

Output: Eventually replaced X`.

1 if ‖Q`−1(X`)‖F < restarttol then

2 Replace X` by a random element in the range of Q`−1.

3 X` ← X`/‖X`‖F
4 end

In our implementation, we do not apply a random matrix to Q`−1 to
obtain a random element in the range. Instead Q`−1 is stored in form of an
orthonormal basis for which random coefficients are computed.

Final algorithm and discussion

The algorithm we propose for the low-rank basis problem is outlined as Algo-
rithm 5. Some remarks are in order.

1. The algorithm is not stated very precisely as the choice of many input
parameters are not specified. We will specify at the beginning of Section 5
the values we used for numerical experiments.

2. Analogously to (9), the projections P` are in practice obtained from a QR
decomposition of [vec(X1), . . . , vec(X`)].

Finding a low-rank basis in a matrix subspace 15

Algorithm 5: Greedy algorithm for computing a low-rank basis

Input: Basis M1, . . .Md ∈ Rm×n for M, and integer restartit > 0.

Output: Low-rank basis X1, . . . , Xd of M.

1 Assemble the projection PM.

2 Set Q0 = PM.

3 for ` = 1, . . . , d do

4 Initialize normalized X` randomly in the range of Q`−1.

5 Run Algorithm 2 (Phase I) on X`, but every restartit iterations run Algorithm 4.

6 Run Algorithm 3 (Phase II) on X`, but every restartit iterations run

Algorithm 4.

7 Assemble the projection P` on span{X1, . . . , X`} (ensure linear independence),

8 Set Q` = PM − P`.
9 end

3. Of course, after Algorithm 2 one can or should check whether it is necessary
to run Algorithm 3 at all. Recall that Algorithm 2 provides a rank-estimate
r and a new matrix X` ∈ M. There is no need to run Algorithm 3 in
case rank(X`) = r at that point. However, we observed that this seems
to happen only when r = 1 (see next subsection and Section 5.1), so in
practice it is enough to check whether r = 1.

4. There is a principal difference between the greedy Algorithm 5, and the
theoretical Algorithm 1 regarding the monotonicity of the found ranks. For
instance, there is no guarantee that the first matrix X1 found by Algorithm 5
will be of lowest possible rank in M, and it will often not happen. It seems
to depend on the starting value (recall the discussion on the initial guess
in Section 3.1), and an explanation may be that the soft thresholding
procedure gets attracted by “some nearest” low-rank matrix, although a
rigorous argument remains an open problem. In any case, finding a matrix
of lowest rank is NP-hard as we have already explained in the introduction.
In conclusion, one should hence not be surprised if the algorithm produces
linearly independent matrices X1, . . . , Xd for which the sequence rank(X`)
is not monotonically increasing. Nevertheless, at least in synthetic test,
where the exact lowest-rank basis is exactly known and not too badly
conditioned, the correct ranks are often recovered, albeit in a wrong order;
see Figures 1, 3 and Section 5.1.

5. It is interesting to note that in case the restart procedure is not activated
in any of the loops (that is, the if-clause in Algorithm 4 always fails),
one would have been able to find the matrices X1, . . . , Xd independently
of each other, e.g., with a random orthogonal basis as a starting guess.
In practice, we rarely observed that restart can be omitted, although it
might still be a valuable idea to run the processes independently of each
other, and monitor the linear independence of X1, . . . , Xd as a whole. If
some of the X` start converging towards the same matrix, or become close
to linearly dependent, a modified restart procedure will be required. A
practical way for such a simultaneous restart is to use a QR decomposition

16 Yuji Nakatsukasa et al.

with pivoting. It will provide a triangular matrix with decreasing diagonal
entries, with too small entries indicating basis elements that should be
restarted. Elements corresponding to sufficiently large diagonal elements in
the QR decomposition can be kept. We initially tried this kind of method,
an advantage being that the overall cost for restarts is typically lower. We
found that it typically works well when all basis elements have the same
rank. However, the method performed very poorly in situations where the
ranks of the low-rank basis significantly differ from each other. Nonetheless,
this “parallel” strategy might be worth a second look in future work.

3.4 Complexity and typical convergence plot

The main step in both Algorithms 2 and 3 is the computation of an SVD of
an m × n matrix, which costs about 14mn2 + 8n3 flops [22, Sec. 8.6]. This
is done at most 2maxit times (assuming the same in both algorithms) for d
matrices. Since we check the need for restarting only infrequently, the cost
there is marginal. The overall worst-case complexity of our greedy Algorithm 5
hence depends on the choice of maxit. In most of our experiments, the inner
loops in Algorithms 2 and 3 terminated according to the stopping criteria, long
before maxit iterations was reached.

Figure 1 illustrates the typical convergence behavior of Algorithm 5 for a
problem with m = 20, n = 10, and d = 5, and the exact ranks for a basis are
(1, 2, 3, 4, 5). The colors correspond to ` = 1, . . . , 5. For each color, the evolution
of the n = 10 singular values of X` are plotted during the iteration (always after
projection on M). The shaded areas show Phase I, the unshaded areas Phase
II. In both phases we used maxit = 1000 and restartit = 50, moreover, Phase
I was terminated when the rank did not change for changeit = 50 iterations
(which appears to be still conservative), while Phase II was terminated when
X` remained unchanged up to a tolerance of 10−14 in Frobenius norm. The
number of SVDs is in principle equal to the number of single iterations, and
governs the complexity, so it was used for the x-axis. Illustrating the fourth
remark above, the ranks are not recovered in increasing order, but in the order
(1, 5, 3, 2, 4) (corresponding to the number of curves per color not converging
to zero). Repeated experiments suggest that all orderings of rank recovery is
possible.

Regarding the convergence of a single matrix, we make two observations in
Figure 1. First, one can nicely see that in Phase I the singular values beyond
σr` usually decrease until they stagnate at a certain plateau. The length of
this plateau corresponds to the 50 iterations we have waited until accepting an
unchanged rank (before projection) as a correct guess. Except for the first (red)
curve, which shows convergence towards a rank-one basis element, the error
level of this plateau is too high to count as a low-rank matrix. Put differently,
the (normalized) low-rank matrix Y` found by the shrinkage, on which the rank
guess is based, is unacceptably far away from the subspace, illustrating the

Finding a low-rank basis in a matrix subspace 17

Fig. 1: Typical convergence of Algorithm 5 for a randomly generated problem
with m = 20, n = 10, d = 5. Each color represents one outmost loop ` = 1, . . . , 5.
The shaded regions indicate Phase I, and the rest is Phase II. The exact ranks
are (1, 2, 3, 4, 5), but recovered in the order (1, 5, 3, 2, 4).

need for Phase II. Phase II seems unnecessary only when a rank-one matrix is
targeted.

Second, the convergence of σr+1, . . . , σn towards zero in the second phase
is typically linear, and tends to be faster if the limit is lower in rank. We give
an explanation for this observation in Section 4.

The fact that the matrices are obtained in somewhat random order can
be problematic in some cases, such as the low-rank matrix problem where
only one matrix of lowest rank is sought. One remedy is to try multiple initial
guesses for Phase I, and adopt the one that results in the lowest rank estimate
r. Figure 2 is a typical illustration when three initial guesses are attempted.
The shaded regions represent Phase I repeated three times for each greedy
step, and the ones that were adopted are shaded darkly. Observe that now the
matrices are obtained in the correct rank order (1, 2, 3, 4, 5).

Finally, Figure 3 contains an outcome of the initial experiment (without
multiple initial guesses) with square matrices of size m = n = 20. The ranks
are recovered in another ordering, namely (5, 1, 2, 3, 4). One can see that the
ratio of the number of iterations in Phases I and II is quite different, and
the overall number of required SVDs is smaller. The convergence analysis in
Section 4, which suggests a typical convergence factor

√
r
n , gives a partial

explanation. The main reason we give this third plot is the following interesting
fact: the maximum rank a matrix in the generated subspace can have is
1 + 2 + 3 + 4 + 5 = 15. Consequently, there seems to be a principal difference

18 Yuji Nakatsukasa et al.

Fig. 2: Same settings as Figure 1, but with three random initial guesses. Darkly
shaded region represent the initial guess that was adopted. For instance, for
the first matrix (red curve) the rank was estimated to be four in the first run
of Phase I, and one in the second and third. The second was adopted, Phase II
was not necessary. The final rank order is the correct (1, 2, 3, 4, 5).

here from the previous example in that the subspace does not contain a full-rank
matrix. This is perhaps part of why this problem seems somewhat easier in
terms of the total number of iterations. Indeed, a close inspection of Figure 3
reveals that for every color we have five singular values below machine precision
(recall that the plot shows the singular values after projection on the subspace).

4 Convergence analysis

Given the hardness of the low-rank basis problem, the formulation of conditions
for success or failure of Algorithm 5 must be a challenging task. Not to mention
the discontinuous nature of the restart procedure, a satisfying rigorous and
global convergence result remains a potentially interesting problem for future
work.

Here we confine ourselves to a local convergence analysis of Phase II for a
single matrix given a correct rank estimate r, which is an alternating projection
method. We will consider the simplest case where at the point of interest the
tangent space of the manifold of rank-r matrices intersects trivially with the
tangent space of the sphere in M, which is arguably the simplest possible
assumption when it comes to local convergence of the alternating projection
method between smooth manifolds.

Finding a low-rank basis in a matrix subspace 19

Fig. 3: m = n = 20. All matrices in the subspace are rank-deficient, and we
observe that the number or SVDs is fewer.

Regarding Phase I, we can at least note that if X ∈ M is a normalized
rank-one matrix, then in a neighborhood of X a single step of Algorithms 2
and 3, respectively, will give the same result (this is also true for some similar
choices of τ discussed above). Under the same assumptions as for Phase II
this hence shows the local convergence of Phase I toward isolated normalized
rank-one matrices inM, see Corollary 5 below. Since this is a local convergence
analysis, it of course does not fully explain the strong global performance of
both Algorithms 2 and 3 in the rank-one case as seen in Figures 1– 3 and
Tables 2 and 3.

In general, using the shrinkage operator cannot be guaranteed to converge
to a local solution. We have already noted that a matrix of rank larger than two
cannot be a fixed point of the shrinkage operator (unless all nonzero singular
values are the same). One could construct examples where in a fixed point
of (8) X has the same rank as Y , but generically this seems extremely unlikely.
Therefore, the convergence of Phase I is in general a less relevant question.
The main problem is in which situations it provides a correct rank estimate, at
least locally. Except for the rank-one case we have no precise arguments, but
we give a qualitative explanation at the end of Section 4.1.

20 Yuji Nakatsukasa et al.

4.1 Local convergence of Phase II

Algorithm 3 is nothing else than the method of alternating projections for
finding a matrix in the intersection B ∩Rr of the closed sets

B = {X ∈M : ‖X‖F = 1}

and

Rr = {X ∈ Rm×n : rank(X) ≤ r}.

The understanding of local convergence of this method for nonconvex closed
sets has made substantial progress during the last years [3,38,39,46]. In these
papers one finds very abstract result in the language of variational analysis or
differential geometry. However, it can happen for concrete problems, that the
validation of the requirements is not much less challenging than reproving the
result with the concrete information at hand. For instance, the statement of
Theorem 4 below essentially follows from [38, Theorem 5.16], but we believe
the theorem does make a contribution by providing a direct proof based on
elementary linear algebra, and leading to an estimate for the typical convergence
factor. In fact, projection on low-rank matrices has been used frequently as a
motivating example for alternating projections (often in company with strictly
affine constraints) [3,38,39,44], but for the local convergence very abstract
general theorems like the one cited are invoked, whose fully general proof is
much longer than possibly necessary in this setting. In Remark 6 we discuss
the main assumption (14) in the context of the available literature in a bit
more detail.

To state the result, we assume that X∗ ∈ Tr ∩ B has exactly rank r. By
semi-continuity of rank, all matrices in a neighborhood (in Rm×n) of X have
rank at least r. Therefore, we can locally regard Algorithm 3 as an alternating
projection between B and the smooth manifold of matrices of fixed rank r.
Letting X∗ = U∗Σ∗V

T
∗ be a thin SVD of X∗ where Σ∗ contains positive singular

values, the tangent space to that manifold at X is [30]

TX∗Rr =

{
[U∗ U

⊥
∗]

[
A B
C 0

]
[V∗ V

⊥
∗] : A ∈ Rr×r, B ∈ Rr×(m−r), C ∈ R(n−r)×r

}
.

(13)
For our analysis we make the following genericity assumption:

TX∗Rr ∩ TX∗B = {0}. (14)

Here TX∗B is the tangent space of B, which is the orthogonal complement of
X∗ within M. Since TX∗Rr contains X∗, (14) is expressed in terms of M as

TX∗Rr ∩M = span{X∗}. (15)

We remark that (14) ultimately implies that X∗ is an isolated point of Rr ∩ B,
so actually it then holds Rr ∩M = span{X∗}. Then we have the following
result.

Finding a low-rank basis in a matrix subspace 21

Theorem 4 Assume X∗ ∈ Tr ∩ B has rank r, and that this rank is used in
Algorithm 3. If (14) holds, then for X ∈ B close enough to X∗ the new iterate

Xnew = PM(Tr(X))
‖PM(Tr(X))‖F constructed by the algorithm is uniquely defined, and

‖Xnew −X∗‖F
‖X −X∗‖F

≤ cos θ +O(‖X −X∗‖2F),

where θ ∈ (0, π2] is the subspace angle between TX∗B and TX∗Rr, defined by

cos θ = max
X∈TX∗B
Y ∈TX∗Rr

|〈X,Y 〉F |
‖X‖F ‖Y ‖F

.

As a consequence, the iterates produced by Algorithm 3 are uniquely defined
and converge to X∗ at a linear rate for close enough starting values.

In accordance with our observations in Section 3.4, we also have a result
for Phase I in the rank-one case.

Corollary 5 If r = 1, the statement of Theorem 4 also holds for Algorithm 2.
In fact, both algorithms produce the same iterates in some neighborhood of X∗.

Here it is essential that the value of shift τ is bounded below by a fixed
fraction of the Frobenius norm of X, as it is the case for in Algorithm 2, a
lower bound being δ/

√
min(m,n).

Proof of Theorem 4 Since X and X∗ are in B, we can write

X −X∗ = E +O(‖X −X∗‖2F)

with E ∈ TX∗B. We partition the principal error E as

E = [U∗ U
⊥
∗]

[
A B
C D

]
[V∗ V

⊥
∗]T . (16)

Of course, ‖E‖2F = ‖A‖2F + ‖B‖2F + ‖C‖2F + ‖D‖2F , and due to (13), our
assumption implies

‖D‖2F ≥ sin2 θ · ‖E‖2F . (17)

Since X∗ has rank r, it follows that all matrices in some neighborhood
have a unique best rank-r approximation (by perturbation arguments for the
singular values). In this neighborhood Xnew is uniquely defined. To relate ‖E‖
to ‖Tr(X)−X∗‖ we consider the two matrices

F =

[
I CΣ−1∗

−CΣ−1∗ I

]
[U∗ U

⊥
∗]T ,

and

G = [V∗ V
⊥
∗]

[
I −Σ−1∗ B

Σ−1∗ B I

]
,

22 Yuji Nakatsukasa et al.

both of which are orthogonal up to O(‖E‖2F):

‖FTF − I‖F = O(‖E‖2F), ‖GTG− I‖F = O(‖E‖2F).1

Therefore, denoting by F̃ , G̃ the orthogonal polar factors of F,G, respectively,
we also have2

F = F̃ +O(‖E‖2), G = G̃+O(‖E‖2F). (18)

One now verifies that

F̃XG̃ = FXG+O(‖E‖2F) =

[
Σ∗ +A 0

0 D

]
+O(‖E‖2F),

or, since F̃ and G̃ are orthogonal,

X = F̃T
[
Σ∗ +A 0

0 D

]
G̃T +O(‖E‖2F).

For E small enough, the best rank-r approximation of the principal part is
obtained by deleting D. Hence,

Tr(X) = Tr
(
F̃T
[
Σ∗ +A 0

0 D

]
G̃T
)

+O(‖E‖2F)

= F̃T
[
Σ∗ +A 0

0 0

]
G̃T +O(‖E‖2F). (19)

To get the last equality we have used results from matrix perturbation the-
ory [59] (see also [55, Sec.V.4]), which shows that under the perturbation
O(‖E‖2F), the singular subspace corresponding to the r largest singular values

of X gets perturbed by O(
‖E‖22
gap) where gap is the smallest distance between

the singular values of Σ∗ +A and those of D. For ‖E‖F sufficiently small such
that ‖E‖F = o(σmin(Σ∗)), this bound is O(‖E‖22). Together with the fact that
the perturbation in the singular values is bounded also by O(‖E‖22) (since the
condition number of singular values is always 1), we obtain the final equality
above.

Therefore, taking also (18) into account, we obtain

‖Tr(X)−X∗‖F = ‖F̃Tr(X)G̃− FX∗G‖F +O(‖E‖2F)

=

∥∥∥∥[A+Σ∗ 0
0 0

]
−
[
Σ∗ −B
−C CΣ−1∗ B

]∥∥∥∥
F

+O(‖E‖2F)

=

∥∥∥∥[A B
C 0

]∥∥∥∥
F

+O(‖E‖2F).

1 Here and in the following, the error constant behind O(‖E‖F) depends mainly on the
condition of Σ∗, which can be very large, but is fixed in this type of local analysis.

2 From a polar decomposition ZT = UP one gets ZTZ−I = (ZT −U)(P+I)UT , and since
the singular values of (P + I)UT are all at least 1, it follows that ‖Z−UT ‖F ≤ ‖ZTZ− I‖F .

Finding a low-rank basis in a matrix subspace 23

Here we used O(‖CΣ−1∗ B‖2F) = O(‖E‖2F), which holds since ‖Σ−1∗ ‖2 can
be regarded as a constant that does not depend on ‖E‖F . Since O(‖E‖) =
O(‖X −X∗‖), we arrive at

‖Tr(X)−X∗‖F
‖X −X∗‖F

=

√
‖E‖2F − ‖D‖2F +O(‖X −X∗‖2F)

‖E‖F +O(‖X −X∗‖2F)

≤
√

1− sin2 θ +O(‖X −X∗‖2F)

= cos θ +O(‖X −X∗‖2F),

(20)

where we have used (17). Since X∗ ∈M, it now follows that

‖PM(Tr(X))−X∗‖F ≤ ‖Tr(X)−X∗‖F ≤ cos θ‖X −X∗‖F +O(‖X −X∗‖3F).
(21)

Finally, we consider the normalization step. Recalling ‖X∗‖F = 1, by a simple
geometric argument on the unit sphere we obtain∥∥∥∥ Y

‖Y ‖F
−X∗

∥∥∥∥
F

≤ 1

cosφ
‖Y −X∗‖F , (22)

where φ ∈ [0, π2] such that sinφ = ‖Y −X∗‖F . By Taylor expansion, 1√
1−ξ2

=

1 +O(ξ2). Substituting ξ = sinφ and Y = PM(Tr(X)) in (22) gives

‖Xnew −X∗‖F ≤ ‖PM(Tr(X))−X∗‖F +O(‖PM(Tr(X))−X∗‖3F).

Using (21), we arrive at

‖Xnew −X∗‖F ≤ cos θ‖X −X∗‖F +O(‖X −X∗‖3F),

completing the proof. ut

From Theorem 4 we can obtain a rough estimate for the convergence factor
that we can expect to observe in practice. Consider the “generic” case where
the error term E in (16) is randomly distributed, that is, each element is of

comparable absolute value. Then we have ‖D‖2F ≈
(n−r)2
n2 ‖E‖2F , and plugging

this into (20) gives ‖Tr(X)−X∗‖F
‖X−X∗‖F ≤

√
2nr+r2

n + O(‖X −X∗‖2F). This suggests

that we typically expect a convergence factor ≈ O(
√

r
n). This estimate reflects

the experiments quite well; see Section 5.2.
The above proof provides some insight into the behavior of Algorithm 2 in

Phase I. In this case Tr(X) in (19) is replaced by Sτ (X). Provided again that
we start with a matrix X close to X∗ so that ‖D‖2 ≤ τ , the operation Sτ (X)
again removes the D term, emphasizing the components towards X∗ just like
in Phase II as shown above. However, now the Σ∗ + A term is also affected,
and thus Phase I stagnates where the thresholding effect in Σ∗ +A is balanced
with the error terms that come in from the projection PM. Then the rank
estimate r is of correct rank rank(X∗), but neither X nor Y in Algorithm 2 is
close to X∗; reflecting the remark at the end of Section 3.1.

24 Yuji Nakatsukasa et al.

Remark 6 The conditions (14), resp. (15), allow for a simple proof but of course
impose some restrictions, most obviously d = dim(M) ≤ (m− r)(n− r) + 1. In
a seminal attempt, Lewis and Malick [39] obtained the local convergence of the
method of alternating projections between two smooth submanifoldsM and N
of Rn towards some X∗ ∈M∩N under the condition that TX∗M+TX∗N = Rn
(transversality). This allows for a non-trivial intersection, but imposes lower
bounds on the dimensions, in our case d ≥ (m− r)(n− r) + 1. Andersson and
Carlsson [3] relaxed the condition to TX∗(M∩N) = TX∗M∩ TX∗N , however,
under the assumption that M∩N is a C2 manifold. This does not impose
restriction on the dimensions, and contains (15) as a special cases. Still these
conditions can fail in the situation at hand (M a subspace of Rm×n, N = Rr),
for instance when M = TX∗Rr, to mention one counter-example. Recently,
Noll and Rondepierre [46] proved local convergence for alternating projections
under very weak but abstract assumptions, which do not involve tangential
conditions in first place. It may be that their result applies to our setting, but
we have not been able to validate this.

We conclude with a sufficient condition for (14) which might be useful in
some very structured cases; see Proposition 9 in the appendix for an example.
We denote by ran(X) and ran(XT) the column and row space of a matrix X,
respectively.

Lemma 7 Let X∗ ∈M have rank r. Assume there exists a (d−1)-dimensional
subspace M̃ ⊆M complementary to span{X∗} with the following property: for
every X̃ ∈ M̃ it holds ran(X∗) ∩ ran(X̃) = 0 and ran(XT

∗) ∩ ran(X̃T) = 0.
Then (14) holds.

Proof Consider X = αX∗ + βX̃ ∈ M with X̃ ∈ M̃. Let P and Q denote
the orthogonal projections on ran(X∗)

⊥ and ran(XT
∗)⊥, respectively. Then

X ∈ TX∗Rr if and only if

0 = PXQT = βP X̃QT .

It holds P X̃QT 6= 0. To see this we note that P X̃QT = 0 would mean
ran(X̃QT) ⊆ ran(X∗), which by assumption implies X̃QT = 0. But then
ran(X̃T) ⊆ ran(XT

∗), a contradiction. Hence X ∈ TX∗Rr if and only if β = 0,
which proves the equivalent condition (15). ut

5 Experiments

5.1 Synthetic averaged examples

We fix m = n = 20, d = 5, and a set of ranks (r1, . . . , rd). We then randomly
generate d random matrices M1, . . . ,Md of corresponding rank by forming
random matrices U` ∈ Rm×r` and V` ∈ Rn×r` with orthonormal columns,
obtained from the QR factorization of random Gaussian matrices using MAT-
LAB’s randn and setting M` = U`V

T
` . To check the average rate of success of

Algorithm 5, we run it 100 times and calculate

Finding a low-rank basis in a matrix subspace 25

– the average sum of ranks
∑d
`=1 rank(Y`) found by Phase I of the algorithm,

– the average truncation error
(∑d

`=1 ‖X` − Tr`(X`)‖2F
)1/2

after Phase I,

– the average truncation error
(∑d

`=1 ‖X` − Tr`(X`)‖2F
)1/2

after Phase II,

– the average iteration count (# of SVDs computed) in each Phase.

Table 2 shows the results for some specific choices of ranks. The principal
parameters in the algorithm are maxit = 1000 and restartit = 50 (in both
Phase I and Phase II). The maximum number of iterations was practically
never reached. The rank guesses in Phase I were accepted after they remained
unchanged for changeit = 100 loops. This is still very conservative. For com-
parison, recall that Figure 1 (ranks (1, 2, 3, 4, 5)) was generated with same
parameter maxit = 1000, but changeit = 50. Phase II was terminated using
tol = 10−14, and never took 1000 iterations. From Table 2 we see that the
ranks are sometimes estimated incorrectly, although this does not necessarily
tarnish the final outcome.

Table 2: Synthetic results, random initial guess.

exact ranks av. sum(ranks) av. Phase I err (iter) av. Phase II err (iter)

(1 , 1 , 1 , 1 , 1) 5.05 2.59e-14 (55.7) 7.03e-15 (0.4)

(2 , 2 , 2 , 2 , 2) 10.02 4.04e-03 (58.4) 1.04e-14 (9.11)

(1 , 2 , 3 , 4 , 5) 15.05 6.20e-03 (60.3) 1.38e-14 (15.8)

(5 , 5 , 5 , 10 , 10) 35.42 1.27e-02 (64.9) 9.37e-14 (50.1)

(5 , 5 , 10 , 10 , 15) 44.59 2.14e-02 (66.6) 3.96e-05 (107)

A simple way to improve the rank estimate is to repeat Phase I with several
initial matrices, and adopt the one that results in the smallest rank. Table 3
shows the results obtained in this way using five random initial guesses.

Table 3: Synthetic results, random initial guess from subspace repeated 5 times.

exact ranks av. sum(ranks) av. Phase I err (iter) av. Phase II err (iter)

(1 , 1 , 1 , 1 , 1) 5.00 6.77e-15 (709) 6.75e-15 (0.4)

(2 , 2 , 2 , 2 , 2) 10.00 4.04e-03 (393) 9.57e-15 (9.0)

(1 , 2 , 3 , 4 , 5) 15.00 5.82e-03 (390) 1.37e-14 (18.5)

(5 , 5 , 5 , 10 , 10) 35.00 1.23e-02 (550) 3.07e-14 (55.8)

(5 , 5 , 10 , 10 , 15) 44.20 2.06e-02 (829) 8.96e-06 (227)

We observe that the problem becomes more difficult when the ranks vary
widely. As mentioned in Section 3.1, choosing the initial guesses as in [48] also

26 Yuji Nakatsukasa et al.

worked fine, but not evidently better than random initial guesses as in Table 3.
From the first rows in both tables we validate once again that for the rank-one
case, Phase II is not really necessary – Phase I is recovering a rank-one basis
reliably.

5.1.1 Comparison with tensor CP algorithm

As we describe in Appendix A, if the subspace is spanned by rank-one matrices,
then the CP decomposition (if successfully computed; the rank is a required
input) of a tensor with slices Mk, where M1, . . . ,Md is any basis ofM, provides
a desired rank-one basis. Here we compare our algorithm with the CP-based
approach. Specifically, we compare with the method cpd in Tensorlab [52] with
the exact decomposition rank (the dimension d of M) as input. By default,
this method is based on alternating least-squares with initial guess obtained by
an attempt of simultaneous diagonalization. When applied to a rank-one basis
problem, cpd often gives an accurate CP decomposition with no ALS iteration.

As seen from the tables above, given a rank-one basis problem, our Algo-
rithm 5 will typically terminate after Phase I. On the other hand, since we
assume a rank-one basis to exist (otherwise the CP approach is not necessar-
ily meaningful for finding a subspace basis), we can also use the alternating
projection algorithm from Phase II with rank one directly from random ini-
tializations. In summary, we obtain three error curves: one for tensorlab, one
for soft thresholding (Phase I) and one for alternating projection (Phase II).
The errors are computed as in the experiments in Section 3.2 via the subspace
angle.

We also present the runtime to show that our algorithms are not hopelessly
slow in the special rank-one case. Just running Phase II results in an algorithm
faster than Algorithm 5, but it is still slower than cpd. Note that while Tensorlab
is a highly tuned toolbox, we did not try too hard to optimize our code regarding
the choice of parameters and memory consumption. More importantly, unlike
cpd our algorithm does not require the rank r and is applicable even when
r > 1.

Growing matrix size n We first vary the matrix size n, fixing the other param-
eters. The runtime and accuracy are shown in Figure 4. We observe that if the
CP rank is known, the CP-based algorithm is both fast and accurate.

Growing dimension d We next vary the dimension d, in particular allowing
it to exceed n (but not n2). In this case, linear dependencies among the left
factors a` and right factors b`, respectively, of a rank-one basis a1b

T
1 , . . . ,adb

T
d

must necessarily occur. It is known that in this scenario obtaining an exact CP
decomposition via simultaneous diagonalization, as in part attempted by cpd,
becomes a much more subtle problem, see the references given in Section A.1.
And indeed, we observe that for d > n the accuracy of Tensorlab deteriorates,
while our methods do not. The runtime and accuracy for n = 10 are shown in
Figure 5. However, this effect was less pronounced for larger m = n.

Finding a low-rank basis in a matrix subspace 27

matrix size n
100 200 300 400 500 600 700 800 900 1000

10-3

10-2

10-1

100

101

102

103
Runtime(s)

Phase I
Phase II
Tensorlab

matrix size n
100 200 300 400 500 600 700 800 900 1000

10-15

10-10

10-5

100
Error

Phase I
Phase II
Tensorlab

Fig. 4: Rank-1 basis matrices r = 1, fixed d = 10, varying m = n between 50
and 500. The accuracy is not identical but nearly the same. Tensorlab performs
well.

dimension d
2 4 6 8 10 12 14 16 18 20

10-4

10-3

10-2

10-1

100
Runtime(s)

Phase I
Phase II
Tensorlab

dimension d
2 4 6 8 10 12 14 16 18 20

10-15

10-10

10-5

100
Error

Phase I
Phase II
Tensorlab

Fig. 5: Rank-1 basis matrices r = 1, Fixed m = n = 10, varying d between 2
and 20. Our Algorithm gives better accuracy when d > n.

We conclude that the CP-based algorithm is recommended if (i) the basis
matrices are known to be rank-1, and (ii) the dimension is lower than min(m,n).

5.2 Quality of the convergence estimate

In Section 4 we analyzed the convergence of Algorithm 3 in Phase II and
showed that, when the error term is randomly distributed the convergence
factor would be roughly

√
r
n , recall the remark after Theorem 4. Here we

illustrate with experiments how accurate this estimate is.
In Figure 6 we plot a typical convergence of ‖Tr(X)−X‖F as the iterations

proceed. We generated test problems (randomly as before) varying n on the
left (n = 10, 100) and varying r on the right (r = 2, 10). The dashed lines
indicate the convergence estimate (

√
r
n)` after the `th iteration. Observe that

in both cases the estimated convergence factors reflect the actual convergence

28 Yuji Nakatsukasa et al.

reasonably well, and in particular we verify the qualitative tendency that (i)
for fixed matrix size n, the convergence is slower for larger rank r, and (ii) for
fixed rank r, the convergence is faster for larger n.

Iteration
0 5 10 15 20 25

<
r+

1

10-10

10-5

100

n =20, r =2

n =100, r =2

Iteration
0 50 100 150

<
r+

1

10-10

10-5

100

n =20, r =2

n =20, r =10

Fig. 6: Convergence of ‖Tr(X) −X‖F as the iterations proceed in Phase II.
The convergence factor is faster for larger matrices when the rank is fixed
(left), and slower for higher rank when the matrix size is fixed (right), reflecting
Theorem 4.

5.3 Image separation

One well known use of the SVD is for data and image compression, although
currently it is no longer used for the JPEG format or other modern image
formats. It is known that most images can be compressed significantly without
losing the visible quality by using a low-rank approximation of the matrix that
represents the image.

Since each grayscale image can be expressed as a matrix, here we apply
our algorithm to a set of four incomprehensible images (shown as “mixed” in
Figure 7) that are obtained as a linear combination of four images (the famous
woman.jpg in MATLAB, along with photos of Audrey Hepburn, Angelina
Jolie and Arnold Schwarzenegger, taken from the labeled faces in the wild
dataset [33]), with the singular values for each image truncated to have exact
rank 15. Since each original image is low-rank, we can recover them by our
algorithm as shown in Figure 7.

We note that such a problem has been considered extensively in the image
processing literature [1,6,61], which is known as image separation, and we make
no claims regarding the actual usefulness of our approach in image processing;
in particular, our approach would not work well if the matrices of the images
are not low-rank but have gradually decaying singular values. This example is
included simply for an illustrative visualization of the recovery of the low-rank
matrix basis by Algorithm 5.

Finding a low-rank basis in a matrix subspace 29

computed

original

mixed

Fig. 7: We start with the bottom images, which are obtained as random linear
combinations of those in the middle row. This gives 4 matrices of size 200×200,
and we apply our algorithm to obtain the top three images. Note how well the
top images recover the original ones.

5.4 Computing exact eigenvectors of a multiple eigenvalue

Eigenvectors of a multiple eigenvalue are not unique. For example, the identity
matrix I has any vector as an eigenvector. However, among the many possibili-
ties one might naturally wish to obtain “nice” eigenvectors: for example, the
columns of I might be considered a good set of “nice” eigenvectors for I, as
they require minimum storage.

Numerically, the situation is even more complicated: a numerically stable
algorithm computes eigenpairs (λ̂, x̂) with residual Ax̂− λ̂x̂ = O(u‖A‖), where
u is the unit roundoff. Since the eigenvector condition number is O(1

gap) [54,

Sec. 1.3] where gap is the distance between λ and the rest of the eigenvalues,

the accuracy of a computed eigenvector is typically O(u‖A‖gap). This indicates

the difficulty (or impossibility in general) of computing accurate eigenvectors
for near-multiple eigenvalues in finite precision arithmetic. The common com-
promise is to compute a subspace corresponding to a cluster of eigenvalues,
which is stable provided the cluster is well separated from the rest [4, Sec. 4.8].

Here we shall show nonetheless that it is sometimes possible to compute
exact eigenvectors of (near) multiple eigenvalues, if additional property is
present that the eigenvectors are low-rank when matricized. As we discussed in

30 Yuji Nakatsukasa et al.

the introduction, this also lets us compress the memory to store the information.
Below we illustrate how this can be done with examples.

5.4.1 Eigenvectors of a multiple eigenvalue of a circulant matrix

As is well known, the eigenvector matrix of a circulant matrix is the FFT
matrix [22, Sec. 4.8]. One can easily verify that each column of an n2 × n2
FFT matrix F is rank-one when matricized to n × n, exemplifying a strong
low-rank property.

Let us consider a circulant matrix A ∈ Cn2×n2

defined by

A =
1

n
FΛF ∗, (23)

where Λ = diag(λ1, . . . , λn2).
Suppose for the moment that one is oblivious of the circulant structure (or

perhaps more realistically, we can think of a matrix A that is not circulant
but has d eigenvectors consisting of columns of F ; such a matrix gives similar
results) and attempts to compute the d smallest eigenvalues of A by a standard
algorithm such as QR.

For the reason explained above, the numerically computed eigenvectors x̂i
obtained by MATLAB’s eig have poor accuracy. For concreteness suppose
that λ1 = λ2 = · · · = λd and λd+i = λd+i−1 + 1 for integers i, and we look
for the eigenvectors corresponding to the first d eigenvalues. With n = 10 and
d = 5, the smallest angle between x̂i and the first d columns of the Fourier
matrix were O(1) for each i (it should be 0 if x̂i was exact). Nonetheless, the
subspace spanned by the d computed eigenvectors [x̂1, . . . , x̂d] has accuracy
O(u), as there is sufficient gap between λk and λd+1. We therefore run our
algorithm with the n× n matrix subspace

M = span{mat(x̂1), . . . ,mat(x̂d)}.

Our algorithm correctly finds the rank (= 1), and finds the eigenvectors
[x1, . . . , xd], each of which is numerically rank-one and has O(u) angle with a
column of the Fourier matrix. This is an example where by exploiting structure
we achieve high accuracy that is otherwise impossible with a backward stable
algorithm; another established example being the singular values for bidiagonal
matrices [18, Ch. 5].

For example, we let n2 = 202 and compute the smallest 5 eigenvalues of a
circulant matrix A = 1

nFdiag(1 + ε1, 1 + ε2, 1 + ε3, 1 + ε4, 1 + ε5, 6, . . . , n
2)F ∗

where εi = O(10−10) was taken randomly. The matrix A therefore has a cluster
of five eigenvalues near 1. The “exact” eigenvectors are the first five columns
of the FFT matrix.

Note that our algorithm recovers the exact eigenvector of a near-multiple
eigenvalue with accuracy O(10−12). Furthermore, the storage required to store
the eigenvectors has been reduced from 5n2 to 5n.

Finding a low-rank basis in a matrix subspace 31

Table 4: Accuracy (middle columns) and memory usage for computed eigenvec-
tors of a 202 × 202 circulant matrix.

v1 v2 v3 v4 v5 memory
eig 4.2e-01 1.2e+00 1.4e+00 1.4e+00 1.5e+00 O(n2)

eig+Alg. 5 1.2e-12 1.2e-12 1.2e-12 1.2e-12 2.7e-14 O(n)

5.4.2 Matrices with low-rank eigenvectors

Of course, not every vector has low-rank structure when matricized. Nonetheless,
we have observed that in many applications, the eigenvectors indeed have a
low-rank structure that can be exploited. This observation may lead to the
ability to deal with problems of scale much larger than previously possible.

Circulant matrices are an important example, as we have seen above (which
clearly includes symmetric tridiagonal, symmetric banded, etc). We have ob-
served that a sparse perturbation of a circulant matrix also has such structure.

Other examples come from graph Laplacians. We have numerically observed
that typically the Laplacian matrix of the following graphs have eigenvectors
(corresponding to the smallest nonzero eigenvalues) that are low-rank: binary
tree, cycle, path graph and the wheel graph all have rank 3 irrelevant of the
size, the lollipop graph has rank 4 (regardless of the ratio of the complete/path
parts), and the ladder graph has rank 2 and circular ladder (rank 2) regardless
of the size, and barbell always has rank 5. Clearly, not every graph has such
structure: a counterexample is a complete graph. Our empirical observation is
that sparse graphs tend to have low-rank structure in the eigenvectors.

Note that the low-rankness of the eigenvector depends also on the ordering
of the vertices of the graph3. An ordering that seemed natural have often
exhibited low-rank property.

Our algorithm does not need to know a priori that a low-rank structure is
present, as its phase I attempts to identify whether a low-rank basis exists. We
suspect that identifying and exploiting such structure will lead to significant
improvement in both accuracy and efficiency (both in speed and memory).
Identifying the conditions under which such low-rank structure is present is
left as an open problem. We expect and hope that the low-rank matrix basis
problem will find use in applications beyond those described in this paper.

A Finding rank-one bases via tensor decomposition

In this appendix, we describe the rank-one basis problem as a tensor decomposition problem.
Recall that in this problem, we are promised that the given subspace M is spanned by rank-
one matrices. Thus we can apply Algorithm 3 (Phase II) with the precise rank guess directly.
Alternatively, we can also stop after Algorithm 2 (Phase I), which in practice performs well
(see Section 5.1). The following tensor decomposition viewpoint leads to further algorithms.

3 We thank Yuichi Yoshida for this observation.

32 Yuji Nakatsukasa et al.

Let M1, . . . ,Md be an arbitrary basis of M, and let T be the m× n× d tensor whose
3-slices are M1, . . . ,Md. The fact that M possesses a rank-one basis is equivalent to the
existence of d (and not less) triplets of vectors (a`,b`, c`) where a` ∈ Rm,b` ∈ Rn, c` ∈ Rd,
such that

Mk =
d∑
`=1

ck,`a`b
T
` , k = 1, . . . , d (24)

(here ck,` denotes the kth entry of c`). Namely, if such triplets (a`,b`, c`) exist, then the

assumed linear independence of the Mk automatically implies that rank-one matrices a`b
T
`

belong toM. Using the outer product of vectors (denoted by ◦), we may express this relation
in terms of the tensor T as

T =

d∑
`=1

a` ◦ b` ◦ c`. (25)

This type of tensor decomposition into a sum of outer products is called the CP decomposition,
and is due to Hitchcock [32] (although the term CP decomposition appeared later). In general,
the smallest d required for a representation of the form (25) is called the (canonical) rank of
the tensor T . We refer to [36] and references therein for more details. In summary, we have
the following trivial conclusion.

Proposition 8 The d-dimensional matrix space M = span(M1, . . . ,Md) possesses a rank-
one basis if and only if the tensor T whose 3-slices are the M1, . . . ,Md has (canonical) rank
d. Any CP decomposition (25) of T provides a rank-one basis a1b

T
1 , . . . ,adb

T
d of M.

We remark that computing the rank of a general third-order tensor is known to be
NP-hard [29,31]. Therefore, it is NP-hard to check whether a matrix space M admits a
rank-one basis. Nevertheless, we might try to find a rank-one basis by trying to calculate
a CP decomposition (25) from linearly independent M1, . . . ,Md. We outline two common
algorithms.

A.1 Simultaneous diagonalization

If the tensor T ∈ Rm×n×r is known to have rank d and d ≤ min(m,n), it is “generi-
cally” possible to find a CP decomposition (25) in polynomial time using simultaneous
diagonalization [15,17,37].

Let us introduce the factor matrices A = [a1, . . . ,ad] ∈ Rm×d, B = [bd, . . . ,bd] ∈ Rn×d,
and C = [c1, . . . , cd] ∈ Rd×d.Then (24) reads

Mk = ADkB
T , k = 1, . . . , d,

where Dk = diag(cTk), in which cTk denotes the kth row of C. In other words, a rank-one basis
exists, if the M1, . . . ,Md can be simultaneously diagonalized. The basic idea of the algorithm
of Leurgans, Ross, and Abel in [37] is as follows. One assumes rank(A) = rank(B) = d. Pick
a pair (k, `), and assume that Dk and D` are invertible, and that DkD

−1
` has d distinct

diagonal entries. Then it holds

MkM
+
` A = ADkB

T (BT)+D−1
` A+A = ADkD

−1
` ,

where superscript + denotes the Moore-Penrose inverse. In other words, A contains the
eigenvectors of MkM

+
` to distinct eigenvalues, and is essentially uniquely determined (up to

scaling and permutation of the columns). Alternatively, for more numerical reliability, one
can compute an eigenvalue decompositions of a linear combination of all MkM

+
` instead,

assuming that the corresponding linear combination of DkD
−1
` has distinct diagonal entries.

Similarly, B can be obtained from an eigendecomposition, e.g. of MT
k (MT

`)+ or linear
combinations. Finally,

Dk = A+Mk(BT)+, k = 1, . . . , d,

Finding a low-rank basis in a matrix subspace 33

which gives C. The algorithm requires the construction of Moore-Penrose inverses of matrices
whose larger dimension is at most max(m,n). Hence, the complexity is O(mn2).

The condition that the DkD
−1
` or a linear combination of them should have distinct

diagonal entries is not very critical, since it holds generically, if the matrices M1, . . . ,Md

are randomly drawn from M, or, when this is not possible, are replaced by random linear
combination of themselves. The condition rank(A) = rank(B) = d on the other hand, is
a rather strong assumption on the rank-one basis a1b

T
1 , . . . ,adb

T
d . It implies uniqueness

of the basis, and restricts the applicability of the outlined algorithm a priori to dimension
d ≤ min(m,n) of M. There is an interesting implication on the condition (14) that we used
for the local convergence proof of our algorithms. Theorem 4 and Corollary 5 therefore apply
at every basis element a`b

T
` in this setting.

Proposition 9 Let a1b
T
1 , . . . ,adb

T
d be a rank-one basis such that rank(A) = rank(B) = d.

Then (14) holds at any basis element X∗ = X` = a`b
T
` .

Proof This follows immediately from Lemma 7 by taking M̃ = span{akb
T
k

: k 6= `}. ut

De Lathauwer [15] developed the idea of simultaneous diagonalization further. His
algorithm requires the matrix C to have full column rank, which in our case is always true
as C must contain the basis coefficients for d linearly independent elements M1, . . . ,Md.
The conditions on the full column rank of A and B can then be replaced by some weaker
conditions, but, simply speaking, too many linear dependencies in A and B will still lead
to a failure. A naive implementation of De Lathauwer’s algorithm in [15] seems to require
O(n6) operations (assuming m = n).

Further progress on finding the CP decomposition algebraically under even milder
assumptions has been made recently in [19]. It is partially based on the following observation:
denoting by m` = vec(M`) the n2 × 1 vectorization of M` (which stacks the column on top
of each other), and defining Matr(T) = [m1, . . . ,mr] ∈ Rmn×d, we have

Matr(T) = (B�A)CT , (26)

where B�A = [a1 ⊗ b1, . . . ,ad ⊗ bd] ∈ Rmn×d is the so called Khatri-Rao product of B
and A (here ⊗ is the ordinary Kronecker product). If C (which is of full rank in our scenario)
would be known, then A and B can be retrieved from the fact that the matricizations of the
columns of Matr(T)C−T = B�A must be rank-one matrices. In [19] algebraic procedures
are proposed that find the matrix C from T .

Either way, by computing the CP decomposition for T we can, at least in practice,
recover the rank one basis {a`b

T
` } in polynomial time if we know it exists. This is verified in

our MATLAB experiments using Tensorlab’s cpd in Section 5.1.1.

A.2 Alternating least squares

An alternative and cheap workaround are optimization algorithms to calculate an approximate
CP decomposition of a given third-order tensor, a notable example being alternating least
squares (ALS), which was developed in statistics along with the CP model for data analysis [13,
26]. In practice, they often work astonishingly well when the exact rank is provided.

Assuming the existence of a rank-one basis, that is, rank(T) = d, the basic ALS algorithm
is equivalent to a block coordinate descent method applied to the function

f(A,B,C) =
1

2

∥∥∥∥∥T −
d∑
`=1

a` ◦ b` ◦ c`

∥∥∥∥∥
2

F

.

The name of the algorithm comes from the fact that a block update consists in solving a
least squares problem for one of the matrices A, B or C, since f is quadratic with respect
to each of them. It is easy to derive the explicit formulas. For instance, fixing A and B, an
optimal C with minimal Frobenius norm is found from (26) as C = Matr(T)T (BT �AT)+.

34 Yuji Nakatsukasa et al.

The updates for the other blocks look similar when using appropriate reshapes of T into a
matrix; the formulas can be found in [36].

The question of convergence of ALS is very delicate, and has been subject to many
studies. As it is typical for these block coordinate type optimization methods for nonconvex
functions, convergence can, if at all, ensured only to local minima, but regularization might
be necessary, see [56,40,45,60,58,57] for some recent studies, and [36] in general. Practical
implementations are typically a bit more sophisticated than the simple version outlined
above, for instance the columns of every factor matrix should be rescaled during the process
for more numerical stability. Also a good initialization of A, B, and C can be crucial for the
performance. For instance one may take the leading HOSVD vectors [16] or the result of
other methods [35] as a starting guess for ALS.

References

1. Abolghasemi, V., Ferdowsi, S., Sanei, S.: Blind separation of image sources via adaptive
dictionary learning. IEEE Trans. Image Process. 21(6), 2921–2930 (2012). DOI
10.1109/TIP.2012.2187530. URL http://dx.doi.org/10.1109/TIP.2012.2187530

2. Ames, B.P.W., Vavasis, S.A.: Nuclear norm minimization for the planted clique
and biclique problems. Math. Program. 129(1, Ser. B), 69–89 (2011). DOI
10.1007/s10107-011-0459-x. URL http://dx.doi.org/10.1007/s10107-011-0459-x

3. Andersson, F., Carlsson, M.: Alternating projections on nontangential manifolds. Constr.
Approx. 38(3), 489–525 (2013). DOI 10.1007/s00365-013-9213-3. URL http://dx.doi.

org/10.1007/s00365-013-9213-3

4. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the
solution of algebraic eigenvalue problems, Software, Environments, and Tools, vol. 11.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000).
DOI 10.1137/1.9780898719581. URL http://dx.doi.org/10.1137/1.9780898719581. A
practical guide

5. Barak, B., Kelner, J.A., Steurer, D.: Rounding sum-of-squares relaxations. In: Proceedings
of the 46th Annual ACM Symposium on Theory of Computing, pp. 31–40 (2014)

6. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation
and blind deconvolution. Neural computation 7(6), 1129–1159 (1995)

7. Bühlmann, P., van de Geer, S.: Statistics for high-dimensional data. Springer Series
in Statistics. Springer, Heidelberg (2011). DOI 10.1007/978-3-642-20192-9. URL
http://dx.doi.org/10.1007/978-3-642-20192-9. Methods, theory and applications

8. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix
completion. SIAM J. Optim. 20(4), 1956–1982 (2010). DOI 10.1137/080738970. URL
http://dx.doi.org/10.1137/080738970

9. Candès, E.J.: The restricted isometry property and its implications for compressed sensing.
C. R. Math. Acad. Sci. Paris 346(9-10), 589–592 (2008). DOI 10.1016/j.crma.2008.03.014.
URL http://dx.doi.org/10.1016/j.crma.2008.03.014

10. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found.
Comput. Math. 9(6), 717–772 (2009). DOI 10.1007/s10208-009-9045-5. URL http:

//dx.doi.org/10.1007/s10208-009-9045-5

11. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal
encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006). DOI
10.1109/TIT.2006.885507. URL http://dx.doi.org/10.1109/TIT.2006.885507

12. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion.
IEEE Trans. Inform. Theory 56(5), 2053–2080 (2010). DOI 10.1109/TIT.2010.2044061.
URL http://dx.doi.org/10.1109/TIT.2010.2044061

13. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling
via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3),
283–319 (1970). URL http://dx.doi.org/10.1007/BF02310791

14. Coleman, T.F., Pothen, A.: The null space problem. I. Complexity. SIAM J. Algebraic
Discrete Methods 7(4), 527–537 (1986). DOI 10.1137/0607059. URL http://dx.doi.

org/10.1137/0607059

http://dx.doi.org/10.1109/TIP.2012.2187530
http://dx.doi.org/10.1007/s10107-011-0459-x
http://dx.doi.org/10.1007/s00365-013-9213-3
http://dx.doi.org/10.1007/s00365-013-9213-3
http://dx.doi.org/10.1137/1.9780898719581
http://dx.doi.org/10.1007/978-3-642-20192-9
http://dx.doi.org/10.1137/080738970
http://dx.doi.org/10.1016/j.crma.2008.03.014
http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1109/TIT.2006.885507
http://dx.doi.org/10.1109/TIT.2010.2044061
http://dx.doi.org/10.1007/BF02310791
http://dx.doi.org/10.1137/0607059
http://dx.doi.org/10.1137/0607059

Finding a low-rank basis in a matrix subspace 35

15. De Lathauwer, L.: A link between the canonical decomposition in multilinear algebra
and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642–
666 (electronic) (2006). DOI 10.1137/040608830. URL http://dx.doi.org/10.1137/

040608830

16. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decom-
position. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (electronic) (2000). DOI
10.1137/S0895479896305696. URL http://dx.doi.org/10.1137/S0895479896305696

17. De Lathauwer, L., De Moor, B., Vandewalle, J.: Computation of the canonical decompo-
sition by means of a simultaneous generalized Schur decomposition. SIAM J. Matrix
Anal. Appl. 26(2), 295–327 (electronic) (2004/05). DOI 10.1137/S089547980139786X.
URL http://dx.doi.org/10.1137/S089547980139786X

18. Demmel, J.W.: Applied numerical linear algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA (1997). DOI 10.1137/1.9781611971446. URL
http://dx.doi.org/10.1137/1.9781611971446

19. Domanov, I., De Lathauwer, L.: Canonical polyadic decomposition of third-order tensors:
reduction to generalized eigenvalue decomposition. SIAM J. Matrix Anal. Appl. 35(2),
636–660 (2014). DOI 10.1137/130916084. URL http://dx.doi.org/10.1137/130916084

20. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Electrical Engi-
neering Deptartment Stanford University (2002)

21. Fazel, M., Hindi, H., Boyd, S.P.: A rank minimization heuristic with application to
minimum order system approximation. In: In Proceedings of the 2001 American Control
Conference, pp. 4734–4739 (2001)

22. Golub, G.H., Van Loan, C.F.: Matrix computations, fourth edn. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD (2013)

23. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version
2.1. http://cvxr.com/cvx (2014)

24. Gurvits, L.: Classical complexity and quantum entanglement. J. Comput. System Sci.
69(3), 448–484 (2004). DOI 10.1016/j.jcss.2004.06.003. URL http://dx.doi.org/10.

1016/j.jcss.2004.06.003

25. Hand, P., Demanet, L.: Recovering the sparsest element in a subspace. arXiv preprint
arXiv:1310.1654 (2013)

26. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for
an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics 16,
1–84 (1970)

27. Harvey, N.J.A., Karger, D.R., Murota, K.: Deterministic network coding by matrix
completion. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 489–498 (2005)

28. Harvey, N.J.A., Karger, D.R., Yekhanin, S.: The complexity of matrix completion. In:
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm, pp.
1103–1111 (2006)

29. H̊astad, J.: Tensor rank is NP-complete. J. Algorithms 11(4), 644–654 (1990). DOI 10.
1016/0196-6774(90)90014-6. URL http://dx.doi.org/10.1016/0196-6774(90)90014-6

30. Helmke, U., Shayman, M.A.: Critical points of matrix least squares distance functions.
Linear Algebra Appl. 215, 1–19 (1995). DOI 10.1016/0024-3795(93)00070-G. URL
http://dx.doi.org/10.1016/0024-3795(93)00070-G

31. Hillar, C.J., Lim, L.H.: Most tensor problems are NP-hard. J. ACM 60(6), Art. 45, 39
(2013)

32. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. Journal
of Mathematics and Physics 6, 164–189 (1927)

33. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A
database for studying face recognition in unconstrained environments. Tech. Rep. 07-49,
University of Massachusetts, Amherst (2007)

34. Ivanyos, G., Karpinski, M., Qiao, Y., Santha, M.: Generalized Wong sequences and their
applications to Edmonds’ problems. In: Proceedings of the 31st International Symposium
on Theoretical Aspects of Computer Science, vol. 117543, pp. 397–408 (2014)

35. Kindermann, S., Navasca, C.: News algorithms for tensor decomposition based on
a reduced functional. Numer. Linear Algebra Appl. 21(3), 340–374 (2014). DOI
10.1002/nla.1875. URL http://dx.doi.org/10.1002/nla.1875

http://dx.doi.org/10.1137/040608830
http://dx.doi.org/10.1137/040608830
http://dx.doi.org/10.1137/S0895479896305696
http://dx.doi.org/10.1137/S089547980139786X
http://dx.doi.org/10.1137/1.9781611971446
http://dx.doi.org/10.1137/130916084
http://cvxr.com/cvx
http://dx.doi.org/10.1016/j.jcss.2004.06.003
http://dx.doi.org/10.1016/j.jcss.2004.06.003
http://dx.doi.org/10.1016/0196-6774(90)90014-6
http://dx.doi.org/10.1016/0024-3795(93)00070-G
http://dx.doi.org/10.1002/nla.1875

36 Yuji Nakatsukasa et al.

36. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3),
455–500 (2009). DOI 10.1137/07070111X. URL http://dx.doi.org/10.1137/07070111X

37. Leurgans, S.E., Ross, R.T., Abel, R.B.: A decomposition for three-way arrays. SIAM
J. Matrix Anal. Appl. 14(4), 1064–1083 (1993). DOI 10.1137/0614071. URL http:

//dx.doi.org/10.1137/0614071
38. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged

nonconvex projections. Found. Comput. Math. 9(4), 485–513 (2009). DOI 10.1007/
s10208-008-9036-y. URL http://dx.doi.org/10.1007/s10208-008-9036-y

39. Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33(1),
216–234 (2008). DOI 10.1287/moor.1070.0291. URL http://dx.doi.org/10.1287/moor.

1070.0291
40. Li, N., Kindermann, S., Navasca, C.: Some convergence results on the regularized

alternating least-squares method for tensor decomposition. Linear Algebra Appl. 438(2),
796–812 (2013). DOI 10.1016/j.laa.2011.12.002. URL http://dx.doi.org/10.1016/j.

laa.2011.12.002
41. Liu, Y.J., Sun, D., Toh, K.C.: An implementable proximal point algorithmic framework

for nuclear norm minimization. Math. Program. 133(1-2, Ser. A), 399–436 (2012). DOI
10.1007/s10107-010-0437-8. URL http://dx.doi.org/10.1007/s10107-010-0437-8

42. Liu, Z., Vandenberghe, L.: Interior-point method for nuclear norm approximation with
application to system identification. SIAM J. Matrix Anal. Appl. 31(3), 1235–1256
(2009). DOI 10.1137/090755436. URL http://dx.doi.org/10.1137/090755436

43. Lovász, L.: Singular spaces of matrices and their application in combinatorics. Bol.
Soc. Brasil. Mat. (N.S.) 20(1), 87–99 (1989). DOI 10.1007/BF02585470. URL http:

//dx.doi.org/10.1007/BF02585470
44. Luke, D.R.: Prox-regularity of rank constraints sets and implications for algorithms. J.

Math. Imaging Vision 47(3), 231–238 (2013). DOI 10.1007/s10851-012-0406-3. URL
http://dx.doi.org/10.1007/s10851-012-0406-3

45. Mohlenkamp, M.J.: Musings on multilinear fitting. Linear Algebra Appl. 438(2), 834–852
(2013). DOI 10.1016/j.laa.2011.04.019. URL http://dx.doi.org/10.1016/j.laa.2011.

04.019
46. Noll, D., Rondepierre, A.: On local convergence of the method of alternating projections.

Found. Comp. Math. (2015). Published online
47. Oxley, J.: Infinite matroids. In: N. White (ed.) Matroid Applications, vol. 40, pp. 73–90.

Cambridge University Press (1992)
48. Qu, Q., Sun, J., Wright, J.: Finding a sparse vector in a subspace: Linear sparsity

using alternating directions. In: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
K. Weinberger (eds.) Advances in Neural Information Processing Systems 27, pp.
3401–3409. Curran Associates, Inc. (2014). URL http://papers.nips.cc/paper/

5402-finding-a-sparse-vector-in-a-subspace-linear-sparsity-using-alternating-directions.

pdf
49. Qu, Q., Sun, J., Wright, J.: Finding a sparse vector in a subspace: Linear sparsity using

alternating directions. CoRR abs/1412.4659 (2014). URL http://arxiv.org/abs/

1412.4659
50. Recht, B.: A simpler approach to matrix completion. J. Mach. Learn. Res. 12, 3413–3430

(2011)
51. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix

equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010). DOI
10.1137/070697835. URL http://dx.doi.org/10.1137/070697835

52. Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab v1.0, available online. URL:
http://esat. kuleuven. be/sista/tensorlab (2013)

53. Spielman, D.A., Wang, H., Wright, J.: Exact recovery of sparsely-used dictionaries. In:
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence,
IJCAI ’13, pp. 3087–3090. AAAI Press (2013). URL http://dl.acm.org/citation.cfm?

id=2540128.2540583
54. Stewart, G.W.: Matrix algorithms. Vol. II. Society for Industrial and Applied Math-

ematics (SIAM), Philadelphia, PA (2001). DOI 10.1137/1.9780898718058. URL
http://dx.doi.org/10.1137/1.9780898718058. Eigensystems

55. Stewart, G.W., Sun, J.G.: Matrix perturbation theory. Computer Science and Scientific
Computing. Academic Press, Inc., Boston, MA (1990)

http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1137/0614071
http://dx.doi.org/10.1137/0614071
http://dx.doi.org/10.1007/s10208-008-9036-y
http://dx.doi.org/10.1287/moor.1070.0291
http://dx.doi.org/10.1287/moor.1070.0291
http://dx.doi.org/10.1016/j.laa.2011.12.002
http://dx.doi.org/10.1016/j.laa.2011.12.002
http://dx.doi.org/10.1007/s10107-010-0437-8
http://dx.doi.org/10.1137/090755436
http://dx.doi.org/10.1007/BF02585470
http://dx.doi.org/10.1007/BF02585470
http://dx.doi.org/10.1007/s10851-012-0406-3
http://dx.doi.org/10.1016/j.laa.2011.04.019
http://dx.doi.org/10.1016/j.laa.2011.04.019
http://papers.nips.cc/paper/5402-finding-a-sparse-vector-in-a-subspace-linear-sparsity-using-alternating-directions.pdf
http://papers.nips.cc/paper/5402-finding-a-sparse-vector-in-a-subspace-linear-sparsity-using-alternating-directions.pdf
http://papers.nips.cc/paper/5402-finding-a-sparse-vector-in-a-subspace-linear-sparsity-using-alternating-directions.pdf
http://arxiv.org/abs/1412.4659
http://arxiv.org/abs/1412.4659
http://dx.doi.org/10.1137/070697835
http://dl.acm.org/citation.cfm?id=2540128.2540583
http://dl.acm.org/citation.cfm?id=2540128.2540583
http://dx.doi.org/10.1137/1.9780898718058

Finding a low-rank basis in a matrix subspace 37

56. Uschmajew, A.: Local convergence of the alternating least squares algorithm for canonical
tensor approximation. SIAM J. Matrix Anal. Appl. 33(2), 639–652 (2012). DOI
10.1137/110843587. URL http://dx.doi.org/10.1137/110843587

57. Uschmajew, A.: A new convergence proof for the high-order power method and general-
izations (2014). ArXiv preprint 1407.4586

58. Wang, L., Chu, M.T.: On the global convergence of the alternating least squares method
for rank-one approximation to generic tensors. SIAM J. Matrix Anal. Appl. 35(3), 1058–
1072 (2014). DOI 10.1137/130938207. URL http://dx.doi.org/10.1137/130938207

59. Wedin, P.Ȧ.: Perturbation bounds in connection with singular value decomposition.
Nordisk Tidskr. Informationsbehandling (BIT) 12, 99–111 (1972)

60. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex opti-
mization with applications to nonnegative tensor factorization and completion. SIAM J.
Imaging Sci. 6(3), 1758–1789 (2013). DOI 10.1137/120887795

61. Zhao, X., Zhou, G., Dai, W., Xu, T., Wang, W.: Joint image separation and dictionary
learning. In: Digital Signal Processing (DSP), 2013 18th International Conference on,
pp. 1–6. IEEE (2013)

http://dx.doi.org/10.1137/110843587
http://dx.doi.org/10.1137/130938207

	Introduction
	The abstract greedy algorithm for the low-rank basis problem
	Finding low-rank bases via thresholding and projection
	Convergence analysis
	Experiments
	Finding rank-one bases via tensor decomposition

